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abstract

This thesis presents methods for reconstructing and modifying realistic
personalized virtual humans to be employed in the context of a VR-based
body image disorder therapy system. We start by presenting a method for
generating virtual humans from monocular smartphone cameras, thereby
lowering the hardware requirements and increasing the availability of
personalized virtual humans compared to other methods, which typically
depend on elaborate photogrammetry rigs. In a user study, we investigate
the perception of the resulting virtual humans by scanning people with
both the low-cost smartphone-based method and a standard multi-view
stereo photogrammetry rig. Participants then embody and rate both
virtual humans in a virtual mirror exposure scenario. The results show,
that both virtual humans are perceived similarly, indicating that our
smartphone-based method presents a viable alternative to expensive
photogrammetry rigs. For employing realistic virtual humans in body
image therapy, we present a method for modifiying the body weight of the
virtual humans in real-time. Users of the VR-based therapy system then
embody a personalized avatar in a virtual mirror exposure scenario and
are given active control over the avatar’s body shape, enabling researchers
to investigate the potential of VR-based therapy and gain insight into
possibly occurring body image disorders.

To improve on the purely surface-based body weight modification
model, the second part of this thesis focuses on anatomical representations
of virtual humans. We present a method for inferring anatomical details
from a given skin surface in less than a minute. To this end, we derive a
three-layered anatomical model, consisting of a skin, muscle, and skeleton
layer, from a commercial high-resolution anatomical model. We then
learn a model for predicting body composition, i.e., fat and muscle mass,
from a given skin surface and fit the template model to a large database
of surface scans while conforming to the estimated body composition.
The original high-resolution anatomical structures are transferred to the
resulting fit via a triharmonic space warp. Finally, we use the inferred
anatomical data to learn an anatomically constrained volumetric human
shape model. We enlarge our training data to the full Cartesian product
of all skeleton shapes and all soft tissue distributions using physically
plausible volumetric deformation transfer. A self-supervised learning
technique then produces two separate latent parameter sets, allowing us
to sample different soft tissue distributions over the same skeleton shape
and vice versa. The resulting anatomical model additionally facilitates
fast skeleton inference and semantic localized shape modification.
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1I N T R O D U C T I O N

Digital representations of humans, also called virtual humans or avatars, are
increasingly becoming relevant in the fields of entertainment, e-commerce,
medicine, sports, virtual reality, and many others. Today, photorealistic virtual
humans or stylized humanoid characters are, e.g., commonly used in movies
as part of the visual effects pipeline. Modern video games also employ high-
fidelity virtual humans with the additional requirement of real-time rendering.
In the e-commerce setting, virtual humans are employed in virtual try-on
applications as well as made-to-measure garment fabrication. Apart from
these applications in entertainment and e-commerce, virtual humans are also
employed in medical or sports applications. 3D scanning of humans can for
example support the accurate fitting of personalized prosthetics. The fitness
industry leverages virtual humans for tracking, analyzing, and visualizing
training progress. In this thesis, we will discuss virtual human reconstruction
and modification methods in the context of a VR-based therapy system.

The work we will present in this thesis was in large parts developed in the
context of the ViTraS project, short for Virtual Reality Therapy by Stimulation of
Modulated Body Perception [DWW+19; ViT24]. This interdisciplinary research
project investigates the potential of employing virtual humans in VR therapy
settings as a complementary method to classical intervention techniques. In
particular, it focuses on VR therapy of body image disorders and specifically
centers on obesity and adiposity. The resulting immersive obesity therapy sys-
tem should allow users to observe their personalized avatar in a virtual mirror
setup in VR while their movements are captured via motion tracking and retar-
geted onto the virtual human, thus replicating the established mirror exposure
intervention. To help researchers gain insight into potentially occurring body
image disorders, users of the system should be able to modify the body weight
of their embodied avatar in real-time. This allows them to (i) match the virtual
human’s body shape to their current body image, or (ii) explore and discuss
possible future body weights, thereby exploiting the unique advantage that
VR therapy interventions have over classical forms of therapy. As previous re-
search has shown that virtual body ownership, the feeling of presence, and the
emotional response to the virtual environment are increased when embodying
realistic personalized virtual humans [WGR+18], this thesis is also concerned
with realistic virtual humans as opposed to stylized representations typically
found in VR games or Metaverse applications.

The setting of realistic virtual humans in the context of VR therapy of body
image disorders defines the main goals of this thesis: (1) Provide a method for
generating personalized virtual humans in an adequate time frame and at a
reasonably high fidelity, while having minimal hardware requirements in order
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introduction

to increase the availability of personalized virtual humans for VR user studies.
(2) Develop a method for modifying the body weight of the resulting virtual
humans, allowing researchers to investigate the effects of modulated body
perception in a VR-based obesity therapy system that reproduces classical
mirror exposure intervention.

Realistic personalized virtual humans are typically generated by first per-
forming a 3D scan of the person to be reconstructed. A common method for
the 3D scanning of people is to record them with multi-view stereo photogram-
metry rigs, where multiple cameras record the scanning subject from different
angles, producing a dense 3D point cloud through photogrammetric scene
reconstruction. We start by describing our custom-built photogrammetry rig
and introducing a template fitting method that registers a statistical animat-
able human template model to the resulting point cloud, thereby generating a
virtual human from such a 3D scan in a fully automatic fashion (Chapter 2).
This reconstruction method already fulfills parts of the first goal of this thesis:
the resulting virtual humans are ready for full-body and facial animation and
can easily be integrated into common graphics pipelines and game engines
for use in virtual reality. However, performing the required 3D scans by
employing an elaborate photogrammetry rig has several disadvantages that
limit the broader availability of personalized virtual humans. Since multi-view
stereo photogrammetric reconstruction requires a large amount of high-quality
DSLR cameras, the hardware costs for building a photogrammetry rig are
non-negligible. Furthermore, photogrammetry rigs are stationary and space-
consuming and thus cannot be easily incorporated into medical facilities or
therapist offices.

Therefore, in Chapter 3, we present a method for generating such realis-
tic virtual humans from two videos recorded on commodity smartphones,
drastically reducing the hardware costs compared to previous reconstruction
methods. In order to investigate, if generating virtual humans from smart-
phone videos presents a viable alternative to traditional photogrammetry rigs,
Chapter 4 then examines, how people perceive the resulting virtual humans.
We conduct a user study where participants are scanned with both a high-cost
photogrammetry rig and the low-cost smartphone reconstruction method.
Participants then embody, observe, and rate both resulting virtual humans in
a virtual mirror exposure scenario.

With the ability to quickly generate realistic personalized virtual humans
from photogrammetry rigs or smartphone videos, we then proceed with
developing a statistical model of body weight modification in Chapter 5.
This completes all components needed for providing personalized realistic
modulatable avatars for virtual mirror exposure and VR therapy scenarios. We
briefly present the resulting VR-based prototype, where users embody these
virtual humans and have active control over the body weight of their avatar
in real-time. The presented model is however trained on surface meshes only

2



and is therefore unable to accurately reason about personal anatomical traits
such as body composition.

To tackle this limitation, the second part of this thesis focuses on anatomical
volumetric models for representing virtual humans. First, in Chapter 6, we
present an approach for fitting a layered anatomical model to a given skin
surface. The model consists of three surface meshes with identical topology – a
skeleton, muscle, and skin layer – which gives a straightforward way to define
volumetric elements between these layers. We learn to infer body composition
from a given surface scan, which then informs the volumetric template fitting
approach, allowing us to quickly infer anatomical details for a given skin
surface in less than a minute.

Finally, Chapter 7 describes a novel approach for learning a statistical
model of human skeletal shape and soft tissue distribution. By employing the
anatomy inference method of Chapter 6 and using volumetric deformation
transfer, we are able to transfer the soft tissue distribution of a given subject
onto the skeletal shape of all other subjects of our data set in a physically
plausible way. This defines a synthetic Cartesian data set from which we
learn an anatomically constrained volumetric human shape model, which
facilitates skeleton inference in less than a second and provides localized shape
manipulation of skeletal shape and soft tissue distribution.

C O N T R I B U T I O N

To summarize, the main contributions of this thesis are:

• An approach for creating realistic virtual humans from smartphone
videos, thereby reducing the hardware requirements and increasing the
availability of virtual human reconstruction methods.

• An evaluation of the proposed reconstruction method in terms of user
perception, showing that the resulting virtual humans are perceived simi-
larly to virtual humans reconstructed from more elaborate 3D scanning
setups.

• A statistical model for body weight modification, which allows users of
a VR-based therapy system based on virtual mirror exposure to directly
modify the body weight of their embodied avatar in real-time.

• A layered anatomical model which we can efficiently fit to skin surfaces
produced by the aforementioned reconstruction methods in an anato-
mically plausible way, allowing us to estimate anatomical details from
surface scans only.

• A statistical anatomical model of human skeleton shape and soft tis-
sue distribution which allows for fast skeleton inference and localized
semantic shape modification of virtual humans.
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2F U N D A M E N TA L S

This chapter describes fundamental concepts that will be relevant throughout
the rest of the thesis. We start by introducing multi-view stereo photogramme-
try rigs, which are commonly used for the generation of virtual humans. We
describe our custom photogrammetry rig built at TU Dortmund University,
which is used to generate 3D point sets of the scanned subjects. Secondly, we
will describe the process of generating virtual humans from such a single-shot
multi-view stereo scan. Specifically, we will detail our template fitting imple-
mentation, which is largely based on previous work but adapted to work in a
fully automatic manner.

2.1 P H O T O G R A M M E T RY R I G S

The first step of many virtual human generation pipelines is to produce a
3D scan of the person to be reconstructed. The most hardware-, data-, and
cost-intensive approaches employ so-called light stages [DHT+00; GFT+11;
GLD+19], where multiple cameras take multiple shots under different lighting
conditions in order to capture fine-scale geometry and skin reflectance prop-
erties of the scanned subjects. Single-shot multi-view stereo reconstruction
methods rely on diffuse lighting only [BHP+10; BBB+10] or additionally em-
ploy polarized light [RGB+20] to reconstruct highly detailed geometry under a
single lighting condition. The captured images are then processed by off-the-
shelf commercial photogrammetry software such as Agisoft Metashape [Agi24]
or RealityCapture [Rea24], closed source tools such as Apple’s photogram-
metry toolkit [App24], open source alternatives such as COLMAP [SF16;
SZP+16; COL24] or Meshroom [Ali24], or via custom stereo matching algo-
rithms [BHP+10]. Commonly, these software components output either dense
point sets or unstructured triangle meshes, to which a template mesh is fitted
in order to provide consistent mesh topology over different scans.

We built a custom single-shot multi-view stereo photogrammetry rig at TU
Dortmund University in order to generate the 3D scans which serve as input for
our virtual human reconstruction pipeline. The photogrammetry rig was built
as part of the Hybrid Learning Center (HyLeC) project [HyL24]. The design
of the scanner booth itself and the selection of the various components was
done in collaboration with my colleague Denis Fisseler. I selected the different
components such as cameras, USB hubs, and triggerboxes, and implemented
the user interface and processing pipeline for controlling the scanner, while
Denis Fisseler designed the scanner booth frame, various 3D printed parts for
mounting the individual components, and planned the power supply setup.
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fundamentals

Figure 2.1: The photogrammetry rig built at TU Dortmund University consists of 56
DSLR cameras, which are evenly distributed in the eight corners and the ceiling of
the octagonal scanner cabin. High-quality LED tubes ensure uniform lighting of the
scanning subject.

The resulting scanner setup should meet various design goals. First, we
want a setup which provides static full-body scans from a single shot in order
to make data acquisition fast and easy. Second, the photogrammetry rig should
require no extensive pre-calibration to allow for any future updates in terms
of the number of cameras or their positioning. Third, the scanner and the
subsequent virtual human generation should be easy to operate in order to
allow non-experts to create virtual humans with our photogrammetry rig.
These goals were considered in the design process, resulting in the scanner
setup depicted in Figure 2.1. The individual components and settings will be
detailed in the following.

The scanner booth has a diameter of ca. 4.4 m and is constructed with an
octagonal aluminum profile frame with painted chipboard walls. We evenly
distribute 48 Canon EOS 250D cameras equipped with 35 mm fixed wide-angle
lenses in an 8× 6 pattern in the eight corners of the octagonal frame to capture
the scanned person from all angles. To better capture the top of the head, we
additionally mounted eight Canon EOS 250D cameras with 50 mm fixed lenses
in the ceiling of the scanner booth, yielding a total of 56 cameras with an
image resolution of 4020× 6024 pixels. All cameras are supplied with power
by using AC adapters to allow for continuous operation without the need to
change batteries. Concurrently switching on this amount of AC adapters can
however trip the circuit breaker. To prevent this, we installed two transformer
switching relays that prevent an inrush current but still provide a single access
point for powering the whole scanner cabin.

Each of the side walls, as well as the ceiling of the scanner booth, is
equipped with two neutral-white 4000 K LED tubes with a high color rendering
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2 .1 photogrammetry rigs

index (CIE Ra > 95) in order to uniformly light the scanned subjects and
accurately reproduce the colors in the scene. All cameras are set to an ISO
level of 200, a shutter speed of 1/15 s, and an f-number of f/8.0. These settings
provide low image noise, sufficiently low motion artifacts and the largest
depth of field possible for the amount of light in the scanner booth. We put all
cameras into manual focus mode as we found that the automatic focus mode
of the cameras does not reliably put the scanning subjects into the depth of
field. See Figure 2.2 for an example of a set of images taken with this camera
setup.

The cameras are connected via ESPER TriggerBoxes which forward the trig-
ger signal of a pair of remote shutter release controls to all cameras, allowing
us to simultaneously activate their shutter release mechanism. Communica-
tion between the cameras and the reconstruction PC – a desktop workstation
operating Ubuntu 22.04 LTS, equipped with an Intel Core i9-10850K CPU and
an Nvidia RTX 3070 GPU – is done using libgphoto2 [GPh24] and USB 2.0,
as faster USB connections are not supported by the cameras. Each column
of cameras – located in one corner of the octagonal scanner booth – is con-
nected to a USB hub, which is then daisy-chained with the next column of
cameras. Special care was taken to not exceed the external USB tier limit of
5 tiers and the maximum number of USB device endpoints per xHCI USB
controller (typically 32 or 64). To this end, only four USB hubs at a time are
daisy-chained in the aforementioned way. Still, we observed sporadic USB
disconnects and reconnects, after which the cameras were no longer responsive.
To deal with these disconnects, we monitor the USB connections by registering
event handlers through the UNIX udev system and whenever a camera discon-
nects, we call the USB driver’s unbind and bind procedures, thereby turning
the respective camera responsive again. We continuously monitor the camera
state to check if new images were taken and download the resulting 1.7 GB of
image data automatically to the reconstruction PC once a new shot has been
taken. The image download takes approximately 45 s due to the limited speed
of the USB 2.0 connections.

We download RAW image data in order to apply the same white balance
settings to all images before converting them to JPG with libraw [Lib24]. The
required white balance parameters are manually determined using the RAW
image editing software Darktable [Dar24]. We did not observe substantial
differences between using the JPG images and using a lossless alternative
such as TIFF when inspecting the quality of the point sets resulting from the
subsequent photogrammetry step. As such, we decided to use JPG due to
smaller file sizes. After image conversion, we use the image segmentation
model Deeplab v3 [CZP+18] to create binary image masks, which mask out
all pixels belonging to the background. This constrains feature detection and
stereo matching in the subsequent photogrammetry step to pixels belonging to
the scanning subject, which in our tests produces less noisy point sets, resolves
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Figure 2.2: A set of images created by our photogrammetry rig. 56 cameras are evenly
distributed to capture the scanned subject from all angles. These images are passed
to a commercial photogrammetry software in the next processing step of our virtual
human creation pipeline.

10



2 .2 generation of virtual humans

the need for pre-calibrating the dense reconstruction volume, and removes
points belonging to the background from the resulting dense point set.

The converted images and the generated binary masks are passed to the
commercial photogrammetry software Agisoft Metashape [Agi24]. We do
not pre-calibrate the extrinsic and intrinsic parameters of the camera setup,
as we empirically found that Metashape produces less noisy point sets and
more reliable results without pre-calibration. This also yields a more flexible
setup, as it removes the need for re-calibrating the system in case of any
future updates of the positioning or number of cameras. We do however copy
relevant EXIF metadata from the RAW images to the converted JPG images in
order to preserve information about focal length and pixel size. These values
are used as initial parameters for the intrinsic camera calibration performed by
the photogrammetry software, which models the cameras as standard central
projection cameras with Brown’s distortion model [Bro71]. Agisoft Metashape
then computes the intrinsic and extrinsic camera parameters for every input
image and generates a dense point set consisting of about 4 M points. The
camera calibration together with the dense point set defines the 3D scan of
the scanned person and will be the target of the subsequent template fitting
process.

All processing steps are scripted to run automatically, allowing scan opera-
tors to easily create virtual humans with our photogrammetry rig. For further
ease of use, we developed a custom GUI application that allows to manage a
scan session. Scan operators can inspect the state of all cameras, observe the
download progress, name specific scans, and start the fully automatic virtual
human reconstruction (described in the next section) by a single button click
after the image download completes. The backend of the scanner software
monitors the cameras for new shots, checks for the aforementioned sporadic
USB disconnects, and handles the image data download as well as file system
and permission setup. After a short briefing session about the hardware and
scanner control GUI, non-experts could successfully use our multi-view stereo
photogrammetry rig.

2.2 G E N E R AT I O N O F V I RT U A L H U M A N S

Once a 3D scan of the person to be reconstructed is computed, a common
method of creating animatable virtual humans from this static point set data
is to fit a template model to the observed data [BTP14; LMR+15; PWH+17;
AWL+17]. These template models typically consist of one or several surface
meshes with clean mesh topology, an associated UV map for storing color in-
formation, an animation rig for full-body animation, and a set of blendshapes
for facial animation. Fitting such a template model has several advantages.
The explicit representation via surface meshes and an animation rig allows
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the resulting virtual humans to easily be incorporated into existing graphics
pipelines and game engines like Unity or the Unreal Engine. Rendering one
or several virtual humans in real-time is especially relevant for VR scenarios,
where low frame rates can lead to nausea and VR sickness. And even though
there have been advances in implicit representations, especially for 3D head
avatars [GKG+23; KQG+23; TMP+24], there are still modern approaches ar-
guing in favor of explicit representations [BZH+23; SGY+24] or embedding
implicit representations around an explicit mesh-based representation [ZBT23;
QKS+24]. The common mesh topology over various scans additionally gives
a straightforward way to create a statistical model of human body shapes
which can serve as a low-dimensional shape prior or as a first dimensionality
reduction in various learning tasks [WNT+21; KZB+22].

Human shape modeling has been extensively studied due to its appli-
cation in various fields such as shape and pose estimation from a single
image [BKL+16], body composition estimation [WNT+21], generating synthetic
training data for image recognition tasks [WBH+21], or – as in our case –
the creation of virtual humans. Representing human body shapes in a low-
dimensional space allows for efficient optimization of the model parameters
to match the observed data. This can be used either for coarse initializa-
tion before further fine-scale registration steps or as a prior model used for
regularization during the whole optimization process. When dealing with
incomplete data, these models can also be used to fill in any missing data
in a statistically plausible way. Most popular models are based on Principal
Component Analysis (PCA) of vertex positions [LMR+15; OBB20], following
the seminal work of Blanz and Vetter [BV99]. Other approaches directly encode
triangle deformations from the template to the registered models [ASK+05]
or a decomposition of these triangle deformations [FB12]. Recent work has
also used more sophisticated dimensionality reduction techniques such as
convolutional neural networks or neural fields [RBS+18; BBP+19; GKG+23].
For an overview of parametric head models, also called morphable models,
we refer the reader to the survey of Egger et al. [EST+20].

2.2.1 Animatable Statistical Virtual Human Template Models

Let us now define the components of an animatable statistical human template
model more formally. The main skin surface of the template model is given
by a triangle mesh with faces F , edges E , and vertices V = {v1, . . . , vV},
whose 3D positions are denoted by X = {x1, . . . , xV}. Vertically stacking
all 3D positions yields a vector X =

(
xT1 , . . . , xTV

)T ∈ R3V . To facilitate full-
body animation, the mesh is tied to a standard skeleton graph – also called
an animation rig – defined by a joint hierarchy consisting of J joints, which
mimic the actual bone and joint structure of the human body. The pose of
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2 .2 generation of virtual humans

this skeleton can be described by joint angles θ ∈ R3J , which define the local
per-joint rotations with respect to the initial pose of the skeleton. This initial
pose is also called the rest pose or bind pose of the skeleton. Each joint j has a
local coordinate system, where the associated local matrix

Lj =

(
RjRj(θ) tj

0 1

)
(2.1)

maps a given point (expressed in homogeneous coordinates) into the parent’s
coordinate system. Here, Rj is the bind pose rotation of joint j, while Rj(θ) is
the rotation matrix representation of the three angles in θ which correspond
to joint j. The local translational offset towards the parent joint is given by
tj. Bind pose rotations are typically either aligned to the global x, y, z axes or
defined such that one of the axes is aligned with the bone axis. To map from
joint j into the coordinate system of the root joint, we can iterate through the
kinematic chain K(j) from the root joint towards joint j and concatenate the
local transforms, yielding the global transformation matrix

Gj = ∏
k∈K(j)

Lk. (2.2)

The process of computing global joint matrices Gj from given joint angles θ

is called forward kinematics. In order to express a given pose relative to the
bind pose of the skeleton, we store the initial global transformation matrices
Gj in the bind pose of the model, i.e., θ = 0.

We now need to associate the forward kinematics of the animation rig with
an animation of the corresponding surface mesh. This association is given
by skinning weights wij, which define, how much influence a given joint j
has on vertex vi. For each vertex vi, the corresponding skinning weights are
non-negative and sum to one: ∑J

j=1 wij = 1. The skinned position x̃′i of vertex
vi (in homogeneous coordinates) can be computed by

x̃′i =
J

∑
j=1

wijTjx̃i

Tj = Gj G−1
j

x̃i =

(
xi
1

)
.

(2.3)

This method is called Linear Blend Skinning (LBS), due to the linear blending
of the transformation matrices Tj. The amount of joints which influence a
given vertex is usually limited to four or eight joints in order to keep this
process computationally efficient. Let us denote the function that applies LBS
to all vertices V of the template model by skin(X, θ) : R3V ×R3J → RV×3. For
brevity of notation in the later formulation of the template fitting algorithm,
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we assume that this function outputs the resulting vertex positions as a V × 3
matrix, where the three columns of the matrix correspond to the x, y, z
coordinates of the vertex positions. Finding joint angles θ for a given scan
and then applying Linear Blend Skinning to the template model allows us to
cover the pose variation present in the 3D scans. The shape variation of the 3D
scans is then covered by a statistical human body shape model, described in
the following.

Given a set of M registered meshes with the same topology and in the
same pose, we collect their respective vertex positions into M vectors Xj ∈ R3V .
These vectors then define the individual observations from which a PCA-
based pose-normalized morphable model can be constructed as follows. Let
X = 1

M ∑M
j=1 Xj denote the mean of the registered meshes. Performing PCA of

the mean-centered data matrix
(
X1 −X, . . . , XM −X

)
∈ R3V×M and selecting

the first k < M components yields the PCA matrix U ∈ R3V×k as well as the
corresponding eigenvalues

(
σ2

1 , . . . , σ2
k

)
, sorted in descending order by their

magnitude. Here, σk denotes the standard deviation of the kth PCA component,
and k is typically chosen such that the resulting k components cover a desired
percentage pk of the variance present in the training data, computed by the
quotient of the k accumulated eigenvalues and the total variance in the data
set: pk = ∑k

i σ2
i / ∑M

i σ2
i .

This process defines a parametric human body shape model, where the
correspondence between the low-dimensional shape parameters β ∈ Rk and
the vertex positions of the resulting mesh is given by X = Uβ +X. This
completes the definition of the components of an animatable statistical template
model, which can then be fitted to a given observation by optimizing the pose
parameters θ and shape parameters β. See the discussion by Pishchulin
et al. [PWH+17], who describe an iterative human-in-the-loop process for
generating the registered meshes needed for training such a model.

2.2.2 Template Fitting

With the components of an animatable statistical virtual human template
model defined, we now describe how to use such a model for generating
virtual humans from 3D surface scans through a process called template
fitting. The template fitting implementation in all following chapters of this
thesis is based on the work of Achenbach et al. [AWL+17], who presented a
method for generating virtual humans from a 3D scan taken with a similar
photogrammetry rig as described in Section 2.1. To provide more details in
the face region of the resulting virtual humans, they additionally employed a
dedicated face scanner, operated with polarized flash lighting photography
(see Figure 2 in [AWL+17]). We omit such a dedicated face scanner in our
setup in favor of a simplified data acquisition. For completeness, we will
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Figure 2.3: Our virtual human template model (left) is derived from the Autodesk
CharacterGenerator [Aut24]. It features a main skin mesh, auxiliary meshes for eyes
and teeth, and a skeleton graph for full-body animation. The process of fitting this
template model to a given 3D scan is guided by a set of point set landmarks, whose
counterparts on the template model are pre-selected once (right).

detail all steps of the virtual human reconstruction pipeline proposed by
Achenbach et al. [AWL+17], and discuss, how we automized their method to
facilitate fully automatic generation of virtual humans from the 3D scans our
photogrammetry rig produces.

The result of the photogrammetry step is a point set P = {p1, . . . , pN},
where each 3D point pj is additionally associated with a normal nj and RGB
color cj. In the originally proposed method, the template fitting process
is guided by a set of landmarks on the point set, which are manually se-
lected by the user. The counterparts of these point set landmarks are selected
once on the template model, which is derived from the Autodesk Charac-
terGenerator [Aut24] (see Figure 2.3). It consists of one main triangle mesh
for the skin surface, whose V ≈ 21 k vertex positions are again denoted by
X = {x1, . . . , xV}. The model additionally provides auxiliary meshes for eyes
and teeth. For full-body animation, the template model features an animation
rig (controlled by joint angles θ) with corresponding skinning weights, while
face animation is facilitated through a set of facial blendshapes.

The training data for a PCA-based statistical shape model was originally
generated by registering this template model to a subset of ten A-pose scans
from the FAUST database [BRL+14], 111 scans from a database published by
Hasler et al. [HSS+09] and 83 synthetic example characters from the Autodesk
CharacterGenerator [Aut24]. The registered meshes were then used to create
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a parametric shape model in the manner described above. To cover a wider
range of body shapes and remove the synthetic training examples, we created
a new statistical model based on 1700 scans from the European subset of
the CAESAR database [RBD+02], which replaces the original model used by
Achenbach et al. [AWL+17].

The proposed template fitting pipeline then starts by optimizing the tem-
plate model parameters, consisting of the global alignment between the point
set and the template model, the joint angles of the animation rig and the shape
parameters of the statistical human body shape model. Following this initial
registration, a fine-scale deformation process is employed to more closely
match the scanner data. After fitting the auxiliary eyes and teeth meshes to
the new skin surface, the facial blendshapes are transferred from the template
model to the fitted shape. Finally, the corresponding color texture is generated
from the input images. The resulting virtual human is ready for animation
and can be imported into existing graphics pipelines or game engines like
Unity or Unreal Engine.

Initial Registration

The initial registration between the template model and the given point set
is done solely based on the specified landmarks L. Alignment, pose, and
shape are optimized through an iterative block-coordinate descent scheme, i.e.,
Achenbach et al. [AWL+17] consecutively optimize these three parameter sets,
while keeping the respective other two parameter sets fixed.

The alignment between the point set and the template is defined by the
global registration parameters

(
sg, Rg, tg

)
∈

(
R× SO(3)×R3), defining the

isotropic scale, global rotation, and translation, i.e., a similarity transformation,
which bring the point set and the template into a common coordinate system.
For brevity of notation, we can write the similarity transformation defined by(
sg, Rg, tg

)
as a matrix

Mg =

(
sgRg tg

0 1

)
∈ R4×4,

which applies the similarity transformation to a position given in homogeneous
coordinates. The pose of the animatable statistical template model is defined
by the joint angles θ ∈ R3J , allowing the model to match the approximate
A-pose all scanning subjects are instructed to take. The final set of initial
registration parameters are the shape parameters β ∈ Rk of the PCA model,
allowing the model to coarsely estimate the observed human body shape.
Figure 2.4 visualizes the role of the three parameter sets, whose optimization
is detailed in the following.

First, the optimal similarity transformation
(
sg, Rg, tg

)
that minimizes the

squared distances between the landmarks on the point set and the mesh is com-
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Figure 2.4: Overview of the individual parameter sets that are optimized to fit the
template model to a given 3D scan. The alignment between the point set and the
template model is defined by the global scale, rotation and translation parameters
(left). Joint angles of the animation rig are optimized to match the approximate A-pose
that subjects are instructed to take (center-left). The shape parameters of the statistical
model are used to coarsely estimate the observed body shape (center-right). Finally, a
non-rigid fine-scale deformation process further aligns the template model to the data
(right).

puted in a closed-form manner [Hor87]. Second, joint angles of the template
model are optimized via Damped Least Squares Inverse Kinematics [ALC+18],
incorporating the joint constraint model proposed by Schröder et al. [SMR+14],
which prevents anatomically implausible joint angles such as hyperextension
of the knees and elbows and additionally constrains the optimized pose to
an approximate A-pose. Third, the shape parameters of the 30-dimensional,
pose-normalized shape model are optimized to minimize the distance between
the template and point set landmarks in a least squares sense. This amounts
to solving a linear system of equations due to the linear PCA shape model
employed. The three steps are iterated until the relative error, i.e., the absolute
difference of the error value in the current and previous iteration normalized
by the error value of the previous iteration, falls below 5 %.

After each iteration, since the shape of the template mesh has changed
according to the shape parameters β, the animation rig has to be updated
to conform to this new shape. Computing new joint positions is done using
mean value coordinates [JSW05], which express the global joint positions as a
function of the vertex positions and can be precomputed on the template mesh
once. This allows to compute new joint positions for the optimized shape and
ensures that the relative positioning of the joints with respect to the vertex
positions matches the template model.

Coarse Registration

The initial registration based on the point set landmarks is refined by adding
new constraints based on closest point correspondences between the point set
and the template (in scan-to-template direction, as discussed by Achenbach et
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al. [AZB15]). To speed up the computation of the correspondences and reduce
the size of the linear systems involved in the optimization, the point set is first
uniformly down-sampled. The amount of down-sampling is proportional to
the mean edge length of the template model in order to preserve geometric
details that the template model could reproduce given its vertex density. This
reduces the size of the point sets from about 4 M to 200 k points. To preserve the
point set landmarks during this process, their position, color, and normal are
stored and appended back to the point set after down-sampling. Finding the
closest points is done in a brute-force manner on the GPU, implemented as an
OpenCL compute kernel. For each point on the point set, the closest point on
the mesh surface is computed and expressed through barycentric coordinates
in the corresponding face. For increased robustness, correspondences are
pruned if their distance exceeds 10 cm or if their normals deviate by more
than 50◦. Let C = {PC , BC , WC} contain the C ≤ N correspondences expressed
as points PC ∈ RC×3 on the point set P and a sparse matrix BC ∈ RC×V ,
containing in each row the barycentric coordinates of the closest triangle on
the mesh surface. Multiplying BC with vertex positions X ∈ RV×3 thus yields
the corresponding positions on the mesh surface. WC = diag(w1, . . . , wC)

stores normalized per-correspondence weights (i.e., ∑C
i wi = 1), allowing the

optimization to not trust correspondences in regions that are typically not
scanned well (such as the hands) and to weight landmarks differently from
closest point correspondences. To unify the treatment of landmarks L and
closest point correspondences, we add the corresponding landmark positions,
barycentric coordinates, and weights to the correspondence set C.

Again, alignment, pose, and shape parameters are alternatingly optimized
until convergence, such that the distance between the template and point
set correspondences is minimized in a least squares sense. Note that in the
original formulation of Achenbach et al. [AWL+17], since the shape model is
trained in T-pose, the point set was unposed from scan pose to T-pose via
Linear Blend Skinning in order to optimize the shape parameters. In our
formulation, we optimize shape parameters, such that the distance between
corresponding points on the resulting skinned mesh and the aligned point set
is minimized in a least squares sense. Formally, we iteratively minimize the
energy function

Einit
(

β, θ, sg, Rg, tg
)
= Efit

(
β, θ, sg, Rg, tg

)
+ λpriorEprior(β) , (2.4)

in the aforementioned block-coordinate descent optimization scheme. The two
components are a fitting term Efit and a weighted shape prior term Eprior.

The fitting term measures the squared distances between the template and
point set correspondences and is computed by

Efit
(

β, θ, sg, Rg, tg
)
=

∥∥WC
(
BC skin

(
Uβ +X, θ

)
−πg

(
PC , Mg

))∥∥2
F . (2.5)
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Here, the current shape parameters β yield new vertex positions Xβ = Uβ +

X in bind pose. These are then skinned to the current pose θ using the
Linear Blend Skinning function skin

(
Xβ, θ

)
. From there, we extract points

on the resulting mesh surface through the barycentric coordinates BC of the
correspondence set C. The function πg applies the similarity transformation
defined by the global registration parameters

(
sg, Rg, tg

)
– expressed here in

matrix form by Mg – to all correspondences on the point set. Correspondences
are weighted by WC , and we compute the weighted squared distances between
the corresponding points via the squared Frobenius norm ∥ · ∥2

F.

Overfitting of the shape model is prevented by the Tikhonov regularization
term Eprior, computed by

Eprior(β) =
1
k
∥Γβ∥2 . (2.6)

It penalizes the norm of the shape parameters scaled by the inverse of the
standard deviation of the respective PCA components, which is achieved by
setting Γ = diag(1/σ1, . . . , 1/σk). Eprior thereby measures how many standard
deviations each component of the current shape parameters differs from the
mean. We set λprior = 10−5 and iteratively minimize Equation (2.4) until
convergence, again measured by the relative error dropping below 5 %. In
each iteration, the closest point correspondences between the point set and
the template mesh are recomputed. This process yields the final estimation of
alignment and pose parameters of the template model, as well as a first coarse
shape estimation (see Figure 2.4 (center-right)). In the following fine-scale
deformation step, the shape of the template model is further optimized to
match the observed data.

Fine-scale Deformation

The in-model registration described in the previous subsection only fits the
scanner data coarsely, especially since high-frequency details of the observation
cannot be explained by the low-dimensional shape model. Note also that
the shape model is trained on a set of 3D scans where the subjects wore
minimal clothing, while we typically scan people in casual clothing with
our photogrammetry rig, constituting a further domain gap that needs to be
accounted for. In order to more closely match the given data, a deformable
registration regularized by a surface-based deformation energy is employed
to minimize the distance between the template mesh and the point set, while
only allowing physically plausible deformations. This process optimizes the
positions of all vertices V of the template model in bind pose, instead of
the low-dimensional parameters of the statistical human body shape model
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employed in the initial registration phase. The objective function is a weighted
sum of individual energy terms and is given by

Efine(X ) = λcpcEcpc(X ) + λlmElm(X ) +

λregEreg
(
X ,X

)
+ λshutEshut(X ) .

(2.7)

It consists of (i) a correspondence term Ecpc, which attracts the template mesh
to the point set correspondences, (ii) a landmark term, which penalizes the
distance of the selected landmarks on the point set and the template mesh, (iii)
a regularization term Ereg which penalizes deformation from the undeformed
stateX (resulting from the initial registration phase), and (iv) a corrective term
Eshut, which keeps vertex pairs from the upper and lower lip close to each
other, as subjects are scanned with a neutral face expression.

The correspondence term measures the squared distances between positions
on the skinned template model and the aligned point set correspondences and
is given by

Ecpc(X ) =
C

∑
i=1

wi

∥∥∥skinC
(

xCi , θ
)
− p̃Ci

∥∥∥2
. (2.8)

Recall that the closest point correspondences C between the point set and the
mesh surface are defined by points pCi on the point set and positions xCi on the
mesh surface, expressed through barycentric coordinates in the closest triangle
on the mesh surface. The function skinC

(
xCi , θ

)
applies Linear Blend Skinning

to xCi by skinning the three positions of the triangle vertices and interpolating
the resulting positions using the barycentric coordinates. p̃Ci denotes the
point set position resulting from applying the similarity transform

(
sg, Rg, tg

)
(computed in the initial registration) to point pCi . As in the initial registration,
correspondences are weighted by the normalized per-correspondence weights
wi. Note that this again differs from the original formulation of Achenbach
et al. [AWL+17], who unposed the point set via Linear Blend Skinning, while
we optimize the vertex positions in the rest pose, such that they match the
point set correspondences after applying skinning with the optimized pose
parameters.

