Minimalism or Creative Chaos? On the Arrangement and Analysis
of Numerous Scatterplots in Immersive 3D Knowledge Spaces

Melanie Derksen (&), Torsten Kuhlen

, Mario Botsch

, and Tim Weissker

Fig. 1: We present a user study in which we investigate users’ ability to memorize the location of a self-created scatterplot arrangement
in three different virtual environments. While the Empty scenario (left) featured no environmental features at all, the Office scenario
(right) offered an abundance of features that could be used as spatial references. The Desk scenario (middle) was situated between
these extremes, offering only a single object for spatial orientation.

Abstract—Working with scatterplots is a classic everyday task for data analysts, which gets increasingly complex the more plots are
required to form an understanding of the underlying data. To help analysts retrieve relevant plots more quickly when they are needed,
immersive virtual environments (iVEs) provide them with the option to freely arrange scatterplots in the 3D space around them. In this
paper, we investigate the impact of different virtual environments on the users’ ability to quickly find and retrieve individual scatterplots
from a larger collection. We tested three different scenarios, all having in common that users were able to position the plots freely in
space according to their own needs, but each providing them with varying numbers of landmarks serving as visual cues: an Empty
scene as a baseline condition, a single landmark condition with one prominent visual cue being a Desk, and a multiple landmarks
condition being a virtual Office. Results from a between-subject investigation with 45 participants indicate that the time and effort users
invest in arranging their plots within an iVE had a greater impact on memory performance than the design of the iVE itself. We report
on the individual arrangement strategies that participants used to solve the task effectively and underline the importance of an active

arrangement phase for supporting the spatial memorization of scatterplots in iVEs.

Index Terms—Virtual reality, 3D user interfaces, Head-mounted display, Immersive analytics, Spatial memory, Blind recall.

1 INTRODUCTION

In data analysis, scatterplots act as the first step in visualizing data,
providing a solid visual basis for further data exploration, examining
unusual patterns, finding correlations, identifying clusters, spotting
outliers, and understanding general trends in the data [19,22,51]. With
the increasing accessibility and popularity of Virtual Reality (VR) tech-
nology, the field of Immersive Analytics (IA) emerges as a more and
more attractive and important area of research. Prior studies indicate
that classic spatial analysis tasks, such as estimating distances [11],
detecting outliers [60], and identifying clusters [30], can exhibit greater
accuracy in immersive virtual environments (iVE) compared to tradi-
tional 2D desktop settings. Nonetheless, unlike with conventional 2D
visualizations, standards and best practices for data analysis in iVEs
still have to be established.

Besides the visual representation of the data items themselves, an
important question to consider is how data items should be arranged in
the surrounding virtual environment (VE) to enable the user to quickly
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locate the pieces of information relevant to them. Prior research shows
that the ability to search for and remember the spatial arrangements
of visualization elements within an information space is essential for
carrying out visual analytical tasks and has a clearly positive impact
on performance [6,39]. Several papers also provide evidence that
spatial aptitude is a strong predictor of performance in computer-based
user interfaces (Uls) [16,34,56]. This emphasizes the significance of
making appropriate design decisions to provide optimal support for
individuals with varying levels of spatial abilities. A common strategy
to support the spatial memorization of objects is the placement of salient
reference objects, often referred to as landmarks [55,58]. This strategy
is particularly interesting for iVEs, given that these artificial worlds
inherently provide less detail than the real world offers. However, an
overuse of landmarks can also lead to visual clutter, which can distract
the user and reduce their performance [44].

This paper investigates the strategies users employ to arrange numer-
ous scatterplot objects for analysis tasks and explores whether different
designs of iVEs influence these strategies and user’s memory perfor-
mance. Our work starts by presenting a design space encompassing the
different factors investigated in prior studies on spatial memory, as well
as using spatial cues in order to remember a list of items in iVEs. Based
on this overview, we identify a research gap regarding the influence of
the presence or absence of landmarks on scatterplot analysis tasks. We
then present the results of an empirical between-subject user study with
45 participants to close this gap, in which we compared a completely
Empty environment as well as an environment only containing a vir-
tual Desk to a fully-modeled Office environment with an abundance of
visual landmarks. In summary, our contributions are as follows:



* the derivation of a design space classifying related studies on (spa-
tial) memory in iVEs regarding their Main Independent Variable,
Items of Interest, and Item Engagement,

quantitative results of a between-subject user study with 45 partic-
ipants, indicating that the tested iVEs neither influenced memory
performance nor task load significantly, and that the time partic-
ipants spent arranging their plots is negatively correlated with
error rates and positively correlated with recall time,

qualitative results based on post-study interviews, showing that
the assessment of complexity varied significantly, which may
be attributed to differences in spatial reasoning skills, statistical
skills, personal interests, and previous VR experience.

Our findings based on an exploratory follow-up analysis suggest that
the time and effort users invest in arranging their plots within an iVE
have a greater impact on memory performance than the design of the
iVE itself.

2 RELATED WORK

Previous research demonstrates the suitability of VR for data analysis
and highlights its benefits over traditional 2D desktop setups, especially
for spatial analysis tasks [11,30,41, 60]. For example, prior studies
show that VR can facilitate the individual sensemaking process by
allowing text and images to be arranged in 3D space [35,36]. Further-
more, VR is shown to assist with the interpretation of more abstract
data representations like plots, leading to a high engagement [1,2,59],
an enhanced subjective perception of efficiency [59], and an increase of
positive emotions [1]. Effectively conducting visual analytical tasks re-
lies on the essential ability to locate and recall the spatial arrangements
of visualization elements within an information space [6,39], which is
especially relevant when data can be distributed across the entire 3D
space around the user. Given that spatial aptitude can vary across users
and is shown to directly correlate with performance in computer-based
Uls [16,32,34,56], supporting the user’s spatial memory is an essential
component of interface design [53].

In the following, we start by highlighting the idea of introducing
landmarks as a strategy to support spatial memory in both real and
virtual environments (Sec. 2.1). Then, we present a more specific
structured summary of prior research findings on spatial memory as well
as on the use of spatial cues in order to remember abstract information
in or with the help of iVEs (Sec. 2.2) to motivate our research focus of
this paper (Sec. 2.3).

