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ABSTRACT

This cumulative thesis presents novel advancements in the field of facial
animation through the integration of anatomically—constrained physics—
based simulations at various stages of the animation workflow. The mo-
tivation for this work stemmed from limitations of the currently most
widely used animation technique linear blendshapes [56]. Although this ap-
proach’s computational efficiency and intuitive design are appealing, blend-
shape animations usually lack anatomical precision and can only partially
reproduce nonlinear face characteristics. Among other things, they do not
guarantee volume preservation, allow self—collisions, and are not able to in-
corporate external influences such as gravity or wind. Since physics—based
simulations can mitigate these shortcomings, albeit in a slow and intri-
cate manner, our principle goal was to combine the advantages of both
concepts while avoiding their respective disadvantages.

Our work encompasses four publications, each addressing distinct anima-
tion components and achieving this goal in diverse ways. Soft DECA [107]
integrates physics—based anatomical corrections into linear blendshapes,
maintaining their efficiency even on consumer hardware. SparseSoft DECA
[111] extends Soft DECA but creates realistic facial animations from sparse-
ly tracked facial landmarks. AnaConDaR [110] provides solutions for fa-
cial retargeting, particularly an anatomical deformation transfer [105] to
create more authentic and lifelike blendshapes. Finally, NePHIM [112]
investigates real-time simulations of head-hand interactions, which are
indispensable for conveying non—verbal communication cues.

All of our contributions are presented and discussed in light of associated
research questions and analyzed with regard to conceivable limitations.
We also propose potential advancements in our approaches and assess fu-
ture developments of facial animations in general. This thesis aims to offer
readers a concise yet well-substantiated overview of our research results.
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ZUSAMMENFASSUNG

Diese kumulative Dissertation integriert Physiksimulationen an verschie-
denen Stellen des Workflows zur Animation von Gesichtern. Die Moti-
vation fiir unsere Arbeit ergab sich aus den Einschrdnkungen der aktu-
ell am weitesten verbreiteten Animationstechnik linear blendshapes [56].
Obwohl die effiziente Laufzeit und das intuitive Design dieses Ansatzes
ansprechend sind, mangelt es Blendshape-Animationen in der Regel an
anatomischer Prézision und nichtlinearen Eigenschaften. Unter anderem
konnen sie keine Volumenerhaltung garantieren, erlauben Selbstkollisionen
und sind nicht in der Lage, externe Einfliissse wie Schwerkraft oder Wind
zu berticksichtigen. Physiksimulationen konnen diese Probleme abmildern,
sind jedoch langsam und komplex. Daher war unser Ziel, die Vorteile bei-
der Konzepte zu kombinieren und ihre jeweiligen Nachteile zu vermeiden.

Unsere Arbeit umfasst vier Veroffentlichungen, die sich jeweils mit un-
terschiedlichen Aspekten befassen und dieses Ziel in vielerlei Hinsicht er-
reichen. SoftDECA [107] fiigt simulierte anatomische Korrekturen zu /li-
near blendshapes hinzu, wobei deren Effizienz auch auf giinstiger Hard-
ware erhalten bleibt. SparseSoftDECA [111] wendet ein &hnliches Kon-
zept an, um realistische Gesichtsanimationen aus nur wenigen markanten
Gesichtslandmarken zu erstellen. AnaConDaR [110] bietet Losungen fiir
das Ubertragen von Gesichtsausdriicken an. Insbesondere einen volume-
trischen deformation transfer [105], um authentischere Blendshapes zu
erzeugen. Schlieflich wird in NePHIM [112] eine Echtzeitsimulation von
Kopf-Hand Interaktionen vorgestellt, die fiir die Ubermittlung nonverba-
ler Kommunikationshinweise unerlésslich ist.