Similar to Ecpc, the landmark term Elm is implemented by measuring the
squared distance between the selected landmarks on the point set and the
corresponding skinned vertex positions:

Elm(X ) =
L

∑
i=1

wlm
i

∥∥∥skinL
(

xLi , θ
)
− p̃Li

∥∥∥2
. (2.9)

Analogously to the notation in the correspondence term (2.8), skinL
(
xLi , θ

)
applies Linear Blend Skinning to the landmark position xLi on the template
surface, while p̃Li denotes the point set landmark position after applying the
optimized similarity transform to the point set position pLi .
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To ensure that the triangles of the template model do not degrade or deform
too strongly during the iterative fitting process, the deformation is constrained
by the regularization term Ereg, which tries to keep the deformation of the
mesh locally rigid:

Ereg
(
X ,X

)
=

1
∑e∈E we Ae

∑
e∈E

we Ae ∥∆ex(e)−Re∆ex(e)∥2 . (2.10)

Deformation is measured by the squared deviation of the per-edge Laplacians
in the deformed state ∆ex(e) and the undeformed state ∆ex(e). The per-edge
rotations Re ∈ SO(3) optimally align the two edge Laplacians, thereby can-
celling out local rigid transformations. The magnitude of the edge Laplacians
is normalized by the associated edge area Ae, given by 1/3 of the two incident
face areas [AZB15]. Additionally, we introduce spatially varying regularization
weights we, allowing to constrain the deformation of certain regions of the
mesh more than others.

Finally, the corrective term Eshut penalizes the squared distance between
the vertex positions of pairs of vertices on the lower and upper lip:

Eshut(X ) =
1
S

S

∑
i=1

∥∥∥xu
i − xl

i

∥∥∥2
. (2.11)

This term prevents the mouth of the model from opening during the fitting
process, as Achenbach et al. [AWL+17] noted that the mouth is not guaranteed
to stay closed, even though subjects are always scanned with a neutral face
expression. The S = 11 vertex pairs yielding the vertex positions

{
xu

i , xl
i
}

on
the upper and lower lip respectively are pre-selected once on the template
model.

This constitutes all parts of the non-linear energy function (2.7), whose
optimization we will detail in the following. The energy term coefficients
λcpc, λlm and λreg control (i) the influence of the closest point correspondences
C, (ii) the weight of the landmarks L, and (iii) the general surface stiffness,
and will change throughout the iterative fitting process. The coefficient of
the corrective term Eshut is constant and set to λshut = 0.5. Given a fixed set
of energy term coefficients

(
λcpc, λlm, λreg, λshut

)
, the energy function (2.7) is

optimized by alternatingly solving for new vertex positions X and per-edge
rotations Re, resembling the optimization scheme used to minimize the As-
Rigid-As-Possible energy [SA07]. This alternating optimization is iterated
until convergence, i.e., until the relative error is below 5 %. After solving
for new vertex positions, we (i) update the animation rig via mean value
coordinates to conform to the new shape, and (ii) recompute the closest point
correspondences between the point set and the template model.

In early stages of the fine-scale registration, the template model should
only minimally deform in order to gradually attract the mesh surface towards
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the point set. To this end, Achenbach et al. [AWL+17] start with a relatively
stiff surface by setting λreg = 1. As in the initial registration phase, the
first iterations solely rely on the specified landmarks L, achieved by setting
λlm = 1 and λcpc = 0. Equation (2.7) is then optimized until convergence,
after which λreg is gradually decreased in order to reduce the surface stiffness.
This process is repeated until λreg = 10−5. After these first iterations, the
closest point correspondences between the point set and the mesh surface are
reliable enough to be incorporated into the optimization. As such, starting
from λcpc = 1, λlm = 1, and λreg = 10−5, the landmark weight and surface
stiffness are gradually decreased until λreg = 10−9. Every time, λreg is de-
creased, the undeformed state X is updated to the current solution X , i.e., the
regularization term Ereg (2.10) always penalizes the deformation with respect
to the solution found in the previous iteration.

During the fitting process, the per-correspondence weights wi and the
regularization weights we are used to account for regions that are not scanned
well. These typically include the hand region, where missing data can occur
due to the fingers occluding each other. Secondly, the eye region is difficult to
scan due to the reflective properties of the cornea and the delicate geometric
structures of the eyebrows and eyelashes. For the hand region, we weight
down correspondences with respect to a vertex weighting defined on the
template mesh. We additionally give the hand region a higher regularization
weight we in order to keep the corresponding faces more stiff. As a result,
the hand region is attracted towards the point set, but the shape of the hand
stays close to the result from the initial registration phase. For the eye region,
we use higher values of we to make this pre-selected region of the template
mesh more stiff. This yields better results when fitting the auxiliary eyeball
meshes back into the eye region, as detailed in the next subsection. The hand
and eye region affected by wi and we are highlighted on the template model in
Figure 2.5.

After the fitting process, the model needs to be pose-normalized, as employ-
ing mean value coordinates to update the joint positions of the animation rig to
conform to the new shape can alter the angles between joints. We thus update
the bind pose of the resulting model, such that the angles between joints match
the angles found in the bind pose of the template model. To ensure that the
feet of the model are exactly on the ground after this pose-normalization step,
we employ a final corrective non-rigid fitting step. First, the model is rigidly
translated, such that the barycenter of a pre-selected set of vertices, which
correspond to the soles of the template model, lies on the floor. After this,
the vertex positions are optimized to lie on the floor plane by non-rigidly
deforming them, while allowing the feet to deform only slightly by employing
the regularization energy (2.10).

22



2 .2 generation of virtual humans
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Figure 2.5: Per-correspondence weights wi and per-edge weights we (visualized here)
are used to weight down correspondences in the hand region (left) and make the hand
and eye region (right) more stiff.

Auxiliary Meshes and Blendshapes

The result of the fine-scale registration step and the corrective pose and feet
post-processing defines the final geometry of the main skin mesh of the
template model. The skin mesh geometry now closely matches the scanned
data (Figure 2.4 (right)), but the auxiliary eyes and teeth meshes still need
to be registered to the final skin mesh geometry. To this end, Achenbach
et al. [AWL+17] use a pre-selected set of vertices in the mouth and eye region
respectively to compute an optimal transformation between the template and
the deformed shape (inspired by Ichim et al. [IBP15]). For the teeth meshes, the
optimal rotation, translation, and anisotropic scaling is computed [Hor87] and
applied to transform the auxiliary meshes. Analogously, all eye meshes are
transformed by the optimal similarity transformation (i.e., rotation, translation,
and isotropic scaling, as to not introduce any shearing) between the template
mesh and the deformed shape.

While full-body animation is controlled through the animation rig of the
template model, facial animation is facilitated through a set of linear blend-
shapes [LAR+14]. Since the subjects are only scanned in a neutral face expres-
sion in favor of a short data acquisition duration and processing time, the
approach of Achenbach et al. [AWL+17] resorts to synthetically generating a
suitable set of blendshapes for the resulting virtual human. This is achieved
by leveraging the generic blendshapes defined on the template mesh. Every
blendshape is interpreted as a deformation from the neutral template state
to the respective expression, which is then transferred onto the fitted neutral
expression via Deformation Transfer [SP04]. This effectively transfers the
generic template expressions onto the deformed shape and defines the set of
blendshapes for the resulting virtual human. A limitation of using generic
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Figure 2.6: The generic template texture (left) and the personalized texture generated
by Agisoft Metashape (center) are combined in several processing steps to deal with
artifacts and missing data, yielding the final color texture for the virtual human (right).

template blendshapes is, that the resulting blendshapes are not personalized,
i.e., they lack subject-specific details which facial expressions usually exhibit.
This could be solved by scanning the subjects while performing all blendshape
expressions or a few example expressions [LWP10; MBL22], which would
however increase the acquisition time.

Texture Generation

The last step of the virtual human reconstruction pipeline of Achenbach et
al. [AWL+17] is to generate a high-quality color texture. For texturing the main
skin mesh, Agisoft Metashape’s [Agi24] texture generation process is used to
create a 4096× 4096 texture. The skin mesh is first re-posed from bind pose
to the scanning pose θ and transformed back into Agisoft Metashape’s point
set coordinate system by the inverse of the similarity transform

(
sg, Rg, tg

)
,

after which the color information from the input images is blended onto the
pre-defined UV layout of the skin mesh. Since hands and eyes are typically
not scanned well and the inner mouth region and parts of the armpits are
not scanned at all due to occlusions, the resulting texture suffers from some
artifacts. Achenbach et al. [AWL+17] apply several post-processing steps to
the generated texture in order to alleviate these problems (see Figure 2.6).

First, as the hands are typically not scanned well, the hand geometry
is not fitted accurately, and thus the resulting hands cannot be accurately
projected back onto the input images. As such, the texture in the hand region
contains a lot of incorrect color information. Achenbach et al. [AWL+17]
therefore replace the texels in the hand region by a generic texture from a
set of synthetic textures from the Autodesk CharacterGenerator [Aut24]. The
best matching hand texture in the database is found by computing the color
difference between the generated and the synthetic texture in a small patch
belonging to the top of the hand, where the texture is free of artifacts. The
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hand region of the selected generic texture is then seamlessly cloned into the
generated texture by using Poisson Image Editing [PGB03]. This can be done
in a straightforward manner, since all resulting virtual humans share their UV
layout with the template model.

Secondly, to compute texel colors for the regions belonging to the eyes and
teeth of the virtual human, the color values from the generic texture of the
template model are copied to the generated texture. The luminance of these
regions is then adjusted to match the general luminance in the input images.
For this purpose, the mean luminance difference between the generic template
texture and the generated texture is computed by converting the textures to the
CIELAB color space and averaging the intensities of the respective L-channels
in the head region of the texture. The luminance values for eyes and teeth
are then modified by adding the luminance difference to the L-channel of the
generated texture.

Finally, some areas of the scanned subject are not seen by any cameras
during the scanning process due to self-occlusions. When taking scans in
A-pose, as in our setting, this is especially the case for the armpits. To fill
in any unseen texels, harmonic color interpolation is used, which smoothly
propagates the colors of the boundary region to the unseen texels. New
texel colors are computed by solving the Laplace equation on the texel grid
with Dirichlet constraints on the boundary of the unseen texels. These post-
processing steps then result in the final color texture for the virtual human
(Figure 2.6 (right)). Figure 2.7 depicts an example of a resulting virtual human,
as well as an example expression that is mapped from the template model to
the fitted virtual human using Deformation Transfer.

Automatic Landmark Detection

The presented pipeline allows to generate virtual humans from a 3D scan
taken with our photogrammetry rig in a semi-automatic fashion. Users need
to manually select the facial feature and full-body landmarks on the computed
point set. To further reduce the demand on the scan operators, we adapted the
template fitting approach to work in a fully automatic manner by automatically
providing the required landmarks on the point set. To this end, we apply
2D pose and facial feature detection to the input images and then project the
found landmarks back onto the 3D point set by using the camera calibration
provided by the photogrammetry reconstruction. We use the hand and pose
landmarks provided by OpenPose [CHS+21] and the facial feature detection
provided as part of the dlib library [KS14].

We run the respective 2D landmark detectors on all input images and
then select those detections, which are best suited for back-projecting the 2D
landmarks onto the 3D point cloud. The pose and hand detection of Open-
Pose [CHS+21] provides up to 67 landmarks (comprised of pixel coordinates
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Figure 2.7: Example of a virtual human resulting from our 3D scan and template
fitting pipeline (left). After registering the auxiliary meshes of eyes and teeth to the
fitted virtual human, transferring the blendshape set defined on the template model
(center) to the fitted virtual human (right) is achieved via Deformation Transfer [SP04].

and confidence values): 25 full-body landmarks defining a 2D skeleton and 21
landmarks per hand. Since our input images only depict parts of the scanned
subject and do not provide a full-body view (see Figure 2.2), some resulting
detections can be unreliable. To address this issue, we first filter the resulting
detections by discarding all images, where the 2D skeleton consists of less
than 4 bones or the maximum confidence value is lower than 0.5. From the
remaining images, we select those images, which depict a “side-view”, i.e.,
images, where the viewing vector is orthogonal to the sagittal plane of the
scanning subject, as these are best suited for projecting the hand and ear
landmarks back to the point set. We select these images by inspecting the
shoulder landmarks, which exhibit a small lateral distance in suitable images.
The distinction between the left and right side of the sagittal plane is done
based on the confidence values for the left and right finger and ear landmarks.

To detect the required landmarks in the face region, we use the pre-trained
facial feature detection implemented in dlib [KS14] and select the required
subset (see Figure 2.3 (center)) from the resulting 68 landmarks. Since the facial
feature detector is trained on frontal images of human faces, we first find the
most frontal image, which depicts the face region of our scanning subject. We
select the most frontal image through a combined measure of horizontal and
vertical frontality. Horizontal frontality is computed in terms of the symmetry
of the landmarks around the center line of the face, where a higher symmetry
score indicates higher frontality. Vertical frontality is computed as the ratio
between eye height and eye width. The bigger this ratio, the more orthogonal
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the viewing vector is to the frontal plane of the human body. From all images
we assume the image with the highest sum of these measures to be the most
frontal image. To further increase the reliability of the detected landmarks,
we run the facial feature detector at various image resolutions and average
the resulting 2D pixel coordinates after filtering out detections, which deviate
more than two standard deviations from the mean.

The 2D coordinates for all landmarks can then be back-projected onto the
point set due to the camera calibration provided by Agisoft Metashape. To this
end, for each 2D landmark, we project the point set onto the corresponding
image plane, gather all points which deviate less than 15 pixels from the 2D
landmark, and from this subset, select the point closest to the camera center.
This leaves us with 23 automatically detected point set landmarks which
guide the template fitting process. The registration pipeline then proceeds
as described, resulting in a method for reconstructing realistic personalized
virtual humans in a fully automatic manner.

Results and Limitations

The presented virtual human generation pipeline allows for fast and fully
automatic reconstruction of virtual humans from our photogrammetry rig.
The whole process from data acquisition to the final virtual human takes about
7 min on a desktop workstation, equipped with an Intel Core i9-10850K CPU
and an Nvidia RTX 3070 GPU. See Table 2.1 for timing information about all
involved processes.

For optimal results, all scanning subjects are instructed to tie long hair into a
knot (such that their ears lie free), remove their glasses, and wear tight clothing
and little to no jewelry. Since the quality of the photogrammetry software’s
point set output depends on matching 2D features in the input images, we

Process Approximate Time

Body scanning 1/15 s
Image download 45 s
Image conversion 45 s
Mask generation 60 s
Point cloud generation 100 s
Landmark detection 40 s
Template fitting 90 s
Texture generation 40 s

Complete pipeline 7 min

Table 2.1: Timings for all steps involved in our fully automatic virtual human recon-
struction pipeline, taking just about 7 min in total.
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Figure 2.8: Examples of virtual humans generated with our 3D scanning and template
fitting pipeline.

additionally ask subjects to not wear uniformly colored or very dark or white
clothing. See Figure 2.8 for examples of virtual humans generated with our
3D scanning and template fitting pipeline. In future work, we would like
to be able to place less restrictions on the subjects’ clothing and hairstyle by
modeling clothing and hair separately from the skin mesh.

During the runtime of the HyLeC project [HyL24], we mainly scanned
students of TU Dortmund University. From the various scans taken, we ob-
served a few failure cases, where our pipeline did not successfully reconstruct
a virtual human: (1) The facial feature detection sometimes gives incorrect
results in the mouth region, especially for subjects with beards (see Figure 2.9
(left)). This can lead to erroneous 3D point set landmarks and thus yields
inaccuracies in both the resulting geometry and texture of the virtual human.
In cases where the automatic landmark detection did not work, we manually
selected the corresponding landmarks and were still able to produce a virtual
human in a semi-automatic manner. (2) In rare cases, the image segmentation
of Deeplabv3 [CZP+18] fails to provide accurate image masks, especially if
subjects wear clothing, that can be misconstrued as natural background (see
Figure 2.9 (center)). If the image segmentation fails for several adjacent in-
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Figure 2.9: Failure cases of the presented virtual human reconstruction pipeline. The
facial feature detection can fail to correctly detect the mouth region. Note that the left
mouth and the lip center line is not detected correctly (left). The image segmentation
can fail to accurately segment the scanned subject. Here, the pants with a floral pattern
are erroneously masked from the input image (center). Lastly, the camera calibration
performed by Agisoft Metashape can misalign some of the top cameras. Three of the
eight top cameras are not aligned correctly in the depicted example (right).

put images, the incorrectly masked areas are missing from the point set and
are ignored for the subsequent texture generation, leading to inaccuracies in
both geometry and texture. (3) The automatic camera calibration of Agisoft
Metashape sometimes fails to accurately align the top cameras (see Figure 2.9
(right)). This can especially happen for shorter people, where the top cameras
mostly capture background information. In these cases, the cameras can be
manually re-aligned or disabled in Metashape, after which the rest of the
reconstruction pipeline can still produce a resulting virtual human.

Detecting and fixing these failure cases in order to improve the success rate
of the fully automatic pipeline should be tackled in future work. The facial
feature detection implemented in dlib [KS14] could be evaluated against other
facial feature detectors such as Google’s MediaPipe [GAK+20]. Capturing the
empty scanner booth and performing background subtraction could give addi-
tional information to the image segmentation algorithm and allow detecting
incorrectly segmented pixels. The automatic camera calibration of Agisoft
Metashape could be compared to a manually generated calibration, which
would allow to selectively re-align any cameras, which deviate too much from
the manual calibration.
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3R E A L I S T I C V I RT UA L H U M A N S F R O M
S M A RT P H O N E V I D E O S

Figure 3.1: From monocular smartphone videos we generate realistic virtual humans
that can readily be used in game engines.

In the previous chapter, we presented a fully automatic pipeline for gener-
ating virtual humans. It employs template fitting to closely match the point set
data resulting from capturing a subject with a custom-built multi-view stereo
photogrammetry rig. The presented pipeline is largely based on previous
work [AWL+17] and is able to reconstruct virtual humans which are ready for
integration into existing computer graphics pipelines and VR environments.
Previous studies have shown that embodying personalized realistic virtual
humans in VR environments can improve the sense of virtual body ownership,
presence, and emotional response [LRG+17; WGR+18], which hints towards
their potential effectiveness in a VR therapy setting. Employing realistic virtual
humans in the context of VR studies however adds additional requirements to
the employed virtual human reconstruction method.

The chosen reconstruction method should be adequately fast in order to
be able to create a personalized virtual human just before the VR exposure. It
should be performable by non-experts, and ideally require only a lightweight
and non-stationary hardware setup. However, many of the previously pro-
posed approaches, including the one presented in Chapter 2, depend on
elaborate RGB camera rigs consisting of multiple dozens to a hundred of
interconnected and synchronized camera devices, resulting in complex and
expensive setups (e.g., [AWL+17; FRS17]). Approaches which capture the
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subjects under various lighting conditions (e.g., [GLD+19; BWS+21]) generate
highly realistic virtual representations of the scanned subject, but require
an immense amount of recording and processing hardware. Depending on
such elaborate 3D scanner setups and potentially requiring manual pre- or
post-processing steps limits the availability of personalized realistic virtual
humans in VR studies. Lowering the overall complexity of the necessary
sensor equipment, reducing the overall costs, and providing a fully automatic
pipeline can thus open up many more of the use cases for virtual humans in
digital and interactive media applications.

This chapter tackles the described problem by introducing an automated
3D reconstruction method for generating high-quality virtual humans from
monocular smartphone cameras. The input of our approach are two video clips:
the first video captures the whole body of the scanning subject, while the other
video provides detailed close-ups of head and face. The two video clips are
processed via optical flow analysis and sharpness estimation in order to select
individual frames. From these images, two dense point clouds for the body
and head are computed via multi-view reconstruction. Automatically detected
landmarks guide the fitting of a virtual human body template to these point
clouds, thereby reconstructing the geometry of the scanned subject. A graph-
cut stitching approach then reconstructs detailed textures for body and head,
which are fused together via Poisson Image Editing. We compare our results to
existing low-cost monocular approaches as well as to expensive multi-camera
scanning rigs. Our method achieves visually convincing reconstructions that
are almost on par with complex camera rigs while surpassing similar low-cost
approaches. The generated high-quality avatars are ready to be processed,
animated, and rendered by standard XR simulation and game engines such as
Unreal or Unity.

Individual Contribution My main contribution is the development of the process-
ing pipeline from video clips captured with commodity smartphones to photogrammetry
data, which constitutes the input to a template fitting approach. I developed the image
extraction pipeline, which analyzes the smartphone videos based on optical flow and
image sharpness, in order to produce suitable images for photogrammetric reconstruc-
tion. To provide point set landmarks, which are required to guide the subsequent
template fitting process, I developed the automatic landmark detection based on 2D
pose and facial feature detectors. I adopted the template fitting pipeline used in previous
work [AWL+17] to handle the less reliable input data, while Jascha Achenbach sup-
ported the general integration of the generated photogrammetry data into the template
fitting pipeline and additionally incorporated a statistical model of human head shapes
into the optimization. Finally, I developed the graph cut based texture generation,
which computes a high-quality color texture from the input images. Andrea Bartl
integrated the resulting virtual humans into the Unity Game Engine and produced
the blendshape retargeting.
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3.1 R E L AT E D W O R K

As an alternative to reconstructing avatar models, one can record, transmit,
and render streams of depth images from RGBD cameras, which creates be-
lievable reproductions of recorded users [LBW+15]. However, the quality of
reproduction crucially depends on a sufficient resolution in both the spatial,
color, and temporal domain of the employed RGBD cameras, which, as of
today, still are significantly lower compared to dedicated high-quality sensors.
Some performance capture approaches fuse RGBD streams from one or multi-
ple sensors into a volumetric representation, from which a textured mesh is
extracted [DDF+17; GXY+17]. These methods are template-free, i.e., they do
not include a prior of human performances, and thus allow real-time recon-
struction of challenging scenes of people interacting with objects. However,
these approaches are restricted to mere reproductions of human performances,
whereas full 3D virtual humans allow for more flexibility due to their separa-
tion of static geometry and appearance from dynamic animation. Furthermore,
template-free approaches need to transmit a lot of data every frame, be it 3D
meshes or depth images, which requires a lot of bandwidth to be provided by
the employed network. Approaches which employ virtual human template
models can transmit the static avatar data once and only need to transmit
dynamic low-dimensional pose parameters at each frame. Guo et al. [GLD+19]
present a hybrid approach for volumetric relightable performance capture.
They record users in a light stage consisting of 90 high-resolution infrared
and RGB cameras and 331 programmable lights in order to capture geometry
and reflectance properties. In order to compress this data, they generate, pa-
rameterize and track a 3D mesh over time, only changing mesh triangulation,
once the tracking error becomes too high. This system allows high-fidelity
photorealistic performance capture at the cost of a large amount of data and
processing power.

A different line of work for generating virtual humans – which we have
discussed in Chapter 2 and will also follow here – exploits template models to
guide the reconstruction process. See, e.g., Egger et al. [EST+20] and Zollhöfer
et al. [ZTG+18] for an overview of parametric face models. Similarly, human
body models, such as the SCAPE model [ASK+05], have been used as template
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models for full-body reconstruction [PWH+17]. Later models from the SMPL
family [LMR+15], like SMPL-H [RTB17], SMPL-X [PCG+19], or STAR [OBB20]
provide additional features like hand and finger movements, facial expressions,
or (sparse) pose-dependent blendshapes.

Template-based performance capture methods employ an actor-specific
model for tracking the movements of a person. For instance, Habermann
et al. [HXZ+19] generate this model by capturing an RGB video of the actor
in a static pose, extracting around 70 frames, reconstructing a textured mesh
through photogrammetry, manually embedding a skeleton, and computing
rigging weights using Blender. Our approach can act as a fully automatic alter-
native to their preprocessing stage. Besides providing more geometric details
and animation controllers (fingers, facial expressions), it has the advantage
that all actor models share the connectivity of the template mesh, allowing for
statistical regularization.

The highest quality for avatar reconstructions is achieved using elaborate
multi-camera rigs with high-quality image sensors, which often consist of
dozens to over a hundred DSLR cameras, as discussed in Section 2.1. Through
multi-view stereo, these approaches accurately reconstruct geometry and tex-
ture (see, e.g., [PRM+15; LMR+15]). The virtual humans of Feng et al. [FRS17]
and Achenbach et al. [AWL+17] are reconstructed from such camera rigs (in
20 and 10 minutes, respectively) and feature skeleton-based body and hand
animation as well as blendshape-based facial expressions. However, their
complex hardware setup restricts the availability (and hence applicability) of
their approaches. Template-based human body models can also be generated
from consumer-level RGBD sensors (e.g., [BBL+15]), but the low spatial reso-
lution and limited image quality leads to rather low-quality reconstructions.
Malleson et al. [MKK+17] therefore use an RGBD sensor in combination with
a stereo RGB camera pair, but their avatars are still of rather low quality, lack
facial details, and reconstruct the body in a stylized manner only.

Lowering hardware requirements to the extreme, several learning-based
techniques reconstruct 3D body models from a single RGB/RGBD input im-
age or sequence of video frames [BKL+16; KBJ+18; OLP+18; FYR+19; KAB20].
However, these methods optimize parameters of a low-dimensional body
model only, without considering fine-scale per-vertex displacements, which
inherently limits the accuracy of the shape reconstruction. Moreover, they
all do not consider texture reconstruction, which is crucial for realistic avatar
appearance. Alldieck et al. [APT+19] reconstruct textured avatars from a single
image, by synthesizing normal/displacement maps from a partial texture cal-
culated through DensePose [GNK18] and mapping them onto the SMPL model.
Recently, there have been further advances in reconstructing avatars from a
single image [AZS22; KSL+22; LZX+23; SAK+24]. Khakhulin et al. [KSL+22]
propose a method for reconstructing head avatars from a single in-the-wild
photo. They use the DECA model [FFB+21] to retrieve an initial mesh which
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is refined using a neural texture to better predict hair geometry. The result is
then processed via neural rendering to produce the final image. Similarly, Liao
et al. [LZX+23] present an approach for generating full-body avatars from a
single image by first optimizing SMPL parameters [LMR+15] and then learning
to predict a signed distance function representation in a canonical pose, which
is warped and refined to generate a detailed model. While these methods
show impressive results given the minimal input, limiting the input to a single
image inevitably restricts the faithfulness of the reconstructions.

Alldieck et al. [AMX+18a; AMX+18b] therefore reconstruct a textured and
animatable avatar from a monocular RGB video that captures a subject turning
360 degrees in A-pose. Their model is based on SMPL, which is fitted to
the subjects silhouettes, extracted by CNN-based semantic segmentation, in
a subset of the video frames. The shape is further refined using shape-from-
shading techniques, and an albedo texture is generated via a per-texel graph cut
optimization with a semantic prior [AMX+18b]. In follow-up work, Alldieck et
al. [AMB+19] estimate the SMPL parameters from only 1–8 input images, based
on a neural network that incorporates semantic segmentation and estimated
2D landmarks. The texture is again generated via their previously proposed
method [AMX+18b]. While their approaches reconstruct full avatars from
consumer-level input, we show that our approach leads to higher accuracy
and realism. Our approach is inspired by Ichim et al. [IBP15], who generate a
quite accurate personalized head model from a smartphone selfie video. From
this video, they reconstruct a dense point cloud, to which they fit a parametric
template model. We extend their ideas to the challenging case of full-body
avatars with detailed hands and faces.

Recently, methods which use video data from a single camera as input for
avatar generation became more and more popular. Cao et al. [CSK+22] present
a neural network architecture, which is trained from high-resolution multi-
view stereo data depicting different facial expressions. From this data, they
learn identity, expression, and decoder networks which produce a volumetric
avatar representation rendered via ray marching. The input for the decoder can
be inferred from a single head scan depicting a neutral face expression taken
with a smartphone. The resulting representation can be further personalized
and refined via expression recordings, facilitating personalized head avatar
generation in about six hours. Zielonka et al. [ZBT23] represent a dynamic
head avatar via a neural radiance field embedded in a multi-resolution grid
around a tracked FLAME mesh [LBB+17], allowing them to efficiently train
their neural radiance field in less than ten minutes. Implicit representations
based on (deformable) neural radiance fields have also been explored in the
context of full-body avatars [JHB+22; ZHY+22; WCS+22; GJC+23; JCS+23;
ZZZ+23; JGK+24]. A common approach is to capture a subject rotating in
front of a static camera and then implicitly represent the resulting geometry
in a canonical space, which is deformed in order to account for non-rigid
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clothing deformation and pose variation from frame to frame. These methods
exploit recent advances in neural rendering and implicit scene representation
via neural radiance fields, which are well suited for structures with fine
details such as hair and clothing, as they are not bound to a fixed mesh
topology. However, explicit representations are faster to render and easier
to integrate into existing graphics pipelines, which is especially important
in the context of employing the resulting virtual humans in the context of
VR therapy. Most of the approaches are unable to render virtual humans
at adequate frame rates, e.g., HumanNeRF [WCS+22] achieves 0.14 fps, the
InstantAvatar approach [JCS+23] reaches 15 fps, and AvatarReX [ZZZ+23] is
able to render virtual humans at 25 fps.

Recently, the Gaussian Splatting method [KKL+23] showed promising re-
sults in high-fidelity and real-time radiance field rendering. This approach
represents a scene by a set of 3D Gaussians, whose attributes (position, co-
variance, opacity, and color) are optimized to match the input images when
using volume splatting to project the Gaussians onto the image plane. After
its introduction, this scene representation has also been employed to represent
head avatars [CWL+24; XCL+24; SSS+24; XGG+24; QKS+24] as well as full-body
virtual humans [HZZ+24; HHL24; WZR+24; MSS24; SWL+24]. These methods
commonly tie the positions of the 3D Gaussians to a tracked mesh, e.g., by
first optimizing a SMPL [LMR+15] or FLAME [LBB+17] mesh for each frame.
The deformation between poses can then be estimated via, e.g., Linear Blend
Skinning, thereby exploiting the underlying mesh representation. To model
pose-dependent non-rigid motion, a common approach is to train additional
neural networks to predict the residual deformation of the Gaussians. Similar
to implicit neural field representations, methods based on Gaussian Splatting
are well suited for complex geometric structures like hair and clothing. While
being faster to render than neural fields, some of the cited approaches still
yield frame rates that are too low for use in VR scenarios (43 – 47 fps [WZR+24;
MSS24]). Only the SplattingAvatar [SWL+24] and GauHuman [HHL24] ap-
proaches yield high enough frame rates when rendering a single avatar in an
empty scene (187 – 300 fps).

The discussed reconstruction methods differ significantly in the faithfulness
of their resulting models and in their costs, including hardware requirements
and the amount of manual intervention needed. High-quality results with few
manual interventions is offered by complex multi-camera rigs, like the one
used by Achenbach et al. [AWL+17]. In contrast, the approaches of Alldieck et
al. [AMX+18a; AMX+18b; AMB+19] require only a single affordable camera,
but the quality of their reconstructions is considerably lower than the one
achieved by multi-camera rigs. In the following, we describe a method that
combines the advantages of both approaches, generating high-quality fully
animatable virtual humans from video sequences captured by a consumer-level
monocular smartphone camera.
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3.2 M E T H O D

Our avatar generation is inspired by the smartphone-based head scanning of
Ichim et al. [IBP15] and builds on our extensions of the previous work on Fast
Generation of Realistic Virtual Humans by Achenbach et al. [AWL+17], which
we will abbreviate as FGVH in this chapter. We combine and closely follow
these two approaches, but extend them in several important aspects in order
to enable full-body avatar reconstructions from simple monocular smartphone
videos.

In FGVH [AWL+17], people were scanned using two custom-built single-
shot multi-camera rigs: a full-body scanner and a face scanner, consisting of
40 and 8 DSLR cameras, respectively. Given the camera images, a multi-view
stereo reconstruction computes two high-quality point clouds for body and
face, to which a human body template is fitted using non-rigid (or deformable)
registration (see Section 2.2 for an in-depth description of the template fitting
method). Since the employed template model features a detailed skeleton for
body and hands as well as eyes, teeth, and facial blendshapes, the reconstructed
virtual humans are ready for animation in XR simulation and game engines
such as Unity or Unreal. The main drawback of FGVH is the expensive,
elaborate and stationary hardware setup, an issue shared by several character
reconstruction/tracking methods [LMR+15; FRS17; JSS18; GLD+19].

In order to make 3D scanning and avatar generation available to a wider
range of people, we considerably lower the hardware requirements and employ
a consumer smartphone camera only. We take two video clips of a person,
the first one capturing the full body, the second one capturing the head of
the subject. From these video clips we automatically select individual frames
using optical flow analysis and sharpness estimation (Section 3.2.1), and
compute two dense point clouds for the body and head using multi-view
stereo reconstruction (Section 3.2.2), thereby resembling the body and face
scan of FGVH. The template fitting process presented in FGVH relies on a set
of manually picked landmarks on both the body and face point clouds to guide
the shape optimization. In contrast, we automate this process (Section 3.2.3)
by following the automatic landmark detection described in Section 2.2.2.
Given the found landmarks, we then pose and deform a statistical human
body template to closely fit the body and face point clouds (Section 3.2.4).
When reconstructing the model’s texture from the input frames, we cannot
rely on standard multi-view reconstruction because of imperfections in our
input data. Instead, we employ a graph cut texture stitching approach, which
yields visually superior results (Section 3.2.5).
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3.2.1 Input Data

Previous works on monocular reconstruction [AMX+18b; AMB+19] facilitate
avatar creation from low-cost setups by taking one video that captures the
full body of the person. However, we noticed (analogous to FGVH) that a
separate head scan improves the quality and detail of the avatar’s head region,
especially when dealing with lower-resolution data from smartphone videos
compared to DSLR camera images. One approach for acquiring a close-up
scan of the head would be to simply include it in the video for the full-body
scan. However, since we employ a multi-view stereo approach, we rely on the
person holding as still as possible during the capture process. Increasing the
length of the video by including a detailed scan of the head would imply more
motion of the scanning subject and thereby result in a stronger violation of the
multi-view stereo assumption.

Instead, we take two videos of the person, the first one capturing the full
body in A-pose from a slight distance and the second one capturing the head
in a close-up fashion. For the full-body video, the smartphone camera is
moved (by a second person) in two circular paths around the scanned subject:
The first camera path captures the upper body (head, torso, arms), the second
one the lower body (hips, legs, feet). The head scan consists of one circular
camera motion around the subject’s head and additionally films the top of the
head and the region under the chin (Figure 3.2).

Our input videos are shot at 4 k resolution (3840× 2160) and 30 Hz fre-
quency on a Google Pixel 3. Experiments with other smartphones capable of
capturing 4 k videos gave similar results. The full-body video takes about 80 s
and the head video about 30 s. The scanned subjects cannot hold perfectly

Figure 3.2: Camera locations for the full-body scan, consisting of two orbits around
the scanned subject (left), and the head scan, taking a close-up of the head/face region
(right).
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still for this long, but we found that we could still employ a multi-view stereo
approach and produce point clouds of sufficient quality.

To this end we first select I frames of the input video, which are then pro-
cessed by the multi-view stereo reconstruction (Agisoft Metashape Pro [Agi24]
in our case) in order to compute the point clouds for the subsequent template
fitting pipeline. Using all frames of the input video would rapidly exceed the
capabilities of the photogrammetry software. Our experiments revealed that
extracting I = 75 images from the full-body video and I = 50 images from the
head video is a good trade-off between computation time and resulting point
cloud quality.