2.1 Landmarks for Supporting Spatial Memory

One of the most prominent strategies to support spatial memory is the
placement of visually salient objects in the environment, often referred
to as landmarks [48, 53], with respect to which the position of other
objects can be memorized more easily. Vinson [58] underscores the
importance of incorporating multiple landmarks into VEs and empha-
sizes that they should be (1) recognizable by differing greatly from one
another and (2) discriminable from objects representing data. On the
other hand, Quinn et al. [44] caution against the overuse of landmarks,
finding that the extraneous visual clutter can distract users and decrease
their performance. Fitzmaurice [14] introduces the concept of situated
information spaces, where a data set is integrated into the real-world
space such that landmarks and references from the real world can be
used to assist with spatial memorization. Similarly, Biischel et al. [3]
investigate the usage of spatial interaction with mobile devices for 3D
data visualizations and propose using physical landmarks like a table
to provide a general frame of reference to the users. Liu et al. [40]
observe that their participants showed higher accuracy in recalling ab-
stract spatial patterns and gave more favorable subjective ratings in
an AR scenario when the room contained furniture, compared to an
empty room. Uddin et al. [55] explore the use of anchor marks and a
semi-transparent image as a way to improve people’s spatial memory in
2D grid menus. The results indicate benefits especially in larger menus,
with the simple anchor marks being faster and less error-prone than the
visually richer images.

Even when the objects to memorize are not linked to a fixed spatial
position by default, the concept of landmarks can still assist with their
memorization. Using the so-called Method of Loci (MoL) [62], and
even more specifically the concept of Memory Palaces (MP), a list
of objects to memorize is mentally connected with landmarks along a
route in a well-known environment, which facilitates later recall [31,61].
Traditionally, the MoL is shown to work best in unique environments
that are not repetitive and where there is plenty of space between the
objects to be remembered [62]. The results of Legge et al. [33] indicate
that participants find using a briefly presented VE in order to use it
as basis for the MoL easier and more effective than the conventional
MoL in which they are asked to use a very familiar environment, and
find evidence that their virtual adaption may be more effective for
memory enhancement or compensation training than the traditional
MoL protocol.

Motivated by the successful implementation of landmarks in prior
research as well as the cognitive benefits of landmark-based approaches
like the MoL, our work investigates how these benefits can be applied to
the recall of scatterplots in 3D iVEs and how VEs need to be designed
to effectively support the spatial memorization of scatterplot objects.

2.2 Specific Findings on Spatial Memory in iVEs

A large body of related work has already investigated the influences
of various variables on different forms of spatial memory in iVEs. To
provide a structured overview of these papers and to situate our re-
search presented in this paper, we follow the methodology formalized
in Zwicky’s General Morphological Analysis [49] to identify systematic
differences within the presented user studies and derive the classifica-
tion scheme shown in Tab. 1. In particular, we categorize papers based
on three higher-level categories representing the Main Independent
Variable under investigation (Sec. 2.2.1), the Items of Interest that are
to be memorized (Sec. 2.2.2), and the level of Item Engagement that
participants are provided with (Sec. 2.2.3).

2.2.1

The category Main Independent Variable encompasses the primary
subject of investigation, detailing what is either systematically varied
or measured as uncontrolled factors to explore correlations with partici-
pant performance. We identify nine subcategories, all of which will be
detailed in the following.

Main Independent Variable

Environmental Features relates to the general appearance of the en-
vironment [18,28,31], also including the presence or absence of land-
marks [39, 45] as well as anchors and background images in grid
structures [17]. In addition to the brief introduction and the benefits
of landmarks already presented in Sec. 2.1, the results presented here
explicitly refer to research regarding landmarks in iVEs. Ragan et
al. [45] control three independent variables: presentation layout (spatial
vs. non-spatial), presence of landmarks, and the user’s field-of-view
(FoV). For the investigation of landmarks, they contrast the presentation
of items on a solid background with a checkered environment where
the items are presented on top of pillars. Their participants employ
more visualization strategies during the memorization task when land-
marks are included in the spatial presentations. Jund et al. [28] compare
the aforementioned iVEs, labeling them as egocentric condition, with
another iVE being a navigable virtual apartment, calling it the allocen-
tric condition. They find that participants have better memory recall
accuracy in their egocentric setting than in the allocentric one. The
studies of Gao et al. [17] reveal that the integration of 3D pins as well
as anchors can facilitate the retrieval and recall of multiple targets when
compared to simple grid interfaces. Liu et al. [39] incorporate artificial
landmarks into both flat and full-circular grid structures. Because flat
layouts inherently provide natural landmarks at their corners, the added
artificial landmarks aimed to make the two layouts more comparable.
However, the flat layout consistently outperforms the full-circular one
regardless of the inclusion of artificial landmarks. Han and Cho [18]
observe that Augmented Reality (AR) participants outperform those
in VR in terms of spatial memory performance, likely because the
AR environment offers spatial cues that are absent in the VR setting.
Krokos et al. [31] compare two VEs and call them virtual MPs (vMP),



Table 1: The design space categorizes studies regarding spatial memory and the association of information with spatial cues to increase memory
performance in and with the help of iVEs. A filled cell indicates the option used in the respective work.
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being an ornate palace and a medieval town in their special case. They
do not find a statistically significant effect on recall due to the scenes.

Arrangement/Layout Structure comprises the differences in spatial
arrangement [28,45] of the Items of Interest, as well as the differences
in grid curvature and its outer form [39] if a grid structure is used in the
respective papers. Ragan et al. [45] demonstrate that spatial presenta-
tions in which items are presented at various positions around the user
significantly enhance memory performance compared to non-spatial
ones where the items are shown one at a time at the same fixed position
in front of the user. Similarly, the participants of Jund et al. [28] benefit
from the spatial presentation of items in the egocentric condition. In
the study of Liu et al. [39], participants show a greater recall accuracy
in flat and semicircular grid layouts than in full-circular layouts. Gen-
erally, studies prove that participants tend to prefer world-fixed over
body-fixed displays [37], and semicircular or curved arrangements over
full-circular and in some cases even over flat arrangements [37-39].