Alle unsere Publikationen stellen wir anhand von verbundenen Forschungs-
fragen vor, diskutieren zugehorigen Resultate und zeigen denkbare Gren-
zen auf. AuBerdem ergriinden wir mogliche Weiterentwicklungen und ge-
ben einen denkbaren Ausblick auf die Zukunft von Gesichtsanimationen.
Insgesamt soll diese Arbeit dem Leser einen kurzen, aber fundierten Uber-
blick tiber unsere Forschungsergebnisse geben.
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INTRODUCTION

1.1 MOTIVATION

The technological world was fundamentally different when the work for the
contributions of this thesis started in October 2021. For instance, Chat-
GPT had not yet been released [85], Meta was still called Facebook [128],
and modern volumetric photorealistic rendering methods such as neural
radiance fields did not yet exist [51, 74]. However, a noticeable trend to-
wards more mixed or virtual reality in which authentic digital twins of real
people can meet and communicate was already underway at this time. As
can be seen in Figure 1.1, attention to research activities in related fields
has increased almost exponentially since then, and the end is not yet in
sight. Unfortunately, unlike two-dimensional video telephony, there are
still no real-time capable three—dimensional equivalents that can depict
people in mixed realities with the same simplicity and cost—effectiveness.
For this reason, the current focus of research on virtual communication is
on animating personalized avatars as realistically as possible from sparsely
tracked motion information. Facial animations are particularly important
here as they can easily pave the way into the Uncanny Valley [76], where
animated avatars are often perceived as fake and, at times, even terrifying.
The challenge of animating something as visually expressive as faces au-
thentically is generally at odds with the computational efficiency required
for virtual realities. Especially if access to realistic digital twins for a large
audience is intended, they must be scalable and executable on inexpensive

hardware.

Principle Objective

Therefore, the principle objective of this thesis is to develop an effi-
cient, accessible, yet authentic framework for animating faces.

To that end, our general approach is to improve the realism of what
is currently arguably the most widely used, easiest to control, and fastest

1
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FIGURE 1.1: The total number of citations per year (2010-2024) for publica-
tions with certain keywords (subcaptions) in their title as per
[28]. A sharp increase of interest in topics relevant to this thesis
as of 2020 can be recognized.

method for facial animations: so-called linear blendshapes (LBS) [56]. LBS
only requires a few exemplary expressions of a person, i.e., the blendshapes,
and then animates the corresponding face by weighted linear interpolation
of these examples. The ecosystem around LBS is vast and encompasses,
for instance, automated algorithmic creation of blendshapes [58], track-
ing with commodity smartphones [4], as well as support from the most
common game and animation engines like Unity [106] or Blender [10]. As
all computer architectures nowadays efficiently implement linear interpo-
lation, even weak hardware can perform LBS in just a few milliseconds.
In essence, LBS is a reasonable starting point, but it exhibits significant
weaknesses concerning our objective. Above all, it usually lacks anatomical
and physical plausibility, for which nonlinear animation techniques are
better suited. Figure 1.2 depicts a few illustrative problems that arise
from the simplistic linear concept of LBS. Among others, LBS does not
guarantee biologically prescribed volume preservation, can not resolve lip
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FIGURE 1.2: Some examples of linear blendshapes [56] resulting in implausible
animations.

collisions, fails to respect anatomical movement restrictions, and ignores
external influences like head—hand interactions.

Physics—based simulations (PBSs) provide a different way to animate
faces, virtually solving all the aforementioned LBS problems. The basic
idea of PBSs is to computationally simulate head anatomy to generate
facial expressions while including forces from external effects. Figure 1.3
illustrates the representation of the anatomy we use in our works. The
primary component is a tetrahedral mesh that comprises soft tissue, mus-
cle tissue, and the skull. Although the precision of the simulation or the
level of detail of the anatomical representation influence the quality of the
animation, PBSs, in general, enhance plausibility by design. Just as gen-
erally, PBSs are not even remotely real-time capable, even on high—end
hardware.

Principle Idea

Therefore, the principle idea of this thesis is to design a real-time
capable and generally applicable framework that leverages PBSs to
enhance the anatomical plausibility of LBS.
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Tetrahedral Mesh Muscles Skull

FIGURE 1.3: For the most part, the anatomy in our work is captured as a
tetrahedral mesh, where we know for each tetrahedron whether
it represents soft tissue, muscle tissue, or the skull. Depending
on the application, muscle or skull surfaces are additionally
represented as triangular meshes.