Simply extracting every nth video frame would not account for any non-
uniform camera movement by the person performing the scan. To simplify
the capturing process while ensuring a uniform coverage of the scanned
subject, we instead extract frames based on a uniform inter-frame movement,
which we estimate through optical flow analysis using the implementation
of Farnebäck [Far03] in OpenCV [Bra00]. This yields a dense 2D flow field
fi representing the movement between frames i and i + 1, from which we
estimate the amount of movement fi as the average length of the 2D flow
vectors in fi. We treat the resulting inter-frame movements fi as a noisy 1D
signal and smooth it by convolution with a Gaussian kernel (σ = 2) to compute
filtered movement estimates f̃i. We then iterate through the video and select
a new frame once the accumulated movement between it and the previously
selected frame reaches the threshold 1

I ∑i f̃i. This defines a set of frames with
uniform movement in between them.

We noted, however, that frames selected by the above procedure might
be blurry either due to motion blur or the camera being in the process of
adjusting the focus. To tackle this problem, we find the sharpest frame in the k-
neighborhood Nk of each selected frame (k = 5 in our experiments). Sharpness
is estimated as the variance of the Laplacian of the input image [PCC+00]
and we select the frame in Nk(i) which exhibits the highest sharpness value.
Finally, we change the orientation of the selected frames according to the
EXIF metadata of the video and pass the selected frames {I1, . . . , II} to the
photogrammetry reconstruction.

3.2.2 Point Cloud Generation

The photogrammetry software Agisoft Metashape [Agi24] proceeds in several
steps: First, feature points are detected and matched in between individual
input images. Based on these sparse (but reliable) points, the intrinsic and
extrinsic camera parameters are computed for each input image. Finally, given
the camera calibration, the dense point cloud is computed.
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Figure 3.3: Comparison of full-body (left column) and face/head (right column) point
clouds between FGVH (top row) and our approach (bottom row). Our point clouds
are noisier, less detailed, and more likely to have missing data (e.g., in the arm region).

For the last step, the software allows to restrict the computation of the
dense point cloud to an oriented bounding box. This will speed up not only
the photogrammetry algorithm, but also all subsequent steps of our pipeline,
because the resulting point cloud consists of fewer points. Due to our handheld
video input, we cannot rely on a pre-calibrated camera setup and, thus, cannot
rely on a constant scanning volume of interest.

However, we know that the camera positions provided by the extrinsic
camera calibration enclose the scanned subject, hence we can use them to
estimate the bounding box. We first determine an oriented box through
PCA of the camera positions, where by design of our camera trajectory (see
Figure 3.2) the first two principal directions e1 and e2 span the least squares
fitting plane through the camera locations, and e3 corresponds to its normal,
i.e., the up-direction. From the extent of the camera box in directions e1 and
e2 we can estimate the subject’s arm span and, since the arm span of humans
roughly corresponds to their height, also the height of the bounding box. The
bounding box of the head scan is determined in the same manner, making the
assumption that the height of person’s head roughly corresponds to its width.

After specifying the two bounding boxes, Agisoft Metashape computes
dense point clouds from the selected input camera images, leading to a point
cloud PB for the full-body scan (ca. 2.8 M points) and a point cloud PH for the
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Figure 3.4: We use 15 landmarks on the full-body scan to guide the template fitting
process. The location of these landmarks is visualized here on the template mesh.

head scan (ca. 1.6 M points). Due to the lower resolution of our smartphone
camera and the inevitable slight motion of the scanned subject during the
capture process, our point clouds are more noisy and more likely to have
missing data than the point clouds in FGVH (see Figure 3.3 for a comparison).

3.2.3 Landmark Detection

The template fitting procedure (Section 3.2.4) is bootstrapped and guided by
feature landmarks on the point clouds PB and PH. While in FGVH landmarks
in the reconstructed point clouds are manually selected, we propose a fully au-
tomatic landmark detection. To this end, we follow the approach described in
Section 2.2.2 and perform 2D landmark estimation using OpenPose [CHS+21]
on all input images.

To recall, OpenPose gives us up to 135 landmarks (including confidence
values) for each image: 25 full-body landmarks defining a 2D skeleton, 21
landmarks per hand, and 68 facial landmarks. In Section 2.2.2, the 68 facial
landmarks were alternatively detected using the facial feature detection imple-
mented in the dlib library [KS14] due to an incompatibility of the OpenPose
facial feature detection with the operating system used. Since both methods
yield the same landmark set, they can be used interchangeably. The detected
landmarks are then filtered in order to deal with unreliable detections.

For the full-body point cloud PB we only use a small subset of 15 landmarks
(shown in Figure 3.4), since not all of the 135 landmarks can be reliably back-
projected from their 2D image location onto the 3D point cloud (using the
camera calibration data from the photogrammetry reconstruction). However,
this subset turned out to be fully sufficient to guide the full-body template
fitting process.

As in Section 2.2.2, we find images that allow for the most robust back-
projection from 2D image coordinates onto the 3D point cloud PB. We choose
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Figure 3.5: Result of the automatic landmark detection. We heuristically find the
best image for each landmark. Nose, mouth, and eye landmarks are projected from
frontal images (left), hand and ear landmarks from lateral images (center) and heel
landmarks from dorsal images (right).

the most suitable image based on the following heuristics: Hand and ear
landmarks should be back-projected from images orthogonal to the sagittal
plane, while heel, nose, mouth, and eye landmarks should be back-projected
from images orthogonal to the frontal plane of the human body (see Figure 3.5).

For finding suitable images for the additional heel landmark projection, we
look for several characteristics: For one, the left and right heel landmarks have
to be located on the left and right side of the image, respectively. However,
OpenPose mislabels left and right legs in some cases, so we additionally use
the fact that in suitable images the toe landmarks always have to be above the
heel landmarks. In images orthogonal to the frontal plane, the heel landmarks
should also approximately be located at the same height in the input image.

The landmarks in the selected images are then back-projected onto the
point cloud PB using the camera calibration provided by the photogrammetry
software. The same procedure is repeated for the head scan: We find the
most frontal image as described in Section 2.2.2 and project the 68 facial
landmarks onto the head point cloud PH. The resulting point set landmarks
are then weighted to account for the fact, that projecting the face contour
points (Figure 3.5 (left)) yields unreliable results.

The landmark detection of OpenPose in combination with our filtering and
back-projection yields (in a fully automatic manner) 3D landmark positions
(15 for the full-body scan, 68 for the head scan), which guide the subsequent
template fitting procedure. Note that the back-projection might fail due to
missing data in low-quality point clouds. In this rare case, we prompt the user
to manually select the corresponding 3D landmark (see Figure 3.14).
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3.2.4 Template Fitting

Reconstructing a high-quality avatar mesh from medium-quality scanner data
is a challenging problem because of noise, outliers, and holes in the input data.
Like FGVH, we exploit prior knowledge (that we are scanning humans) and
fit a statistical human body model to the scanner point cloud(s) by optimizing
the template’s position, orientation, scaling, PCA parameters, and fine-scale
per-vertex deformation as detailed in Section 2.2. In this way, the template
mesh regularizes the fitting procedure and fills in regions of missing data. Our
template fitting approach closely follows the non-rigid registration of FGVH,
but extends it at several places in order to deal with our lower-quality data.

We use the same template character from the Autodesk Character Gen-
erator [Aut24], which is fully rigged and capable of body, hand, and face
animations. The template mesh consists of V ≈ 21 k vertices with positions
X = (x1, . . . , xV). In order to incorporate a statistical prior on human body
shapes, we fit this template model to about 1700 human scans from the CAE-
SAR database [RBD+02] and compute a 30-dimensional PCA subspace from
the resulting data. This yields a more expressive statistical model – and hence
a more robust fitting process – than FGVH, where a 10-dimensional PCA is
computed from about 200 scans from mixed sources [BRL+14; HSS+09; Aut24],
including synthetic, non-realistic ones [Aut24].

Following FGVH, we uniformly down-sample the two point clouds to twice
the vertex density of the template mesh in order to speed up the fitting process,
resulting in ca. 150 k points each for the body scan and the head scan. By
considering the vertex density of the template mesh, we ensure that geometric
details that the template mesh can reproduce, are preserved.

In the first step we fit the template model to the body point cloud PB by
following the two-step registration scheme detailed in Section 2.2.2. To recall,
we first minimize the squared distances between the 15 automatically detected
landmarks in the point cloud PB and their pre-selected counterparts on the
template model by alternatingly (i) computing the optimal scaling sg, rotation
Rg, and translation tg [Hor87], (ii) optimizing joint angles θ through inverse
kinematics [ALC+18], and (iii) optimizing the PCA shape parameters β (linear
least squares problem). After convergence, we further improve alignment,
pose, and PCA shape by minimizing, in addition to landmarks, the squared
distances between points in PB and their closest points on the template mesh.

This defines the initial registration of the template mesh, which in a second
step is refined by a fine-scale non-rigid registration to match the point cloud
data more closely. LetX = (x1, . . . ,xV) be the vertices resulting from the initial
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registration phase. We then perform a fine-scale non-rigid registration by
minimizing the non-linear objective function

Ebody(X ) = λcpcEcpc(X ) + λlmElm(X ) + λregEreg
(
X ,X

)
,
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C
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(3.1)

The data term Ecpc penalizes the squared distances between corresponding
closest points on the point cloud p̃Ci and skinned points skinC

(
xCi , θ

)
on the

template mesh surface (expressed via barycentric coordinates). Using wi ∈
[0, 1], we weight down correspondences in the hand and head regions, since the
former are typically unreliable and the latter will be replaced by the head scan.
Similarly, the landmark term Elm penalizes the squared distance between the 15
automatically detected landmarks in the point cloud and their corresponding
vertices on the template mesh. The regularization term Ereg penalizes the
geometric distortion from the undeformed stateX to the deformed state X , by
measuring the deviation of the respective edge-Laplacians, aligned by per-edge
rotations Re. In this way, we attract the mesh surface towards the point cloud
(Ecpc and Elm) while only allowing physically plausible deformations (Ereg).
For more details about the computation of the individual terms, we refer the
reader to Section 2.2.2, specifically to Equations (2.8), (2.9), and (2.10).

This non-linear least squares problem is solved using an alternating op-
timization of vertex positions X and per-edge rotations Re (repeated block-
coordinate descent), where we set λcpc to 1 and gradually decrease λlm from
0.1 to 10−4 and λreg from 1 to 10−7. This follows the iterative optimization
scheme proposed in FGVH and detailed in Section 2.2.2. However, due to
the lower point cloud quality resulting from motion artifacts and the lower-
resolution input, we maintain a higher level of regularization and only lower
the regularization weight to λreg = 10−7 instead of 10−9 as in FGVH.

Having deformed the template model to the full-body scan, we further
refine the geometry of the head region by fitting it to the head scan PH. In
order to align the template model to the head scan, we find optimal scaling,
rotation, and translation by minimizing squared distances between the de-
tected 68 facial landmarks and their corresponding landmarks on the template
model [Hor87]. Afterwards, we further refine scaling, rotation, and transla-
tion through ICP [BM92]. In contrast to FGVH and due to our more noisy
point clouds, we regularize the head fit by a 30-dimensional statistical head
model derived from the publicly available data of [ABG+18]. After this coarse
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registration, we add fine-scale geometric detail by performing a non-rigid
deformation that minimizes the objective function

Ehead(X ) = λcpcEcpc(X ) + λlmElm(X ) +

λregEreg
(
X ,X

)
+ λshutEshut(X ) ,

(3.2)

where Ecpc, Elm, and Ereg are the same as before (but restricted to the head
region), and Eshut ensures that the mouth of the template model stays closed
(see Equation (2.11)). The iterative optimization then proceeds in the same
way as before. However, this time λreg is initially weighted by 1 and gradually
decreased to 10−8. We again solve the non-linear least squares problem using
repeated block-coordinate descent.

After the fine-scale non-rigid registration, we pose-normalize the model
and perform a corrective non-rigid registration which puts the feet of the
model on the ground (Section 2.2.2). Finally, we add facial details (eyes and
teeth) and reconstruct blendshapes. Following FGVH we adjust the template’s
teeth and eyes by optimizing for scaling, rotation, and translation based on the
deformation of the mouth and eye region. To resolve occasional penetrations of
the eyes and eyelids, we non-rigidly deform the eyelids to fit the transformed
eye geometry. To reconstruct blendshapes, we map all blendshapes from the
template mesh to the fitted model using deformation transfer [SP04].

3.2.5 Texture Generation

Given the camera images and the reconstructed avatar mesh, FGVH computes
textures for the full-body scan and the face scan using Agisoft Metashape
and blends them using Poisson Image Editing [PGB03]. In our case, this
approach leads to noticeable artifacts because of inaccuracies in the geometry
reconstruction caused by inevitable motion during the capture process, as
shown in Figure 3.8. We avoid these problems by computing the texture image
through a graph cut optimization [BVZ01].

Using the fitted avatar mesh (Section 3.2.4) and the camera calibration data
of Agisoft Metashape (Section 3.2.2), we generate partial textures by rendering
the avatar mesh from each camera position. The projection from 3D world
coordinates to the respective camera’s image plane is modeled as a standard
pinhole camera with Brown’s distortion model [Bro71], whose parameters are
provided by Metashape’s intrinsic and extrinsic camera calibration.

This projection is used to generate a partial texture Ti from each input
image Ii in a two-pass rendering process implemented via OpenGL. In the
first pass, all triangles of the resulting avatar mesh are projected onto the
image plane of camera ci and the resulting depth buffer is stored as Zi. The
second render pass generates the partial texture Ti by rendering the mesh
onto the pre-defined uv-layout of the template character. The fragment shader
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Figure 3.6: Partial texture (left) and visibility map (right).

then discards all fragments that do not pass the depth test against the depth
buffer Zi from the first rendering pass. This discards all fragments that are
not visible from camera ci. For all remaining fragments, the color value is
computed by accessing the camera image Ii at the texture coordinate uj defined
by projecting the interpolated surface point x′j onto the image plane of camera
ci. We additionally compute the angle α between the surface normal and the
viewing ray and discard all fragments where α exceeds a threshold of 45◦ in
order to rule out foreshortening effects. Color information for the remaining
fragments is then written to the corresponding texture coordinate at Ti. This
rendering procedure results in a partial color texture Ti and visibility map Vi
(storing cos(α) for each pixel) for every input image (see Figure 3.6). Since
the input images exhibit some overlap in order to facilitate multi-view stereo
reconstruction, so do the resulting partial textures, and we are left with the
task of generating a complete texture by performing texture stitching.

Stitching the partial textures together could be done by simply performing a
“best view” selection, i.e., coloring each texel from the partial texture where the
corresponding surface patch was most orthogonal to the viewing vector (see,
e.g., [IBP15]). However, because of the inevitable motion during our scanning
procedure, the camera calibration resulting from the photogrammetry step is
not accurate enough, leading to noisy point clouds. As a consequence, the
reconstructed geometry is not accurate enough, and thus the partial textures
do not align perfectly. Performing a best view selection would thus lead to
noticeable seams between surface patches.

Graph cut methods [BVZ01] have been used to seamlessly stitch together
images or textures. We take inspiration from various works [GWO+10; LI07;
AMX+18b] and formulate our texture stitching as a combinatorial optimization.
Each of the F faces of the reconstructed mesh is to be textured by one of the
partial textures Ti. This can be described by an index set I = {l1, . . . , lF} with
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Figure 3.7: The patches induced by the best view selection (left) and by our graph cut
optimization (right). The latter leads to larger patches and fewer seams.

li ∈ {1, . . . , I}, which labels each face with a partial texture index. The graph
cut optimization then minimizes the error function

Etex(I) =
F

∑
i=1

D( fi, li) +
F

∑
i,j=1
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)

,
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,

(3.3)

with a data term D( fi, li) and a smoothness term S
(

fi, f j, li, lj
)
. The data term

prefers to texture faces from input images where the face normal is parallel
to the viewing vector, summing up the visibility map Vli for partial texture
Tli over the set U ( fi) of texels of face fi in uv-coordinates. The smoothness
term ensures that neighboring faces are textured from images that avoid
visible seams, by penalizing color differences on the texels of their shared edge
U
(

fi, f j
)
= U ( fi) ∩ U

(
f j
)

in uv-coordinates.
We treat the objective function (3.3) as a multi-label graph cut optimization

problem [BVZ01; KZ04; BK04]. This defines a Markov Random Field that
we optimize with the implementation provided by Szeliski et al. [SZS+06].
We initialize the optimization with the best view selection, which is a good
starting point since it is equal to the minimum of the data term.

The resulting labeling I defines which patches of the final texture are
colored from which partial texture. Figure 3.7 shows the optimized labeling in
comparison to the best view selection. Note that bigger parts of the texture are
now textured from the same input image, which naturally reduces the amount
of visible seams. There are, however, still some luminosity differences at the
patch boundaries, which we eliminate by blending the patches using Poisson
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Figure 3.8: Texture generation of Agisoft Metashape (left) and our graph cut optimiza-
tion (right), the latter yielding more detail on the necklace and the letters on the shirt.

Image Editing [PGB03]. Texture regions belonging to areas on the model that
were not seen (e.g., the crotch or armpit region) are automatically filled by
harmonic color interpolation.

This texture generation process is performed for both the full-body scan
and the head scan. The head texture is then injected into the full-body texture
using Poisson Image Editing in order to cope with illumination differences
between the two scans. Since hands and eyes are typically not well scanned,
their texture information is taken from the template texture and adapted to
the scanned subject using histogram matching in CIELAB space, as proposed
by Ichim et al. [IBP15].

As can be observed in Figure 3.8, the textures generated by our graph cut
approach have more detail and are sharper compared to the textures generated
by Agisoft Metashape.

3.3 R E S U LT S

Our avatar reconstruction takes about 20 minutes, measured on a desktop
PC with 12× 3.6 GHz Intel Xeon CPU and an Nvidia GTX 1080 Ti GPU, and
consists of the following steps: capturing and transferring the videos (4 min),
processing videos and generating point clouds (7 min), landmark detection
and template fitting (2 min), and texture generation and merging (7 min). In
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the following we provide quantitative comparisons with FGVH, which due to
its extensive setup acts as an (approximate) ground truth, as well as qualitative
comparisons to the monocular reconstructions of Alldieck et al. [AMX+18a;
AMB+19].

In order to quantitatively compare our low-cost reconstruction with the
multi-camera reconstruction of FGVH, we scanned and reconstructed 34 peo-
ple with their method and ours. We had to discard the scan of one person,
where the point cloud reconstruction failed due to dark clothing. For the
remaining 33 scans we compare the reprojection error, which we compute
by rendering for each input image the textured avatar from the correspond-
ing camera location (see Figure 3.9) and computing the root-mean-square
error (RMSE) over all rendered pixels in the CIELAB color space. Averaging
the RMSE over all input images yields the reprojection error for one avatar
reconstruction, which effectively measures reconstruction accuracy in both
geometry and texture. Figure 3.10 shows the reprojection errors for all scanned
subjects. Not surprisingly, the expensive camera rig of FGVH yields lower
errors thanks to more accurate point clouds (cf. Figure 3.3). Although their
RMSE (M = 24.20, SD = 2.15) is 20 % lower than ours (M = 30.30, SD = 4.66),
our hardware costs (about $600) are only 1 % of theirs (about $60 000). To
evaluate our graph cut based texture stitching, we compare it against Agisoft
Metashape’s texture generation. The results show that the textures produced
by Agisoft Metashape yield a slightly lower RMSE (M = 29.60, SD = 4.47), but
our graph cut optimization yields perceptually superior results (Figure 3.8).

As a purely geometric measure, we compute the modified Hausdorff dis-
tance [DJ94], defined by the maximum of the two average per-vertex distances
between our reconstructions and the (approximate) ground truth given by

Figure 3.9: We evaluate the reprojection error in image space by rendering (without
lighting) the reconstructed avatars from all input camera locations onto the input
images.
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Figure 3.10: Root-mean-square reprojection errors of FGVH and our method over 33
reconstructed avatars. The close-ups on the right show Subject No. 2, for which our
method (top) performs the worst compared to FGVH (bottom).

FGVH. Averaging this measurement over all reconstructions yields 7.1 mm,
confirming that our avatars are quite accurate despite the low hardware re-
quirements.

We qualitatively compare our method to the monocular avatar generation
approaches of Alldieck and colleagues. The first method [AMX+18a] recon-
structs avatars from a video of a person turning around 360◦ in A-pose (taking
around 2 h). The second method [AMB+19] requires only eight images of
this 360◦ movement and generates the texture using the stitching technique
of [AMX+18b] (taking around 5 min). The input videos/images were taken
using the same Google Pixel 3 to provide comparable input data. We used the
original implementations provided by the authors, but doubled the default
number of pose and shape estimation steps in Alldieck et al. [AMB+19] to
achieve better results, as suggested to us by the authors. Figure 3.11 and
Figure 3.12 compare avatars reconstructed with Alldieck et al. [AMX+18a],
Alldieck et al. [AMB+19], FGVH, and our method, showing that our results
are superior to Alldieck et al. and comparable to FGVH. Note that the avatars
reconstructed by Alldieck et al. [AMX+18a; AMB+19] lack articulated hands,
eyes, teeth, and facial blendshapes.

Our reconstructed avatars provide these facial animation controllers, as
demonstrated in Figure 3.13 and the accompanying video. More results and
comparisons, including dynamic skeletal and facial animations, can be found in
the accompanying video at https://www.youtube.com/watch?v=2D3-vn2yFVc.
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[AMX+18a] [AMB+19]

Ours [AWL+17]

Figure 3.11: Avatars of the same person reconstructed from different methods:
[AMX+18a], [AMB+19], ours and [AWL+17]. Note that our reconstruction improves
on previous low-cost avatar generation pipelines in both geometry and texture.
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[AMX+18a] [AMB+19]

Ours [AWL+17]

Figure 3.12: Avatars of the same person reconstructed from different methods:
[AMX+18a], [AMB+19], ours and [AWL+17]. Note that our reconstruction improves
on previous low-cost avatar generation pipelines in both geometry and texture.
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Figure 3.13: Our avatars feature eyes, teeth, and facial blendshapes, and can thus be
animated out-of-the-box, e.g., through real-time facial motion capturing.

3.4 S U M M A RY A N D L I M I TAT I O N S

In this chapter we presented a fully automated pipeline for generating high-
quality virtual humans from monocular videos, taking just about 20 minutes
in total. The input for our pipeline consists of two video clips of the scanning
subject taken with a consumer smartphone: one showing the full body and
the other providing close-ups of head and face. We extract single frames
using optical flow analysis and sharpness estimation, which are then passed
to an off-the-shelve photogrammetry software, producing two dense point
sets of the scanning subject. Pose and facial feature detectors are employed to
automatically detect landmarks in the input images, which are projected onto
the point sets. These landmarks guide the fitting of an animatable statistical
virtual human template model, which reconstructs the geometry of the scanned
person. A graph cut based texture stitching algorithm then produces a high-
quality color texture for the resulting virtual human. Comparisons with both
hardware-intensive and low-cost approaches show our virtual humans to be
almost on par with the former while surpassing the latter. Our avatars are
ready to be used in XR applications, as they allow skeletal and facial animation
and are compatible with standard engines used in this field. This opens up the
ability for the research community to work on high-quality avatars without
extensive hardware setups.

Our method still has several limitations, as shown in Figure 3.14. First, the
photogrammetry software cannot deal with very dark clothing. Second, the
point cloud quality degrades for body parts exhibiting noticeable movement
during the capturing process. This is especially true for the arms, leading

53



realistic virtual humans from smartphone videos

Figure 3.14: Limitations of our method. Dark clothing (left) and movement during
the capture process (center) is challenging for the multi-view stereo reconstruction.
This leads to errors in geometry and texture. The landmark back-projection fails for
point clouds with missing data (right).

to a lower accuracy in geometry and texture reconstruction. Third, while
the automatic 2D landmark detection worked robustly in all cases, the back-
projection to 3D failed for four subjects due to missing data in the point
cloud. In these cases, the user was asked to manually select the landmarks.
Finally, glasses, hair, and accessories are challenging for all photogrammetric
approaches, including ours.

For future work, we want to make our approach more robust to movements
by segmenting the extracted video frames either into foreground/background
or into semantic parts (e.g., torso, arms, legs, and head), which could poten-
tially improve the quality of the multi-view stereo reconstruction. Furthermore,
we plan to exploit the capabilities of smartphone APIs to build a designated
application for controlling the capture process and gaining access to the in-
trinsic camera calibration. Another interesting direction is to scan challenging
areas like the arms separately, i.e., to divide the capture process into more
than two videos. We recorded the videos for the avatar reconstructions in
a controlled indoor environment, where we did not have to deal with hard
shadows, unstable lighting conditions or moving objects in the background.
Extending the method to also yield high-quality results in these challenging
outdoor settings is another direction for future work.
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R E C O N S T R U C T I O N M E T H O D S

We have now seen two different reconstruction methods for realistic per-
sonalized avatars. The previous chapter presented a low-cost approach for
reconstructing virtual humans from two smartphone videos, which drastically
lowers the hardware requirements of realistic virtual human reconstruction
pipelines, as these typically employ elaborate photogrammetry rigs consisting
of multiple DSLR cameras. However, when employing realistic virtual humans
in XR environments, and especially in the context of XR therapy, it is important
to assess the user acceptance of the virtual humans resulting from the chosen
reconstruction method. So far, we have only looked at objective measures such
as reprojection error or differences in the resulting geometry when comparing
the low-cost method to a high-cost method such as FGVH [AWL+17]. To investi-
gate, if virtual humans resulting from low-cost methods really present a viable
alternative, we have to examine, how people rate the appearance of the virtual
humans when compared to those resulting from high-cost methods.

The appearance of virtual humans has notable effects on ourselves and
our interaction partners (see, e.g., Praetorius and Görlich [PG20] and Ratan et
al. [RBL+20]). Previous work found realistic self-avatars used for embodiment
to be superior to abstract self-avatars in terms of user acceptance [LRG+17].
Others found personalized realistic-looking self-avatars to be even more supe-
rior, enhancing the illusion of virtual body ownership as well as the feeling of
presence [WGR+18]. Comparable interesting effects occur for other-avatars (the
virtual representations of other users) and virtual agents (embodied entities
controlled by artificial intelligence). For example, the appearance of virtual
others impacts their perceived trustworthiness [MBB12; SLD+19], approachabil-
ity [FM21], affinity [SLD+19], and co-presence [BSH+05]. Given the continuous
technological advances in the reconstruction of virtual humans, research on
their realism is still ongoing [SGH+20]. For example, there is still debate about
whether realistic-looking virtual humans are prone to facilitate the uncanny
valley effect (e.g., [TG09; KFM+15; WLR15; LLL15b]), which describes the
phenomenon that close-to-real looking artificial humans sometimes strike as
eerie [MMK12; HM10; HM17].

Today, multiple reconstruction approaches for realistic, lifelike virtual
humans exist. They significantly vary in terms of the degree of achievable
realism, the technical complexities, and finally, the overall reconstruction costs
involved. So far, rather complex and expensive multi-camera rigs achieve the
highest quality by using high-quality image sensors (e.g., [FRS17; AWL+17;
GLD+19]). However, approaches for reconstructing virtual humans from input
data produced by more affordable consumer hardware become more popular
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and elaborate. They only require e.g., a single image [APT+19; AZS22; LZX+23;
SAK+24], a single smartphone video [IBP15; AMX+18b; AMB+19], or multiple
smartphone videos (Chapter 3). Most of these low-cost approaches share the
vision to make it possible for everyone to generate a digital alter ego quickly
and inexpensively without a complex hardware setup. Such approaches would
drastically leverage the possibilities for research, industry, and overall users
of embodiment systems. By only utilizing consumer-level hardware, e.g., a
$600 smartphone instead of a camera rig costing tens of thousands of dollars,
smaller development teams can afford life-like virtual humans, for example, in
their games and social VR applications, and users would benefit from a much
more personalized experience using their realistic look-alike avatars.

To complement the objective evaluation in Chapter 3, this chapter inves-
tigates the subjective perception of low-cost virtual humans. Specifically, we
will address the following research questions:

RQ1 Can low-cost approaches for generating realistic virtual humans keep
up with high-cost solutions regarding their perception by users in
embodied VR?

RQ2 Is the quality difference more noticeable for the own virtual body
compared to the virtual body of others?

For the investigation of our research questions, we conducted a user study
to compare our low- and a high-cost 3D reconstruction approaches for vir-
tual humans. Both produce (i) realistically looking and (ii) ready-to-animate
virtual humans (iii) in a time frame that is compliant with common study
procedures, i.e., within minutes. The input for the high-cost method is given
by a photogrammetry rig including 94 DSLR cameras located at University of
Würzburg. The resulting images are processed by the Fast Generation of Virtual
Humans (FGVH) method [AWL+17]. The second method uses a simple smart-
phone camera to capture two videos of a person, which are then processed
by the Realistic Virtual Humans From Smartphone Videos method (Chapter 3).
We scanned participants by both methods. Then they embodied the resulting
self-avatars in an immersive virtual environment and encountered pre-scanned
virtual others of both reconstruction methods. We report on the sense of
embodiment for the self-avatars and the perceived similarity, uncanniness, and
preference for both the self-avatars and the virtual others. We further look at
objective differences between the two methods and investigate whether these
differences are more noteworthy for the self-avatar than someone else’s body.
Our results indicate that the avatars from the low-cost approach are perceived
similarly to the avatars from the high-cost approach. This is remarkable since
the quality differed significantly on an objective level. The perceived change
of the own body was more significant for the low-cost avatars than for the
high-cost avatars. The quality differences were more noticeable for the own
than for other virtual bodies.
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Individual Contribution My main contribution is the integration of the two
virtual human reconstruction methods at the lab of our colleagues at the University
of Würzburg, where the user study was conducted. I additionally implemented the
objective comparison between the resulting virtual humans. The user study was mainly
designed by Andrea Bartl, who also performed the user study and the corresponding
statistical evaluation at the University of Würzburg. Andrea Bartl also designed
the VR environment, while Erik Wolf provided the avatar embodiment framework,
allowing the participants to observe their motions in a virtual mirror inside the VR
environment.

Corresponding Publication This chapter is based on the following publication:

Andrea Bartl, Stephan Wenninger, Erik Wolf, Mario Botsch, and Marc
Erich Latoschik. “Affordable but not Cheap: A Case Study of the Effects
of Two 3D-Reconstruction Methods of Virtual Humans ”. Frontiers in
Virtual Reality 2 (2021).

4.1 R E L AT E D W O R K

4.1.1 Perception of Virtual Humans

Virtual humans are part of a great variety of applications. They serve as avatars
(representations of real people in digital worlds), virtual trainers, assistants,
companions, game characters, and many more. Often, developers strive to
make them as realistic as possible. The perceived realism of virtual humans
depends on their appearance and their behavior [MT05; SS15]. While we
acknowledge the importance of behavioral realism, our work focuses on the
appearance of virtual humans. Our appearance and the appearance of others
in a virtual environment have notable effects on our perception [HH16; FM21].

The Own Virtual Appearance

When it comes to using virtual humans as avatars, i.e., digital representations
of persons in a virtual world, the Proteus effect [YB06; YB07] is a prominent
research topic. It describes the phenomenon that the avatar appearance can
influence users’ attitudes and behavior based on stereotypical beliefs. For exam-
ple, in previous research, participants who embodied a child associated more
child-like attributes with themselves [BGS13], attractive avatars increased inti-
macy [YB07], strong-looking avatars improved physical performance [KKS+20],
and taller avatars led to more confidence [YB07]. Wolf et al. [WMD+21] recently
showed that the embodiment of an avatar can potentially alter its body weight
perception relating to the user’s body weight.
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For many VR applications, the Proteus effect is desirable. Users can slip into
a body with different size, shape, look, age or gender, enabling experiences one
could not easily create in real life. Exploiting this effect potentially even helps
to reduce negative attitudes, such as racial bias [PSA+13; BHS16], negative
stereotypical beliefs about older people [YB06], or misconceptions of the own
body image [DWW+19]. It could also promote positive attitudes and behavior,
e.g., motivation to exercise [PKA16]. However, what if the use case requires the
users just to be themselves? For example, experiments often assume a user’s
unbiased evaluation without taking the potential bias of the virtual body into
account. Other exemplary scenarios might focus on a person’s actual body
shape, e.g., virtual try-on rooms, therapy applications, or specific physical
training scenarios that prepare people for real-life situations.

In previous work, the self-similarity of the avatar influenced the users’
perception in the virtual environment. Personalized realistic-looking avatars
enhanced the illusion of body ownership and the feeling of presence in first-
person [WGR+18] and third-person [GCH+19] immersive VR. Self-similarity
enhanced negative attitude changes when embodying a self-similar but sexual-
ized avatar [FBT13] and impacted body weight perception [TGM+18]. Having
a self-similar body in VR promoted creativity [RLE17] and increased presence
and social anxiety levels in VR [AKB14]. In a fitness application with a full-
body virtual mirror, having an avatar that was self-similar in terms of gender
enhanced the illusion of body ownership and increased performance compared
to a not self-similar one [LLL15a]. Especially in social VR applications, people
very deliberately choose to look or not look like they do in real life [FM21].
Realistic avatar representations used for embodiment have been superior to
abstract avatar representations in user acceptance [LRG+17]. Nevertheless, the
role of realism in avatars is still in debate. Other work could not reproduce
this superiority [LWB+15] and even found realistic avatars to be less accepted
than abstract representations [LLL15b]. The context of the experience might
be an important factor when it comes to the influence of the own avatar’s
appearance. The impact seems to be less significant in game-like or overall
more stressful scenarios that strongly engage the user in a superordinate task
that only marginally focuses on the body (e.g., [LLL15b; LLL15a]). But it
might be of greater importance for social scenarios (e.g., [AKB14; FM21]) or
experiences where the user and his body is the center of attention.

The Virtual Appearance of Others

In virtual environments, users can also encounter virtual humans as computer-
controlled virtual agents or embodied other, real users. Previous work showed
that a virtual agent’s appearance influenced co-presence [BSH+05]. Nelson et
al. [NMJ+20] found that virtual agents’ appearance influences users’ movement
speed and their interpersonal distance to the agents. In social VR applications,
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another user’s avatar’s appearance influences whether and how others ap-
proach this user [FM21]. A realistic appearance of a virtual agent impacts its
perceived appeal and friendliness [MBB12]. Other previous work looked at
the impact of realistic-looking interaction partners on perceived trustworthi-
ness [MBB12; JKK17; SLD+19]. Seymour et al. [SLD+19] found a preference for
realistic virtual agents, which also increased the users’ place illusion [ZMM19].
Zibrek et al. [ZKM18] investigated the impact of virtual agents’ realism in
virtual reality games and found complex interactions between the virtual
agents’ personality and appearance.

A recurring debate about the realism of virtual characters is the uncanny
valley effect. Initially described by Mori et al. [MMK12] for human-robot
interactions in the 1970s and later transferred to virtual characters, the un-
canny valley effect refers to the phenomenon that close-to-real looking artificial
humans sometimes strike as eerie. The original work sets human-likeness
in correlation with familiarity. It proposes a drop in familiarity when the
artificial character looks close to but not entirely like a human. Research
on this effect is not at all consensus. Some argue that the uncanny valley
effect might only occur under specific circumstances that are yet to be de-
fined [KFM+15]. Some explain that the phenomenon is a wall rather than a
valley since people adapt to the technical advances and therefore, the uncanny
valley is untraversable [TG09]. Others argue that the key to overcoming the
uncanny valley with realistic-looking characters lies in their behavior [SRK17;
SLD+19]. And finally, some question the existence of the uncanny valley effect
as a whole [WLR15].

In summary, research on the realism of virtual humans has been controver-
sial for decades and is still ongoing. However, it is especially relevant today
as methods for creating virtual humans are improving drastically along with
the overall evolution of technology, creating new and reviving old research
questions [SGH+20].

4.1.2 Creation Methods for Virtual Humans

For the 3D reconstruction of a person, various techniques exist that differ in
terms of the degree of achievable realism, the technical complexities, and the
overall reconstruction costs involved. As discussed in Section 3.1, hardware
requirements for current virtual human reconstruction methods range from
immensely involved light stage systems [GLD+19] to single-shot multi-camera
photogrammetry rigs [FRS17; AWL+17] to a single RGB(-D) camera [AMX+18a;
AMX+18b; AMB+19; LMR+15]. In Section 3.3, we compared the reconstruction
fidelity between our low-cost method and the high-cost method of Achenbach
et al. [AWL+17] by computing the geometric difference between the resulting
avatars and the reprojection error resulting from rendering the textured avatars
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back onto their respective input images. The evaluation shows that there still is
a difference in both measures but that their low-cost approach can almost reach
the same fidelity as the high-cost approach. However, this evaluation only
covers purely objective measures. We did not address how the still existing
differences affect users’ perception of the virtual humans.