Level of Immersion refers to the comparison between systems that
offer varying degrees of user immersion. This involves comparing the
absence of any visual or virtual representation, allowing participants
to rely solely on their own memorization strategy with a 2D image
and with an iVE [61], the comparison of MoL with an iVE [23,43],
the comparison of MoL with a 2D desktop application and with an
iVE [57], and the comparison of a 2D desktop application with an
iVE [25,26,31]. Krokos et al. [31] discover that their vMPs offers
superior memory recall when experienced with an head-mounted dis-
play (HMD) compared to a desktop setup. They conclude that iVEs
provide great potential to enhance productivity through better recall of
large amounts of information organized using the idea of vMPs. The
vMP tested by Yang et al. [61] shows a moderate improvement for
recall accuracy and precision over their 2D image condition. Huttner
and Robra-Bissantz [25] investigate the impact of an increased level of
immersion (by either offering a 2D desktop or an HMD to investigate
the vMP their participants should make use of) on the effectiveness of
the MoL. The VR group shows higher compliance and greater learning
success compared to the desktop group. The findings of Moll and
Sykes [43] indicate that a VMP experience can be optimized to enable
participants to learn the MoL technique with minimal training time,

potentially leading to substantial enhancements in recall performance.
In the experiment of Huttner et al. [23], the group using the MoL out-
performs the other two groups using an immersive vVMP in terms of
memory performance. However, they mention that some limitations
of the experimental design may have contributed to the superior per-
formance of the MoL group. The different levels of immersion in the
work of Hifner et al. [26], being a CAVE and a desktop, do not influ-
ence memorization performance significantly. Vindenes et al. [57] let
participants create personalized vMPs with varying immersion levels.
While the MoL group outperforms the vMP groups, uneven spatial
skills across groups make it unclear if the results are due to immersion
or skill imbalance.

Travel Metaphor This subcategory refers to the locomotion technique
that participants are provided with to traverse the VE. While partici-
pants may be encouraged to remain stationary by placing the ltems of
Interest only within a certain radius, other setups explicitly encourage
physical walking by allowing to place items only beyond a certain
radius [15]. Furthermore, virtual navigation can be enabled to navigate
beyond the physically attainable space [18,26,28]. Han and Cho [18]
investigate three 3D user interaction techniques and could show that
physical walking is best to support spatial memory, followed by the
direct manipulation of the objects instead of navigating towards them.
Jund et al. [28] integrate a travel metaphor in their allocentric condition
in order to let their participants navigate through the VE. However,
the navigation technique shows no influence on the measurements.
Friedrich et al. [15] and Héfner et al. [26] could not find a significant
effect between motion types and memorization performance. Liu et
al. [39] conclude that the main factor influencing participant perfor-
mance is, even though being a side effect of their grid layouts, the type
of physical navigation that comes along with the curvature, since a full-
circular layout requires rotation while a flat layout requires physical
walking.

Awareness of Memorization Strategy means whether or not the de-
gree of knowledge regarding a memorization strategy is varied [23].
The memory performance in the study of Huttner et al. [23] is even
without the conscious awareness of the application, or even the exis-
tence of the MoL not attenuated. They conclude that it is not necessary



to introduce or educate the MoL before people enter a vMP. Contrary
to that, the study of Legge et al. [33] shows that even with very little
training, participants using either conventional MoL or virtual MoL
significantly outperformed participants who were not instructed to use
a particular strategy.

Knowledge of the Environment refers to the participants’ familiar-
ity of the environment [28]. Jund et al. [28] show that having prior
knowledge of the architectural layout can help with a recall task but the
recall performance still remains lower in the allocentric condition with
the known environment than with their egocentric condition. Legge et
al. [33] ask one of their groups to imagine a very familiar environment
in order to use the MoL. Their results suggest that the VE is not signif-
icantly more difficult to use with the MoL than a personally familiar
environment, and to the contrary, the MoL may be easier to use with
the virtual MoL protocol. Caplan et al. [4] show that familiarity with
an environment’s structure can lead to better memory recall compared
to other MP designs.

FoV The FoV can be artificially limited to experimentally isolate the
influence of undesired side effects [39,45]. Liu et al. [39] restrict
the FoV to rule out grid overview opportunities as a factor, since flat
layouts offer an overview by nature, unlike circular ones. Despite
this restriction, the flat layout still outperforms the full-circular one,
indicating that the difference in performance is not primarily due to
the overview provided by the flat layout. Ragan et al. [45] argue that
spatial perception is influenced by display factors and therefore vary
the FoV, but they could not measure an effect on performance in their
setup.

Users’ Perception especially refers to the work of Huttner et al. [24],
who explore correlations between users’ attitude, their feeling of im-
mersion and, among others, their learning success. They find significant
correlations between the learning success and key factors of the users’
intention to use a vVMP.
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Items of Interest indicate the type of objects or information that are to
be recalled by the users of the respective system. Data Points merely
refer to points in a 3D scatterplot [18]. 2D Visual Entities comprise two-
dimensional rectangular shapes, which can be abstract uniform colored
grid cells [39], pictograms [17] or images [15,28,31]. While Words
represent individual unrelated words [25], the category Texts represents
continuous texts that carry coherent information [61]. Combinations
are a mix of varying kinds of items of the aforementioned types, like
words plus images [23, 24, 43], or digits plus colored shapes [45]. 3D
Objects comprise virtual representations of real world objects [26] or
so-called memory cubes, which are cubes with pictures projected to
each side [57].

2.2.3 ltem Engagement

Item Engagement denotes the degree of user involvement regarding
the interaction with Items of Interest. Passive means that users are
restricted to passively viewing the items without any possibility to
interact with them [17, 18,26,28,31,39,45,61]. Hybrid denotes that
there are only specific item interactions; some studies work with the
concept of uncovering the items so that their actual content becomes
visible by either point and click [23,24] or by getting close enough to
them [39]. Active means that users are able to position the items of
interest freely in the corresponding VE [15,43,57,61]. N/A implies that
there are no virtual representations of those items spatially arranged in
the VE itself and thus are presented separately [25].

ltems of Interest

Reviewing past work reveals a wide diversity in Main Independent
Variables. Some topics, like Environmental Features and Level of Im-
mersion, received more attention than others, such as Awareness of
Memorization Strategies, Environmental Knowledge, and Users’ Per-
ception. It became apparent that most of the studies focus on a passive
Item Engagement with only four out of 14 works allowing for an active
Item Engagement. Similar to the Main Independent Variables, the Items
of Interest highlight the heterogeneity of the research field. This raises

questions about whether study outcomes would differ with other Items
of Interest, how Items of Interest affect memorability, and the interplay
between these items and the choice of User Engagement. Overall, the
design space reveals that many combinations of the dimension variables
offer opportunities for further research.