Put differently, we strive to integrate the strengths of both LBS (effective-
ness, accessibility) and PBSs (realism) to achieve the principle objective.

1.2 RESEARCH QUESTIONS

Our concept of a framework that implements the principle idea evolves
around four pivotal research questions described in the following.

1.2.1 SIMULATION OF BLENDSHAPES

The first question is the most elementary and impactful. The inspiration
comes from the observation that many proposed head PBSs [6, 45, 44, 7]
also attempt to provide the same interface as LBS in order to build on
the same ecosystem. Roughly summarized, while such PBS models con-
tinue to utilize variants of blendshape interpolation, they also incorporate
an additional corrective simulation phase. Although such corrective proce-
dures can significantly bolster anatomical plausibility, they are likewise not
real-time capable [44] or their contributions are tailored to only specific
shortcomings of LBS [6]. The research question we derive is:
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Research Question 1

Can we accelerate any physics—based correction of linear blendshapes
to facilitate its usage in real-time applications on consumer—grade
hardware?

Successfully addressing this research question would largely implement our
principle idea as, by construction, the advantages of the LBS are retained,
but the disadvantages are compensated for.

1.2.2 SIMULATION OF SPARSE LANDMARKS

Even with a successful answer to Research Question 1, structural chal-
lenges persist that limit realism. Chiefly among these issues are often-
times undersized blendshape systems, which lack both expressiveness and
detailed modeling. To illustrate, leading production blendshape systems
from companies like Apple [4] or Google [126] include merely 52 expressions
established on low-resolution topology. Even with improved resolution,
the majority of people can not take advantage of detailed blendshapes
because creating personalized ones commonly requires sophisticated and
costly 3D multi-view scanners [25]. Methods for algorithmic personaliza-
tion of blendshapes [59, 58, 73] are still far from being a substitute. Mainly,
as it is difficult to reflect the complex material properties of heads. For-
tunately, researchers have achieved substantial progress in the domain of
facial landmark tracking in recent years. Please refer to Figure 1.4 for a
visual demonstration. Although the depicted landmarks also do not thor-
oughly portray facial expressions, they furnish much more information
than lower—dimensional blendshape rigs and capture the most essential
facial contours. What is particularly attractive is that there are real-time
capable and publicly available tracking methods [126] which achieve effi-
ciency and accessibility similar to that of LBS. However, a method for
realistically transforming the sparsely tracked landmarks into a dense fa-
cial animation is not yet available. This observation leads us to the second
research question:
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FIGURE 1.4: Two examples of precise facial landmark tracking of rather ex-
treme facial expressions with Mediapipe [126].

Research Question 2

Can we develop a real-time, physics—based facial animation tech-
nique that forms dense, anatomically plausible facial expressions
from sparse facial landmarks?

A successful answer to this research question could not only enhance real-
ism in efficient facial animations but also potentially render the intricate
process of (manually or algorithmically) assembling blendshapes obsolete
in many cases. Thus, with regard to our principle objective, this research
question also affects accessibility.

1.2.3 SIMULATED FACIAL RETARGETING

In contrast to facial landmarks, blendshape systems typically organize
facial animations using reasoned semantic principles that allow for an
intuitive animation design. Therefore, they will maintain their status as
a preferred method in production for a presumably long time to come.
Consequently, enhancing the realism of our framework can not only focus
on the simulation of blendshapes or landmarks, but must also focus on
the effortless creation of more authentic blendshapes.



1.2 RESEARCH QUESTIONS

Deformation

g Transfer

Template Blendshapes Personal Blendshapes

F1GUrE 1.5: Examples of deformation transfer [13, 105] which maps deforma-
tions of a set of template blendshapes to a different character.

Latest smartphone—based methods [116] are at least able to create high—
resolution neutral 3D avatars in minutes with low effort. Starting from the
associated neutral facial expression, blendshapes can subsequently be gen-
erated algorithmically. The established method to that end is deformation
transfer (DT) [13, 105], which personalizes manually sculpted template
blendshapes. Expressed in rough terms, DT maps geometric deformations
between the neutral template surface and a template blendshape to the
neutral surface of the targeted person. Figure 1.5 visualizes examples of
such personalizations. However, DT entirely overlooks anatomical restric-
tions, volumetric deformations, and visual perception. Therefore, we for-
mulate the following preliminary research question:

Research Question

Can we develop a physics—based simulation that implements a volu-
metric and anatomically consistent deformation transfer while pre-
serving the perception of expression characteristics?