Based on the presented literature, we specify our research goal: We build
on the purely objective comparison of Section 3.3 and focus on the user
perception of the resulting virtual humans. In a user study, we compare a high-
cost method to create virtual humans to a low-cost method. The methods differ
in their hardware requirements (high-cost vs. low-cost), the input material
(multiple images vs. two smartphone videos), and software parameters for
tailoring the approach to the specific input material. We investigate whether
the differences in the quality of low- and high-cost reconstructions of virtual
humans produce differences in the users’ perception. The evaluation includes
one’s reconstructed self-avatars and virtual others, here, computer-controlled
reconstructions of other real persons. We compare the users’ perception
in terms of the similarity of the virtual humans to the original, the sense
of embodiment (only for the self-avatars), their uncanniness, and the overall
preference for one of the approaches. We also investigate if differences between
the high- and low-cost virtual humans are more noticeable for one’s self-
avatar than for virtual others. Finally, we compare the low- and high-cost
virtual humans using objective measures, i.e., the reprojection error and the
geometrical error.

4.2 S T U D Y

To investigate our research questions, we designed a user study that focuses
on the perception of the low-cost and high-cost virtual humans. Regarding
RQ1, we compared the subjectively perceived quality of two 3D reconstruction
methods for realistic virtual humans. In particular, we compared one method
using a high-cost photogrammetry rig containing 94 DSLR cameras with a
low-cost method processing two smartphone videos. For this purpose, we
scanned participants twice and created one personalized self-avatar with each
generation method. In a virtual environment, participants embodied both
self-avatars and observed themselves in virtual mirrors. They also encountered
and evaluated other virtual humans originating from both scan processes,
observing them on virtual monitors. The independent variable for RQ1 was
the reconstruction method (low-cost vs. high-cost) that we investigated for
self-avatars and virtual others separately.

To answer RQ2, participants could adjust the distance between themselves
and the mirrors or monitors. The task was to set the distance at which they
could no longer tell that one version was better than the other. We assumed
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that there would be a difference in the distance that participants set for the
mirrors (self) compared to the distance they set for the monitors (other) if the
quality discrepancy between methods was more noticeable for one’s own or for
another virtual body (RQ2). Therefore, the independent variable for RQ2 was
the virtual human (self vs. other). The study followed a repeated-measures
design.

4.2.1 Virtual Humans

High-Cost and Low-Cost Method

Figure 4.1 displays both the high-cost and the low-cost scan processes, in-
cluding example results for a sample participant. A photogrammetry rig that
contains 94 DSLR cameras generates the input for the high-cost avatars. In
contrast to Achenbach et al. [AWL+17], we did not use a separate face scan-
ner. Instead, 10 of the 94 cameras of the body scanner are zoomed in on the
scan subject’s face, therefore, capturing more detail in this area. The scanner
includes four studio lights with diffuser balls (see Figure 4.1, first row, first
picture). For generating the avatars from these images, we follow the method
of Achenbach et al. [AWL+17], who combine photogrammetric reconstruction
with a template fitting approach. The set of images produced by the camera
rig is processed with the commercial software Agisoft Metashape [Agi24],
yielding dense point clouds of the scanned subjects. The subsequent template
fitting process (detailed in Section 2.2.2) deforms a statistical animatable hu-
man template model to match the point cloud data. The employed template
model provided by Autodesk Character Generator [Aut24] is fully rigged and
also equipped with a set of facial blendshapes, thus making the resulting
avatars ready for full-body and facial animation. The pipeline for generating
the high-cost avatars operated on a PC containing an Intel Core i7-7700k,
a GeForce GTX 1080 Ti, and 4 × 16 GB DDR4 RAM. The generation took
approximately ten minutes per avatar.

To provide the video input for the low-cost avatar method, we used a
Google Pixel 5 smartphone. We used the camera application OpenCamera
because it allows for a non-automatic white balance and exposure. The
smartphone captured the videos with 4 k resolution (3840× 2160) and 30 fps.
We filmed in a room with covered windows, using the installed ceiling lights
and eight additional area lights placed on the floor and on tripods around the
participant (see Figure 4.1, second row, first picture). The additional lighting is
not necessarily required for generating the low-cost avatars. However, it was
added to brighten up the resulting low-cost avatars decreasing the brightness
difference between the low-cost and the high-cost variant. After taking two
videos of each subject, one capturing the whole body and the other capturing
the head in a close-up fashion, the videos are processed with the method
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Figure 4.1: The high-cost (top) and the low-cost (bottom) scan process.

described in Chapter 3, which also uses photogrammetric reconstruction and
template fitting with the same template model. The pipeline for generating
the low-cost avatars operated on a PC containing an Intel Core i7-7820x,
a GeForce GTX 1080 Ti, and 6 × 16 GB DDR4 RAM. The generation took
approximately twenty minutes per avatar.

Self-Avatar Animation

The generated low- and high-cost self-avatars were both imported to our
Unity application. For the avatar animation, we oriented towards the system
architecture introduced by Wolf et al. [WDM+20] and adapted their implemen-
tation. During the experiment, the two imported avatars were simultaneously
animated in real-time according to the users’ movements by using a set of
HTC Vive Trackers in conjunction with the VR headset and the VR controllers
(see Section 4.2.2 for details about the VR setup). In order to animate the
avatars based on the tracking data, we used the calibrated tracking targets
of the head, left hand, right hand, pelvis, left foot, and right foot to drive
an inverse kinematics (IK) animation approach realized by the Unity plugin
FinalIK [Roo24] (version 2.0).

Virtual Others

For the virtual others, we scanned one male and one female person. Figure 4.2
displays both versions of the virtual other. Male participants observed and
evaluated the male other, while female participants evaluated the female other.
Both virtual others wore identical gray t-shirts and blue jeans. We recruited
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Figure 4.2: The female (left) and male (right) virtual others. The left virtual monitor
of each pair displays the high-cost version; the right virtual monitor displays the
low-cost version.

two persons who do not represent extremes in terms of their appearance. The
male other was 1.72 m tall, while the female other was 1.66 m tall. Both persons
stated that they do not know any of the students belonging to the study’s
participant pool. The virtual others were animated using a pre-recorded idle
animation. The animation showed a basic idle standing animation including
small movements, e.g., slightly moving from one foot to the other. We also
added random eye movements and blinking using an existing asset of the
Unity Asset Store [Uni24] to increase the virtual others’ realism.

4.2.2 Virtual Reality System

We implemented our study system using the game engine Unity [Uni19]
(version 2019.4.15f1 LTS) running on Windows 10. The VR hardware explained
in the following was integrated with SteamVR [Val24a] (version 1.16.10) and
its corresponding Unity plugin (version 2.6.1). As high-immersive VR display
system, we used a Valve Index HMD [Val24b], providing the user a resolution
of 1440×1600 pixels per eye with a total field of view of 120◦ running on a
refresh rate of 90 Hz. For capturing the user’s motions, participants held the
two Valve Index controllers in their hands, wore one HTC Vive Tracker 2.0 on
a belt around the hips, and one fixed on each shoe’s upper side with a Velcro
strap. Three SteamVR 2.0 base stations braced the spacious tracking area. The
system ran on a high-end, VR-capable PC composed of an Intel Core i7-9700K,
an Nvidia RTX2080 Super, and 16 GB RAM.

We determined the motion-to-photon latency of our system by frame-
counting [HLP+00]. For this purpose, the graphics card’s video signal output
was split into two signals using the Aten VanCryst VS192 display port splitter.
One signal led to the HMD and the other to the low-latency gaming monitor
ASUS ROG SWIFT PG43UQ. A high-speed camera of an iPhone 8 recorded
the user’s motions and the corresponding reactions on the monitor screen at
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240 fps. Counting the recorded frames between the user’s motions and the
corresponding reactions on the screen, we determined the latency for the HMD
and limb movements separately. For HMD and limb movements, we repeated
the measurements ten times each. The motion-to-photon latency for the HMD
averaged 14.56 ms (SD = 2.94) and therefore matched the refresh rate of the
HMD closely. The motion-to-photon latency for the limb movements averaged
42.85 ms (SD = 5.20) and was considered low enough for real-time avatar
animation [WSH+16].

Virtual Environment and Task

The virtual environment consisted of one large virtual room. In the room,
two virtual mirrors were mounted on a track system to allow for a direct
comparison of the self-avatars and to induce the feeling of embodiment by
visuomotor coherence [SSS+10; LW22a]. We told participants that they would
see two different mirrors before they saw their self-avatars. The track system
was supposed to increase coherence with the users’ expectations, making the
scenario more plausible [LW22a]. For the evaluation of the virtual other, the
mirrors were exchanged with similar-looking, portal-like, virtual monitors (see
Figure 4.2). A stencil buffer masks the area inside the monitor to make the
virtual others visible only in this area. This setup preserved a stereoscopic
view and ensured a spatial distance to the participants. To help the feeling
that the virtual others are in a different place and that the monitors were
no mirrors, we added textures to the surrounding walls and floor that were
different from the main room. Participants received the audio information
that they would see two different broadcasts of another person on these two
monitors. This information served the purpose of making the scenario more
plausible and less intimidating than directly encountering two similar-looking
versions of a person in a virtual room that would not react in any way to the
user [Sla09; LW22a]. Study participants would encounter these virtual others
for the first time. To enable them to evaluate the virtual humans’ similarity
to the real person, they needed to see reference material first. We displayed
a photo of the real person for 10 s before the virtual other appeared on the
monitor(s) and asked participants to memorize it. For the self-avatar similarity
assessment, we did not show a photo of the person. Instead, we relied on
familiarity with the person’s own appearance. Mirrors and monitors turned
automatically according to the study phases. Figure 4.3 shows the virtual
environment throughout the phases of the experiment.

The first two phases of the experiment concentrated on the perception of
the virtual humans and the participants’ preferences. In Phase 1, participants
saw and evaluated the high-cost and the low-cost virtual humans one after
another. In Phase 2, they saw both at the same time next to each other. Then
they evaluated the left one first. After that, they again saw both at the same
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Figure 4.3: The three phases of the VR exposure and the VR questionnaire system.

time and consecutively evaluated the right one. The photo of the real other
person was displayed for 10 s before every virtual other observation phase.
For a controlled exposure, participants received audio instructions on where
to look and what movements to perform. Table 4.1 lists all instructions and
the observation duration. In Phase 2, before and after the instructions, the
participants got the information which virtual human they will have to rate (left
or right). During the self-avatar observation, the participant always embodied
the self-avatar to be rated after the observation. Analogously, participants
embodied the high-cost self-avatar when viewing the high-cost virtual other
and the low-cost self-avatar when viewing the low-cost version of the virtual
other.

In Phase 3, participants could adjust the distance between themselves and
the mirrors or monitors. The task was to increase the distance until they
could no longer tell which virtual human was better. Participants could move
the mirrors and monitors using the controllers’ touchpads. One controller
increased the distance; one decreased it. When moved back and forth, mirrors
and monitors automatically rotated on the track system to always face the user.
This ensured that the reflections and the virtual others were always visible to
the participants.

VR Questionnaire

Participants evaluated the virtual humans directly in VR. The right image in
Figure 4.3 shows the VR questionnaires from a third-person perspective. Fol-
lowing the guidelines of Alexandrovsky et al. [APB+20], our VR questionnaire
was world-anchored and participants used a controller to operate the question-
naire using a laser pointer. A virtual display presented the VR questionnaire
in the virtual environment. It was positioned on the wall left to the user. The
integration into the scene’s context was supposed to make it more diegetic
and thus more plausible [SPR+16]. The virtual display was approximately
1.2 m high and 2 m wide. The user stood approximately 1.5 m away from the
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No. Instructions Phase 1 - Self Duration

1 Look at your reflection in the mirror. Please remain stand-
ing on the marker. You may move your arms and legs
freely.

10 s

2 Look at your head in the mirror. 5 s
3 Swing your arms back and forth while looking at your

torso.
5 s

4 Let your arms hang relaxed and slowly shift your weight
from your left leg to your right leg and back again. Repeat
this a few times while looking at your lower body.

5 s

5 Stand relaxed. Wave your dominant hand at your reflec-
tion while observing yourself in the mirror.

5 s

No. Instructions Phase 1 - Other Duration

1 Look at the person. 5 s
2 Look at the head of the person. 5 s
3 Look at the torso of the person. 5 s
4 Look at the lower body of the person. 5 s
5 Now look at the whole person again. 5 s

Table 4.1: Instructions that participants received in Phase 1 while they had to inspect
the virtual human in the mirror or monitor. In Phase 2, when participants saw both
self-avatars or both virtual others at the same time, they received each instruction
twice; first for the left mirror, then for the right mirror, e.g., “Look at your head in the
left mirror." — 5 s duration — “Look at your head in the right mirror." — 5 s duration.

display. This size and distance allowed the participants to read the questions
comfortably without having to move the head. To keep the exposure time
with each self-avatar the same for every participant, their embodiment while
answering the questions only consisted of visible controllers.

4.2.3 Measurements

Before and after the experiment, participants answered questionnaires on
a computer in the experiment room. During the experimental phases, par-
ticipants answered VR questionnaires. We used German translations of all
questions and questionnaires.

Perception of the Virtual Humans

In Phase 1 and 2, participants rated their self-avatar regarding the perceived
similarity, their sense of embodiment [KGS12; RL20], and possible uncanny
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valley effects [HMP08; HM17]. The questions regarding the virtual other were
the same, only omitting the embodiment questions since they did not apply in
this condition.

Similarity: For the measurement of perceived similarity, we adapted the
item used by Waltemate et al. [WGR+18]. Participants rated their agreement to
the statement “The virtual body looked like me/the person on the image” on a scale
ranging from 1 (I do not agree at all) to 7 (I fully agree).

Embodiment: For measuring the sense of embodiment, we used the Virtual
Embodiment Questionnaire [RLL+17; RL20]. It consists of three subscales with
four items each: Body Ownership, Agency, and Change. Participants rate
their agreement to each of the twelve statements on a scale ranging from 1
(I do not agree at all) to 7 (I fully agree). High values indicate a high sense of
embodiment.

Uncanny Valley: Regarding the uncanny valley effect, we built three
items based on the original uncanny valley questionnaire’s subscales of Ho
et al. [HMP08] and Ho and MacDorman [HM17]. Participants rated their
agreement on the three statements: “The virtual body looked human.”, “The
virtual body looked eerie.”, “The virtual body looked beautiful.”. Participants rated
their agreement to all statements on a scale ranging from 1 (I do not agree at all)
to 7 (I fully agree).

Preference: At the end of Phase 2, we directly asked participants which
self-avatar/virtual other they preferred using the item: “Which virtual body
was better?” with the answer options left or right. We asked if they found the
left virtual body to be much worse, worse, neither worse nor better, better or much
better than the right virtual body, with a second item. Note that due to the
randomization left and right meant different versions for different participants.
This was re-coded in the statistical analysis later.

Qualitative Feedback: Between the scan and the experiment, we asked
participants how they perceived the two scan processes overall. After the
whole experiment, we asked them to write down reasons for their preference
regarding the version of the self-avatar and the virtual other.

Distance

In Phase 3, we asked participants to increase the distance between the virtual
bodies and themselves until they no longer can say if one of the virtual
humans is better than the other. We measured the distance in meters between
the HMD and the two mirrors (or monitors in the other-condition). For the
self-condition, when the participant moved the mirrors away, the reflection
logically also moved away. Therefore, we multiplied the measurement by
two to get the actual distance between the participant and the self-avatars.
For the other-condition, we added the distance between the virtual other and
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the monitor frame (0.5 m) to the distance the participant set. The maximum
possible distance between the participant and the monitors was 18 m.

Objective Measures

For comparing the high-cost and the low-cost scans on an objective level,
we calculate (i) the reprojection error and (ii) the modified Hausdorff dis-
tance [DJ94] between our two reconstruction methods, thereby following the
objective evaluation presented in Section 3.3. The reprojection error is com-
puted by projecting (i.e., rendering without lighting) the textured avatar onto
each of the cameras as estimated during the avatar generation process. We
then calculate the average root-mean-square error (RMSE) between the ren-
dered images and the actual input images in CIELAB color space, giving us
a way to measure the reconstruction methods’ faithfulness objectively. The
modified Hausdorff distance measures the difference in shape between the
two reconstruction methods on a purely geometric level.

Control Measures

Before and after the experiment, we used the simulator sickness question-
naire [KLB+93] to measure virtual reality sickness as described by Kim et
al. [KPC+18]. The questionnaire includes 16 symptoms of simulator sickness.
The participants rated how much they experienced each symptom on a scale
ranging from 0 (none) to 3 (severe). We added three items to check for distur-
bances in the perceived place and plausibility illusion [Sla09]. At the beginning
of each VR question phase, we asked participants how present they felt in
the virtual environment. For this, similar to Bouchard et al. [BSR+08] and
Waltemate et al. [WGR+18], we used one item, namely “How present do you feel
in the virtual environment right now?” with a scale ranging from 1 (not at all) to
7 (completely). At the end of each questionnaire phase, we added two items
focusing on the overall plausibility: “The environment made sense.” and “The
virtual body matched the virtual environment.”. These items served the purpose
of measuring the environment’s plausibility by checking for any unwanted
incoherence in the experience caused by the environment [SBW17; LW22a].
Participants rated their agreement on scales ranging from 1 (I do not agree at
all) to 7 (I fully agree).

Demographics and User Traits

Participants answered a demographic questionnaire including items for age,
gender, educational attainment, occupation, language familiarity, problems
with telling left from right, visual and hearing impairments, computer game
experience, and virtual reality experience. We also asked them if they have been
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scanned before. Before the experiment, we measured the participants’ height
and asked them which of their hands is their dominant one. Additionally, we
measured participants’ tendency to experience presence using the Immersive
Tendency Questionnaire [WS98]. Ethical review and approval was not required
for the study on human participants in accordance with the local legislation and
institutional requirements. The participants provided their written informed
consent to participate in this study.

4.2.4 Procedure

Figure 4.4 shows the experimental procedure. Each session took around
90 minutes, divided into 30 minute blocks of (i) scan preparation, perform-
ing the two scans, and reconstructing the respective avatars, (ii) answering
questionnaires before and after the experiment as well as putting on the VR
equipment, and (iii) the VR exposure itself (Phases 1–3). At the beginning
of Phase 0, participants received a written introduction and signed consent
forms for being scanned, participating in the study, and for COVID-19 re-
lated regulations. The video scan to create the low-cost avatars was made
first to optimize the schedule. After the two scans, the participant filled in
pre-questionnaires while the avatars were generated. Then, the experimenter

Phase 1 - One-by-one Phase 2 - Side-by-side Phase 3 - Distance

Phase 0 - Scan phase

Avatar
~10 min

HL

~20 min
Avatar

counterbalanced

H

30 s

 repeated for Self- or Other-avatar

LH

60 s
 repeated for 2nd avatar 

LH

Consent

Low-cost Body Low-cost Face High-cost

30 s

L

Equip

Pre

Post

Figure 4.4: The experiment procedure. Phase 0 includes the low- and high-cost scan
and avatar creation. Phases 1 to 3 describe the VR exposure. The embodiment in
phases 1 and 2 always matched the virtual human to be rated. In Phase 3, participants
were embodied with the avatar version they had rated last.
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helped the participant to put on the VR equipment and explained how to
operate the controllers. After an initial calibration of the avatar, the experiment
started. The participants received audio instructions that guided them through
the VR exposure phases. The low- and high-cost avatars’ rating order and
therefore their display in the left or right mirror, was counterbalanced. Each
participant went through Phases 1 to 3 twice. Once for the self-avatar, a second
time for the virtual other. Half of the participants started with the self-avatar,
the other half started with the virtual other. After repeating the phases, partic-
ipants left the virtual environment and answered the post-questionnaire on a
computer in the experiment room.

4.2.5 Participants

A total of N = 51 people participated in the study. We had to exclude six
participants from the analysis. Three were excluded because the quality of the
point cloud of the low-cost scan was insufficient. Another three participants
were excluded due to errors in the experimental procedure, e.g., wrong height
input when generating the avatars. The mean age of the resulting sample was
21.78 years (SD = 1.80), while 75.6 % of the participants stated to be female,
and 24.4 % stated to be male. They were all students that received credit points
necessary for completing their bachelor’s degree. Ten participants had been
scanned with the high-cost method before. The sample’s VR experience was
low, with 84.4 % stating that they have 0 – 5 h of VR experience. Only four
participants had no prior VR experience at all.

4.3 R E S U LT S

The analysis was performed using IBM SPSS Statistics 26. First, we report
on the main analysis of the presented user study, including objective mea-
surements. Then we proceed with the results of our control measures. We
performed paired t-tests for all within-subjects comparisons and independent
t-tests for between-subjects comparisons. Effect sizes are indicated by Cohen’s
dz [Coh77].

4.3.1 Perception of the Virtual Humans (RQ1)

Table 4.2 shows the dependent variables’ descriptive data: similarity, uncan-
niness, and sense of embodiment. Table 4.3 shows the effect sizes of the
comparisons.

Similarity: Figure 4.5 shows the results for the perceived similarity. We
found no significant difference in the perceived similarity to oneself between
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Phase 1 Phase 2

high-cost low-cost high-cost low-cost

Measurement M(SD) M(SD) t p M(SD) M(SD) t p

Similarity self 4.82(1.45) 4.47(1.52) 1.79 .08 4.64(1.45) 4.42(1.52) 0.87 .39

other 5.22(1.17) 5.51(1.08) -1.44 .16 5.04(1.30) 5.22(0.97) -0.85 .40

Human-likeness self 4.42(1.52) 4.16(1.49) 1.45 .15 4.16(1.41) 3.98(1.34) 1.02 .32

other 4.93(1.23) 4.91(1.06) 0.11 .92 4.73(1.27) 5.07(0.94) -1.56 .13

Beauty self 3.69(1.28) 3.42(1.47) 1.18 .24 3.69(1.51) 3.29(1.41) 1.46 .15

other 4.38(1.28) 4.67(1.23) -1.48 .15 4.40(1.39) 4.73(1.01) -1.39 .17

Eeriness self 3.98(1.55) 4.36(1.55) -1.57 .12 4.18(1.81) 4.71(1.63) -1.76 .09

other 3.29(1.63) 3.16(1.35) 0.63 .53 3.47(1.78) 3.29(1.36) 0.57 .57

VEQ-Owners. self 4.09(1.50) 4.06(1.43) – – 4.03(1.45) 4.12(1.45) – –

VEQ-Agency self 5.64(1.03) 5.67(0.97) -0.24 .82 5.43(1.23) 5.42(1.01) 0.08 .94

VEQ-Change self 3.38(1.53) 3.55(1.47) -0.82 .42 3.03(1.55) 3.50(1.60) -2.42 *

Table 4.2: Means, standard deviations, and test statistics for the paired samples t-tests
for the perception of the virtual humans. For all t-tests: df = 44. ∗ < .05.

Phase 1 Phase 2 Phase 1 Phase 2

Measurement dz dz dz dz

Similarity self 0.27 0.13 other -0.22 -0.13

Human-likeness self 0.22 0.15 other 0.02 -0.23

Beauty self 0.18 0.22 other -0.22 -0.20

Eeriness self -0.24 -0.26 other 0.09 0.09

VEQ-Agency self -0.04 -0.07

VEQ-Change self -0.12 -0.36

Table 4.3: Effect sizes indicated by Cohen’s dz [Coh77] for the perception measures.
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Figure 4.5: Means and standard errors for the measurements of the perceived similar-
ity, human-likeness, beauty, and eeriness of the high- and low-cost self-avatars and
virtual others in phases 1 and 2.

the low-cost and the high-cost self-avatar, neither when compared one after
the other in Phase 1 nor when compared side-by-side in Phase 2. We also
found no significant difference in the perceived similarity to the other person’s
picture between the low-cost and the high-cost virtual other neither in Phase 1
nor in Phase 2.

Uncanny Valley: Figure 4.5 shows the results for the items human-like,
beautiful, and eerie associated with the uncanny valley effect. For the self-
avatars, we found no significant difference regarding the perceived human-
likeness, beauty, and eeriness of the avatars when evaluated one after the other
(Phase 1). We also found no significant difference regarding the perceived
human-likeness, beauty, and eeriness of the avatars when evaluated side-by-
side (Phase 2). For the virtual others, we also found no significant differences
in both phases regarding the perceived human-likeness, beauty, and eeriness.

Sense of Embodiment: We faced problems during the data logging for
one of the four items of the subscale Body Ownership. Therefore, we exclude
this subscale from the calculation of the comparisons and only report the
descriptive statistic derived from the remaining three items. Table 4.2 shows
the mean scores calculated with three instead of four items which are almost
identical between conditions. Agency did not differ between the high-cost and
the low-cost self-avatar in both phases. The perceived change did not differ
in Phase 1. It did, however, differ in Phase 2 when participants saw the self-
avatars side-by-side. The perceived change of the own body was significantly
higher for the low-cost self-avatar than for the high-cost self-avatar. The left
diagram in Figure 4.6 shows these results.

Preference: The third diagram in Figure 4.6 shows the participants’ pref-
erences for the high- and low-cost self-avatars and virtual others. When
asked directly, n = 27 participants preferred the high-cost self-avatar and
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Figure 4.6: From left to right: Means and standard errors for the VEQ subscales
Agency and Change for phases 1 and 2. Preference for the low-cost or high-cost
self-avatars and virtual others in the number of participants who chose the respective
version. Distances in meters at which participants could no longer say that one of the
versions was better. ∗ < .05

n = 18 participants preferred the low-cost self-avatar. On a scale ranging
from -2 (much worse) to 2 (much better), the participants, on average, found the
low-cost self-avatar to be only slightly worse than the high-cost self-avatar
(M = −0.42, SD = 1.29). Regarding the virtual others, n = 20 preferred the
high-cost version and n = 25 preferred the low-cost version. On average, they
rated the low-cost virtual other to be slightly better than the high-cost virtual
other (M = 0.24, SD = 1.15).

Qualitative Feedback: Participants described the high-cost scan process as
interesting, easy, professional, and quick. They stated the number of cameras
to be slightly intimidating, futuristic, and strange because they felt observed.
As for the low-cost scan, some participants found it strange (especially that
a stranger had to film them rather closely), slightly more complicated, more
time-consuming, and more exhausting because they had to stand still for a
longer time. At the same time, many others described this scan process as
easy, interesting, and pleasant. Feedback regarding their preference focused
on some main aspects: (1) The face played a vital role in their judgment. Many
stated that the bodies of both virtual humans were similarly good in quality.
However, artifacts in the face of the one virtual human or a perceived higher
similarity made them choose the other version. (2) Participants could rather
precisely name artifacts, e.g., messy textures under the arms and inaccuracies
in the geometry that deviated from their real body. However, often, they just
described an overall feeling that one virtual human was more uncanny or
less human-like or more similar to the original. The arguments for the two
versions overlapped a lot. However, many of the participants who chose the
high-cost avatar as their preference named artifacts on the low-cost avatar as
their reason. (3) The lighting and brightness of the virtual human was an
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Figure 4.7: Reprojection errors for the high- and low-cost self-avatars of all 45 par-
ticipants. The reprojection errors were calculated by averaging the root-mean-square
error (RMSE) over all input images.

important factor. Some stated that the low-cost version looked more realistic
because the lighting looked more natural and that it had more details. Some
felt the opposite way, that the high-cost version was illuminated better, was
more detailed, and looked more realistic.

4.3.2 Distance (RQ2)

The right diagram in Figure 4.6 shows the distances that participants set in
Phase 3. For the self-avatars, the average distance at which participants could
no longer tell which avatar was better was 12.26 m (SD = 6.36). For the virtual
other, this average distance was 10.00 m (SD = 4.34). The distance for the
self-avatars was significantly greater than for the virtual other (t(44) = 2.61,
p = 0.01, dz = 0.39).

4.3.3 Objective Measures

Figure 4.7 shows the reprojection error for all participants for both the high-cost
and the low-cost self-avatar. On average, the high-cost method’s reprojection
error was 23.40 (SD = 4.14), while the reprojection error of the low-cost method
was 28.30 (SD = 3.84). A paired samples t-test showed, that the difference was
significant (t(44) = −11.52, p < .001, dz = −1.72). The modified Hausdorff
distance [DJ94] between the two reconstructions was, on average, 7.67 mm
(SD = 2.43). The reprojection errors and the modified Hausdorff distance for
the reconstructed avatars in this user study are in the same range as in the
objective evaluation conducted in Section 3.3.
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Phase 1 Phase 2

high-cost low-cost high-cost low-cost

Measurement M(SD) M(SD) t p M(SD) M(SD) t p

Presence self 5.62(1.17) 5.38(1.35) 1.57 .13 5.44(1.20) 5.47(1.36) -0.15 .88

other 5.09(1.35) 5.13(1.25) -0.39 .70 5.22(1.40) 5.36(1.21) -1.29 .20

VE made sense self 5.38(1.34) 5.31(1.38) 0.52 .61 5.50(1.20) 5.38(1.27) 0.93 .36

other 5.31(1.38) 5.36(1.32) -0.39 .70 5.33(1.41) 5.29(1.27) 0.36 .72

VE matched self 5.44(1.14) 5.20(1.16) 1.53 .13 5.51(1.20) 5.16(1.42) 1.91 .06

other 5.51(1.08) 5.51(0.90) 0 1.00 5.42(1.17) 5.42(1.12) 0 1.00

Table 4.4: Means, standard deviations, and test statistics for the paired samples t-tests
for the control measures presence, plausibility of the virtual environment (VE), and
match of the virtual body to the virtual environment. For all t-tests: df = 44.

4.3.4 Control Measurements

The experienced VR sickness before (M = 7.54, SD = 7.98) and after the exper-
iment (M = 16.37, SD = 12.10) was low. The observed increase in experienced
VR sickness was significant (t(44) = −5.4, p < .001, dz = −0.81). However,
we find this to be uncritical because the values are both low, the application’s
measured latency was low, the experimenters observed no signs of distress,
and the participants did not complain of severe symptoms.

Table 4.4 shows the descriptive data of the control measurements that we
took in phases 1 and 2. The subjective experience of presence did not differ
between the moment when participants rated the low-cost avatar and when
they rated the high-cost avatar, neither when evaluating the self-avatar nor
when evaluating the virtual other in both phases. We also found no significant
differences regarding the environment’s perceived plausibility and the match
between the virtual humans and the environment.

4.4 D I S C U S S I O N

This chapter explores the potential of affordable methods for the reconstruction
of 3D realistic virtual humans for immersive virtual environments. In a user
study, we compared the results of our low-cost method (Chapter 3) to the
results of a high-cost method [AWL+17] used as self-avatars and virtual others,
while investigating the following two research questions. RQ1: Can low-cost
approaches for generating realistic virtual humans keep up with high-cost
solutions regarding the perception of the resulting virtual humans by users
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in VR? RQ2: Are the quality differences more noticeable for the own virtual
body than the virtual body of someone else?

For investigating RQ1, participants evaluated self-avatars and virtual others
originating from both reconstruction methods. Users perceived the low-cost
virtual humans as similarly human-like, beautiful, and eerie as the high-cost
versions for the self-avatars and the virtual others. The perceived similarity
between the virtual human and the real counterpart did also not differ between
the reconstruction methods. We found no significant differences in perceived
similarity, neither when evaluating the self-similarity between participants and
the reconstructed virtual humans, nor when evaluating the similarity between
the virtual others and pictures of the real persons. The participants’ qualitative
feedback suggests that the self-avatars’ perceived eeriness – independent of the
reconstruction method – depended heavily on the virtual humans’ face region.
A possible explanation is the lack of facial animations. We did not track the
users’ facial expressions, and therefore, the self-avatars’ faces remained static.
This rigidity was inconsistent with the otherwise realistic-looking and -moving
virtual human. Following the mismatch hypothesis for the uncanny valley
effect, which states that inconsistencies in a virtual human’s human-like and
artificial features may increase negative affinity [KFM+15], this potentially
increased the perceived eeriness. The virtual others included basic facial
animations and the descriptive data suggests that participants perceived them
as less eerie. This is also in line with previous research on the interplay between
appearance and behavioral realism, especially regarding the importance of
eye movements [GSV+03]. In future work, we plan to track the users’ eyes
for two reasons. Firstly, this would improve the behavioral realism of the self-
avatars. Additional sensors like the Vive face tracker, which entered the market
shortly after we conducted our study, would be supplementary improvement
options. Secondly, the eye-tracking data could reveal which parts of the virtual
humans mostly draw the users’ visual attention [DGW+22] and, consequently,
impact the evaluation the most. However, our study did not focus on the
general perception but on the differences in the perception of the high-cost
and low-cost virtual humans.

For the two different self-avatars, we additionally measured the users’ sense
of embodiment. Participants accepted both self-avatar versions as their virtual
body (body ownership) and felt that they were the cause of the self-avatar’s
actions (agency). In the first phase of the evaluation, when the participants
saw the self-avatars consecutively, we also found no significant difference in
the embodiment questionnaire’s change subscale. However, in the second
phase, when participants saw both avatar variations next to each other, the
change subscale was significantly higher for the low-cost self-avatars than for
the high-cost self-avatars. The subscale change measures the perceived change
in the user’s body schema [RL20]. According to the questionnaire’s authors,
the perceived change could be a predecessor of the Proteus effect. When
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embodying an avatar that does not look like the user, the perceived change
of the users’ body would increase with an increased feeling of embodiment.
However, a personalized, realistic-looking self-avatar should not create a
massive change in the own body schema since it looks (and ideally behaves)
like the real body of the user. There are two possible explanations for the
increase in perceived change in the second phase: (1) The low-cost self-avatars
have more visible inaccuracies than the high-cost self-avatars, e.g., messy
textures under the arms. These artifacts on the otherwise very realistic and
faithfully reconstructed avatars represent deviations from the users’ body,
which might cause the increased feeling of change of the own body. (2) These
deviations may have also surprised the users and drawn their attention to them.
The incoherence with the users’ expectations could have created an increased
interest and focus on the discrepancies. Latoschik et al. [LKS+19] observed
a similar effect when participants interacted with a mixed crowd of virtual
characters that drew attention because of their diversity and unexpectedness.
However, we did not find significant differences in the feeling of presence,
which is usually also partly dependent on the users’ attention [SBW17]. The
increase in the perceived change only occurred in the second phase, when
participants saw the low-cost and high-cost self-avatars next to each other. This
direct comparison, and the fact that they saw the self-avatars for the second
time at this point, may have further increased the focus on the artifacts. It is
possible that the increase in perceived change of the own body only occurs
when participants spend a longer time with the virtual body and when they
look for discrepancies.

Interestingly, the perception did not differ significantly on most of our
measures, even though we found a significant difference in our objective
quality measures. The medium may be one possible explanation for this.
Despite ongoing technological advances in terms of display quality, today’s
common consumer HMDs are still limited. We used an HMD with standard
resolution (1440×1600) and a wide field of view (120◦) that we considered at
the upper end of the SteamVR compatible hardware. It would be interesting
to see if quality differences between the avatar versions become more apparent
using better HMDs, like the HTC Vive Pro 2, that was released after we
conducted our study. However, as the user feedback shows, participants were
able to spot artifacts quite precisely. Nevertheless, the perceived differences
did not manifest themselves in the subjective measurements. This is even more
surprising since participants were instructed to really focus on the virtual
human. It could mean that other factors, e.g., the movements of the virtual
humans, had a stronger influence than the visible artifacts. As a consequence
we might want to assume the low-cost smartphone-based version to be an
accurate technological match to the available state-of-the-art of VR display
devices.
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To find out which version was overall preferred, we asked the participants
to decide which version of the self-avatars and which version of the virtual
others they liked better. Here, the tendency was different between the self-
avatars and the virtual others. 60 % of participants preferred the high-cost
self-avatars over the low-cost ones. Regarding the virtual others, the result
was the exact opposite. Around 56 % of participants preferred the low-cost
virtual others over the high-cost ones. This is interesting and supports the
overall findings for RQ1: that the low-cost and high-cost virtual humans are
very similar regarding the users’ perception.