2.3 Discussion of Research Gaps

Based on our scoping review of prior studies on spatial memory perfor-
mance in iVEs, we identified two research gaps that we will address in
the following user study.

First, our review indicates that spatial memory research in the spe-
cific field of IA is relatively uncommon, even though the ability to
locate and remember spatial arrangements of visualization elements
within an information space is crucial for performing visual analytical
tasks and can have a positive impact on performance [6,39]. While
one of the surveyed papers examines spatial memory in the context of
a single prominent data plot [18], no research to our knowledge has
yet focused on investigating spatial memory in the use case of working
with multiple scatterplots in iVEs, a gap our work explicitly addresses.

Second, the aforementioned research indicates that spatial arrange-
ments [28,45] and the use of landmarks [17] have the potential to
enhance memory performance, but also that an overuse of landmarks
might be counterproductive [44]. However, the research papers dis-
cussed earlier mostly consider the presence and absence of certain types
of landmarks as binary variables [18, 28, 45] without systematically
varying the number of environmental features in a structured way. To
approach this gap, our study explicitly introduces a condition between
these two extremes to investigate whether a restricted set of only a
single landmark is already sufficient to support spatial memory.

3 USER STUDY

We conducted an empirical between-subject user study, in which we
analyzed the effects of different types of Environmental Features on
the recall performance of scatterplots and investigated the individual
arrangement strategies. Participants were assigned to one of three VEs
and were asked to actively (Item Engagement) distribute 2D and 3D
scatterplot objects ({tems of Interest) within that space. They were then
required to recall the locations of certain plots in both a blind and a
visible recall phase, which served as the main dependent variable for
this experiment. The last row of Tab. 1 situates our study within the
previously established design space of related work.

3.1

The application for our experiment is based on Unity version
2022.3.15f1. For the study, we used the Meta Quest 3, which has
a resolution of 2064 x 2208 pixels per eye and an update rate of 120 Hz.
Participants were sitting on a swivel chair and had the default inter-
action space of the Meta Quest’s stationary mode (I m x 1m). For
the creation of scatterplots, we used the Immersive Analytics Toolkit
(IATK) [8], a visualization toolkit for Unity that forms a solid basis for
the individual creation of multidimensional data visualizations in VEs.

Our focus on a stationary, seated VR experience was motivated by
the daily work routines of data analysts that commonly take place in a
desk-based office environment with limited movement space. Further-
more, prior research underlined that seated VR experiences generate
less fatigue than standing experiences [5] and also tend to induce lower
levels of cybersickness [42,47]. In addition, prior work has not identi-
fied significant interactions between motion types and memorization
performance [15,26].

Hardware Setup

3.2 Conditions

The between-subjects factor of our experiment was the number of
Environmental Features that the user could make use of to arrange and
later recall the scatterplots. We decided to test three different levels,
resulting in three different VEs ranging from the complete absence of
environmental features (Empty condition) to the availability of a single
virtual desk as feature (Desk condition) to a fully-modeled office space
with ample features (Office condition). The furniture models in the



Desk and Office conditions were taken from a free asset pack called
Office Softpack’ .

Empty The Empty condition (Fig. 1, left) serves a the baseline and
merely consists of a ground plane surrounded by the default skybox
of Unity. This condition helps to judge the potential improvements
introduced by the other conditions by studying if the user-selected
arrangement of scatterplots in empty space is already sufficient to
support easy memorization.

Desk The Desk condition (Fig. 1, center) features a single desk object
on the ground plane that can be used as a reference object for arrang-
ing scatterplots. It was inspired by previous work suggesting that a
single prominent landmark might already be sufficient to support easy
memorization of multiple objects [3, 59].

Office The Office condition (Fig. 1, right) resembles the everyday work
scenario of data analysts by featuring a desk with additional objects
like a monitor screen, a keyboard, some wall decorations, folders,
etc. This condition was inspired by previous work on landmark-based
memorization benefits and the finding that familiar environments can
improve memory recall [4].

3.3 Procedure

The host institution did not require an ethics approval for the conducted
study. Users were seated and did not make use of virtual navigation
techniques associated with the elicitation of sickness symptoms. Partic-
ipants came to our lab, were informed about the purpose of the study,
and agreed to participate voluntarily. Then they completed a digital
version of the so-called Corsi block-tapping test? [54], a psychological
test that assesses visuo-spatial short-term working memory [9]. In this
test, participants had to memorize a gradually increasing sequence of
blinking blocks among nine randomly ordered blocks. The Corsi span
is defined as the longest sequence a participant can correctly repeat,
whereby an average Corsi span is somewhere between five and seven
blocks for normal human subjects [29]. We then balanced the par-
ticipants across the conditions based on their gender as well as their
Corsi span. To ensure everyone had the same fundamental knowledge
required for participating in the study, we had participants review some
informative slides on scatterplots, allowing them to ask questions at
any time. After explaining how to use the VR system, the VR expe-
rience started with a training of the controls, followed by the actual
study that consisted of the three distinct phases Arrangement, Blind
Recall, and Analysis. The participants were only given instructions for
the arrangement and analysis phases. The blind recall phase was not
announced in advance, ensuring that participants arranged their layouts
specifically for the analysis tasks. During a training stage, participants
arranged six plots and answered two example analysis questions based
on classic scatterplot tasks [51], such as spotting outliers and identify-
ing correlations in order to familiarize them with the tasks they would
perform in the actual study. After each of the three phases in the actual
study, we asked participants to fill in the Raw-TLX questionnaire to
quantify perceived task load [20,21] as well as the Discomfort Scale,
which consists of the one question “On a scale of 0 to 10, 0 being how
you felt coming in, 10 is that you want to stop, where you are now?”,
to quantify their overall well-being [12,46].