More generally, the task of mapping expressions from a source to a tar-
get character is known as facial retargeting. In our basic scenario, we rely
solely on the neutral head of the target without any additional informa-
tion. A more complex challenge arises when there are either no example



INTRODUCTION

expressions or a few available for the target. The gold standard for this
challenge has long been example-based facial rigging (EBFR) [58], which
effectively combines DT and LBS. As we already identified the potential
for improving both algorithms through PBSs, the obvious, more general,
third research question we formulate is:

Research Question 3

Can we develop a physics-based simulation that implements a volu-
metric and anatomically consistent facial retargeting while preserv-
ing the perception of expression characteristics?

A favorable answer to this question could bring considerable benefits to
the realism of our framework without impairing efficiency or access. Not
only could we then correct the plausibility of LBS animations (Research
Question 1), but we could additionally sculpt the underlying blendshapes
more lifelike.

1.2.4 SIMULATION OF EXTERNAL INTERACTIONS

One major feature making PBSs attractive for facial animations is the
simulation of dynamic interactions with heads — a factor we have not yet
considered. Although most interactions are likely negligible, one stands out
as particularly important: humans interact with their own faces dozens of
times per hour [93, 77, 54] through hand actions like touching, stroking,
scratching, rubbing, pulling, tugging, squeezing, grooming, caressing, pok-
ing, and so forth. Assumably, everyone can confirm, based on personal
experiences, that these interactions amplify feelings or expressions (Fig-
ure 1.6) to a considerable extent. From an algorithmic perspective, it is
not only the actual simulation of head—hand interactions that is a compu-
tational challenge, but also the ability to detect contacts in the first place.
For this reason, we formulate our final research question as:

Research Question 4

Can we accelerate physics—based simulation and detection of head—
hand contacts to function in real-time on commodity hardware
while ensuring their animation is visually compelling?
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FIGURE 1.6: Two examples of how simulated head-hand interactions can
amplify the expressiveness of facial expressions.

A successful answer to this question would add a component to facial ani-
mation that is essential for authenticity but has been neglected in research
until lately [101].

1.3 SUMMARY & ORGANIZATION

By giving answers to the above four research questions, we develop a
physics-based facial animation framework in this thesis, which achieves
the principle objective through the following summarized contributions:

¢ Real-time physics—based corrections of linear blendshapes for physi-
cally and anatomically more plausible facial animations (Chapter 3).

¢ Real-time physics—based simulation of sparse landmarks to generate
corresponding dense facial expressions (Chapter 4).

¢ Anatomically and physically more plausible algorithmic facial retar-
geting while respecting the perception of facial expressions (Chap-
ter 5).
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e Real-time simulated head-hand interactions within facial anima-
tions (Chapter 6).

Before delving into detailed discussions of the individual contributions
in the upcoming chapters, we first review the current state of research in
related fields (Chapter 2).

In each chapter associated with a specific contribution (Chapters 3 —
6), we start off by summarizing the affiliated publication before reflecting
on its results in the context of the corresponding research question. More-
over, we evaluate our contributions by comparing them with related work
and analyze relevant publications that have emerged since ours. Based
on these assessments, we also derive promising directions for future work.
All contribution chapters aim to offer concise summaries of our work that
enable readers to contextualize research questions, methods, and results
even without a full grasp of the underlying publication.

In the concluding Chapter 7, we reflect on our work in its entirety,
discuss its potential impact, and contemplate future directions of facial
animation. A list of all publications by the author of this thesis and an
overview of contributions to the thesis publications by other authors follow
this conclusion.



RELATED WORK

We continue with a thorough review of the research fields in the context
of which the contributions of this thesis have been published. The review
comprises seminal works as well as recent developments up to the current
state-of-the-art. At first, we address methods for animating faces (Sec-
tion 2.1) and subsequently outline physics—based simulations (PBSs) in
general and with regard to facial animations (Section 2.2). The differen-
tiation of our contributions in the light of related work happens in the
corresponding discussions of Chapters 3 — 6.