To sum up our findings regarding RQ1, we conclude that the low-cost
method used in our comparison can indeed keep up with the high-cost method
regarding the users’ overall perception. The two versions of virtual humans
were found to be comparable in terms of their perceived similarity to the
original, human-likeness, beauty, and uncanniness. The relatively small effect
sizes of the non-significant differences for the self-avatars and the virtual others
further support this conclusion.

In our second research question, RQ2, we focus on the severity of the
quality difference for the own body in comparison to the body of a virtual
other. Users increased (i) the distance between themselves and their self-
avatars and (ii) the distance between themselves and the virtual others until
they could no longer tell that one of the virtual humans is better than the
other. The distance at which the difference between the low-cost and the
high-cost version was no longer noteworthy differed between the self-avatars
and the virtual others. For the self-avatars, this point was roughly two meters
further away than for the virtual others. This difference implies that smaller
discrepancies between the real body and the reconstructed virtual body seem
to be more noticeable for one’s own body than for another person’s body.
This is explainable by the familiarity with one’s own body, which is usually
higher than for someone else’s body, in particular if the person is a stranger
to you. Our results regarding the participants’ preferences also support this
assumption. Here, more than half of the participants preferred the low-cost
version for the virtual others. However, to further strengthen this finding
by correctly representing the interpersonal quality variance of the respective
reconstruction methods, a study that evaluates more than two pairs of virtual
others would be necessary.

To summarize the results regarding RQ2, we conclude that the quality
difference between the low- and high-cost method plays a more important role
for one’s own virtual body than for virtual others. In future work, we plan to
strengthen this finding by evaluating a more diverse group of virtual others.

The objectively measured quality differences for our sample are similar
to those reported in Section 3.3. The reprojection error was significantly
higher for the low-cost self-avatars compared to the high-cost self-avatars.
However, the severity of the visible artifacts varied a lot within the sample. For
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some participants, the reprojection error was even lower for the low-cost self-
avatars (subject 26 and 32, see Figure 4.7). We investigated this within-method
variance further by scanning the same persons multiple times with both
methods. For the resulting virtual humans, we then measured the geometrical
variance produced by both methods. This evaluation did, however, not reveal
a correlation between the visible artifacts and the geometrical variance.

Although both methods are photogrammetric approaches, they differ in
many ways. The low-cost method, for example, uses a stricter regulariza-
tion to the base model in order to handle uncertainties in the input material.
Therefore, the resulting virtual humans’ geometry is not as detailed as in the
high-cost method. For example, the folds in the clothes are more accurately
reconstructed in the geometry of the high-cost version than in the geometry of
the low-cost version. The lack of small details in the geometry of the low-cost
version is compensated by the texture’s great detail instead. Additionally,
the low-cost texture contains more baked-in lighting, which gives the impres-
sion of detailed geometry even if the underlying geometry is flat, e.g., as in
Figure 4.2, where the folds of the clothing are more visible for the low-cost
virtual human. Generally, the lighting in the low-cost method is less controlled,
since the experimenter walks around the participant. The controlled lighting
setup of the high-cost method leads to a more uniform lighting and weaker
shadows, allowing for a more faithful lighting in the virtual scene. However,
the qualitative feedback shows that the perception of this difference diverges.
While some perceived the baked-in lighting as more detailed and more natural,
others felt that the more even lighting of the high-cost virtual humans looked
more realistic and overall better.

Photogrammetric approaches rely heavily on good quality input material.
With the described high-cost setting, it is easier to reach a stable quality of the
input photos since many factors are well controlled. Camera positions and
lighting conditions stay the same, and experimenters have almost no influence
on the outcome since they only trigger the cameras. The low-cost method
includes more variable factors that can easily lead to a quality loss in the input
video material. For example, the camera may lose focus from time to time,
the filming person may make mistakes, the environmental conditions are less
controlled, and the subjects have to stand still for a longer period. However, in
most cases, the solution to these downsides is straightforward: When the input
material is not good enough, repeating the scan process using different camera
parameters or different environments, e.g., different lighting conditions or
backgrounds, can improve the result. Changing parameters in the complex
camera rig proves to be more cumbersome and requires recalibration of the
whole system. Therefore, the low-cost variant is not only more affordable but
also more viable for a broader range of applications in research and industry.
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4.5 S U M M A RY A N D L I M I TAT I O N S

We compared a high-cost and a low-cost method for 3D reconstruction of
virtual humans that differ heavily in their hardware requirements. Both
methods use the same photogrammetric reconstruction and template fitting
approach with adaptations to the method-specific input material. In a user
study, we scanned participants by both methods. Afterwards, they embodied
the resulting self-avatars and also encountered virtual others (created with
the same methods) in an immersive virtual environment. We found that even
though the reconstructions’ quality differed on an objective level, the methods
did not differ significantly in most of our measurements regarding the users’
perception of the virtual humans. Our results further suggest that the quality
difference is of greater importance when it comes to one’s own virtual body
than to a virtual other’s body. Based on our findings, we argue that low-cost
reconstruction approaches like the method presented in Chapter 3 provide
a suitable alternative to high-cost methods, specifically given the current
state-of-the-art of available consumer-grade VR displays.

The presented user study has the following limitations: (1) Our sample
was predominantly female. Shafer et al. [SCK17] found females to be more
prone to VR sickness symptoms, which might partly explain the increase in
VR sickness after the experiment. (2) Additionally, the perception of the male
and female virtual other differed regarding the perceived uncanniness, which
might have resulted from the comparably low number of male participants.
For better generalizability of our results, it would be necessary to extend the
study by a more balanced sample and more than one female and male pair
of virtual others. (3) Our study design is suitable to compare the perception
of different versions of virtual humans against each other. However, despite
the measurement of the perceived similarity with the real person, we did
not include an extensive investigation of the perceived faithfulness of the
reconstruction. This was a deliberate decision since it is challenging to find
a suitable stimulus for a comparison with reality, e.g., real video material,
without changing the medium and therefore impacting the immersion, which
in turn can influence the evaluation of a virtual human [WGR+18].

A promising direction for future work is the investigation of causal rela-
tions between each method’s parameters, their impact on the quality of the
reconstruction, and their effect on the users’ perception. Our study design
can be a helpful basis for conducting these follow-up studies and for guiding
the development of similar studies. Ultimately, this allows us to retrieve a
set of guidelines for creating and using realistic virtual humans in virtual
environments.
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Having introduced and compared two reconstruction methods for virtual
humans in the previous chapters, we will now focus on a crucial feature for
employing virtual humans in the context of virtual reality therapy of body
image disorders: a model for modifying the body weight of the resulting
virtual humans in real-time. In this chapter, we will combine such a body
weight modification model with full-body tracking and virtual mirror exposure,
thereby following the mirror exposure employed in traditional interventions.
This setup allows to immersively expose users to a virtual environment where
they can (i) observe a generic or personalized virtual human at different levels
of weight or body mass index (BMI), and (ii) directly manipulate the body
weight of their personalized avatar to either match their perception of their
current body weight or to visualize potential future body weights. This in
turn allows researchers to gain insights into possibly occurring body image
disturbances. As part of the ViTraS project [DWW+19], we investigate the
potential of such a setup in the context of virtual reality therapy of obesity.

Obesity is a complex chronic disease characterized by severe overweight
and an above-average percentage of body fat [WHO19]. Its prevalence has
more than doubled within recent decades and is expected to rise [VM20;
WHO21]. Besides the physical burdens (e.g., an increased risk of several
secondary diseases [SBS21]), affected individuals deal with an external or
internalized stigmatization that can lead to body image disturbances [MC18;
Ros01; TT98]. Body image disturbances are composed of a misperception of
body dimensions (body image distortion) and the inability to like, accept, or
value one’s own body (body image dissatisfaction) and are also associated with
a reduced body awareness [TAB+19b; TGK+21]. Various interventions (e.g.,
cognitive-behavioral therapy supported by mirror exposition or fitness training)
have been designed to target persisting disturbances but often only achieve
small improvements in the body image [ASW+15]. In recent years, novel
methods which employ virtual reality systems for complementing the therapy
of body image disturbances have successfully been explored in research with
promising results [FGR13; WRG16; RGD+19].

VR-based approaches for supporting body image interventions often use 3D
models of human beings [HHM+20; TGK+21], called virtual humans or avatars.
VR in general, and the confrontation with embodied avatars in particular,
has great potential to influence human perception and behavior [WDH21;
RBL+20; YB07]. In the context of body image, avatars have been utilized to
expose users of a VR system to generic virtual bodies or body parts varying in
size or shape to investigate the principles of body weight perception [Tha19;
WDM+20; WMD+21; WFD+22] or to influence the perception or attitude
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towards the user’s own body [TGK+21]. In the field of computer graphics,
recent developments have made progress in all the necessary components of
a VR-based body image therapy setup. As detailed in the previous chapters
of this thesis, realistic avatars that match a person’s real-life appearance can
be generated within a short duration and at a low cost. Similarly, there have
been advancements in the field of realistic modulation of body dimensions,
be it in pictures and videos [ZFL+10; ZJH+18; XTW+20; TSY+21], or in virtual
reality [PSR+14; HLZ+20; MMK+21]. However, to the best of our knowledge,
no work has yet been presented where users embody their personalized avatar
in VR while also having the ability to actively manipulate that avatar’s body
shape in real-time.

This chapter introduces our statistical model for body weight modification,
which is trained on the European subset of the CAESAR database [RBD+02], a
collection of 3D scans which are annotated with anthropometric measurements.
By correlating the anthropometric measurements with a PCA-based subspace
of human body shapes, the resulting model can be evaluated in real-time,
giving users the capability to actively modify the body weight of generic
virtual humans or personalized avatars. The model is integrated into a VR
prototype that allows users to embody a realistic, personalized avatar within a
virtual environment, thereby facilitating, e.g., virtual mirror exposure. This
makes it possible to further investigate the potential of VR-based interventions
in the context of body image therapy.

Individual Contribution My main contribution is the development of the sta-
tistical model of body weight modification and its integration into the VR system. I
additionally assisted in integrating the virtual human reconstruction framework at
the lab of our colleagues at University of Würzburg. Nina Döllinger and Erik Wolf
conceptualized large parts of the design of the virtual reality prototype. They addition-
ally performed the user study which is detailed in the corresponding publication of
this chapter. Erik Wolf and David Mal developed the Unity application including the
virtual environment and avatar animation system.

Corresponding Publication This chapter is based on the following publication:

Nina Döllinger, Erik Wolf, David Mal, Stephan Wenninger, Mario Botsch,
Marc Erich Latoschik, and Carolin Wienrich. “Resize Me! Exploring the
User Experience of Embodied Realistic Modulatable Avatars for Body
Image Intervention in Virtual Reality ”. Frontiers in Virtual Reality 3 (2022).
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The presented body weight modification model has been employed in three further user
studies which are not detailed here, but described in the following publications:

Erik Wolf, Nina Döllinger, David Mal, Stephan Wenninger, Andrea Bartl,
Mario Botsch, Marc Erich Latoschik, and Carolin Wienrich. “Does Dis-
tance Matter? Embodiment and Perception of Personalized Avatars in
Relation to the Self-Observation Distance in Virtual Reality ”. Frontiers in
Virtual Reality 3 (2022).

Erik Wolf, David Mal, Viktor Frohnapfel, Nina Döllinger, Stephan Wen-
ninger, Mario Botsch, Marc Erich Latoschik, and Carolin Wienrich. “Plau-
sibility and Perception of Personalized Virtual Humans between Virtual
and Augmented Reality ”. In Proc. of the IEEE International Symposium on
Mixed and Augmented Reality (ISMAR). 2022, pp. 489–498.

Marie Luisa Fiedler, Erik Wolf, Nina Döllinger, David Mal, Mario Botsch,
Marc Erich Latoschik, and Carolin Wienrich. “From Avatars to Agents:
Self-Related Cues through Embodiment and Personalization Affect Body
Perception in Virtual Reality ”. IEEE Transactions on Visualization and
Computer Graphics (TVCG) 30.11 (2024), pp. 7386–7396.

5.1 R E L AT E D W O R K

Body image disturbance is characterized by an “excessively negative, distorted,
or inaccurate perception of one’s own body or parts of it” [WHO19]. It may
manifest in body image distortion, the misperception of one’s body weight
and dimensions that have repeatedly been reported based on underestima-
tions [MMB+08; Val98] or overestimations [TGM+18; DUD+10], or body image
dissatisfaction, a negative attitude towards the body that is associated with
body image avoidance [WWS18] and reduced body awareness (awareness for
bodily signals) [PM11; TAB+19a; TAB+19b; ZSS+13]. While often caused by
internalized weight stigma and a fear of being stigmatized by others [MC18],
body image disturbance interferes with efforts to stabilize body weight in
the long term [Ros01]. Treatments for body image disturbance mainly rely
on cognitive-behavioral therapy, typically combining psychoeducation and
self-monitoring tasks, mirror exposure, or video feedback [FSL06; ZMS+18;
GNH18]. Based on the fundamentals of these established methods, an in-
creasing number of researchers have started to explore VR applications as
additional support for attitude and behavior change in general [WDH21] and
therapy of body image disturbance [Riv97; FGC+09; FGR13; RGD+19; TGK+21]
and obesity in particular [HHM+20; DWW+19].

VR offers the opportunity to immerse oneself in an alternative reality
and experience scenarios that are otherwise only achievable via imagination.
Endowed with this unique power, mainly the use of avatars has attracted
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attention in treating body image disturbance [TGK+21; HHM+20]. Image
processing methods for simulating body changes are well established. Using
parametric models, it is possible to retouch images to simulate different face or
body shapes [ZFL+10; ZJH+18] and even manipulate them in real-time during
video playback [XTW+20; TSY+21]. Avatars in VR allow simulating rapid
changes in body shape or weight in an immersive environment using life-sized
avatars going beyond the presentation of pictures and videos. They enable
further general investigation of body weight perception [Tha19; WDM+20;
WMD+21]. While some researchers are using multiple generic avatars differing
in body weight [NGS+11; PWL+14; KEH+16; PE18; FPM+18], others have
developed methods for dynamic body weight modification in VR [APB+00;
JSB+08; NZC+18; PSR+14; HLZ+20; MMK+21; NBN+20].

A huge advantage when using advanced body weight modification meth-
ods is that the avatar’s body weight can be realistically changed to a desired
numeric reference value. For this purpose, mainly the body mass index calcu-
lated as BMI = Body Weight in kg / (Body Height in m)2 [WHO00] is used.
One example is the work of Thaler et al. [TGM+18], who trained a statistical
model to apply realistic BMI-based body weight modification to their gener-
ated personalized, photorealistic avatars. But also other factors like muscle
mass could be included in such models [MMK+21]. However, while picture
and video-retouching methods tend to focus on facial features, the statistical
models of weight gain/loss of avatars in VR are usually trained on the whole
body [PSR+14] or neglect the head region completely [MMK+21]. For our
system, we also learned a statistical model of weight gain/loss for the head
region but kept small parts of the face region fixed to preserve the identity of
the users when applying the body weight modification.

Besides the shape of the used avatar, application or system-related prop-
erties also might alter how we perceive the avatar, and particularly its body
weight, in VR. Wolf et al. [WDM+20] presented an overview of potentially
influencing factors, noting that while the used display or the observation
perspective might unintentionally alter body weight perception [WFD+22;
WMF+22], especially the personalization and embodiment of avatars hold
potential for application in body image interventions. For example, Thaler
et al. [TGM+18] found that the estimator’s BMI influences body weight estima-
tions of a realistic and modulatable avatar, but only when the avatar’s shape
and texture matched the estimator’s appearance. This comes along with a
recent review by Horne et al. [HHM+20], who identified the personalization
of avatars as an important factor when using avatars. For embodiment, Wolf
et al. [WMD+21] recently found, for example, that females’ own BMI influences
body weight estimations of a generic avatar only when embodying it.
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5.2 M E T H O D

To build a statistical model of body weight modification, we follow the ap-
proach of Piryankova et al. [PSR+14], who first create a statistical model of
body shape using Principal Component Analysis (PCA) and then estimate a
linear function from anthropometric measurements to PCA coefficients. For
computing the statistical model of human body shape, we use the template
fitting process described in Section 2.2.2 to fit our template model to the Euro-
pean subset of the CAESAR scan database [RBD+02]. It consists of M = 1700
3D scans, each annotated with anthropometric measurements such as weight,
height, arm span, inseam, waist width, etc. After bringing the scans into
dense correspondence via template fitting, we are left with M pose-normalized
meshes consisting of V vertices each.

Our approach for data-driven weight gain/loss simulation differs from the
method of Piryankova et al. [PSR+14] in the following ways. (1) Instead of
encoding body shape as a 3× 3 deformation matrix per mesh face [ASK+05], we
encode body shape directly via vertex positions. (2) Modeling weight gain/loss
as a change in parameters of a statistical parametric shape model [PSR+14;
XTW+20] changes face identity during weight modification due to the fact that
the learned direction of change is not subject-specific. This leads to undesired
effects such as changing the shape of the eye sockets, the pupillary distance
or other unrealistic changes in face proportions. To mitigate these effects, we
keep vertices in the face region fixed while deforming the rest of the mesh in
order to preserve the identity of the participants.

To this end, we define a set H with cardinality H containing all vertices
outside the face region (see Figure 5.1) as well as a selector matrix H ∈ R3H×3V

which extracts all coordinates belonging to vertices in H. We then build a
PCA-based statistical body shape model as described in Section 2.2.1. To
recall, let Xj =

(
xT1 , . . . , xTV

)T ∈ R3V be the vector containing the stacked vertex
positions of the jth training mesh and X = 1

M ∑j Xj ∈ R3V be the corresponding
mean of all training meshes. Performing PCA of the mean-centered data
matrix

(
H

(
X1 −X

)
, . . . , H

(
XM −X

)) ∈ R3H×M and taking the first k = 30
components then yields the PCA matrix U ∈ R3H×k, which constitutes our
low-dimensional human body shape model.

Our goal now is to use the anthropometric annotations present in the
CAESAR dataset to learn a (linear) function from these anthropometric mea-
surements to the low-dimensional coefficients of the human body shape model.
In other words, we want to find those directions in the subspace defined by
the body shape model, which correlate the most with a given anthropometric
measurement. Let D =

(
d1, . . . , dM

)
∈ Rk×M contain the PCA coefficients dj

of the M training meshes. These are computed by projecting the stacked vertex
positions of the training mesh onto the subspace, i.e., dj = UTH

(
Xj −X

)
. If
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Figure 5.1: The figure illustrates our approach of facial weight gain simulation. When
modifying the weight of an avatar (left), part of the face region is fixed (red highlights,
center-left). The modified vertices are stitched to the face region in a seamless manner
using differential coordinates [Sor05] (center-right). Not keeping these vertices fixed
would require recalculating the position of all auxiliary meshes such as eyes and teeth
due to the undesired change in facial proportions for nose, mouth and eyes stemming
from changing the parameters of the underlying face model (right). For the right
image, eyes are copied from the unmodified avatar in order to better highlight the
change in shape and position.

we denote by A ∈ RM×4 the matrix containing the anthropometric measure-
ments weight, height, arm span and inseam of the jth subject in its jth row
(following Piryankova et al. [PSR+14]), we can then compute a linear mapping
from anthropometric measurements A to PCA coefficients D by solving the
linear system of equations

(
A | 1

)
C = DT in a least squares sense via normal

equations.
New vertex positions for a subject with initial vertex positions X and

a desired change in anthropometric measurements ∆a ∈ R5 can then be
calculated by

X̃ = HX + U
(

CT∆a
)
∈ R3H, (5.1)

i.e., by first projecting the desired change in measurements into PCA space
via the learned linear function and then into vertex position space via the
PCA matrix. However, this only updates vertices in H. In order to seamlessly
stitch the new vertex positions to the unmodified face region, we compute
the Laplacian coordinates (discretized through cotangent weights and Voronoi
areas [BKP+10]) of the resulting mesh and then use surface reconstruction
from differential coordinates [Sor05]. For the vertices of the face region and
its 1-ring neighborhood, the Laplacian is computed based on the unmodified
vertex positions X, while for the rest of the vertices, the Laplacian is computed
based on the modified vertex positions X̃. Since the position of vertices of
the face region is known and should not change, we treat the position of
these vertices as hard instead of soft constraints as discussed by Botsch and
Sorkine [BS08].
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Figure 5.2: The figure shows a generated female avatar (BMI = 19.8) with modified
body weight corresponding to a BMI range of 16 to 32 in two-point increments.

Consider a subject with weight w, height h, and thus a body mass index
of BMI = w / h2. Setting ∆a =

(
∆w, 0, 0, 0, 0

)T
in Equation (5.1) and stitch-

ing the modified vertices back to the face region as described then allows
modifying the body weight of the user’s avatar by ∆w while keeping the
other anthropometric measurements fixed. Keeping the face region fixed (i)
preserves the identity of the user for high values of ∆w and (ii) avoids having
to recalculate the position of auxiliary meshes of the avatar such as eyes and
teeth (Figure 5.1). Results of the described body weight modification method
are shown in Figure 5.2. Alternatively, computing the desired change in body
weight ∆w from a desired change in body mass index ∆BMI can be trivially
done by multiplying the desired change in BMI with the (constant) squared
height of the user: ∆w = ∆BMI · h2. This can be helpful, as BMI is still used
as an intuitive measure of obesity. Note that there are also approaches which
argue against the usage of the body mass index and propose to model body
composition differently, e.g., via fat and muscle mass [MMK+21].

5.3 V R P R O T O T Y P E

In our system, the user embodies a personalized avatar from an egocentric per-
spective while the avatar is animated according to the user’s body movements
in real-time. Users have active control over the body weight modification
model described above through various interaction techniques (for more de-
tails, we refer the reader to the study description by Döllinger et al. [DWM+22]).
The following sections describe the VR setup, the virtual environments, and
the generation and animation of the virtual humans.
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5.3.1 VR System

The technical implementation of our VR system is realized using the game
engine Unity version 2019.4.15f1 LTS [Uni19]. As VR HMD, we use a Valve
Index [Val24b], providing the user a resolution of 1440×1600 pixels per eye
with a total field of view of 120◦ running at a refresh rate of 90 Hz. For
motion tracking, we use the two handheld Valve Index controllers, one HTC
Vive Tracker 3.0 positioned on a belt at the lower spine, and two HTC Vive
Tracker 3.0 on each foot fixed by a Velcro strap. The tracking area was set
up using four SteamVR Base Stations 2.0. All VR hardware is integrated
using SteamVR in version 1.16.10 [Val24a] and its corresponding Unity plugin
in version 2.7.3. In our evaluation, the system was driven by a high-end PC
composed of an Intel Core i7-9700K, an Nvidia RTX2080 Super, and 32 GB RAM
running Windows 10. The motion-to-photon latency for the body movements
was measured as described in Section 4.2.2 and was considered low enough to
provide a high feeling of agency towards the avatar [WSH+16], as it averaged
40.9 ms (SD = 5.4 ms).

5.3.2 Virtual Environments

We realized two virtual environments. The first environment replicates the
real environment, in which the user was located physically during our evalua-
tion, and which is automatically calibrated accurately to overlay the physical
environment spatially (see Figure 5.3). Here, all preparatory steps required for
exposure are performed and tested (e.g., ground calibration, vision test, equip-
ment adjustments, embodiment calibration). For spatial calibration, we use an
implementation of the Kabsch algorithm [MBC+16], based on the positions of
the SteamVR base stations in real and virtual environments. Additionally, the

Figure 5.3: The figure depicts a comparison between the real environment where the
experiment took place (left) and the replicated virtual environment used for prepara-
tion (right). Both environments contain a user, respectively the avatar, performing the
embodiment calibration.
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Figure 5.4: The images show a participant’s personalized avatar standing in front of
a mirror within the virtual exposition environment of our concept prototype with a
reduced (left), normal (center), or increased (right) body weight.

virtual ground height is calibrated by briefly placing the controller onto the
physical ground.

The exposition environment is originally based on an asset taken from the
Unity Asset Store that was modified to match our requirements. It is inspired
by a typical office of a psychotherapist with a desk and chairs and an exposure
area in which the mirror exposure takes place (see Figure 5.4). The exposure
area includes a virtual mirror allowing for an allocentric observation of the
embodied avatar. We aimed for a realistic and coherent virtual environment to
enhance the overall plausibility of the exposure [Sla09; LW22b].

5.3.3 Virtual Human Generation and Animation

The generation of the avatar, which the user embodies inside of the virtual
environments, closely follows the virtual human template fitting method of
Achenbach et al. [AWL+17] described in Section 2.2. First, the subject is
scanned with a custom-built photogrammetry rig located at University of
Würzburg. It consists of 94 DSLR cameras, where four studio lights equipped
with diffuser balls ensure uniform illumination (see Section 4.2.1). As detailed
in the previous chapters of this thesis, the resulting virtual humans are ready
for use in VR applications, as they feature a full-body animation rig as well as
facial blendshapes for face animations. The statistical body weight modification
model described in Section 5.2 can directly be employed to modify the resulting
virtual humans, since it is trained on the same template model.

To facilitate avatar animation, the participants’ movements are continu-
ously captured using the SteamVR motion tracking devices. For our work,
these devices serve as a sufficiently solid and rapid infrared-based tracking
solution for the crucial body parts required for animation without aligning
different tracking spaces [NLL17]. To calibrate the tracking devices to the
user’s associated body parts and capture the user’s body height, arm length,
and current limb orientations, we use a custom-written calibration script that
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requires the user to stand in T-pose for a short moment (see Figure 5.3). The
calibrated tracking targets of the head, left hand, right hand, pelvis, left foot,
and right foot were then used to drive an Inverse Kinematics (IK) [ALC+18]
approach realized by the Unity plugin FinalIK version 2.0. FinalIK’s integrated
VRIK solver continuously calculates the user’s body pose according to the
provided tracking targets. The tracking pose is automatically adjusted to the
determined body height and arm length in order to match the user’s body. In
the next step, the tracking pose is continuously retargeted to the imported per-
sonalized avatar. Potentially occurring inaccuracy in the alignment of the pose
or the end-effectors can be compensated by a post-retargeting IK-supported
pose optimization step. This leads to high positional conformity between the
participant’s body and the embodied avatar and avoids sliding feet due to the
retargeting process.

5.4 S U M M A RY A N D L I M I TAT I O N S

We presented a statistical model of body weight modification of virtual humans
which allows users of a VR prototype to actively modify the body weight of
their personalized embodied avatar in real-time. The presented prototype
follows the mirror exposure intervention, which is classically used in therapy of
body image disorders, and extends it to exploit the unique capabilities of a VR-
based system. The movements of the subject are captured with a lightweight
motion tracking setup and retargeted onto the virtual human, which can be
observed in a virtual mirror. Additionally, subjects are given active control over
their avatar’s body weight due to our data-driven body weight modification
model. The base of our model is a commercial database of 3D scans annotated
with corresponding anthropometric measurements. We then registered a
template model to this database and computed a low-dimensional human body
shape model. A linear mapping between the anthropometric measurements
and the low-dimensional body shape model then allows to map a desired
change in anthropometric measurements – body weight in our case – to a
change in the learned subspace, which in turn can be mapped to a change
in vertex positions. We keep a small part of the face region fixed in order to
preserve the user’s face identity when modifying body weight. Finally, the
modified vertex positions are stitched to the face region in a seamless manner
using surface reconstruction from differential coordinates.

Keeping a small part of the face region fixed can however be seen as a
small limitation of our work, as it does not completely accurately model
weight gain/loss in this region. Studies have shown, that the soft tissue
in this area of the face also changes with varying body weight [DCV+06].
Other methods deform the whole face region [PSR+14; ZJH+18; TSY+21] or
regularize the deformation of a region similar to ours [XTW+20]. These
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methods, however, produce other undesirable effects such as changing eye
socket shape or pupillary distance due to the fact that the underlying statistical
model produces one direction of change that is applied to all avatars. As the
data measured by De Greef et al. [DCV+06] shows, the soft tissue thickness in
our fixed region does positively correlate with BMI. However, we note that the
correlation for landmarks in our fixed region is smaller than for those outside
the fixed region and as such we decided to keep the face region around the
eyes, nose, and mouth fixed. As seen in Figure 5.1, this still produces plausible
results while avoiding undesirable changes in face identity. Finally, the body
weight modification model is trained on surface scans only, preventing us from
accurately reasoning about the body composition, i.e., the bone structure and
the distribution of muscle and fat tissue. This is a limitation which we will
tackle in the next chapters of this thesis.
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Figure 6.1: Starting with the surface of a human (left), we fit a three-layered model
consisting of a skin, muscle, and skeleton surface (middle), which enables physical
simulations in a simple and intuitive way. Interior structures, such as individual
models of muscles and bones, can also be transferred using our layered model (right).

So far, we have focused on surface-based representations of virtual humans.
By bringing 3D scans of various people into dense correspondence via template
fitting, we are able to construct surface-based human body shape models
(Chapter 2), which can be used as a prior when fitting to noisy or incomplete
data (Chapter 3). As seen in the previous chapter, correlating such human
body shape models with anthropometric data allows us to learn a model
for modifying these virtual humans based on anthropometric measurements
such as body weight. This already yields convincing results, but does not
take any information about subject-specific anatomical traits such as bone
structure or body composition into account. This chapter thus focuses on
incorporating anatomical details into surface-based models, in order to provide
more information to models that aim to modify and animate virtual humans.

For the purpose of creating convincing animations of surface-based virtual
humans, large amounts of 3D scans of human beings have been collected to
build sophisticated surface-based shape and pose models [LMR+15; ASK+05;
BRP+17]. These models compensate for the fact that they lack anatomical
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information by capturing and analyzing surface scans of the same person in
various poses, thereby capturing some of the effects that the inner anatomy
has on the surface hull. Another way to approach this is to model volumetric
virtual humans by incorporating (discrete approximations of) their interior
anatomical structures. While surface-based models might be sufficient for
many applications, for others (e.g., surgery simulation) a volumetric model is
an essential prerequisite.

While detailed volumetric models of the human body exist [Ack98; CKH+09;
Zyg24], they can be very tedious to work with. Since they usually consist of
hundreds of different bones, muscles, organs and tendons, simply creating
a volumetric tetrahedral mesh for simulation purposes can be frustratingly
difficult. Moreover, those models represent average humans and transferring
their volumetric structure and anatomical details to a specific human model
(e.g., a scanned person) is not straightforward. Although there are a couple of
approaches for transferring the interior anatomy from a volumetric template
model into a surface-based virtual human [DLG+13; KIL+16], these methods
either deform bone structures in a non-plausible manner [DLG+13] or require
a complex numerical optimization [KIL+16].

In this chapter we present a robust and efficient method for transferring an
interior anatomy template into a surface mesh in just a couple of seconds. A
key component is a simple decomposition of the human body into three layers
that are bounded by surface meshes, which share the same triangulation: the
skin surface defines the outer shape of the human, the muscle surface envelopes
its individual muscles, and the skeleton surface wraps the subject’s skeleton (see
Figure 6.1 middle). The muscle layer is hence enclosed in between the skeleton
and muscle surface, and the subcutaneous fat tissue by the muscle surface and
skin surface. This layered template model is derived from the Zygote body
model [Zyg24], which provides an accurate representation of both the male
and female anatomy.

We propose simple and fast methods for fitting the layered template to
surface scans of humans and for transferring the high-resolution anatomical
details [Zyg24] into these fitted layers (see Figure 6.1 right). Given a 3D scan
of a person, we first fit our surface-based template model to the skin surface.
We then estimate body composition via a learned regressor which outputs
estimations of fat and muscle mass given the skin surface. Subsequently, we
fit our three-layered volumetric template model into the skin surface while
conforming to the estimated body composition. Finally, the high-resolution
anatomical details are transferred via a space warp based on triharmonic
radial basis functions. Our method is robust, efficient, and fully automatic,
which we demonstrate on about 1700 scans from the European CAESAR
dataset [RBD+02]. We further show a few example applications such as fat
growth, fat transfer, and physics-based character animation, which are made
feasible or enhanced by our volumetric representation.
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Our approach enriches simple surface scans by plausible anatomical details,
which are suitable for educational visualizations and volumetric simulations.
We note, however, that due to the lack of true volumetric information, it is not
a replacement of volumetric imaging techniques in a medical context.

Individual Contribution The approach for creating volumetric anatomical repre-
sentations of virtual humans from surface scans was developed together with Martin
Komaritzan. I implemented the pre-processing of the different datasets used for train-
ing and evaluating the model, enabling statistical analysis by bringing all datasets
into dense correspondence via template fitting. My second main contribution is the
creation of the regressor that estimates the amount of fat and muscle mass from the
skin surface only. Martin Komaritzan created the layered volumetric template from the
Zygote model, developed the process for fitting the layered volumetric template into
a skin surface, and implemented the space warp which transfers the high-resolution
anatomical details from the template model to the fitted model.

Corresponding Publication This chapter is based on the following publication:

Martin Komaritzan, Stephan Wenninger, and Mario Botsch. “Inside
Humans: Creating a Simple Layered Anatomical Model from Human
Surface Scans ”. Frontiers in Virtual Reality 2 (2021).
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6.1 R E L AT E D W O R K

Using a layered volumetric model of a virtual character has been shown to
be beneficial compared to a surface-only model in multiple previous works.
Deul and Bender [DB13] compute a simple layered model representing a
bone, muscle, and fat layer, which they use for a multi-layered skinning ap-
proach. Their physically-based character skinning provides dynamic motion
effects such as jiggling of fat tissue, collision handling, and volume conser-
vation. Simplistic layered models have also been used to extend the SMPL
surface model [LMR+15] in order to support elastic effects in skinning anima-
tions [KPP+17; ROC+20]. These approaches combine physics-based simulation
based on the finite element method and a data-driven statistical surface model.
Compared to these works, our three layers yield an anatomically more accurate
representation of the human body, while still being simpler and more efficient
than complex irregular tetrahedralizations. Saito et al. [SZK15] show that a
layer that envelopes muscles and separates them from subcutaneous fat tissue
yields more convincing muscle growth simulations and reduces the number of
tetrahedral elements required in their computational model. They also show
how to simulate different variations of bone sizes, muscle mass, and fat mass
for a virtual character.

When it comes to the generation of realistic personalized anatomical struc-
tures from a given skin surface, most previous works focus on the human head:
Ichim et al. [IKN+16] register a template skull model to a surface scan of the
head in order to build a combined animation model using both physics-based
and blendshape-based face animation. In their follow-up work Phace [IKK+17],
the authors also incorporate facial muscles and a muscle activation model
to allow more advanced face animation effects. Gietzen et al. [GBA+19] and
Achenbach et al. [ABG+18] use volumetric CT head scans and surface-based
head scans in order to learn a combined statistical model of the head surface,
the skull surface, and the enclosed soft tissue, which allows them to estimate
the head surface from the skull shape and vice versa. More recent work also
highlights the advantages of anatomically constrained face models for facial
animation and retargeting purposes [CZ24; WSB24a; WSB24b; YZC+24]. Re-
garding the other parts of the body, Zhu et al. [ZHK15] propose an anatomical
model of the upper and lower limbs that can be fit to surface scans and is able
to reconstruct motions of the limbs.

There are few approaches for generating an anatomical model of the
complete core human body (torso, arms, legs) from a given skin surface. In their
pioneering work, Dicko et al. [DLG+13] transfer the anatomic details from a
template model to various humanoid target models, ranging from realistic
body shapes to stylized non-human characters. They transfer the template’s
anatomy through a harmonic space warp and per-bone affine transformations,
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which might, however, distort muscles and bones in an implausible way.
Different distributions of subcutaneous fat can be (and have to be) painted
manually into a special fat texture. The work of Kadleček et al. [KIL+16] is most
closely related to our approach. They reconstruct a personalized anatomically
plausible volumetric model from a set of 3D scans of a person in different
poses. An inverse physics simulation is used to fit a volumetric anatomical
template model based on the commercially available Zygote model [Zyg24] to
the set of surface scans, where custom constraints prevent muscles and bones
from deforming in an unnatural manner. We discuss the main differences
of our approach and Dicko et al. [DLG+13] and Kadleček et al. [KIL+16] in
Section 6.3.