Phase 1: Arrangement In the first phase, participants were asked to
arrange a total of 20 scatterplots (ten with two axes, ten with three
axes) in the space around them. To do so, they pressed a button on their
controller, which spawned the next scatterplot at a predefined position
in front of them. The participants had two controllers with identical
functionality. Each controller featured a ray pointer, enabling users
to drag and drop plots. Additionally, they could perform two-handed
rotations. Participants were instructed to drag each of these plots to a
location in 3D space, creating an arrangement of plots that would help
them to quickly locate and retrieve relevant plots in later analysis tasks.

Uhttps://Mmappin.itch.io/office-props-softpack
Zhttps://www.psytoolkit.org/experiment-library/corsi2.html

This experimental paradigm is commonly referred to as placement-
retrieval and is a well-established method in the literature on measuring
spatial memory [6,15,27,50].

The scatterplots for the training were based on data from Crawford’s
Cereals dataset®, and for the actual study from Crawford’s Camera
dataset* as well as Quinlan’s Auto MPG dataset® in which the units
were converted to match the conventions of our host institution. It is
likely that no one was an expert in the specifics of the datasets, but it
cannot be ruled out that someone may have encountered some of the
datasets before, as these are publicly available standard datasets. All
participants saw the plots in the same order.

Each scatterplot could be dragged and dropped in a world-fixed manner
as done in previous studies [10,37]. Since users were observed to
consider rearranging earlier objects during a task [52], we explicitly
allowed the repositioning of earlier scatterplots in our study as well.
The next plot could only be spawned if existing plots were neither
overlapping nor situated in the predefined plot spawning area. Invalid
positions were indicated by a semi-transparent red coloring of the
bounding box of the respective plots. We measured the total time
participants took to complete this phase.

Phase 2: Blind Recall After participants were satisfied with their ar-
rangement of all scatterplots, the second phase began, in which each
plot was replaced with a solid black box. This phase was not an-
nounced beforehand. Participants were then shown a total of ten plots
(five with two, five with three axes) and asked to select the black box
that corresponds to the position at which they placed this plot in the
Arrangement phase. The literature refers to this experimental paradigm
as blind recall, which is relevant to eliminate visual search strategies
and, therefore, to measure participants’ spatial recall performance in
isolation [15,27,53].

Similar to the Arrangement phase, users could press a button to show
the next scatterplot to be recalled in a predefined spawning position.
They then used simple raycasting to select the box where they assumed
the original plot was located. The chosen box briefly turned green with
a white check mark if the selection was correct or red with a white
cross if it was incorrect. Only one attempt per plot was permitted. For
each task, we measured the time between the spawning of the reference
plot to the corresponding click on a box (Retrieval Time). In the case
of an error, we followed previous research [15,27] and measured the
straight-line distance from the center of the selected plot to the correct
plot (Euclidean Error Distance) as well as the number of scatterplot
boxes that were closer to the correct one (Items Closer to Correct One,
similar to [15, 18]).

Phase 3: Analysis Although blind recall tasks are beneficial in terms
of experimental control, the resulting experimental procedure also
appears more artificial and, therefore, decreases ecological validity.
To overcome this limitation, the third phase of the study confronted
participants with more realistic data analysis tasks, in which the black
boxes were removed again to show the initially placed scatterplots.

We asked participants a total of five questions on the underlying datasets
that could be answered with one of the previously arranged plots. We
alternated in asking for plots with either two or three attributes as well
as for the two datasets. The general kind of analysis questions were
derived from classic scatterplot analysis tasks [51]. Questions were
displayed in text form and required participants to deduce which of
the plots is required, to find it in the arrangement, and to investigate
it for the correct answer. Once the correct answer was given verbally,
the experimenter logged it in and initiated the display of the next task
in the iVE. While participants were allowed to rearrange plots while
searching for the correct answer, the arrangement was reset to the one
of the Arrangement phase after each question. For each question, we
measured the time between task assignment and verbal answer.

3https://www.kaggle.com/datasets/crawford/80-cereals
“https://www.kaggle.com/datasets/crawford/1000-cameras-dataset
Shttps://archive.ics.uci.edu/dataset/9/auto+mpg
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Fig. 2: The boxplots (from left to right) illustrate the distribution of ltems Closer to Correct One, the Retrieval Time in Blind Recall, the task load in
the different phases separated by condition. The two scatterplots (from left to right) illustrate the time spent in the Arrangement in relation to the
average Items Closer to Correct One per participant, as well as the average Retrieval Time per participant. In both plots, a fitted black regression line
illustrates the overall trend. The colors represent the B Empty, B Desk, and I Office condition.

Study Conclusion At the end of the study, participants were asked to
describe in their own words how challenging they found every stage as
well as their strategies for arranging the plots, and if they have further
comments. They then provided demographic data before receiving
an expense allowance of 12 Euros for their efforts. The entire study
procedure took approximately 60 min to complete.

3.4 Hypotheses

Our primary analysis goal is to investigate the impact of different iVEs
and arrangement strategies on spatial memory in the specific use case
of working with multiple scatterplots, focusing on how variations in the
level of features within these VEs affect the outcome. Previous research
strongly suggests that the environment will have an impact as, for
example, using vMPs can lead to improved memory performance [31,
61], and landmarks and visual anchors can aid recall [17]. However,
an overuse of landmarks can also cause visual clutter with a negative
impact on spatial memory [44]. Therefore, we formulated undirected
hypotheses as follows:

H1: The iVE will have an impact on recall performance, this means on
the Items Closer to Correct One (H1a) and Retrieval Time (H1b)
in the Blind Recall stage.

Considering the importance of spatial anchors for the development of
spatial memory [53], we assume that the Empty condition will lead to
the highest task load among the three conditions as it is characterized
by the explicit absence of visual anchors:

H2: The task load in the Blind Recall as well as in the Analysis phase
will be highest in the Empty condition.

Despite the hypothesized dependence of the results on the iVE, we
also assume that longer arrangement times might also enhance the
recall performance, since longer times might be due to the development
and adjustment of a sophisticated arrangement strategy that reacts
appropriately to new information as new plots are added:

H3: Participants who take more time in the Arrangement phase will
have lower error rates, this means fewer Items Closer to Correct
One (H3a), and will be faster in recalling the plots in the Blind
Recall phase (H3b).