2.1 FACIAL ANIMATIONS

The history of facial animation in digital worlds is as long as it is diverse.
We, therefore, recommend the survey of Parke and Waters [89] for a com-
prehensive overview of earlier animation techniques and confine ourselves
to recent techniques for animating human-like characters. Our overview
of facial animations first examines approaches akin to linear blendshapes
(LBS) [56], which can attain high animation quality through individualized
facial rigs (Section 2.1.1). Afterwards, we examine the somewhat opposing
idea: statistical 3D morphable models (3DMMs). 3DMMs are meant to be
universally applicable for many people and, at least today, thereby only
partially allow for personalized nuances (Section 2.1.2). In Section 2.1.3,
we inspect the latest trend, implicit and hybrid avatars, which are able
to create photorealistic and individualized facial animations but typically
still rely on LBS or 3DMMs. Finally, we have a more detailed look at the
subproblem of facial retargeting (Section 2.1.4), i.e., transferring facial
expressions from a source to a target character.

2.1.1 PERSONALIZED BLENDSHAPE RIGS

The foundational idea of blendshape rigs is to capture a person or a fic-
tional character through the geometry of exemplary facial expressions and

11
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to animate them by combining these examples. The most basic and com-
mon variant is LBS [56], which creates animations by weighted linear
interpolation. Accordingly, a user can steer the animation by manipulat-
ing the interpolation (blendshape) weights. To this day, researchers have
developed a multitude of enhancements rooted in LBS to cope with the
fact that faces are, unfortunately, highly nonlinear. We categorize influen-
tial developments in terms of four fundamental segments: the acquisition
or modeling of blendshapes, the type of blendshapes, the combination op-
eration, and the control of the animation.

BLENDSHAPE ACQUISITION

The industry standard [23] is, and has been for years, to capture a person
in a sophisticated 3D scanner [25] and to subsequently transform the 3D
scans into standardized blendshapes with a great deal of manual effort.
While there are methods that produce blendshapes entirely without (or
only a handful of) 3D scans [59, 84, 58, 13, 105], automatically convert
3D scans into blendshapes [11, 62], or map single-view depth images to
blendshapes [73], these often lack a sufficient level of personal details.

BLENDSHAPE TYPES

Alongside blendshape systems that operate directly on the geometry of
facial expressions, indirect approaches also exist. One is the BlendForces
[7] idea, which interpolates accelerations instead of locations and inte-
grates them over time in a PBS. Muscular blendshape rigs [5, 72] generate
facial expressions by simulating interpolated muscle contractions. Both
concepts intend to overcome the problems of LBS by mimicking nonlinear
anatomical properties. For more details on head simulations, please see
Section 2.2.2.

BLENDSHAPE COMBINATION

Another manner to compensate for the nonlinearity of faces is to replace
the plain weighted linear interpolation of blendshapes. For example, with
corrective blendshapes [46], which are added to the original linear inter-
polation if predefined blendshape combinations occur. The weight of a
corrective blendshape is the product of the linear weights that are part of
the associated combination, resulting in a nonlinear augmentation. The
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authors of [61] adopt a similar approach by adding pose-specific correc-
tive blendshapes [61] to the original linear interpolation in a nonlinear
dependence on the pose of the jaw and the eyes. More recently, patchwise
LBS [18] became a popular approach, which linearly interpolates consis-
tently connected face patches with separate interpolation weights.

BLENDSHAPE CONTROL

A common concern of blendshape rigs is the question of which expres-
sions to include as blendshapes and what semantic meaning the interpo-
lation weights consequently carry. Smaller systems, such as the 52 Apple
ARK:it [4] blendshapes, attempt to isolate facial movements, while more
complex frameworks as Animatomy [23] (178 blendshapes) imitate muscle
contractions, for instance. Particularly in studio productions, this kind of
interpretability is usually not a necessity. Instead, such productions utilize
even more blendshapes to increase the expressiveness [94] (~1000 blend-
shapes), whereby, however, the applicability for rather inexperienced users
dwindles.