Estimating the body composition from surface measures or 3D surface
scans (like we do in Section 6.2.3) has been tackled before. There are numerous
formulas for computing body fat percentage (BF), or body composition in
general, from certain circumferences, skinfold thicknesses, age, gender, height,
weight, and density measurements. Prominent examples are the skinfold
equations, or the Siri- and Brozek formulas [JP85; Sir56; BGA+63]. These
formulas, however, either rely on anthropometric measurements that have to
be taken by skilled personnel or on measuring the precise body density via
expensive devices, such as BOD PODs [FGM02]. Ng et al. [NHF+16] compute
BF based on a 3D body scan of the subject, but their formula is tailored towards
body scans and measurements taken with the Fit3D Scanner [Fit24]. Even with
the help of the authors we could not successfully apply their formulas to scans
taken with different systems, since we could always find examples resulting in
obviously wrong (or even negative) BF. Maalin et al. [MMK+21] showed that
modeling body composition through body fat alone is an inferior measure for
defining the shape of a person compared to a combined model of fat mass and
muscle mass. We therefore adapt their data to estimate fat mass and muscle
mass from surface scans alone (Section 6.2.3). Incorporating these estimations
into the volumetric fitting process allows us to determine how much of the
soft tissue layer is described by muscle tissue more plausibly than Kadleček
et al. [KIL+16].

Similar to the decomposition into fat, muscle, and bone tissue we employ
in this chapter, the recent HIT method [KAD+24] learns to estimate these
three layers from a given skin surface modeled via SMPL [LMR+15]. A set
of MRI images is segmented into bone tissue, tissue belonging to muscles
and organs, fat tissue, and empty space in a semi-automatic fashion. From
this data, the authors then train multiple neural networks, which handle
decompression (modeling soft tissue displacement due to contact with the
MRI table during scanning), unposing to a common rest pose, deshaping to a
canonical template shape space, and finally tissue class prediction. Due to this
implicit representation, the final model is then able to predict the soft tissue
class given a 3D position as well as SMPL shape and pose parameters.
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Figure 6.2: Overview of our volumetric template fitting approach. From the Zygote
model [Zyg24], we build layered volumetric templates for the male and female
anatomy. By adapting the BeyondBMI dataset [MMK+21], we learn a model for
estimating fat and muscle mass from a surface model. Given a person’s surface scan,
we then estimate its fat/muscle mass and use this information to fit the volumetric
template (in)to the surface scan, which yields the personalized anatomical model.

6.2 M E T H O D

Our approach consists of three main contributions: First, the generation of
the volumetric three-layered template, described in Section 6.2.2, where we
derive the skin, muscle, and skeleton layers from the male and female Zygote
model [Zyg24]. Second, an efficient method for fitting this layered model
(including all contained anatomical details) (in)to a given human surface scan
(Section 6.2.4). Third, the estimation of a person’s body composition, i.e., how
much of the person’s soft tissue is described by muscles and fat (Section 6.2.3).
By adapting the BeyondBMI dataset [MMK+21] to our template, we derive this
information from the surface scan alone and use it to inform the volumetric
template fitting. Figure 6.2 shows an overview of the complete process, starting
from the different input data sets, the template model and the muscle/fat
regressor, to the final personalized anatomical fit.
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6.2.1 Data Preparation

In our approach we make use of several publicly or commercially available
datasets for model generation, learning, and evaluation:

• Zygote: The Zygote model [Zyg24] provides high-resolution models for
the male and female anatomy. We use their skin, muscle, and skeleton
models for building our layered template.

• BeyondBMI: Maalin et al. [MMK+21] scanned about 400 people and ad-
ditionally measured their fat mass (FM), muscle mass (MM), and body
mass index (BMI) using a medical-grade eight-electrode bioelectrical
impedance analysis scale. They provide annotated (synthetic) scans of 100
men and 100 women, each computed by averaging shape and annotations
of two randomly chosen subjects. From this data we learn a regressor
that estimates fat and muscle mass from the skin surface.

• Hasler: The dataset of Hasler et al. [HSS+09] contains scans of 114 sub-
jects in 35 different poses, captured by a 3D laser scanner. The scans
are annotated with fat and muscle mass percentage as measured by a
consumer-grade impedance spectroscopy body fat scale. We use this
dataset to evaluate the regressor learned from the BeyondBMI data.

• CAESAR: The European subset of the CAESAR scan database [RBD+02]
consists of 3D scans (with about 70 selected landmarks) equipped with
annotations (e.g., weight, height, BMI) of about 1700 subjects in a standing
pose. We use this data to evaluate our overall fitting procedure.

All these data sources use different model representations, i.e., either different
mesh tessellations or even just point clouds. In a preprocessing step we there-
fore re-topologize the skin surfaces of these datasets to a common triangulation
by fitting a surface template using the non-rigid surface-based registration of
Achenbach et al. [AWL+17] as described in Section 2.2.

To recap briefly, this approach is based on an animation-ready, statisti-
cal template model. Its mesh tessellation, animation skeleton, and skinning
weights originate from the Autodesk Character Generator [Aut24], and the
variation in human body shape is represented by a PCA-based shape model.
We will refer to this template model as the surface template in the following. In
a preprocessing step we fit the surface template to all input surface scans to
achieve a common triangulation and thereby establish dense correspondence.
This fitting process is guided by a set of landmarks, which are either specified
manually or provided by the dataset. A non-linear optimization then deter-
mines alignment (scaling, rotation, translation), body shape (PCA parameters),
and pose (inverse kinematics on joint angles) in order to minimize squared
distances of user-selected landmarks and automatically determined closest
point correspondences in a non-rigid ICP manner [BTP14]. Once the model
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parameters are optimized, a fine-scale out-of-model deformation improves
the matching accuracy and results in the final template fit. Please refer to
Section 2.2 for more details about the template model and the surface-based
fitting process.

6.2.2 Generating the Volumetric Template

We use the male and female Zygote body model [Zyg24] as a starting point
for our volumetric model. Our volumetric template is defined by the skeleton
surface B (for bones), the muscle surfaceM, and the skin surface S . The skeleton
is enveloped by the skeleton surface, the muscle layer is enclosed between the
skeleton surface and the muscle surface, and the (subcutaneous) fat layer is
enclosed by the muscle surface and the skin surface. The soft tissue layer is
the union of the fat and muscle layers. In our layered model we exclude the
head, hands, and toes. These regions will be identical to the skin surface in all
layers. See Figure 6.3 for a visualization of the layered template.

The three surfaces B,M, and S will be constructed to share the same trian-
gulation, providing a straightforward one-to-one correspondence between the
ith vertices on each surface, which we denote by xBi , xMi , and xSi , respectively.
Each two corresponding triangles (xSi , xSj , xSk ) on S and (xMi , xMj , xMk ) onM
span a volumetric element of the fat layer. Similarly, the volumetric elements
of the muscle layer are spanned by pairs of triangles (xMi , xMj , xMk ) onM and
(xBi , xBj , xBk ) on B. We call these elements, built from six vertices of two trian-
gles, prisms, and will either use them directly in a simulation or (trivially) split
them into three tetrahedra each, resulting in a simple conforming volumetric
tessellation.

In the following, we describe how to generate the skeleton surface B and
the muscle surfaceM. The skin surface S is generated by fitting the surface-
based template of Achenbach et al. [AWL+17] to the skin of the anatomical
model [Zyg24], as described in Section 6.2.1.

The Skeleton Surface

The skeleton surface B should enclose all the bones of the detailed skeleton
model, as shown in Figure 6.3 (center). We achieve this by shrink-wrapping
the skin surface S onto the skeletal bones. To avoid problems caused by
gaps between bones (e.g., in the rib cage or between tibia and fibula), we first
generate a skeleton wrapW , a watertight genus-0 surface that encapsulates
the bones, and then shrink-wrap the skin surface to W instead. The wrap
surface W can easily be generated by a few iterations of shrink-wrapping,
remeshing, and smoothing of a bounding sphere in a 3D modeling software
like Blender or Maya. This results in a smooth, watertight, and two-manifold
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Figure 6.3: Our layered template for both male (top) and female (bottom): the skin
surface (left), the skeleton surface enveloping the skeleton (center), and the muscle
surface enveloping both muscles and skeleton (right). For the center and right column,
the left half shows the enveloping surface while the right half shows the enveloped
anatomical details.

surface W that excludes regions like the interior of the rib cage and small
holes like in the pelvis or between ulna and radius.

We generate the skeleton surface B by starting from the skin surface S , i.e.,
setting X = S , and then minimizing a non-linear least squares energy that
is composed of a fitting term Ewrap, which attracts the surface X to the bone
wrapW , and a regularization term Ereg, which prevents X from deforming in
a physically implausible manner from its initial state X = S :

B = arg min
X

λwrapEwrap(X ,W) + λregEreg
(
X ,X

)
. (6.1)

The regularization is formulated as a discrete bending energy that penalizes
the change of mean curvature, measured as the change of length of the
Laplacian:

Ereg
(
X ,X

)
= ∑

xi∈X
Ai ∥∆xi −Ri∆xi∥2 , (6.2)

where xi and xi denote the vertex positions of the deformed surface X and
the initial surface X , respectively. The matrix Ri ∈ SO(3) denotes the optimal
rotation aligning the vertex Laplacians ∆xi and ∆xi, which are discretized using
the cotangent weights and Voronoi areas Ai [BKP+10].
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Figure 6.4: An example of minimizing the
alignment energy (6.4) for the skin vertex
xSi . Its closest position on the skeleton wrap
is xWi , leading to a small minimal angle
(between black dotted line and S). The
position x∗ maximizes the minimal angle
and minimizes the energy (6.4). It can be
found by tracing a line from xSi in negative
direction of the average normal nSi .

The fitting term penalizes the squared distance of vertices xi ∈ X from
their target positions ti ∈ W :

Ewrap(X ,W) = ∑
xi∈X

wi Ai ∥xi − ti∥2 . (6.3)

The target positions ti are points (not necessarily vertices) on the skeleton
wrap W of either one of three types: closest point correspondences, fixed
correspondences, or collision targets. The type of the target position ti then
determines the weight wi, which we empirically set to 0.1 for closest point
correspondences, 1 for fixed correspondences, and 100 for collision targets.
We define just one target ti for each vertex xi. The default is a closest point
correspondence per vertex, which can be overridden by a fixed correspondence,
and both of them will be overridden by the collision target in case of a detected
collision. Below we explain the three target types.

Closest point correspondences are computed in each step of our iterative
minimization and set to the point on the surface of the skeleton wrap W ,
which is closest to the vertex xi ∈ X , i.e., ti = arg miny∈W ∥xi − y∥.

Near complicated regions, like the armpit or the rib cage, the skin has to
stretch considerably to deform toward the skeleton wrap. As a consequence,
corresponding triangles (xSi , xSj , xSk ) on the skin surface S and (xBi , xBj , xBk ) on
the eventual skeleton surface B will not be approximately on top of each other,
but instead be tangentially shifted. These two triangles span a volumetric
element that we call a prism. Misaligned triangles will lead to heavily sheared
prisms, which can cause artifacts in physical simulations.

We define a per-vertex score penalizing misalignment of corresponding
vertices xSi ∈ S and xWi ∈ W w.r.t. their common averaged normal nSi + nWi :

Ealign

(
xSi , xWi

)
=

∣∣∣∣∣
(
nSi + nWi

)
·
(
xSi − xWi

)∥∥nSi + nWi
∥∥ · ∥∥xSi − xWi

∥∥ − 1

∣∣∣∣∣ . (6.4)

A 2D example of this is shown in Figure 6.4.
Fixed correspondences are responsible for reducing these tangential shifts and

thereby improving the prism shapes. We determine them for some vertices
at the beginning of the fit as explained in the following and keep them fixed
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0.1

0.0

Figure 6.5: Standard non-rigid registration from skin to skeleton (left) results in a
bad tangential alignment of corresponding triangles, causing sheared prisms, which
we visualize by color-coding the alignment error (6.4). Using fixed correspondences
reduces this error (center). Shifting closest point correspondences with bad alignment
reduces the error even further (right).

throughout the optimization. Since the alignment error increases faster if
the distance between skin surface and skeleton wrap is small, we specify
fixed correspondences for vertices on S that have a distance less than 3 cm
to W . For each such vertex we randomly sample points in the geodesic
neighborhood of xWi and select the one that minimizes Equation (6.4) as fixed
alignment constraint, where we generate normal vectors of sample points
using barycentric Phong interpolation. To avoid interference of spatially close
fixed correspondences, we add them in order of increasing distance to the
skeleton, but only if their distance to all previously selected points is larger
than 5 cm. In that way, we get a well distributed set of fixed correspondences,
favoring those with a small skin-to-skeleton distance. Figure 6.5 (center) shows
that this already reduces the alignment error.

Closest point correspondences can also drag vertices to locations with
high alignment error. In each iteration of the non-rigid ICP, we compute
Ealign

(
xSi , xi

)
for each vertex on S and its counterpart on the current state of X .

If this error exceeds a limit of 0.01, which corresponds to an angle deviation of
8◦ from the optimal angle, we sample the one-ring neighborhood of vertex xi
on X and set xi to the sample with minimal alignment error and update its
closest point correspondence onW . This strategy reduces the alignment error
even further, as shown in Figure 6.5 (right).

In the process of moving the surface X towardW , these two meshes might
intersect each other, violating our goal that in the converged state the surface
X (i.e., B, due to Equation (6.1)) should fully encloseW . We therefore detect
these collisions during the optimization and resolve them through collision
targets. We use the exact continuous collision detection of Brochu et al. [BEB12]
to detect collisions. In case of a collision, we backtrack the triangles’ linear
path from the current X to the initial S to find the non-colliding state closest to
X . This state defines collision targets ti for colliding vertices xi, which override
the other types of target positions. In case of multiple collision targets ti for
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the same vertex xi, we determine all non-colliding states separately and choose
the one that is closest to the initial skin surface S .

For the minimization described in Equation (6.1), we use the Projective Dy-
namics framework of Bouaziz et al. [BDS+12; BML+14], implemented through
an adapted local/global solver from the ShapeOp library [DDB+15]. We ini-
tialize the optimization by setting X = S and λwrap = λreg = 1. Once the
optimization converges, we decrease λreg by a factor of 0.1, and update the
undeformed Laplacians ∆xi in Equation (6.2) to the Laplacians ∆xi of the
current solution X . This process is iterated until λreg = 10−7, yielding the
final skeleton surface B of the template model (Figure 6.3 (center)).

The Muscle Surface

We generate the muscle surface M by minimizing the same energy as in
Equation (6.1), but using a different method for finding the correspondences
ti in Equation (6.3), which exploits that we already established a dense corre-
spondence between skin surface S and skeleton surface B. We do not employ
closest point correspondences, but instead set for each vertex xi a fixed corre-
spondence ti to the first intersection of the line from skin vertex xSi to skeleton
vertex xBi with the high-resolution muscle model [Zyg24]. If there is no inter-
section (e.g., at the knee), we set ti = xBi and assign a lower weight wi. When
the minimization converges and we decrease λreg, we project the vertices of
the current muscle surface xMi to their corresponding skin-to-skeleton line
from xSi to xBi . Due to the collision handling, the resulting muscle surfaceM
will enclose the high-resolution muscle model. To ensure that our volumetric
elements always have a non-zero volume, even in regions where there is no
muscle between skin and bone, we ensure a minimal offset of 1 mm from to
the skeleton mesh. The resulting muscle surfaceM is visualized in Figure 6.3
(right). Note that the muscle layer does not exclusively contain muscles: Espe-
cially in the abdominal region, a large amount of the muscle layer is filled by
organs. We therefore define a muscle thickness map that, for each vertex i, stores
the accumulated length of the segments of the line (xSi , xBi ) that are covered
by muscles. This map will be used later in Section 6.2.4.

6.2.3 Estimating Fat Mass and Muscle Mass

Having generated the volumetric layered template, we want to be able to fit it to
a given surface scan of a person. To regularize this under-determined problem,
we first have to estimate how much of the person’s soft tissue is explained by
fat mass (FM) and muscle mass (MM), respectively. This is a challenging task
since we want to capture a single surface scan of the person only and therefore
cannot rely on information provided by additional hardware, such as a DXA
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Figure 6.6: Examples for the BeyondBMI dataset provided by Maalin et al. [MMK+21]
consisting of scans of 100 men and 100 women, annotated with fat mass, muscle mass,
and BMI. The scans lack geometric data for head, hands, and feet and are captured in
approximate A-pose (with noticeable variation in pose).

scanner or a body fat scale. Kadleček et al. [KIL+16] handle this problem by
describing the person’s shape primarily through muscles, i.e., by growing
muscles as much as possible and defining the remaining soft tissue volume as
fat. This strategy results in adipose persons having considerably more muscle
mass than leaner people. Although there is a certain correlation between total
body mass (and also BMI) and muscle mass – because the higher weight has a
training effect especially on the muscles of the lower limbs [TEM+16] – this
general trend is not sufficient to define the body composition of people.

Maalin et al. [MMK+21] measured both FM and MM using a medical-
grade eight-electrode bioelectrical impedance analysis scale and acquired a
3D surface scan. From this data, they built a model that can vary the shape
of a person based on specified muscle or fat variation, similar to Piryankova
et al. [PSR+14] and the body weight modification model described in Chapter 5.
Our model should perform the inverse operation, i.e., estimate FM and MM
from a given surface scan. We train our model on their BeyondBMI dataset
(Section 6.2.1), which consists of scans of 100 men and 100 women captured in
an approximate A-pose (see Figure 6.6), each annotated with FM, MM, and
BMI.

By applying the surface fitting process described in Section 6.2.1 to the
BeyondBMI dataset, we make their scans compatible to our template and
unpose their scans to a common T-pose, thereby making any subsequent
statistical analysis pose-invariant. After re-excluding the head, hands, and
feet of our surface template, we are left with M = 100 meshes per sex that
consist of V = 7665 vertices xi. We denote the jth training mesh by a 3V-
dimensional vector of stacked vertex coordinates Xj =

(
xT1 , . . . , xTV

)T ∈ R3V

and the mean of the data set by X. We then perform PCA of the mean-centered
data matrix X =

(
X1 −X, . . . , XM −X

)
∈ R3V×M. Let U ∈ R3V×k be the basis

of the subspace spanned by the first k principal components. Since the data
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is now pose-normalized, the dimensionality reduction can focus solely on
differences in human body shape. As a result, our model only needs k = 12
PCA components to explain 99.5 % of the data variance, while the original
BeyondBMI dataset needs k = 24 components to cover the same percentage due
to noticeable variations in pose during the scanning process (see Figure 6.6).
We then perform linear regression to estimate FM and MM from PCA weights,
as proposed by Hasler et al. [HSS+09]. Given a skin surface, this allows us to
estimate fat and muscle mass by fitting our surface template model, excluding
head, hands, and feet, projecting the resulting surface mesh into PCA space,
and then applying the learned regressors.

For a first evaluation of this model, we perform a leave-one-out test on the
BeyondBMI dataset, i.e., excluding each scan once, building the regressors as
described above from the remaining M− 1 scans, and measuring the mean
absolute error of the predictions. We again use k = 12 PCA components,
as this covers almost all the variance present in the dataset and gives the
linear regression enough degrees of freedom. The leave-one-out evaluation
yields a mean absolute error (MAE) of MAEFM = 1.20 kg (SD = 0.93) and
MAEMM = 1.01 kg (SD = 0.79) for the female dataset, where the fat mass lies
in the range 6.27 – 34.71 kg and the muscle mass in the range 21.59 – 31.63 kg.
The linear regression shows an average R2 score of 0.84, confirming that there
is indeed a linear relationship between PCA coordinates and the FM/MM mea-
surements. Performing the leave-one-out test on the male dataset shows similar
values: MAEFM = 1.37 kg (SD = 1.00) and MAEMM = 1.46 kg (SD = 1.11), fat
mass in the range 3.91 – 27.83 kg, muscle mass in the range 31.51 – 51.20 kg,
and an average R2 score of 0.88.

We compared the linear model to a support vector regression (using
scikit-learn [PVG+11] with default parameters and RBF kernels), but in con-
trast to Hasler et al. [HSS+09] we found that for the BeyondBMI dataset
this approach performs considerably worse: MAEFM = 2.98 kg (SD = 2.85)
and MAEMM = 1.24 kg (SD = 1.02) with an average R2 score of 0.64 for the
female dataset, and MAEFM = 2.63 kg (SD = 2.60) and MAEMM = 2.48 kg
(SD = 1.82) with an average R2 score of 0.58 for the male dataset. We therefore
keep the simpler and better-performing linear regression model.

Whenever we fit the volumetric model to a given body scan, as explained
in the next section, we first use the proposed linear regressors to estimate the
person’s fat mass and muscle mass and use this information to generate the
muscle and fat layers in Section 6.2.4.

6.2.4 Fitting the Volumetric Template to Surface Scans

Given a surface scan, we transfer the template anatomy into it through the
following steps: First, we fit our surface template to the scan, which establishes
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one-to-one correspondence with the volumetric template and puts the scan
into the same T-pose as the template (Section 6.2.1). After this preprocessing,
we deform the volumetric template to match the scanned subject. To this end,
we adjust global scaling and per-bone local scaling, such that body height and
limb lengths of template and scan match. This is followed by a quasi-static
deformation of the volumetric template that considers the skin surface S as
hard constraint and yields the skeleton surface B through energy minimization.
Given the skin surface S , the bone surface B, and the estimated fat mass and
muscle mass from Section 6.2.3, the muscle surfaceM is determined. Having
transferred all three layer surfaces to the scan we finally warp the detailed
anatomical model to the target.

Global and Local Scaling

Fitting the surface template to the scanner data puts the latter into the same
alignment (rotation, translation) and the same pose as the volumetric template.
The next step is to correct the mismatch in scale by adjusting body height and
limb lengths of the volumetric template.

This scaling does influence all three of the template’s surfaces. Since the
shape of the skeleton surface B will be constrained to the result after scaling,
we have to scale in a way that keeps bone lengths and bone diameters within
a plausible range. The length of prominent bones, like the upper arm or the
upper leg (humerus and femur), can be approximated by measures on the
surface of the model. But finding the correct bone diameters is impossible
without measurements of the subject’s interior. In particular for corpulent or
adipose subjects, the subcutaneous fat layer dominates the appearance of the
skin surface, preventing us from precisely determining the bone diameters
from the surface scan. It has been shown that there is a moderate correlation
of bone length and bone diameter [ABY+17; ZM02] and (obviously) a strong
correlation of body height and bone length [DSK08]. We therefore perform
a global isotropic scaling depending on body height (affecting bone lengths
and diameters) as well as local anisotropic scaling depending on limb lengths
(affecting bone lengths only).

The global scaling is determined from the height difference of scan and
template and is applied to all vertices of the template model. It therefore scales
all bone lengths and bone diameters uniformly. Directly scaling with the height
ratio of scan and template, however, can result in bones too thin or too thick
for extreme target heights. Thus, we damp the height ratio r = hscan / htemplate
by r ← 0.5(r− 1) + 1, which means that a person that is 20 % taller than the
template will have 10 % thicker bones than the template. This heuristic results
in visually plausible bone diameters for all our scanned subjects.

After the global scaling, the local scaling further adjusts the limb lengths of
the template to match those of the scan. The (fully rigged) surface-based tem-
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Figure 6.7: Scaling the template (opaque) to match the scan (semi-transparent): The
preprocessing aligns the scan with the template and puts it into the same pose (left).
Body height and limb lengths of the template are then adjusted by a global uniform
scaling (center), followed by local scaling for limbs and spine (right).

plate has been fit to both the scan (Section 6.2.1) and the template (Section 6.2.2).
This fit provides a simple skeleton graph (used for skinning animation) for
both models. We use the length mismatch of the respective skeleton graph
segments to determine the required scaling for upper and lower arms, upper
and lower legs, feet, and torso. We scale these limbs in their corresponding
bone directions (or the spine direction for the torso) using the bone stretching
of Kadleček et al. [KIL+16]. As mentioned before, this changes the limb lengths
but not the bone diameters.

This two-step scaling process is visualized in Figure 6.7. As a result,
the scaled template matches the scan with respect to alignment, pose, body
height, and limb lengths. Its layer surfaces, which we denote by S ,M, and B,
provide a good initialization for the optimization-based fitting described in
the following.

Skeleton Fitting

Given the coarse registration of the previous step, we now fit the skin surface S
and skeleton surface B by minimizing a quasi-static deformation energy. Since
the template’s skin surface S should match the (skin) surface of the scan and
since both meshes have the same triangulation, we can simply copy the skin
vertex positions from the scan to the template and consider them as hard
Dirichlet constraints. It therefore remains to determine the vertex positions
of the skeleton surface B, such that the soft tissue enclosed between skin
surface S and skeleton surface B (composed of fat and muscle tissue, which
we denote by flesh) deforms in a physically plausible manner. This is achieved
by minimizing a quasi-static energy consisting of three terms:

E(B) = λregEreg
(
B,B

)
+ λfleshEflesh(B,S) + λcollEcoll(B,S) . (6.5)
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The first term is responsible for keeping the skeleton surface (approxi-
mately) rigid and uses the same formulation as Equation (6.2), with B and
B denoting the skeleton surface before and after the deformation, respec-
tively. We employ a soft constraint with high weight λreg instead of deforming
bones in a strictly rigid manner [KIL+16], since we noticed that for very thin
subjects the skeleton surface might otherwise protrude the skin surface and
therefore a certain amount of bone deformation is required. We also do not
penalize deviation from rigid or affine transformations as proposed by Dicko
et al. [DLG+13], because this penalizes smooth shape deformation in the same
way as locally flipped triangles, which we observed to cause artifacts in the
skeleton surface. The discrete bending energy of Equation (6.2), with a suitably
high regularization weight λreg, allows for moderate smooth deformations and
gave better results in our experiment.

The second term prevents strong deformations of the prism elements
p ∈ P, spanned by corresponding triangles (xSi , xSj , xSk ) on the skin surface
and (xBi , xBj , xBk ) on the skeleton surface. While we penalize deformation of
the top/bottom triangles, we allow changes of prism heights, i.e., anisotropic
scaling in the direction from surface to bone. Otherwise, the fat layer cannot
grow to bridge the gap from the skeleton surface to the skin surface. This
behavior is modeled by the anisotropic strain limiting energy

Eflesh(B,S) =
1
2 ∑

p∈P

∥∥∥Fp −RpBpS̃pBT
p

∥∥∥2

F
, (6.6)

where Fp ∈ R3×3 is the deformation gradient of the element p, i.e., the linear
part of the best affine transformation that maps the undeformed prism p to
the deformed prism p in the least squares sense. If Ep ∈ R3×5 denotes the
edge direction matrix of the prism p and Ep the respective matrix of p, then

Fp = arg minF
∥∥Ep − FEp

∥∥2
F. Polar decomposition Fp = RpSp decomposes

Fp into a rotation Rp and a scale/shear Sp [SD92]. Bp is a rotation matrix
that aligns the z-axis with the surface normal of the prism’s corresponding
skin triangle, i.e., the direction in which we allow stretching. The matrix
S̃p = diag(1, 1, α) represents the anisotropic scaling, where α ∈ [αmin, αmax]

allows to tune the amount of stretching in normal direction that should
be allowed. We use αmin = 0.2 and αmax = 5.0 to allow stretching and
compression of the element by a factor of five before the energy of this element
increases.

Third, we detect all collisions Ccoll, defined as vertices of the skeleton
surface B that are outside of the skin surface S . For these colliding vertices we
add a collision penalty term

Ecoll(B,S) =
1
|Ccoll| ∑

xi∈Ccoll

wi ∥xi −πS(xi)∥2 , (6.7)
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where πS(xi) is the projection of the colliding vertex xi to a position 2 mm
beneath the closest triangle on the skin surface S . The vertex weight wi is set
to 1 the first time a vertex is colliding, and is increased by 1 each time the
minimization was not able to resolve the collision.

The iterative minimization of Equation (6.5) is again implemented via the
Projective Dynamics framework. In order to determine the current amount of
stretching needed for evaluating the anisotropic strain limiting energy (6.6),
we compute the deformation gradient Fp from the undeformed prism p to its
current state p, its polar decomposition Fp = RpSp, and the resulting stretching
in skin normal direction by α = (BT

p SpBp)3,3. The amount of stretching
is then clamped to the range [αmin, αmax] before computing the anisotropic
stretching matrix S̃p = diag(1, 1, α). We set the energy term coefficients to
λreg = 0.1, λflesh = 0.01, and λcoll = 50, and iteratively minimize Equation (6.5)
until convergence. In the converged state, we then detect collisions and add
the corresponding collision constraints (see Equation (6.7)) to the system.
Subsequently, minimizing Equation (6.5) and detecting collisions is repeated
until no collisions are found in a converged solution. For all of our subjects,
the minimization converged within less than 20 iterations.

Muscle Fitting

Having determined the skin surface S and skeleton surface B, we now fit
the muscle surface M in between S and B, such that the ratio of fat mass
(FM) and muscle mass (MM) resembles the values estimated by our regressors
(Section 6.2.3). We proceed in three steps: First, we transfer the template’s
muscle distribution to the fitted skin and skeleton surfaces, which we call
average muscle layer in the following. Second, we grow and shrink the muscles
as much as anatomically and physically plausible, yielding the minimum and
maximum muscle layers. Third, we find a linear interpolation between these
two extremes that matches the predicted fat mass and muscle mass as good as
possible.

The average muscle surface is transferred from the scaled template M
(Section 6.2.4, Figure 6.7) by minimizing an energy consisting of two objectives:

E(M) = λregEreg
(
M,M

)
+ λlineEline(M,B,S) . (6.8)

The first term tries to preserve the shape of the scaled template’s muscle
surfaceM and is modeled using the regularization energy of Equation (6.2).
The second term preserves the template’s property that each muscle vertex
xMi resides on the line segment from its corresponding skeleton vertex xBi to
its skin vertex xSi , by penalizing the squared distance from that line:

Eline(M,B,S) =
1
2 ∑

xi∈M

∥∥∥xi −πline

(
xi, xBi , xSi

)∥∥∥2
, (6.9)
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Figure 6.8: Left: When computing the maximum muscle surface, we move muscle
vertices toward the skin by an amount proportional to their muscle potential, which for
each vertex is the length of the dotted line intersected with the muscle. The vertex
with the black dotted line defines the maximum allowed stretch in this example. Right:
An example of our minimum and maximum muscle layers for the same target. These
two surfaces define the lower and upper limit for the muscle mass and vice versa for
the fat mass.

where πline
(
xi, xBi , xSi

)
is the projection of xi onto the line (1− β)xBi + βxSi ,

β ∈ [0, 1]. Minimizing Equation (6.8) leads to flat abdominal muscles as in the
template model, which is unrealistic for corpulent or adipose subjects, because
the majority of body fat resides in two different fat tissues: the subcutaneous
fat, which resides between skin and muscle surface, and the visceral fat, which
accumulates in the abdominal cavity, i.e., under the muscle layer. Since the
bulging of the abdomen due to visceral fat causes a bulging of the belly, we
inversely want the abdominal muscles inM to slightly bulge out in case of a
belly bulge in the skin surface S . The latter is a combined effect of visceral and
subcutaneous fat in the abdominal region. We model this effect by adjusting
Eline for each vertex xi in the abdominal region. Instead of using the full interval
β ∈ [0, 1], we adjust the lower boundary to βmin =

∥∥xMi −xBi
∥∥ /

∥∥xSi −xBi
∥∥, i.e.,

the parameter β where for the (scaled) template the muscle surface intersects
the line.

Equation (6.8) is iteratively minimized via the Projective Dynamics frame-
work. We initialize M withM and set λreg = 0.01, λline = 1.0. When the
minimization converges, we update the Laplacians in Ereg to those of the
current solution and decrease λreg by a factor of 0.5. This is iterated until the
maximal distance of a vertex to its bone-to-skin line (see Equation (6.9)) is less
than 0.2 mm. Lastly, we project each vertex onto its corresponding bone-to-skin
line to get a perfect alignment.

After transferring the average muscle surface, we grow/shrink muscles as
much as possible in order to define the maximum/minimum muscle surfaces
(Figure 6.8). Since certain muscle groups may be better developed than others,
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we perform the muscle growth/shrinkage separately for the major muscle
groups, namely upper legs (including buttocks), lower legs, upper arms, lower
arms, chest, abdominal muscles, shoulders, and back. Muscles are built from
fibers and grow perpendicular to the fiber direction. In all cases relevant to
us, the fibers are approximately perpendicular to the direction fromM to S ,
thus muscle growth/shrinkage will move vertices xMi along the line from xBi
to xSi . The amount of vertex movement along these directions is proportional
to the muscle thickness map of the template (computed in Section 6.2.2). We
determine how much we can grow a muscle before it collides with the skin
surface in the thicker parts of the muscle (instead of close to its endpoints
where it connects to the bone). Figure 6.8 shows an example, where the
leftmost muscle vertex is already close to the skin and would prevent any
growth if we took endpoint regions into account. For each muscle group, we
also define an upper limit for muscle growth that prevents the muscles from
increasing further even if the distance to the skin is still large (e.g., for adipose
subjects). To determine the minimal muscle surface, we repeat the process in
the opposite direction (towards the skeleton surface). To prevent distortions
of the muscle surface, we do not set the new vertex positions directly, but
instead use them as target positions ti in Equation (6.3) and regularize with
Equation (6.2). Figure 6.8 (right) shows an example of minimum/maximum
muscle surfaces computed by this procedure.

We determine the final muscle surfaceM by linear interpolation between
the minimum and maximum muscle surfaces, such that the resulting fat
mass FM and muscle mass MM match the values predicted by the regressors
(denoted by FM∗ and MM∗) as good as possible. To this end, we have to
compute FM and MM from an interpolated muscle surface M. We can
compute the volume VFL of the fat layer (between S andM) and the volume
VML of the muscle layer (between M and B) and convert these to masses
mFL and mML by multiplying with the (approximate) fat and muscle densities
ρF = 0.9 kg/l and ρM = 1.1 kg/l, respectively.

The resulting masses require some corrections though: First, we have to
add the visceral fat (VAT), which is not part of our fat layer but resides in
the abdominal cavity. We estimate the VAT mass mVAT by computing the
difference of the cavity volumes of the scaled template and of the final fit,
thereby assuming a negligible amount of VAT in the template. Second, we
subtract the skin mass mskin from the fat layer mass. We assume an average
skin thickness of 2 mm, multiply this by the skin’s surface area and the density
ρF. Third, our fat layer includes the complete reproductive apparatus in the
crotch region. This volume is even larger due to the underwear that was worn
during scanning and incorrectly increases the fat layer mass by mcrotch. Our
corrected fat mass is then

FM = mFL + mVAT −mskin −mcrotch. (6.10)
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Figure 6.9: True muscle and fat masses for the female and male subjects of the
BeyondBMI dataset, plotted on top of the possible ranges defined by our minimum
and maximum muscle surfaces. Note that our minimal fat mass is coupled to the
maximal muscle mass and vice versa.

We correct the muscle mass by subtracting the mass mabd of the abdominal
cavity, which is incorrectly included in the muscle layer. The remaining muscle
mass is always too small even when using the maximum muscle surface, due
to all muscles not considered in the muscle layer, such as heart, face, and
hand muscles or the diaphragm. It is known that the lean body mass roughly
scales with the squared body height [HHT+11], which is the basis of the well
known body and muscle mass indices. We analogously assume the missing
muscle mass to be proportional to the squared height h of the subject, i.e.,
mh = chh2, with a constant ch to be determined later. The corrected muscle
mass is therefore

MM = mML −mabd + mh. (6.11)

There are other terms like the fat of the head, hands, and toes, which could be
added, or the volume of blood vessels and tendons, which could be subtracted.
We assume those terms to be negligible.

Since the total volume of the soft tissue layer VST = VML + VFL is con-
stant, the muscle layer mass mML is coupled to the fat layer mass mFL via
mML = (VST −VFL) ρM. We want to compute the fat layer mass such that the
resulting FM and MM minimize the least squares error to the values pre-
dicted by the regressor: E = (FM− FM∗)2 + (MM−MM∗)2. Inserting (6.10)
and (6.11) into E, rewriting mML in terms of mFL, and setting the derivative
dE/dmFL = 0 yields the optimal fat layer mass

mFL =
FM∗ −mVAT + mskin + mcrotch + ρ (VST ρM −mabd + mh −MM∗)

1 + ρ2 ,

(6.12)
with the density ratio ρ = ρM / ρF.