3.5 Participants

A total of 45 participants (20 female, 25 male), between 18 and 37
years of age (M = 25.4, o = 4.6) with a Corsi span ranging from 4 to
9 (M = 6.4, 0 = 1.3), were recruited from the local university campus
and through dedicated mailing lists for our user study. This provided
15 participants per condition, balanced in terms of both gender and
Corsi span. In the Empty condition, there were 7 females and 8 males,
with a mean Corsi span of 6.47. The Desk condition also comprised 7
females and 8 males, with a mean Corsi span of 6.33. Finally, the Office
condition included 6 females and 9 males, with a mean Corsi span of
6.4. Based on a 5-point Likert scale, where 1 represents very little and
5 represents very much, the self-reported mean prior experiences were
as follows: VR experience averaged at 2.5, gaming experience at 3.6,

data visualization experience at 2.9, and scatterplot experience at 2.6.
Notably, the full range of the scale was utilized across all categories.

4 RESULTS

This section reports on the results of our data analysis, which we begin
by an overall analysis of discomfort scores as an indicator for the
validity of all other measurements. In particular, the discomfort scores
reported after each phase (with a possible range from 0 to 10) ranged
from O to 4 (M = 0.93,0 = 1.25). The majority of scores (N = 88)
were between 0 and 1, with only a small number (N = 7) reaching a
score of 4. Overall, these figures suggest that participants were in good
shape to complete the study, which implies that the other measurements
are likely not affected by discomfort as a confounding variable.

4.1 Hypotheses

Based on our formulated hypotheses before the experiment, we con-
ducted our inferential statistical analyses using Jamovi (version 3.2.28).
For the comparisons of the three iVEs, we ran one-way ANOVAs and
tested the assumption of normality with the Shapiro-Wilk test and homo-
geneity of variances with Levene’s test. We switched to Kruskal-Wallis
tests if the assumptions were not fulfilled.

To prevent an over-reliance on p-values, we supplement our reports
with the effect size N2 for ANOVAs as suggested by the APA publi-
cation guidelines, applying the threshold values of 72 > 0.01 (small),
112 > 0.06 (medium), and n2 > 0.14 (large) as suggested by Cohen [7]
to quantify the corresponding effect magnitudes. Correlational analyses
of the entire dataset were performed by computing Pearson’s r, given
that the combined sample size of N = 45 > 30 is sufficiently large
to assume a normal sampling distribution based on the central limit
theorem [13, pp. 170-172]. Plots illustrating the distributions are given
in Fig. 2.

Recall Performance (H;) The average number of Items Closer to Cor-
rect One were 2.64 in the Office condition (o = 1.09), 2.77 in the Desk
condition (¢ = 1.28), and 3.00 in the Empty condition (¢ = 1.24). A
one-way ANOVA on the data did not reveal a significant difference be-
tween the conditions, F(2,42) = 0.343, p = 0.712,17% = 0.016 (small
effect).

The average Retrieval Time was with 15.8 s the shortest in the Empty
condition (0 = 5.53 ), 16.9 s in the Office (¢ = 8.33 s) and longest
18.3 s for Desk (o = 9.53 s). The average Retrieval Time was not sig-
nificantly affected by the iVE, x2(2) = 0.200, p = 0.905,1% = 0.005.

Task Load (H;) The Empty condition induced on a average the lowest
task load in the Blind Recall phase with 50.3 (o = 12.7), followed by
Desk 51.6 (o = 10.6) and Office 55.8 (6 = 9.77). A one-way ANOVA
showed that the mean task load in the Blind Recall phase was not
significantly affected by the iVE, F(2,42) = 0.995,p = 0.378,n% =
0.045 (small effect).

In the Analysis phase the Empty condition induced on average the
highest task load 35.6 (o = 14.0), followed by Desk with 29.8 (o =
13.2) and Office with 24.6 (o = 13.0). A one-way ANOVA showed



that the mean task load in the Analysis phase was not significantly
affected by the iVE, F(2,42) = 2.56, p = 0.089, 1% = 0.109 (medium
effect).

Correlational Analyses (H3) Correlational analyses revealed a signif-
icant negative linear relationship between the arrangement time and the
average number of Items Closer to Correct One, r = —0.311, p = 0.038.

Furthermore, the analyses revealed a significant positive linear relation-
ship between the arrangement time and the average recall time in the
Blind Recall phase, r = 0.296, p = 0.048.

4.2 Discussion and Exploratory Follow-Up Analyses

Contrary to our expectations motivated by related work, our inferential
analyses indicated that the number of landmarks present in each of the
tested 1VEs did neither significantly impact recall performance nor task
load, leading us to reject H; and H for our experiment. Furthermore,
we found that a longer arrangement time resulted in smaller error rates,
which confirms H3a. Surprisingly, the opposite effect predicted in H3b
occurred: a longer arrangement time led to a longer recall time.

4.2.1

Given that our study could not detect significant influences of the iVEs
on recall performance (H), we were interested in other factors that
could have determined how well participants performed in the Blind
Recall phase. To this end, the results of our correlational analyses
provided us with indications that, independent of the iVE, the time
spent in the Arrangement phase was a significant predictor of the
number of Items Closer to Correct One with a medium effect of r =
—0.311, even though higher arrangement times also resulted in higher
recall times with r = 0.296 contrary to our expectations (H3). The
negative relationship between arrangement time and error suggests that
better performing participants might have devised a more sophisticated
strategy in the Arrangement phase, which took them longer to optimize
before moving on to the Blind Recall phase.

To test this claim numerically, we decided to analyze the final scat-
terplot arrangements of all participants in more detail. Based on our
observations of the study, we hypothesized that participants without
a clear strategy mainly arranged plots based on their spawning order,
while participants with a strategy clustered and ordered plots based on
semantics rather than spawning order. To quantify this, we had a look
at the 19 pairs of neighboring scatterplots in the spawning order and
investigated their Euclidean distances in the final arrangement created
by each participant. We then normalized this distance vector for each
participant by dividing each value by the longest distance in order to
account for individual variations in the overall spatial extent of each
arrangement. As a final step, we computed the mean value of this
normalized vector as a single numeric score for each participant. Cor-
relational analyses revealed that this score had a significantly negative
relationship with the average number of Items Closer to Correct One
with a medium effect size, r = —0.371, p = 0.012. This indicates that
arrangements deviating stronger from the spawning order were related
to better results in the recall phase, confirming our assumption that the
participants’ arrangement strategy was a stronger predictor of recall
performance than the iVE. In the following, we will summarize some
of the most prevalent strategies participants mentioned to have used.