The minimum/maximum muscle surface yields a maximum/minimum
fat layer mass. The optimized fat layer mass is clamped to this range, thereby
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defining the final fat layer mass. We then choose the linear interpolant between
the minimum and maximum muscle surface that matches this fat mass, which
we find through bisection search.

We did this for the scans of 100 men and 100 women from the BeyondBMI
dataset [MMK+21], where we know the true values for FM and MM from
measurements, and optimized the value of ch for this dataset, yielding ch = 1.5
for the male and ch = 1.0 for the female dataset. This is plausible since women
generally have a lower muscle mass. For instance, the average muscle mass of
the male subjects in the dataset is indeed 50 % higher than the average MM
for the female subjects. The mean absolute errors (MAE) for the BeyondBMI
dataset are MAEMM = 0.37 kg (SD = 0.31), MAEFM = 0.46 kg (SD = 0.38) for
the female subjects and MAEMM = 0.46 kg (SD = 0.39), MAEFM = 0.57 kg
(SD = 0.48) for the male subjects. Figure 6.9 shows how well our model
can adjust to the target values of muscle and fat mass. All values are inside or
at least close to the predicted possible range of minima and maxima. Moreover,
in most cases, the muscle/fat mass values for the same person split the two
ranges at about an inverse point (e.g., close to maximum muscle and close to
minimum fat), resulting in the low errors stated above.

Transferring Original Anatomical Data

After fitting the skin surface S to the scan and transferring the skeleton surface
B and the muscle surfaceM into the scan, the final step is to transform the
high-resolution anatomical details (Zygote’s bone and muscle models in our
case) from the volumetric template to the scanned subject. We implement
this in an efficient and robust manner as a mesh-independent space warp
d : R3 → R3 that maps the original template’s skin surface Ŝ , muscle surface
M̂, and skeleton surface B̂ (all marked with a hat) to the scanned subject’s
layer surfaces S ,M, and B, respectively. All geometry that is embedded in
between these surfaces will smoothly be warped from template to scan.

Dicko et al. [DLG+13] also employ a space warp for their anatomy transfer,
which they discretized by interpolating values dijk on a regular 3D grid con-
structed around the object. Their space warp is computed by interpolating the
skin deformation Ŝ 7→ S on the boundary and being harmonic in the interior
(i.e., ∆d = 0), which requires the solution of a large sparse Poisson system for
the coefficients dijk. We follow the same idea, but use a space warp based on
triharmonic radial basis functions (RBFs) [BK05], which have been shown to
yield higher quality deformations with lower geometric distortion than many
other warps (including FEM-based harmonic warps) [SMB13]. The RBF warp
is defined as a sum of n RBF kernels and a linear polynomial:

d(x) =
n

∑
j=1

wj φj(x) +
4

∑
k=1

qkπk(x) , (6.13)
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where wj ∈ R3 is the coefficient of the jth radial basis function defined by
φj(x) = φ

(∥∥x− cj
∥∥) and centered at cj ∈ R3. As kernel function we use

φ(r) = r3, leading to highly smooth triharmonic warps (∆3d = 0). The second
term is a linear trivariate polynomial with basis {π1, π2, π3, π4} = {x, y, z, 1}
and coefficients qk ∈ R3, which ensures linear precision of the warp.

In order to warp the high-resolution bone model from the template to the
scan, we set up the RBF warp to reproduce the deformation B̂ 7→ B. To this
end, we select 5000 vertices x̂i ∈ B̂ from the template’s skeleton surface by
farthest point sampling. The corresponding vertices on the scan’s skeleton
surface are denoted by xi ∈ B. At these vertices x̂i the deformation function
d(x̂i) should interpolate the displacements di = xi − x̂i. These constraints lead
to a dense, symmetric, but indefinite (n + 4)× (n + 4) linear system, which we
solve for the coefficients (w1, . . . , wn, q1, . . . , q4) using the LU factorization of
Eigen [GJ+24]. For more details, please refer to the work of Sieger et al. [SMB13].
The resulting RBF warp d then transforms each vertex x of the high-resolution
bone model as x← x+d(x). Note that this process can trivially be parallelized
over all model vertices, which we implement using OpenMP. For warping the
high-resolution muscle model, we follow the same procedure, but collect 7000
constraints from the vertices x̂i ∈ S ∪M of the skeleton and muscle surfaces,
since these enclose the muscle layer.

6.3 R E S U LT S A N D A P P L I C AT I O N S

To summarize, generating a personalized anatomical model for a given surface
scan of a person consists of the following steps: First, the surface template is
registered to the scanner data (triangle mesh or point cloud) with the template
fitting method of Achenbach et al. [AWL+17] as described in Section 2.2.2. After
manually selecting 10–20 landmarks, this process takes about 50 sec. Fitting
the surface template establishes a dense correspondence with the surface of the
volumetric template and puts the scan into the same T-pose as the volumetric
template. Fitting the volumetric template by transferring the three layer
surfaces (Section 6.2.4) takes about 15 sec. Transferring the high-resolution
anatomical models of bones and muscles (145k vertices) takes about 4.5 sec for
solving the linear system (which is an offline preprocessing) and 0.5 sec for
transforming the vertices. Timings were measured on a desktop workstation,
equipped with an Intel Core i9 10850K CPU and an Nvidia RTX 3070 GPU.

Dicko et al. [DLG+13] and Kadleček et al. [KIL+16] are the two approaches
most closely related to ours. Dicko et al. [DLG+13] also use a space warp for
transferring anatomical details, but since they only use the skin surface as
constraint, the interior geometry can be strongly distorted. To prevent this,
they restrict bones to affine transformations, which can still contain unnatural
shearing modes and implausible scaling. Our space warp yields a higher
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Figure 6.10: Result of transferring the anatomy by using just the skin layer and a
harmonic basis (left). Here, both muscles and bones deform too much to fit overweight
targets. We use the additional muscle and skeleton layer and a triharmonic basis
(right) to prevent unnatural deformations.

smoothness due to the use of C∞ RBF kernels instead of C0 trilinear interpo-
lation. In addition, it reduces unnatural distortion of bones and muscles by
using three layer surfaces as constraints instead of the skin surface only and by
optimizing these layers w.r.t. anatomical distortion. In Figure 6.10, we compare
the result of warping the anatomical structures using a harmonic basis and
7000 kernels from only the skin surface to our three-layered, triharmonic warp
result. The former shows drastic and unrealistic deformations of both muscles
and bones, while our approach solves those issues. Note that additionally
restricting the bones to affine transformations like Dicko et al. [DLG+13] would
still produce unnaturally thick bones (e.g., the upper leg bone) and muscles.

Compared to Kadleček et al. [KIL+16], we only require a single input scan,
since we infer (initial guesses for) joint positions and limb lengths from the full-
body PCA of Achenbach et al. [AWL+17]. Putting the scan into T-pose prevents
us from having to solve bone geometry and joint angles simultaneously, which
makes our approach much faster than theirs (15 sec vs. 30 min). Moreover, our
layered model yields a conforming volumetric tessellation with constant and
homogeneous per-layer materials, which more effectively prevents bones from
penetrating skin or muscles. In their approach the rib cage often intersects the
muscle layer for thin subjects, which Kadleček et al. [KIL+16] mention as a
limitation of their method. This effect can be seen in Figure 12 (bottom row) of
their work. Another difference is that we automatically derive the muscle/fat
body composition from the surface scan, which yields more plausible results
than growing muscles as much as possible [KIL+16], since the latter leads to
more corpulent people always having more muscles. Our model extracts the
amount of muscle and fat using data of real humans and can therefore adapt
to the variety of human shapes (low FM and high MM, high FM and low
MM, and everything in between). Finally, we account for the differences in
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male and female anatomy by employing individual anatomical templates and
muscle/fat regressors for men and women.

6.3.1 Evaluation on Hasler Dataset

In order to further evaluate the generalization abilities of the linear FM/MM
models (Section 6.2.3) to other data sources, we estimate FM and MM for
a subset of registered scans from the Hasler dataset [HSS+09] and measure
the prediction error. We selected scans of 10 men and 10 women, making
sure to cover the extremes of the weight, height, fat, and muscle percentage
distribution present in the data.

For the female sample, the predictions show a mean absolute error
of MAEFM = 0.65 kg (SD = 0.44) and MAEMM = 4.39 kg (SD = 1.71). For
the male sample, the model shows a similar error for the MM prediction,
but performs worse at predicting FM: MAEFM = 3.32 kg (SD = 1.98) and
MAEMM = 4.14 kg (SD = 2.74). Compared to the leave-one-out tests on the
BeyondBMI data (Section 6.2.3), the average error increases noticeably, which
can partly be explained by differences in the measurement procedure between
the two datasets: While Hasler et al. [HSS+09] used a consumer-grade body
fat scale, Maalin et al. [MMK+21] used a medical-grade scale, which should
lead to more accurate measurements. Nevertheless, these results show that
our regressor generalizes well to other data sources, providing a simple and
sufficiently accurate method for estimating FM and MM from body scans.

Given the target FM and MM values for a subject as predicted by our regres-
sor, we choose the optimal muscle surface between the minimal and maximal
muscle surface as explained in Section 6.2.4. Comparing the final FM and MM
of the volumetric model to the ground truth measurements of the Hasler dataset
we get end-to-end errors of MAEFM = 0.70 kg (SD = 0.52), MAEMM = 4.19 kg
(SD = 1.39) (female) and MAEFM = 3.49 kg (SD = 2.02), MAEMM = 3.81 kg
(SD = 2.56) (male). This evaluation shows that the additional error induced
by fitting the muscle layer is very low.

6.3.2 Evaluation on CAESAR Dataset

In order to demonstrate the flexibility and robustness of our method, we
evaluate it by generating anatomical models for all scans of the European
subset of the CAESAR data set [RBD+02]. This subset consists of 919 scans of
women and 777 scans of men, with a height range of 131 – 218 cm for men and
144 – 195 cm for women (we only considered scans with complete annotation
and taken in standing pose). A few examples for men and women can be seen
in Figure 6.11 and Figure 6.12.
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Figure 6.11: Some examples for various male body shape types. For each input
surface the transferred muscles and skeleton are shown in front and side view.
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Figure 6.12: Some examples for various female body shape types. For each input
surface the transferred muscles and skeleton are shown in front and side view.
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For the about 1700 CAESAR scans, our muscle and fat mass regressors
yield just one slightly negative value for the fat mass of the thinnest male
(body weight 48 kg, height 1.72 m, BMI 16.14 kg/m2). For all other subjects,
we get values ranging from 3.5 – 38.9 % body fat (M = 20.3 %) for male sub-
jects and 8.0 – 45.3 % (M = 28.9 %) for female subjects. The range of predicted
muscle masses is 24.9 – 57.8 kg (men) and 20.1 – 37.7 kg (women). When de-
termining the optimal interpolation between the minimum and maximum
muscle layer (Section 6.2.4), we meet the estimated target values up to mean
errors MAEFM = 1.08 kg (SD = 0.90) and MAEMM = 0.88 kg (SD = 0.74) for
the male dataset, and MAEFM = 1.41 kg (SD = 1.35) and MAEMM = 1.15 kg
(SD = 1.11) for the female dataset. Note that even the scan with predicted
negative FM is reconstructed robustly. In this case, the muscle surface will be
the maximum muscle surface, which in general is a suitable estimate for very
skinny subjects.

The CAESAR dataset does not include ground truth data for fat and muscle
mass of the scanned individuals, which prevents us from directly evaluating
our estimations of fat and muscle mass for the CAESAR scans. Thus, in order
to further evaluate the plausibility of our estimated body composition, we
compare it to known body fat percentiles. Percentiles are used as guidelines in
medicine and provide statistical reference values that individual measurements
can be compared to. For instance, a 10th percentile of 20.8 % body fat means
that 10 % of the examined population have a body fat percentage less than
20.8 %. Assuming that the European CAESAR dataset is a representative
sample of the population, the percentiles we get from our reconstructions of
the CAESAR scans should match the percentiles of the European population.
We compared the values produced by our fat and muscle mass regressors
(Section 6.2.3) to Kyle et al. [KGS+01], who measured body fat using 4-electrode
bioelectrical impedance analysis from 2735 male and 2490 female western
European adults. Our body fat percentiles on the CAESAR dataset are very
well in agreement with their results, as shown in Table 6.1.

Body Fat Percentile 5th 10th 25th 50th 75th 90th 95th

Male
Our estimate 10.2 12.3 16.0 20.3 24.6 28.1 30.7

Kyle et al. [KGS+01] 10.9 12.6 15.7 19.2 23.5 27.0 29.2

Female
Our estimate 18.6 21.1 24.7 28.5 33.7 37.4 39.3

Kyle et al. [KGS+01] 18.5 20.8 23.8 28.1 32.6 37.5 40.5

Table 6.1: Comparison of body fat percentiles resulting from estimating fat and
muscle mass for the CAESAR dataset [RBD+02] using our linear regression model
(Section 6.2.3) with the data measured by Kyle et al. [KGS+01], showing that our
estimates match the distribution found in western European adults.
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(a) (b) (c)

Figure 6.13: Our layered anatomical model can be animated using an extension of Fast
Projective Skinning (FPS), as shown in (a). When the character performs a jump to the
left (b), our realistic skeleton correctly restricts the dynamic jiggling to the belly region
(b-left), while the original FPS deforms the complete torso (b-right). For a static twist
of the torso (c), the rib cage of our layered model keeps the chest region rather rigid
and concentrates the deformation to the belly (c-left). Without a proper anatomical
model, the deformation of FPS is distributed over the complete torso (c-right).

6.3.3 Physics-Based Character Animation

One application of our model is simulation-based character animation [DB13;
KB18; KB19], where the transferred volumetric layers can improve the anatomi-
cal plausibility. We demonstrate the potential by extending the Fast Projective
Skinning (FPS) of Komaritzan and Botsch [KB19]. FPS already uses a simpli-
fied volumetric skeleton built from spheres and cylinders, a skeleton surface
wrapping this simple skeleton, and one layer of volumetric prism elements
spanned between skin and skeleton surface. Whenever the skeleton is posed,
the vertices of the skeleton surface are moved, and a projective dynamics
simulation of the soft tissue layer updates the skin surface.

We replace their synthetic skeleton by our more realistic version and split
their soft tissue layer into our separate muscle and fat layers. This enables
us to use different stiffness values for the fat and muscle layers (the latter
being three times larger). Moreover, our skeleton features a realistic rib cage,
whereas FPS only uses a simplified spine in the torso region. As a result, our
extended version of FPS yields more realistic results in particular in the torso
and belly region, as shown in Figure 6.13.

6.3.4 Simulation of Fat Growth

Our anatomical model can also be used to simulate an increase of body fat,
where its volumetric nature provides advantages over existing surface-based
methods.

In their computational bodybuilding approach, Saito et al. [SZK15] also
propose a method for growing fat. However, they employ a purely surface-
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Figure 6.14: Given a reconstructed model (left), the pressure-based fat growth of Saito
et al. [SZK15] leads to a more uniform increases in fat volume (center), while our
volume-based fat growth increases the initial fat distribution (right).

based approach that conceptually mimics blowing up a rubber balloon. This is
modeled by a pressure potential that drives skin vertices outwards in normal
direction, regularized by a co-rotated triangle strain energy. The user is
required to manually specify a scalar field that defines where and how strong
the skin surface should be “blown up”, which is used to modulate the per-
vertex pressure forces and therefore models, how much each region of the
model accumulates fat tissue. Despite the regularization we sometimes noticed
artifacts at the boundary of the fat growing region and therefore add another
regularization through Equation (6.2). This approach allows the user to tune
the amount of subcutaneous fat, but unless a carefully designed growth field is
specified, the fat growth looks rather uniform and balloon-like (see Figure 6.14,
center-top).

Every person has an individual fat distribution and gaining weight typically
intensifies these initial fat depots. We model this behavior by scaling up the
local prism volumes of our fat layer. Each fat prism can be split into three
tetrahedra, which define volumetric elements tj ∈ T with initial volumes V j. A
simple uniform scaling s ·V j achieves the desired effect that fat increases more
in fat-intense regions. The growth simulation is implemented by minimizing
the energy

Egrow(S) = λvolEvol(S) + λregEreg
(
S ,S

)
+ λrestErest

(
S ,S

)
(6.14)
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Figure 6.15: Examples of our fat growth simulation with input models shown in the
top row and their weight-gained version in the bottom row.

with the Laplacian regularization of Equation (6.2), the displacement regular-
ization

Erest
(
S ,S

)
= ∑

xi∈S
Ai ∥xi −xi∥2 (6.15)

and the volume fitting term

Evol(S) = ∑
tj∈T

V j
(
vol

(
tj
)
− s ·V j

)2 , (6.16)

where S and S denote the skin surface before/after the fat growth and s is
the global fat scaling factor. Saito et al. [SZK15] argued that anisotropically
scaling fat tetrahedra in one direction does not produce plausible results.
However, isotropically scaling the volume leaves the minimization more freedom
and yields convincing results. Figure 6.14 compares the pressure-based and
volumetric fat growth simulations. Figure 6.15 shows some more examples
produced by combining both methods.

Our volume-based fat growth has another advantage: If we want to grow fat
on a very skinny person, the initial (negligible) fat distribution does not provide
enough information about where to grow fat, such that both approaches would
do a poor job. But since we can easily fit the volumetric template to several
subjects, we can “copy” the distribution of fat prism volumes from another
person and “paste” it onto the skinny target, which simply replaces the target
volumes in Equation (6.16). This enables to transfer initial fat distributions
between different subjects, which is shown in Figure 6.16.
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Figure 6.16: Examples of “fat transfer”. The two subjects in the first and third row
have a very low amount of body fat. Therefore, scaling their fat volumes is not suitable
for fat growth. Instead, we copy the fat distributions of other subjects (shown as small
insets). This allows us to simulate a similar fat growth behavior for the skinny targets.
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6.4 S U M M A RY A N D L I M I TAT I O N S

We created a simple layered volumetric template of the human anatomy and
presented an approach for fitting it to surface scans of men and women
of various body shapes and sizes. Our method generates plausible muscle
and fat layers by estimating realistic muscle and fat masses from the surface
scan alone. In addition to the layered template, we also showed how to
transfer internal anatomical structures, such as bones and muscles, using
a high-quality space warp. Compared to previous work, our method is
fully automatic and considerably faster, enabling the simple generation of
personalized anatomical models from surface body scans. Besides educational
visualization, we demonstrated the potential of our model for physics-based
character animation and anatomically plausible fat growth simulation.

Our approach has some limitations: First, we do not generate individual
layers for head, hands and toes, where in particular the head would require
special treatment. Combining our layered body model with the multilinear
head model of Achenbach et al. [ABG+18] is therefore a promising direction for
future work. Second, our regressors for fat and muscle mass could be further
optimized by training on more body scans with known body composition.
Given more and more accurate training data, as for instance provided by DXA
scans or MRI images [KAD+24], we could extend the fat/muscle estimations
to individual body parts. Third, we do not model organs, tendons and veins.
Those would have to be included in all layers and could be transferred in the
same way as high-resolution muscle and bone models. Fourth, our data sources
are biased towards Caucasian adults, as both the CAESAR database [RBD+02]
and the data provided by Maalin et al. [MMK+21] mostly feature this exact
population. Future work should take care to extend this line of research to a
more diverse population. Lastly, the fact that the three layers of our model
share the same topology/connectivity can also be considered a limitation,
since we cannot use different, adaptive mesh resolutions in different layers.

However, as shown in the next chapter of this thesis, the simple structure of
our layered anatomical model can be exploited to generate synthetic training
data, which allows to perform statistical analysis of human skeleton and soft
tissue distributions to generate an anatomically constrained volumetric human
shape model.
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7A N A N AT O M I C A L LY C O N S T R A I N E D
V O L U M E T R I C H U M A N S H A P E M O D E L

Figure 7.1: Our anatomically constrained human shape model allows to infer the
skeleton from a surface scan. Due to injecting anthropometric measurements into the
latent code, our model can then locally manipulate both the skeleton shape and the
soft tissue distribution of a person.

Having proposed a method for inferring anatomical details from human
surface scans in the previous chapter, we will now present an approach for
learning a volumetric human shape model based on the data produced by
this method. Human shape modeling has been extensively studied due to
its application in various fields, such as shape and pose estimation from
multi-view stereo or monocular RGB(-D) input. Starting from simple linear
PCA models [ASK+05; LMR+15] to more recent advances in machine learning
models [RBS+18; BBP+19], these models are used as the foundation for many
downstream tasks such as body composition estimation [WNT+21], the cre-
ation of virtual humans (as presented in Chapter 2 and Chapter 3), learning a
statistical model of body weight modification (see Chapter 5), or generating
synthetic training data for image recognition tasks [WBH+21]. Most of the
approaches train on commercially available 3D scan databases such as CAE-
SAR [RBD+02] or 3D Scanstore [3DS24]. These 3D scans naturally provide
only what is easily observable from the outside: the silhouette of the scanned
subject. However, by setting the focus on modeling the skin layer of humans,
models that want to learn how to accurately modify a given virtual human,
suffer from missing anatomical information.

Modifying realistic virtual humans has gained attention due to its promis-
ing applicability in VR therapy [MTM+18; HHM+20; TGK+21; WDM+22;
WMF+22], which can serve as a complementary intervention technique to classi-
cal forms of therapy and forms the context of our research on virtual humans in
this thesis. Such VR systems can immersively expose patients with anorexia or
obesity to generic or personalized virtual humans at different levels of weight
or body mass index (BMI), allowing patients to reflect on and researchers
to gain insight into possibly occurring body image disturbances. However,
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current models for body weight/BMI modification, such as the one presented
in Chapter 5, are typically learned on surface-only models and employ global
models such as Principal Component Analysis, leading to shape modification
models providing only limited localized control [ACP03; HSS+09; PSR+14].
Participants have stated the request for changing the composition of specific
body parts in addition to a global BMI/weight modification [DWM+22].

In this chapter, we present a novel approach for learning a model, which
is able to achieve such localized shape manipulation. We leverage recent ad-
vances in inferring anatomical structures from surface scans [DLG+13; KIL+16;
KZB+22; KWS+23; KAD+24], more specifically, the method proposed in Chap-
ter 6, to register a volumetric anatomical template model to the CAESAR
database, resulting in pairs of skeleton and skin meshes. The main contribu-
tion of this work is to provide a novel statistical model that clearly separates
the distribution of skeleton and soft tissue in its latent space. In order for
our model to successfully learn separate parameter sets, we calculate the full
Cartesian product of all skeleton shapes and all soft tissue distributions using
volumetric deformation transfer [BSP+06], allowing us to transfer the soft
tissue distribution of subject i onto the skeleton of subject j.

The resulting data set is then used to train a neural network that learns the
common underlying parameters from a person’s bone structure and soft tissue
distribution. Examples that share either a common skeleton or a common soft
tissue distribution can be sampled from the Cartesian data set. These common-
alities are learned and encoded with an autoencoder using the SpiralNet++
approach [GCB+19]. To separate the skeleton and soft tissue distribution,
a self-supervised learning approach inspired by Barlow Twins [ZJM+21] is
used, which reduces redundancy in the underlying distributions. To allow
local modification of body regions, measurements are taken on the example
Cartesian data set and are additionally injected into the latent code to reduce
the correlation of the remaining parameters with these known measurements.

In summary, this chapter presents a novel approach for learning an ana-
tomically constrained volumetric human shape model, which through its
learning paradigm disentangles correlations between the skeleton shape space
and the soft tissue distributions. The latent code of our model can be sampled
to generate various human skeleton shapes with different soft tissue distri-
bution characteristics. The measurement injection into the latent code of our
model allows localized shape manipulation: the anatomical structure can be
quickly inferred from a 3D scan of a human and then locally modified by the
user. This allows to simulate weight gain/loss in different regions of the body.
Our model is publicly released at https://github.com/mbotsch/TailorMe
to enable further research and development of applications for volumetric
anatomical human shape models.
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Individual Contribution The work presented in this chapter was done in col-
laboration with Fabian Kemper. My main contribution is the implementation of
the volumetric deformation transfer used to generate the synthetic data for training
our model. I additionally prepared the template data, thereby allowing us to make
the model publicly available, due to not relying on the prohibitively licensed Zygote
model [Zyg24]. Finally, I implemented the collision avoidance algorithm and worked
together with Fabian Kemper on the virtual human modification for clothed scans as
well as the comparisons to OSSO [KZB+22] and SKEL [KWS+23]. Fabian Kemper
worked on the network architecture and learning algorithm, allowing us to learn
separate parameter sets for skeleton and soft tissue. Fabian Kemper additionally
implemented the fitting of the model to a given skin surface as well as the model
evaluation.

Corresponding Publication This chapter is based on the following publication:

Stephan Wenninger, Fabian Kemper, Ulrich Schwanecke, and Mario
Botsch. “TailorMe: Self-Supervised Learning of an Anatomically Con-
strained Volumetric Human Shape Model ”. Computer Graphics Forum 43.2
(2024)

7.1 R E L AT E D W O R K

7.1.1 Human Shape Models

Data-driven human shape models are ubiquitous and widely studied. Learned
from registering a template model to a database of 3D scans, most popular
models are based on Principal Component Analysis (PCA) of vertex posi-
tions [LMR+15; OBB20]. Pishchulin et al. [PWH+17] discuss best practices
and provide a public implementation of the complete pipeline from surface
scans to a parametric shape model. Other approaches directly encode trian-
gle deformations from the template to the registered models [ASK+05] or a
decomposition of these triangle deformations [FB12]. Since they are based on
a database of 3D scans, these methods capture the variation of human body
shape only on a surface level. In contrast, our model is trained on additional
volumetric information by fitting an anatomically plausible skeleton model
into the registered surface scans.

More sophisticated dimensionality reduction techniques have also been
applied to human shape models: Ranjan et al. [RBS+18] propose a convolu-
tional mesh autoencoder and introduce a pooling and unpooling operation
directly on the mesh surface structure. The Neural 3D Morphable Models
(Neural3DMM) network [BBP+19] adjusts the pooling operations and uses
a spiral convolutional operator, which has been further refined by Gong et
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al. [GCB+19]. Our model uses a similar autoencoder design paired with the
self-supervised learning technique Barlow Twins [ZJM+21].

7.1.2 Modifying Virtual Humans

Learning a shape modification model based on anthropometric measurements
has been explored in the field of Virtual Reality body image therapy [DWM+22;
WDM+22; WMF+22; PSR+14; MTM+18]. The possibility to either passively
present a generic virtual human in different weight or BMI variants or letting
participants actively change their personalized virtual human can and has been
used to gain insights into body image disorders for patients with anorexia or
adiposity.

A common approach is to model shape modification by learning linear cor-
relations between a set of anthropometric measurements (e.g., as present in the
CAESAR database [RBD+02]) and the low-dimensional shape space [ACP03;
HSS+09; PSR+14], as also discussed in Chapter 5. The modified shape can
then be computed by mapping the desired measurement changes into the
subspace through learned regressors and then projecting the change in sub-
space coordinates back into vertex space. Commonly used anthropometric
measurements, such as arm length and inseam, are highly correlated. The cited
methods cannot completely disentangle this correlation in the anthropometric
measurements, leading to limited control over local shape manipulation. Our
non-linear model learns to separate the correlations between these measure-
ments, thereby enabling more localized shape manipulations.

For surface models, there is some work on creating more local shape space
representations. Tena et al. [TDM11] propose a method for automatically
segmenting registered head meshes into several components. A shape space is
then learned for each component separately and the resulting submeshes are
stitched together. Sparse PCA combined with spatially-varying regularization
weights [NVW+13] has also been shown to result in more localized shape mod-
els. For an overview about parametric (head) surface models, including global
and local models, we refer the reader to the survey by Egger et al. [EST+20].
These methods could achieve localized shape control, but are only trained on
surface meshes.

7.1.3 Anatomical Models

We already introduced some previous works dealing with volumetric anato-
mical models of virtual humans in Chapter 6. To briefly recap, Achenbach
et al. [ABG+18] trained a multilinear model (MLM) to find a lower-dimensional
model of skull and corresponding head shape, parameterized by skull shape
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and soft tissue distribution. However, the MLM does not completely decouple
the two parameter sets, so changing the skin parameters can still affect the
skeleton. Our non-linear model better decouples skeleton from skin shape,
i.e., when changing skin parameters, the skeleton stays fixed. Anatomy Trans-
fer [DLG+13] is a method for warping an anatomical template model into a
target skin surface via a harmonic space warp while constraining bones to
only deform via affine transformations. This can however lead to unnaturally
scaled or sheared bones.

Saito et al. [SZK15] developed a physics-based simulation of muscle and
fat growth on a tetrahedral template mesh including an enveloping muscle
layer that separates the tetrahedral mesh representing the subcutaneous fat
layer from the rest of the template. Kadleček et al. [KIL+16] present a method
for fitting such a physics-based simulation to a set of 3D scans in different
poses, to get a personalized anatomical model. Their approach yields visually
plausible results but requires a complex numerical optimization strategy taking
several minutes and can therefore not be used for interactive VR interventions.
In Chapter 6, we presented our own method for reconstructing anatomical
details from a surface scan. We will refer to this method as Inside Humans in
this chapter. Inside Humans follows the approach of Saito et al. [SZK15] by
using a multi-layered model to separate skeleton, muscle, and skin surface
derived from an anatomical template model [Zyg24]. The model is then fitted
to a given skin layer in a multi-stage optimization scheme. Embedding the
high-resolution skeleton and muscle meshes from the anatomical template
into the resulting layers is done by a triharmonic RBF warp. However, we did
not train a statistical model on the resulting shapes. Additionally, the Inside
Humans fitting approach is an order of magnitude slower compared to the
method presented in this chapter.

There has been a growing series of works concerned with skeleton inference
from a given skin surface. The recent work OSSO [KZB+22] combines the
STAR model [OBB20] for human body shapes and a model of skeleton shapes
based on the Stitched Puppet Model [ZB15]. By fitting these two models
to a set of DXA images, the authors learn to infer skeletal shape from skin
shape in PCA space. In the follow-up method SKEL [KWS+23] the authors
present a parametric biomechanical skeleton and skin model with shared shape
and pose parameters and anatomically constrained degrees of freedom. The
skeleton model is registered to a subset of the AMASS dataset [MGT+19] by
optimizing the scale and pose of the bones via a biomechanical optimization
framework [WBR+23]. The skeletons inferred with both the OSSO and SKEL
approach may however show self-intersections with the given skin mesh. In
contrast, our model learns non-linear correlations between skeleton and skin,
provides a localized shape modification model, and produces intersection-free
pairs of skeleton and skin meshes. Schleicher et al. [SNM+21] introduced the
musculoskeletal BASH model, which embeds a skeleton and muscle model
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from a biomechanical simulation framework into the surface-based shape
and pose model SCAPE [ASK+05]. This allows the authors to visualize the
muscle activity from the biomechanical simulation on the skin surface. Shetty
et al. [SBJ+23] presented a parametric anatomical model, which, in addition
to skin and skeletal shape, handles organ shape. From a set of CT scans that
are automatically segmented into skin, bones, and organs, the authors extract
corresponding surface meshes. A set of manually annotated landmarks then
guides the fitting of template models for skin, skeleton and organs to the
extracted surfaces, which are unposed to a common rest pose via a complex
optimization step. From the unposed and registered meshes, the authors then
train a statistical parametric model using Probabilistic Principal Component
Analysis [TB99].

7.2 T R A I N I N G D ATA

We start by deriving all the parts of our template model and registering it
to surface scans of the CAESAR database, yielding pairs of skeleton and
skin meshes (Section 7.2.1). We enlarge this data set by computing the full
Cartesian product of skeleton shape and soft tissue distribution via volumetric
deformation transfer (Section 7.2.2). The resulting data set then constitutes the
training data for our model. See Figure 7.2 for an overview of our method.

Template Registration Inside Humans Volumetric Deformation Transfer Autoencoder

. . .

. . .

...
...

...
. . .

X Encoder z Decoder X′

Figure 7.2: Overview of our data processing pipeline. We first fit our template model
to the CAESAR database, resulting in registered skin surfaces. We use the Inside
Humans method (Chapter 6) to infer anatomical structures from these surface fits.
To learn a separated parameter space for skeleton and soft tissue distribution, we
generate the Cartesian product of all soft tissue distributions and all skeleton shapes,
using volumetric deformation transfer. We train our autoencoder by sampling pairs,
which share either a common skeleton or soft tissue distribution from our Cartesian
data set.
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Figure 7.3: Female and male template model. In this work, we derive an additional
skeleton layer that wraps the high resolution skeleton mesh and shares the triangula-
tion with the skin layer.

7.2.1 Skin and Skeleton Registration

Existing anatomical models, as provided for example by Zygote [Zyg24] or
3D Scanstore [3DS24], are only available with prohibitive licensing. In order
to make our model publicly available, we commissioned a 3D artist to build
an anatomical template model. It provides a male and female template, both
including meshes for skin, eyes, mouth, teeth, muscle, and skeleton (Fig-
ure 7.3). All meshes in the male template are consistently topologized with
their counterparts in the female template. With 23752 vertices, our skin mesh
has approximately 3.5 times more vertices than the popular SMPL [LMR+15]
or STAR [OBB20] models, allowing us to more accurately model skin geometry.
We follow the layered model approach presented in Chapter 6 and generate a
skeleton wrap that envelopes the high-detail skeleton mesh and has the same
triangulation as the skin layer. This provides a trivial correspondence between
skin and skeletal layers.

Our skin surface input data is derived from the European subset of the
CAESAR database [RBD+02], consisting of about 1700 3D scans annotated
with 3D landmarks and anthropometric measurements. To bring all scans
into uniform topology and pose, we employ the template fitting approach
proposed by Achenbach et al. [AWL+17] (see Section 2.2.2), adapted to use
the skin surface of our template model. This leaves us with 776 male and 919
female skin meshes denoted by Si. In the following, all computations are done
on the male and female data set separately, due to the anatomical differences
especially in the hip and shoulder region.
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From the fitted skin meshes, we use the Inside Humans method (Chapter 6)
to estimate skeleton layers Bi, resulting in non-intersecting pairs of skeleton
and skin meshes (Bi,Si). Since the Inside Humans approach excludes the
head, hands, and feet region from the skeleton layer, we inherit this limitation.
We denote the set of vertices belonging to these regions by Z . Equipped with
this data, we can now enlarge our training data set by computing the Cartesian
product of skeleton shape and soft tissue distribution in a physically plausible
way.

7.2.2 Volumetric Deformation Transfer

We train our model on the Cartesian product of two shape dimensions: skeleton
shape and soft tissue distribution. To this end, we transfer the soft tissue of
subject i onto the skeleton of subject j, which we achieve through deformation
transfer [SP04; BSP+06].

In the standard formulation of deformation transfer, the deformation gradi-
ents are computed from a triangle on Bi to the corresponding triangle on Si.
These deformations are then applied to Bj in order to generate Sj. However, as
seen in Figure 7.4 (center-right), this formulation can lead to interpenetrations
of skin and skeleton. These artifacts can happen because the triangle-based
deformation gradients between Bi and Si do not encode any volumetric infor-
mation of the soft tissue enclosed in between these two surfaces. To alleviate
this problem we formulate the soft tissue transfer as a volumetric deformation
transfer problem.

First, we compute the mean skeleton Bµ and mean skin mesh Sµ over
all training models. Since the two layers share the same triangulation, the

Figure 7.4: Transferring the soft tissue of the left model onto the skeleton of the
center-left model using surface-based deformation transfer, the skeleton wrap protrudes
the skin (center-right). Our volumetric deformation transfer successfully avoids these
artifacts (right).
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corresponding faces between the skeleton and skin layer span prismatic ele-
ments that can trivially be split into three tetrahedra. We denote the resulting
tetrahedral mesh enclosed between Bµ and Sµ (hence representing the mean
soft tissue distribution) as Sµ. The vector Xµ containing the stacked vertex
positions of Sµ is composed of the vertex positions of the bone mesh Bµ and
the skin mesh Sµ, denoted by XBµ and XSµ , respectively.

Transferring the soft tissue layer of subject i onto the skeleton of subject j
can then be formulated as a volumetric deformation transfer. The deformation
gradients Ft ∈ R3×3 per tetrahedron t encode the deformation from the mean
tetrahedral mesh Sµ to the tetrahedral mesh Si of subject i. From the four
vertex positions x1, x2, x3, x4 of tetrahedron t in Si we build the edge matrix

Et
i =

(
x1 − x4, x2 − x4, x3 − x4

)
∈ R3×3.