Arrangement Complexity

4.2.2 Arrangement Strategies

Overall, we observed that participants used a large variety of different
strategies for arranging the scatterplots. All of them had in common
that participants made extensive use of the ability to freely arrange
scatterplots in the 3D space, resulting in layouts that were either flat
or centered around the user in a curved manner, and were based on
characteristics of the presented data (e.g., their respective dataset, their
number of axes, their attributes, etc) rather than being connected or
bound to environmental features. To improve the visibility of the plots
in these user-centered arrangements, 30 participants slightly tilted the
plots such that all axes were directly visible from the central position.

All participants clustered scatterplots based on the two underlying
datasets (cameras and cars), 43 of which used a vertical split between

the clusters (one horizontal, one slanted). 36 participants created a clear
visual gap between the clusters, while the remaining nine participants
juxtaposed both clusters without a clearly visible separation. Another
factor for creating clusters was the number of axes in the scatterplots
(2D or 3D), where 14 and six participants used vertical and horizontal
separation, respectively.

23 participants created clusters based on the attributes visible in
each scatterplot. Among these, ten participants arranged the plots such
that identical attribute axes were all placed along the same line in 3D
space. Six participants decided to rotate plots such that certain axes of
neighboring plots were identical. Four participants included specific
semantic interpretations of the attributes in the provided scene, for ex-
ample, attributes representing “weight” being situated near the ground
or attributes representing maxima (e.g., “maximal resolution” in the
camera dataset) being situated at a higher level in the VE. One partici-
pant considered the alphabetical order of the attributes, while another
one focused on grouping similar data distribution shapes together.

4.2.3 Exemplary Arrangements

To better demonstrate the variety of arrangement strategies as well as
the resulting user performance in the blind recall task, we will discuss
two exemplary participant arrangements in more detail.

Figure 3 shows the arrangement of participant P3, who achieved
the overall lowest error rate with an average Items Closer to Correct
One score of 0.2, just one error out of ten blind recalls, and an average
Retrieval Time of 36.06 s. The user spent 14.9 min in the Arrangement
phase and was in the Office condition. In the interview the participant
explained they put the car plots on the right-hand side and the camera
plots to the left-hand side, grouped by attributes in a grid-like manner
and tried, whenever possible, to arrange the same attributes along a line.
The resulting arrangement shows that the plots are spatially clearly
separated based on the dataset they represent and grouped into flat
clusters. Plots that share a common attribute are neighboring and often
aligned along a line or arranged in clusters in the iVE, regardless of
which plot axis displays that attribute. For example, plots containing
“acceleration” (with their numbers in spawning order being 5 and 7) are
placed horizontally at the top, plots containing “displacement” (1, 4, 7,
13, 18) are arranged vertically, and plots containing “model” (1, 4, 10)
are positioned at the bottom, forming a triangular shape. Figure 3 also
demonstrates that this participant’s arrangement significantly deviated
from the original spawning order; it rather exhibits a clear semantic
organization. In the interview this participant called the Arrangement
phase the most challenging one, which once again suggests that the
effort invested during this stage paid off in the Blind Recall, leading to
a low error rate.

In contrast, Fig. 4 shows the arrangement of participant P12, who
achieved the overall highest error rate with an average Items Closer to
Correct One score of 6.4, eight errors out of ten blind recalls, and the
fastest average Retrieval Time of 4.07 s. The user spent 3.1 min in the
Arrangement phase, thus being the second-fastest, and was in the Desk
condition. In the interview the participant mentioned they wanted to be
able to see all plots by moving the head slightly up and down. Further-
more, they explained they tried to align plots having the same attributes
along a line, which is similar to the strategy of participant P3. In the
resulting arrangement in Fig. 4, the plots were separated horizontally
depending on their dataset but, in contrast to participant P3, there is
no clear spatial gap between the two different datasets. Furthermore,
a deeper investigation shows that the intention to align plots with the
same attributes along a line has been only partially realized. For exam-
ple, for plots having the attribute “model” (1, 4, 10) this concept applies
only to 4 and 10, while 1 is neither in the same line nor spatially close
to 4 and 10. Similarly, plots having the attribute “# cylinders” (3, 7, 10,
16) neither share a single line nor are positioned in spatial proximity. 3,
7 and 16 are arranged along a vertical line but are not neighboring, only
7 and 10 are adjacent in the participant’s arrangement, just to mention a
few. In addition, the visualization of the spawning order together with
the short arrangement time creates the impression that newly spawned
plots were rather stacked on top of each other or had been successively
added to the existing arrangement. It seems there was no effort made to



Fig. 3: The pictures (from left to right) show the arrangement of participant P3 of the plots representing the car dataset, their respective spawning
order, the arrangement of the plots representing the camera dataset, and their respective spawning order. For demonstrating the spawning order, the

color B represents the first plot (number 1), with interpolated colors towards

Fig. 4: The arrangement of participant P12 was strongly inspired by the
spawning order of the plots instead of their semantics. See Fig. 3 for an
explanation of the employed color coding.

rearrange the existing plots for refinement. Despite being told to have
unlimited time for the Arrangement phase, the participant’s seemingly
hurried attempt led to an arrangement that only partially reflected their
actual intentions. The brief arrangement time likely limited the time to
examine and memorize individual plots, resulting in higher error rates.

4.2.4 Semi-Structured Interview

Below, we summarize the participants’ descriptions, in their own words,
regarding how challenging they found each stage.

Arrangement While two participants described the Arrangement
as the most complex phase, five participants reflected that it was more
complex than they initially realized and felt they should have spent
more time on it. 13 found it quite difficult, one attributed this to their
weakness in spatial reasoning, another mentioned their unorganized
nature which they felt was a disadvantage in that case, and one even
stated that creating a meaningful arrangement seemed impossible. 17
participants called it tricky/not so easy to develop a good system, some
expressing an uncertainty about what to sort by and others lost the
overview. One participant mentioned that they could have spent hours
in arranging the plots because they found the task enjoyable. Five found
it easy, and two considered it very easy. This widespread nature of oral
responses regarding the complexity of this phase is also mirrored in the
task load in Fig. 2.

When asking for further comments, one participant in the Office
condition said that it would be nice if the VE’s context matched the
data presented in the plots in order to build environmental associations
with the plot’s content, and another one in the Office condition men-
tioned that the surroundings helped in estimating distances and groups,
providing a better sense of space. Two participants appreciated the
ability to position the plots freely in space, without being restricted by
gravity. Our observations revealed that once participants understood
the plots were not influenced by gravity, they began “ignoring” environ-
mental features in the Desk and Office condition. Initially, some tried
placing the plots on desks or shelves, but after recognizing the absence
of gravity, they let the plots float freely within the iVE, independent of
the surroundings.

marking the sequence from plot 2 to 20.

Blind Recall Regarding the Blind Recall phase, 18 participants
found it to be very complex, one of them pointing out that they were
very happy they had devised a good system in the previous phase. 19
said it was quite difficult. Six classified it to be moderate in complexity.
Two said it was easy but both clarified that this was because they
simply guessed. Among those complexity estimations, 13 participants
additionally stated that they could only vaguely remember the positions
of the plots but not precisely, and one stating that it became pretty
obvious in which areas they spent enough time thinking about their
arrangement and in which they did not. The feedback goes hand in
hand with the higher scores of the task load in the Blind Recall in Fig. 2.

Analysis The Analysis phase was stated to be complex by only two
and to be moderately complex by 13 participants. 25 classified it as easy,
some mentioning the intuitiveness of the VR system, some mentioning
their arrangement was specifically designed to solve analysis tasks,
while others described the process as relaxing despite being instructed
to find the answers as quickly as possible. The remaining five directly
compared it to the Blind Recall phase and found the Analysis to be
easier. Among those opinions, three especially highlighted the fun
aspect in the VR system during the analysis tasks. One of them, who
had no statistical background, mentioned that they would have liked to
continue with more tasks and found it enjoyable because of their good
system they had created that made sense to them. These responses
indicate that the Analysis phase seems to be the easiest one, which is
also mirrored by the lower task load scores in Fig. 2.

Regarding further comments, it stood out that nobody complained
about visual clutter, but one participant in the Empty condition men-
tioned that the skybox made the numbers in the plots hard to read. One
participant in the Office condition mentioned that the environmental
features present in that particular VE did not create visual clutter. How-
ever, they could imagine that other scenarios with poor color choices
might do so. Two said that they found working with the camera dataset
easier than with the car dataset across all phases due to a generally
higher personal interest regarding cameras.

Overall, it stands out that the participants’ opinions on the complexity
of each phase show high variances, but that the overall trend is mirrored
in the task load in Fig. 2. From additional comments, we conclude
that this discrepancy (beyond the varying levels of experience with VR
technology and scatterplots revealed by the quantitative data) may be
attributed to differences in spatial reasoning skills, personal interests,
and the amount of time and effort invested in the Arrangement phase,
which served as a basis for subsequent phases.

4.3 Limitations

In the following, we would like to list a few limitations of our study
design to motivate relevant aspects of future work.

First of all, with our study design we could not detect statistical
significance for two of our three hypotheses. Nonetheless, we provided
further exploratory analyses beyond our hypotheses to provide potential
explanations for the observed data. We explicitly encourage the repli-
cation of our experiment by other researchers to see if these exploratory



findings replicate with a different sample.

Furthermore, post-hoc analyses revealed that our participants had
varying levels of experience across different areas, including VR tech-
nology, data visualizations, and scatterplots. Although all participants
successfully completed the analysis tasks, the question remains as to
how transferable our results are to professional data analysts since the
understanding of the data and plots might have influenced the arrange-
ments. In addition, we did not provide our participants with a specific
arrangement or memorization strategy, as prior research is divided on
whether introducing such strategies is necessary [23,33]. Moreover,
our participants actively positioned the items themselves, rather than
being restricted to memorize a static, predefined arrangement. This
approach differs from studies such as those by Ragan et al. [45], Krokos
et al. [31], and Jund et al. [28], which also explore different VEs but
use predefined item positions for participants to passively observe and
memorize.

Additionally, the Items of Interest in our study differ markedly to
previous work. While earlier studies mostly used abstract items, like
2D Visual Entities [15,17,28,31,39] or unrelated Words [25], only one
study uses whole texts [61] which are, similar to ours, rich in content
but, contrary to ours, not interrelated. In contrast, scatterplots inherently
carry a high level of information, show a greater complexity, and, in
our case, are interrelated. Presumably, these factors also influence the
complexity of the arrangement process.

Allin all, spatial memory is a complex cognitive construct influenced
by many factors that cannot always be isolated optimally.

5 CONCLUSION AND FUTURE WORK

In this work, we introduced a design space categorizing studies on
spatial memory as well as the association of abstract information with
spatial cues in order to increase memory performance in and with the
help of iVEs. We then investigated how individual strategies for arrang-
ing multiple scatterplot objects across three different iVEs with varying
amounts of environmental features influence spatial memory perfor-
mance. Unexpectedly, our user study did not reveal a significant effect
of the different iVEs on memory performance, but the time participants
took for their individual arrangement was a significant predictor of user
performance instead. In combination with an exploratory follow-up
analysis, our study’s findings indicate that the time and effort invested
in arranging items seem to have a stronger influence on spatial memory
performance than the environmental features. As a result, we conclude
that giving users the freedom to create their own arrangement instead
of providing them with pre-existing arrangements can be beneficial for
supporting spatial memory in data analysis scenarios.

Future work might focus on how transferable our results regarding
the impact of environmental features are when using less complex
Items of Interest that are not interrelated and have a lower density of
information. Furthermore, our interview revealed that some participants
found working with one dataset easier than with the other one due
to individual differences in interests regarding specific topics, which
makes personal interests another relevant factor to examine in future
studies. On top of that, it makes sense to investigate how transferable
our results are to professional data analysts since the understanding
of the data and plots might have influenced the arrangements. All in
all, we believe that the investigation of spatial memory in abstract data
analysis scenarios is a highly relevant area for future research. Our
presented design space as well as our study results provide further
insights into the large variety of potential factors influencing memory
performance and, therefore, pave the way for relevant future studies in
the field.
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