The matrix Et
µ is built analogously from the vertices of Sµ. The deformation

gradient of tetrahedron t could then be computed as Ft = Et
i

(
Et

µ

)−1
. However,

part of the desired deformation is already explained by the deformation of Bµ

to Bj. To account for this, we express the deformation gradients relative to
reference frames on Bµ and Bj. Each tetrahedron t can be associated with a
triangular face on the skeleton layer Bµ and Bj, respectively. These triangles
define orthonormal reference frames Rt

µ and Rt
j, respectively, which leads to

the final formulation for deformation gradients:

Ft = Rt
j

(
Rt

µ

)T
Et

i

(
Et

µ

)−1
. (7.1)

We then solve for vertex positions Xj conforming to these deformation
gradients in a least squares sense, while keeping the vertices of the skeleton
layer Bj and Z fixed. Formally, we solve the gradient-based mesh deformation
system (

GTD G
)

Xj =
(

GTD
)

F, (7.2)

with Dirichlet boundary constraints for every vertex belonging to Bj ∪ Z .
The matrices GTD and G represent the discrete divergence and gradient
operators for tetrahedral meshes [BSP+06], and F vertically stacks the desired
deformation gradients Ft. Solving this linear system yields new skin vertices
XSj . In order to smoothly blend into the boundary region Z , we define
per-tetrahedron interpolation weights wt ∈ [0, 1], which decrease based on
the distance to Z . We use wt to linearly interpolate between the desired
deformation gradients Ft and the deformation gradients computed from Sµ to
the target subject Sj, thereby ensuring a smooth transition into Z .

In the presented volumetric formulation, the deformation gradients Ft

include information about the volumetric stretching and compression of the
tetrahedron t of the soft tissue layer. Since Sµ and Si do not exhibit inverted
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Figure 7.5: Exemplary results of transferring the soft tissue of various people (top
row) onto a single target skeleton via volumetric deformation transfer (bottom row).
Note that soft tissue characteristics of the top row and skeletal dimensions of the
bottom row are faithfully preserved.

elements, the deformation gradients Ft do not contain any inversions. As such,
solving Equation (7.2) avoids self-intersections between skin and skeleton
(shown in Figure 7.4, right), since those would require tetrahedra to invert,
which in turn would lead to a high deviation from the target deformation
gradient. Figure 7.5 shows several examples of transferring the soft tissue
distribution of a set of subjects with different height and weight characteristics
onto the same skeleton.

7.3 M O D E L L E A R N I N G

Our objective is to learn a compact representation of human body shapes.
We do so using a specific autoencoder architecture. To enable guided and
localized shape manipulation, we inject anthropometric measurements into the
autoencoder’s latent representation. We measure the length of the torso, arms,
and legs on the skeleton, and the circumference of chest, waist, abdomen,
and hips on the skin meshes. By injecting normalized values of those mea-
surements into our latent representation, we form an expressive latent code.
Our neural network architecture is a convolutional autoencoder with local
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mesh convolutions based on SpiralNet++ [GCB+19]. Decoupling the two shape
dimensions is accomplished by splitting the latent code into two parameter
sets: one for skeleton shape and one for soft tissue distribution (Section 7.3.1).
We define a loss function based on the Barlow Twins method [ZJM+21], which
allows us to reduce the redundancy in the latent code (Section 7.3.2).

7.3.1 Network Architecture

Our shape compression task is implemented using a convolutional autoencoder.
To achieve decoupling of skeleton shape and soft tissue distribution, we
encode all samples using the encoder of our network, and split the resulting
embeddings z into two parts z(B) and z(S), representing the skeleton and
soft tissue distribution. To facilitate semantic control in the latent space, the
normalized values of the measurements taken on the original meshes are then
appended to the respective part of the latent code. Measurements taken on
the skeleton are appended to z(B), skin measurements are appended to z(S).

As a first design for the shape compression task, we experimented with
utilizing two separate PCA models for the skeleton and soft tissue distribution.
The PCA weights then formed the input to our autoencoder, which learned
to decouple the two shape dimensions. This is in line with the OSSO ap-
proach [KZB+22], where the correlation between skin and skeleton shape is
learned by a linear regressor between two PCA subspaces. We found that the
resulting model separates the skeleton and soft tissue distribution, but only
provides global shape control when modifying semantic parameters in the
latent space, due to the global influence of the PCA weights. Figure 7.6 shows
an example of the global influence, where modifying arm length also changes
the body height.

Figure 7.6: Representing skeletons and skins in PCA subspaces separates their
parameters, but the global nature of PCA prevents localized changes: Increasing the
arm length of the left model also causes the body height to increase (right).
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Figure 7.7: Our network architecture is based on four SpiralNet++ [GCB+19] convo-
lution and pooling blocks in the encoder. A final dense layer is connecting the last
layer of the encoder to achieve our embeddings z. We divide the embeddings into
two parts, one for the skeleton and the other one for the soft tissue distribution. We
append the normalized values of the measurements (the lengths of torso, arms and
legs and the circumferences of chest, waist, abdomen, and hips) taken on the input
mesh via a skip connection to the correspondingc part of the latent code. The decoder
is the reversed order of the encoder using four unpooling and convolution blocks.

To mitigate the global effects, we opt for an autoencoder using the Spiral-
Net++ approach [GCB+19], which utilizes a mesh convolution and pooling
operator. This design enables local shape control when modifying the entries
in the latent space that correspond to the anthropometric measurements.

The structure of our autoencoder is shown in Figure 7.7. The samples
X ∈ R37143×3 drawn from our Cartesian product data set (Section 7.2.2) consist
of the vertex positions XS and XB of the skin mesh and the skeleton wrap (the
latter excluding vertices in Z belonging to head, hands, and feet). We normal-
ize the vertex positions before using them as input for our autoencoder. Our
latent code utilizes 48 parameters for the skeleton and soft tissue distribution
each. We take three measurements on the skeleton (torso, arm and leg length),
four measurements on the skin (chest, waist, abdomen and hip circumference),
and append them to the resulting embeddings via skip connections. This
results in a total of 103 parameters in the latent space.

7.3.2 Cross-Correlation Loss

Our encoder creates a latent representation z for each sample X in the Cartesian
data set. Samples with identical skeleton shape should result in identical
skeleton embeddings z(B), while samples that share soft tissue distribution
should result in identical soft tissue embeddings z(S). We achieve this using a
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self-supervised learning approach based on Barlow Twins [ZJM+21], where the
loss formulation penalizes dissimilar embeddings for similar input samples.

We extend the concept of pairs in Barlow Twins by using quadruplets,
built by all four combinations of skeletal and soft tissue distribution from
two samples each for pairs of skeleton and skin meshes. To build such a
quadruplet, we randomly select two different indices k, l for skeletons and two
different indices for the distribution of soft tissues m, n from our training data
set. Let Xkm denote the vertex positions resulting from transferring the soft
tissue distribution of subject m onto the skeleton of subject k via volumetric
deformation transfer (Section 7.2.2). From the chosen indices (k, l, m, n) we
create a quadruplet containing the entries (Xkm, Xkn, Xlm, Xln), such that each
entry shares either its skeleton or its soft tissue distribution with two of the
other entries. These quadruplets are processed in batches by our autoencoder.
The forward process of the encoder for one quadruplet in a batch is visualized
in Figure 7.8.

Following the Barlow Twins method [ZJM+21], we reduce the redundancy
in the embeddings of common features – resulting from samples that share ei-
ther the skeleton shape or the soft tissue distribution – by computing empirical
cross-correlation matrices of the embeddings and penalizing their deviation
from the identity matrix. The cross-correlation loss is defined as

LBT = ∑
i
(1− Cii)

2 + λ ∑
i

∑
j ̸=i

C2
ij, (7.3)

with
Cij =

1
BS ∑

b
zA

b,i · zB
b,j. (7.4)

The batch size is marked as BS, the batch dimension is denoted by b, and
the index dimensions of the network output are represented by i and j. λ is
a trainable hyperparameter to weight the importance of off-diagonal entries
being close to 0 in the empirical cross-correlation matrices. z(A) and z(B) are
batches of embeddings, which are selected as described in the following. Note
that Equation (7.4) differs from the original definition in that we do not use
batch normalization on the embeddings before calculating the entries of the
cross-correlation matrices Cij. Our model achieves greater accuracy without
batch normalization and enables more efficient manual modifications to the
reconstructed meshes.

We rearrange the embeddings in a batch to group all components with
similarities on the source data set. These embeddings should have a minimal
redundancy when originating from the same distribution. This is indicated
when sharing one of their indices in the training data set k, l, m, or n. We
can form four cross-correlation matrices for the quadruplets in the batch:
z(B)km ⊗ z(B)kn , z(B)lm ⊗ z(B)ln , z(S)km ⊗ z(S)lm , and z(S)kn ⊗ z(S)ln , where ⊗ denotes the outer
product of the batched embeddings. We calculate the cross-correlation loss
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Figure 7.8: Processing a quadruplet of samples in the encoder and dividing the
embeddings into two parts: one for the skeleton and one for the soft tissue distribu-
tion. After separation, the normalized measurements are appended to the respective
embeddings. If the divided embeddings are noted the same way, they are merged
for the entire batch. In order to calculate the cross-correlation loss between pairs, the
cross-correlation matrices are calculated for the positions colored in the same way,
which indicates that they share either the same skeleton shape or the same soft tissue
distribution.
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LBT for each matrix using Equation (7.3) and sum up the total loss for all four
matrices of the batch to compute our redundancy loss LQ. Note that we do not
need to minimize the redundancy between skeleton and soft tissue parameters
directly to learn a separation.

Let LR denote the L1 reconstruction loss over all samples of the quadruplets
in the batch. We train our network to minimize the combined loss function

L = LR + γLQ, (7.5)

where γ is a trainable hyperparameter that balances the importance of recon-
struction and redundancy reduction in our loss function.

We train the autoencoder using the Adam Optimizer [KB15]. A randomized
hyperparameter search is conducted and the highest performing model in the
validation data set was selected. We trained our models over the complete
training set, resulting in 12 epochs for female and 27 for males. This model
was trained using a learning rate of 1.71 · 10−4 for females and 1.78 · 10−4 for
male. We used redundancy importance values with γ = 0.52 for females and
γ = 0.42 for males. The optimal importance hyperparameter for off-diagonal
entries to achieve the best performance was λ = 2.3 · 10−2 for females and
λ = 4.3 · 10−2 for males.

7.4 P O S T- P R O C E S S I N G

After the inference of the decoder, the resulting meshes might show certain
artifacts. We observed asymmetries in the face region, which are amplified
when modifying the latent code towards the boundary of the learned distri-
bution. This is in part due to the fact that the variance of the face region was
not part of the modification in the training data set (Section 7.2.1). To mitigate
potential artifacts, we apply three post-processing steps after decoding: (i) the
face region is symmetrized, (ii) the resulting skin surface is smoothed and
(iii) intersections between the skeleton and skin layer are resolved. As a final
step, we embed the high-resolution anatomical skeleton into the skeleton wrap
using a triharmonic space warp.

7.4.1 Face Symmetrizing and Smoothing

After the inference of the decoder, we approximately symmetrize the face
region by adapting the approach of Mitra et al. [MGP07]. A reflective symmetry
plane is defined at the center of the head, based on which corresponding vertex
pairs (vi, vj) on both sides can be determined. The y-coordinate of these vertex
pairs are adjusted to match approximately: y′i =

3
4 yi +

1
4 yj. Afterwards, one

explicit smoothing step [DMS+99] is performed on the skin mesh in order to
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reduce high frequency noise, which may occur when applying drastic changes
to the latent parameters.

7.4.2 Intersection Avoidance

After decoding from the latent space, the resulting skeleton B with vertices
V might slightly protrude the skin layer S , especially when the target skin
measurements in the latent code are set to lower values. We detect protruding
triangles and add all vertices belonging to its two-ring neighborhood to the
collision set Ccoll.

When inferring the skeleton for a skin S given by a 3D scan (as demon-
strated in Section 7.5.5), we want to keep the vertices on S fixed, as they can be
considered ground truth. As such, in order to resolve the detected collisions,
we solve for a new skeleton layer B by minimizing

E(B) = Ereg
(
B,B

)
+ Eclose

(
B,B

)
+ λcollEcoll(B,S) , (7.6)

where Ereg is a bending constraint on the skeleton layer:

Ereg
(
B,B

)
=

1
2 ∑

xi∈B
Ai ∥∆xi −Ri∆xi∥2 . (7.7)

Ri ∈ SO(3) denotes the rotation matrix optimally aligning the vertex Lapla-
cians between the resolved surface B and the initial surface B. The Laplace
operator is discretized using cotangent weights and Voronoi areas Ai [BKP+10],

Eclose constrains vertices that are not part of the collision set Ccoll to stay
close to their original position:

Eclose
(
B,B

)
=

1
|V \ Ccoll| ∑

xi /∈Ccoll

∥xi −xi∥2 , (7.8)

and Ecoll defines the collision avoidance term:

Ecoll(B,S) =
1
|Ccoll| ∑

xi∈Ccoll

wi ∥xi −πS(xi)∥2 , (7.9)

where πS(xi) projects vertex xi to lie 2.5 mm beneath the colliding triangle’s
plane on the skin S .

We iteratively minimize Equation (7.6) via the projective dynamics solver
implemented in the ShapeOp library [DDB+15]. We set the global collision
avoidance weight to λcoll = 50, the local per-vertex collision avoidance weight
to wi = 1, and progressively increase wi by 1 each iteration in which the
collision could not be resolved. After each iteration, the Laplacian of the initial
state B in Equation (7.7) is updated to the current solution, thereby making
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the skeleton layer slightly less rigid. Following this optimization scheme, we
could reliably resolve all between-layer-collisions in our tests.

Note that when modifying the soft tissue distribution over a given skeleton
B, we analogously keep the vertices on B fixed, and solve for a new intersection-
free skin layer S .

7.4.3 Embedding High-Resolution Skeleton

Once an intersection-free pair (B,S) is generated, we embed the high-resolution
skeleton mesh (Figure 7.3) by following the approach presented in Chapter 6,
i.e., using a space warp based on triharmonic radial basis functions [BK05].
The matrix of the involved linear system depends on the template skeleton
B̂ only and hence can be pre-factorized. After generating a new skeleton B,
the solution can be inferred by back-substitution, and the space warp can
efficiently be evaluated to embed the high-resolution anatomical skeleton.

7.5 R E S U LT S A N D A P P L I C AT I O N S

The resulting model allows local shape manipulation based on the injected
measurements in the latent space. For a demonstration of the final model,
we refer the reader to the accompanying video at https://www.youtube.com/
watch?v=rrkf_fIhX0Q. In the following, we evaluate the performance of the
model on our test data set, and compare our approach to the related ap-
proaches of OSSO [KZB+22], SKEL [KWS+23], MLM [ABG+18] and standard
PCA approaches [ACP03; PSR+14]. Finally, we demonstrate the modification
of 3D scanned realistic virtual humans.

7.5.1 Model Evaluation

To quantitatively evaluate the fit of our trained model defined in Section 7.3,
we do not perform the post-processing described in Section 7.4. We use
separate data sets for training and model evaluation. The training subset is
utilized for model optimization, while a validation subset is used to conduct an
automated evaluation and to estimate the model’s capability for generalization.
To minimize the validation set bias, we utilize a third subset of our data set for
testing. The splitting is done such that the skeleton and soft tissue distribution
of an individual ends up in only one of these subsets.

For training our model, we use a batch size of 64 samples. We divide our
data set into training, validation, and test such that the number of Cartesian
pairs in the final data set corresponds to a ratio of 8 : 1 : 1. Let a, b, and c denote
the number of samples in the training, validation, and test set, respectively.
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Figure 7.9: Mean Euclidean vertex distance when evaluating over all samples in the
male (left) and female (right) test data set. Our model achieves a maximum Euclidean
distance of 11.5 mm for males and 13.9 mm for females.

We want the ratio of squared subset samples a2 : b2 : c2 to match the target split
ratio of 8 : 1 : 1. This split results in 539 samples for the female and 456 samples
for the male training set. The validation and test sets have 190 female and
160 male samples each. Using deformation transfer, we effectively square the
training set size to 290 521 female and 207 936 male samples. The validation
and test sets contain 36 100 samples for females and 25 600 samples for males
each.

Figure 7.9 displays our model’s reproduction error for the skin, measured
as per-vertex distance averaged over all meshes in the test data set, when using
the decoder back propagation method. The vertex distances of the fitted skins
are evenly distributed on the limbs and face, but in the chest and abdomen
regions the largest average deviation from the target is observed. Overall, our
model attains a maximum per-vertex error of 13.9 mm over all samples in the
test data set.

The mean absolute error is the L1 loss for the predicted mesh X′ to the
input mesh X with n vertices, which is defined as

L1 =
1

3V
∥∥X− X′

∥∥
1 =

1
3V

V

∑
i=1

∥∥xi − x′i
∥∥

1 . (7.10)

When using the encoder and decoder for reproduction of the test data set,
we achieve a mean absolute error for the skeleton wrap and the skin of 5.2 mm
(SD = 1.5) for females and 5.4 mm (SD = 1.5) for males. The cross-correlation
matrices in Equation (7.4) converge to the identity matrix. The individual
mesh measurements positively correlate with each other as the circumferential
measurements on the original meshes show a strong connection.
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When inferring a skeleton from a given skin XS , we use the Adam opti-
mizer [KB15] on the latent parameters z and minimize the L1 error for the skin
arising from decoding z to the target skin of the sample. For skins, we achieve
a mean absolute reproduction error on the test data set of 2.8 mm (SD = 0.5)
for females and 2.9 mm (SD = 0.5) for males. For skeleton wraps, we reach a
mean absolute error of 6.3 mm (SD = 1.4) for females and 6.9 mm (SD = 1.7)
for males.

7.5.2 Comparison to OSSO and SKEL

We qualitatively compare our work to the OSSO approach [KZB+22]. This
method computes a linear regressor between skin and skeleton PCA shape
spaces, after fitting both shape models to a set of DXA Scans. As DXA scans
are taken in a lying pose, OSSO first reposes a given skin mesh to this pose,
infers skeleton shape there, and finally reposes the given result to the input
pose. As seen in Figure 7.10, when compared to our skeleton prediction,

Figure 7.10: Comparison of OSSO [KZB+22] (left) and SKEL [KWS+23] (center)
with our approach (right). The OSSO skeleton protrudes through the skin (yellow
protrusions circled in red), we resolve these kinds of collisions (right). The rib cage
inferred by OSSO is skewed (black inset) and the stitched puppet model results in
gaps between bone structures (dashed blue inset). The SKEL skeleton (center) is
missing the clavicles (circled in red). The individual spine segments (lumbar, thoracic
and cervical) are not properly aligned (black inset).
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the skeleton inferred by OSSO exhibits a skewed and unnaturally shifted
rib cage as well as large gaps between bone structures, such as the elbow
region or in between ribs and spine. We also compare our work to the SKEL
approach [KWS+23], where a combined parametric model for biomechanical
skeleton and skin shape is presented. The final model is able to infer an
animatable biomechanical skeleton from given SMPL parameters as shown
in Figure 7.10. We observe that SKEL’s template skeleton misses bones for
the clavicles and the lower spine unnaturally detaches from the pelvis, when
fitting the model to a target skin.

Moreover, both OSSO’s and SKEL’s skeleton protrudes through the given
skin, while our method resolves these intersections (Section 7.4.2). We evalu-
ated the number of skeleton and skin intersections by fitting our model, OSSO,
and SKEL to 1697 samples from the European subset of the CAESAR data
set [RBD+02]. For OSSO and SKEL, there is no single sample which is free of
intersections. Our model produces self-intersections in only 1.30 % of cases,
and then only due to the RBF warp in the head region, where hairs are not
correctly handled in our method – a limitation we inherit from the Inside
Humans approach (Chapter 6).

We quantitatively evaluate the geometric difference between the skeleton
fits of our method, OSSO, and SKEL on the 1697 CAESAR samples by cal-
culating for each model the average per-vertex distance and the two-sided
Hausdorff distance between the respective skeletons, and then averaging those
numbers over all samples. Our model then attains an average per-vertex
distance of 0.76 cm to SKEL and 0.56 cm to OSSO, and a Hausdorff distance of
6.20 cm to SKEL and 5.78 cm to OSSO. For comparison, the skeletons inferred
by SKEL and OSSO deviate by an average per-vertex distance of 0.64 cm and a
Hausdorff distance of 4.71 cm.

7.5.3 Comparison to MLM

We compare our model to the multilinear model (MLM) presented by Achen-
bach et al. [ABG+18]. The MLM approach requires the computation of a 3D
tensor to separate the skeleton and soft tissue dimensions. Given our model
with 51 skeleton and 52 soft tissue parameters, the MLM requires a total of
292 M parameters. Our method requires two orders of magnitude fewer param-
eters (2.1 M) to process the same number of input variables. When applying
the MLM approach to our training data, we found that the decoupling process
of the two parameter sets is incomplete. This effect can also be observed in
the original work. The authors provide a demo application at https://cg.
cs.tu-dortmund.de/publications/2018-multilinear.page, where changing
the first skull parameter causes subsequent changes to the first soft tissue
parameter to also change the resulting skull shape.
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Figure 7.11: Comparison of our localized shape modification (left) with a global PCA
approach [PSR+14] (right). Both models were used to shorten arm length by 38 mm.
The vertex distance from the original to the modified mesh is color coded. Our model
enables more localized shape changes, while the global PCA approach considerably
changes the leg region when modifying arm length.

7.5.4 Comparison to Surface PCA

To show the benefits of our local and non-linear autoencoder and mesh convo-
lution design (Section 7.3), we compare our method to the common approach
of modeling anthropometric shape manipulation by correlating measurements
with a global and linear PCA subspace learned from surface scans [ACP03;
PSR+14]. These methods allow global shape manipulation, but provide only
limited local control. For an example of this effect, we compare the results of
shortening arm length with our model and the model proposed by Piryankova
et al. [PSR+14]. Figure 7.11 shows that our model provides local control of
arm length, whereas the surface based approach results in notable changes in
the leg region. To interactively explore the shortcomings of the surface based
approach, we invite the reader to experiment with the demo application at
https://bodyvisualizer.com, and try to change the inseam parameter, while
keeping the other measurements fixed. This changes the model’s arm length
in addition to the desired effect of changing the leg length.

7.5.5 Modifying Virtual Humans

As demonstrated in Figure 7.1, we can also fit our model to surface scans of
clothed humans, allowing us to modify virtual humans with our model. To this
end, given a registered surface scan conforming to our skin layer topology, we
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let our model infer skin and skeleton shape by optimizing the mean absolute
error with additional weight decay in order to prevent overfitting.

To determine a fit for the skeleton and soft tissue distribution of a person,
gradient descent is performed on the latent parameters z using the Adam
optimizer [KB15] implemented in PyTorch and running on the GPU. We apply
a weight decay of 7.5 · 10−5 to prevent fitting values that are too far outside
the learned embeddings. Fitting the skeleton and soft tissue parameters takes
less than 100 ms on a desktop PC equipped with an Nvidia RTX 3090 GPU
and an Intel Core i9-10850K CPU. The post-processing steps (Section 7.4) add
another 700 ms to the total inference time. This is an order of magnitude faster
than the Inside Humans approach (Chapter 6), where we reported a total
time of approximately 20 s on similar hardware. We measure an inference
time of approximately 2 min for the publicly available implementation of
OSSO [KZB+22].

In order to modify the 3D scan of a person, we apply the changes made
to the latent code as a delta shape manipulation to the scan of the person. By
gθ(z̃) we denote the inference of our decoder for the fitted latent parameters
z̃ to a scan of a person X. For modified latent parameters z we apply the
difference of decoding z̃ and z to the scan, resulting in the modified person X′:

X′ = X + (gθ(z)− gθ(z̃)) . (7.11)

To prevent unnatural deformation of the head region, we stitch the original
head of the scanned person back onto the resulting mesh using differential
coordinates similar to the face region stitching described in Section 5.2.

7.5.6 Experiments with Different Poses

In Figure 7.12, we show examples of fitting our model to poses which differ
from our trained A-pose. We follow the OSSO approach [KZB+22] and first
unpose a given scan by employing the surface-based template fitting approach
of Achenbach et al. [AWL+17], as described in Section 2.2.2. Our anatomical
shape model is then fit to the resulting A-pose surface mesh, resulting in an
unposed high-resolution skeleton embedding. Since our template skeleton
shares its animation rig with the skin surface, we can then use Linear Blend
Skinning to repose the resulting skeleton.

Note that after applying the very simplistic Linear Blend Skinning, the
resulting skeleton and skin meshes may show self-intersections, as we only
resolve these intersections in the A-pose of our template. As Linear Blend
Skinning is obviously not an anatomically correct animation technique, more
sophisticated animation methods such as proposed in SKEL [KWS+23] or Fast
Projective Skinning [KB19] should be incorporated in future work to allow
anatomically sound animations based on our model.
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Figure 7.12: The results of fitting our model to different scan poses (top row). We first
unpose the scan by fitting our human skin surface template. The skeleton inference
is then performed in the trained A-pose. Finally, we employ Linear Blend Skinning
to repose the results back to the observed scan pose (bottom row). Note that the
fingers of the second pose are not faithfully reproduced by the pose estimation of the
employed template fitting technique.
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7.6 S U M M A RY A N D L I M I TAT I O N S

This chapter presented a novel approach for learning an anatomically con-
strained volumetric human shape model. We started by registering an anato-
mical model of skin and skeletal shape to the European subset of the CAESAR
database. This dataset was then extended to the full Cartesian product of
skeleton shapes and soft tissue distributions using volumetric deformation
transfer, allowing us to transfer the soft tissue distribution of subject i onto
the skeleton of subject j in a physically plausible way. To decouple the two
shape dimensions, we utilized a Barlow Twins inspired learning approach to
train our autoencoder from pairs of skeleton and soft tissue distribution. This
learning paradigm enforces similar latent representations of samples in the
Cartesian dataset that share either their skeleton shape or soft tissue distribu-
tion. The resulting model can be used for shape sampling, e.g., generating
various soft tissue distributions on the same skeleton. It provides localized
shape manipulation due to the injected measurements in the latent space of our
autoencoder, allowing us to modify personalized realistic avatars. Compared
to other methods, our model better decouples the skeleton and soft tissue
shape dimensions, allows more localized shape manipulation, and provides
significantly faster inference time.

Due to the limited availability of such data, our model is not trained on
real anatomical data. We do note however, that the data needed for learning
our model – different soft tissue distributions on the same skeleton – does
not exist as ground truth data. Recent methods have argued that relying on
synthetic data alone could also be seen as an advantage and that the trained
models can still outperform state-of-the-art methods which are trained on real
captured data [WBH+21]. However, evaluating our model on real anatomical
data such as CT scans [SBJ+23; SBE+24] or MRI scans [KAD+24] would clearly
be desirable in future work.

Our training data lacks information about the bone structure underlying
the head, hands, and feet of our subjects. Therefore, our model cannot properly
reproduce these areas. Due to this fact, we observe asymmetric structures,
especially occurring in the facial region, which are amplified when modifying
the latent code. Future work should extend our model in this regard in order
to provide a volumetric representation of the complete human body. Similarly,
in future work our model can be extended to include other anatomical details
such as the muscles. The skeleton, muscle, and soft tissue layers then could be
separated by our model applying a triple Barlow twins loss, where pairs of
eight are processed in a batch.

As is the case for the method presented in Chapter 6, our training data
also lacks diversity. We train our model by fitting to the European subset of
the CAESAR database, featuring mostly Caucasian men and women. Incorpo-
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7 .6 summary and limitations

rating a more unbiased dataset into the training of volumetric human shape
models should be addressed in future work.

Although our resulting meshes are free of self-intersections, this property
only holds in the A-pose of our template model. When animating the resulting
skeleton and skin, due to our simplistic use of Linear Blend Skinning we cannot
guarantee that the skeleton does not protrude the skin. Further investigations
into developing an animation method for volumetric virtual humans that
avoids self-intersections is an interesting direction for future work.
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8C O N C L U S I O N

This thesis presented surface-based and volumetric models of realistic virtual
humans in the context of VR therapy for body image disorders. A large
part of our research was embedded into the ViTraS project [ViT24], short for
Virtual Reality Therapy by Stimulation of Modulated Body Perception. As such,
we focused on fully animatable, real-time capable, modulatable, realistic, and
personalized virtual humans, ready for virtual mirror exposure as opposed
to stylized representations commonly used in VR environments or ultra-high-
fidelity virtual humans as used, e.g., in film productions, where real-time
rendering is not a concern. To conclude this thesis, we will summarize the
main contributions and discuss promising directions for future research on
this topic.

We started by introducing our custom-built photogrammetry rig, which
is capable of producing high-quality static 3D scans of humans. To generate
animatable virtual humans from such scans, we presented a template fitting
approach that fits an animatable statistical virtual human body model to
the scanned data and generates a high-quality color texture, yielding fully
animatable virtual humans ready for use in VR environments. This approach
is largely based on previous work but adapted to run in a fully automatic
manner. Requiring an elaborate photogrammetry rig for reconstructing virtual
humans however limits their availability due to the high hardware costs and
stationary scanner setup.

To tackle this problem, we then presented a method for generating realistic
virtual humans from smartphone videos. By requiring only two videos taken
with commodity smartphones, one depicting the subject’s full body and the
other featuring a closeup of the subject’s head, we greatly reduce the hardware
costs compared to existing approaches that reconstruct virtual humans at an
adequate fidelity for virtual mirror exposure. From the recorded videos, we
extract suitable image frames by means of optical flow analysis and sharpness
estimation. The extracted frames are then passed to an off-the-shelve pho-
togrammetry software, yielding two dense 3D point clouds, to which we fit an
animatable statistical human template model. To compensate for geometric
inaccuracies arising from motion artifacts inherent in the scan process, we
texturize the resulting virtual humans by employing a graph cut based texture
stitching.

To investigate the perception of the resulting virtual humans, we then
conducted a user study, comparing the presented smartphone reconstruction
method to virtual humans reconstructed from a 3D scan performed with a
high-cost photogrammetry rig. Participants were scanned with both methods
and embodied both virtual humans in a VR environment with motion tracking
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conclusion

and virtual mirror exposure. They were then asked to score the similarity,
human-likeness, and eeriness of the virtual humans, rate their feeling of virtual
body ownership, and state their preference for one of the resulting virtual
humans. The results show, that both virtual humans are perceived similarly,
as we could find almost no significant differences in the statistical evaluation
of the dependent variables. We thus conclude that the presented low-cost
method based on video input from commodity smartphones is indeed a viable
alternative to high-cost photogrammetry rigs.

To further investigate the potential of virtual humans in the context of VR
therapy of body image disorders, we developed a statistical model of body
weight modification. The model is learned by first registering a template model
to a database of 3D scans annotated with anthropometric measurements such
as weight, height, arm span, and inseam. We then build a low-dimensional
human body shape model and correlate the resulting subspace with the anthro-
pometric measurements. This allows to map from a change in anthropometrics
to a change in body shape via the low-dimensional body shape model. By
integrating this statistical model of body weight modification into a VR pro-
totype, we give users the ability to actively control the body weight of their
personalized avatar in a virtual mirror exposure setup in real-time. However,
the presented model was only trained on surface meshes and is therefore
unable to accurately reason about anatomical traits such as body composition.

To address this limitation, we focused on volumetric anatomical representa-
tions of virtual humans in the second part of this thesis. First, we presented a
layered anatomical model, consisting of a skin, muscle, and skeleton layer with
identical topology, enveloping high-resolution muscle and skeleton meshes
derived from a high-quality anatomy model. From a data set of 3D scans
annotated with data from a medical-grade bioelectrical impedance analysis
scale, we learned to infer fat and muscle mass from surface scans. The layered
template model is then fit to a given skin surface in a multi-stage optimization
scheme while conforming to the inferred body composition. After fitting the
layered template model, we employ a space warp based on triharmonic radial
basis functions to embed the original high-resolution skeleton and muscle
meshes into the fitted model. Given a skin surface conforming to our template
topology, we can efficiently generate a personalized anatomical model in a
few seconds. We demonstrated the robustness of our method by fitting our
template to the European subset of the CAESAR database and showed example
applications such as physics-based character animation, fat growth, and fat
transfer, which all benefit from – or are made feasible by – our volumetric
representation.

Finally, we presented a novel approach for learning an anatomically con-
strained volumetric model of human skeleton shape and soft tissue variation
from the data produced by the anatomy inference method described above.
With the use of volumetric deformation transfer, we are able to transfer the
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soft tissue distribution of all subjects i onto the skeleton shapes of all subjects j
in our database, yielding a Cartesian data set of skeleton shape and soft tissue
distribution. Due to the employed self-supervised learning technique, our
autoencoder architecture is able to learn separate parameter sets for both input
dimensions, providing shape sampling of various soft tissue distributions over
the same skeleton shape and vice versa. By additionally concatenating anthro-
pometric measurements to the latent space, we are able to provide semantic
localized shape modification. The resulting model is able to infer skeleton
shape from a given skin surface in less than a second.

The generation of realistic virtual humans still remains an active field of
research. A promising direction for future work on the low-cost generation
of virtual humans is to further increase the input quality. The quality of the
built-in cameras increases with every new generation of smartphones. Directly
capturing images with a dedicated timer-based capture application instead of
extracting image frames from videos would additionally improve the input
quality due to the higher resolution and less compression artifacts, yielding
higher-quality point clouds in the photogrammetry step and improve texture
detail in the resulting virtual humans. One big limitation of scanning people
with a single camera is the fact that people cannot hold completely still for
the duration of the scan. This violates the multi-view stereo assumption,
which expects images that capture a scene from different angles at the same
moment in time. These unavoidable movements could be compensated for
in several ways. One option is to split the set of input images into several
consecutive chunks, such that the individual chunks exhibit less movement
than the complete set of images, since they cover a smaller period of time. The
template fitting method would then be adapted to optimize pose parameters
for each chunk separately. Another option could be to semantically segment
the input images into various body parts (e.g., arms, legs, torso, and head) and
reconstruct separate point clouds for each body part, the assumption being
that each individual body part moves approximately rigidly, which can be
compensated for by the camera calibration.

Volumetric anatomical representations of virtual humans equally provide
opportunity for further research. Due to the limited availability of such data,
we did not evaluate our model on real-world data stemming from medical
imaging techniques such as DXA, MRI, or CT scans. Therefore, our model
remains only anatomically plausible. Future work should (i) include evalua-
tions against ground truth data, and (ii) be trained on a more diverse set of
human body shapes. Furthermore, our volumetric representation excludes the
head, hands, and feet, which should be incorporated to provide a volumetric
representation of the complete body in future work. Our volumetric fitting is
informed by estimations of fat and muscle mass. The linear regressor, which
provides these estimates, is trained on a small synthetic data set [MMK+21],
which could either be extended or replaced by a more sophisticated model of
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conclusion

body composition (see, e.g., [KAD+24]). The presented statistical volumetric
human shape model was limited to skeleton shape and soft tissue distribution.
Further anatomical structures, such as muscles, should be incorporated in
future work, as this would give more fine-grained control to applications
which aim to separately change the distribution of muscle and fat tissue. Ad-
ditionally, we only resolve self-intersections in the A-pose of our template
model. Developing an animation method for volumetric virtual humans which
upholds this property for any pose is a promising direction of future work.

We believe that further improving both low-cost avatar generation and
volumetric anatomical representations of virtual humans will not only prove to
be beneficial for further research in VR therapy of body image disorders, but
also benefit other applications. After evaluating and improving the anatomical
accuracy of our volumetric model, it can provide valuable information for
sports science or medical applications, where estimations of muscle mass and
bone structure could, e.g., be used for computing forces in biomechanical
analysis simulations. Virtual try-on methods would benefit from simulating
the interaction of fabric with our predicted soft tissue distribution and skele-
tal shape, as this would improve the accuracy of cloth fitting and draping
simulations.
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[KIL+16] Petr Kadleček, Alexandru-Eugen Ichim, Tiantian Liu, Jaroslav
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