2.1.2 GENERALIZED 3D MORPHABLE MODELS

Put simply, 3DMMs center around a template 3D head that is deformable
in a latent space with parameters for identity, expression, and others, de-
pending on the respective model. To that end, a training process structures
the latent space by registering the template to a comprehensive dataset
of exemplary facial expressions. An animation can be created by manipu-
lating the expression parameters. There are at least two main differences
from blendshape systems. On the one hand, 3DMMs are designed to gen-
eralize and usually do not provide an accurate representation of personal
details in comparison to elaborately created blendshapes. On the other
hand, the training process often does not allow for an intuitive and se-
mantically meaningful control of the latent space as blendshape rigs do.
For an overview of the various facets of such models, please refer to the
survey by Egger et al. [30].

The most influential 3DMM is undoubtedly FLAME [61], which is even
a foundation for today’s state-of-the-art implicit facial animations [90]
(Section 2.1.3). FLAME is a linear model primarily based on principle
component analysis of facial 3D scans. A widespread extension of FLAME

13
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is DECA [32], which additionally applies nonlinear facial deformations
through a neural network trained on real 2D images of faces. Recently,
the first physics-based 3DMM was introduced [125], which also respects
anatomical constraints.

The hybrid model by Li et. al. [59] employs a neural network trained
to automatically generate personalized blendshapes. Yet, it does not gen-
eralize over identities but requires a neutral 3D head scan of a person as
input.

2.1.3 IMPLICIT & HYBRID AVATARS

Both of the aforementioned concepts, blendshape rigs and 3DMMs, aim to
create high—quality facial animations primarily through explicit geometry.
Over the last few years, however, there has virtually been a paradigm shift
towards photorealistic animations on implicit density fields. Therefore, the
already rapid developments in the area of facial animations accelerated
once again.

The “implicit trend” began with the introduction of neural radiance
fields (NeRF's) [74], which continuously represent volume density and view-
dependent colors within a given scene through a neural network. Classical
ray tracing techniques [48] can then render the neural volumetric repre-
sentation into images of the scene. This generic idea achieves impressive
photorealistic results and has been extended to dynamic scenes [88, 87],
as well. The logical consequence of positioning heads within such dynamic
scenes and conditioning them to animatable expression parameters also
arrived quickly [33].

Due to the fundamental problem of NeRF's being inefficient and slow as
they learn and process void space, many ideas for speeding them up have
emerged [51, 80]. Probably the most important for facial animation at the
moment is Gaussian splatting [51]. Here, 3D Gaussian splats capture the
scene space, but only in areas with nonzero density. GaussianAvatars [90],
for instance, implements this concept for facial animations by attaching
Gaussian splats to the 3DMM FLAME [61]. As a result, the animation can
easily be controlled in the associated expression space and a rough density
distribution is predetermined, enabling fast training and inference. The an-
imation of GaussianAvatars reaches a photorealism previously unattained.
The same photorealistic extension does not only exist for 3DMMs but also
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for LBS [70]. Nonetheless, both of the latter hybrid methods emphasize
how vital the long-researched explicit techniques (Sections 2.1.1, 2.1.2)
are even for the latest implicit photorealistic animations.

2.1.4 FACIAL RETARGETING

Facial retargeting, as a subproblem of facial animation, can be further
broken down. For example, whether it is to be done in real-time, whether
it involves only human characters, or whether it is data—driven. For a full
taxonomy and an overview of earlier work, we recommend referring to
[127]. As throughout the thesis, here, we focus on humanoid characters.

In principle, the same concepts as for facial animation also apply to
facial retargeting. To retarget using blendshapes, for instance, “solely”
corresponding blendshape systems of the source and target characters are
required, between which blendshape weights can then simply be trans-
ferred [18, 23]. With 3DMMs, retargeting is inherent, as the animation of
different identities can be driven by the usually shared expression space
[32, 61]. The hybrid animations described in Section 2.1.3 can therefore
be retargeted straightforwardly, too.

However, similar problems arise as before for facial animation in general.
Among other things, it is laborious to compose corresponding blendshape
systems and define correspondences semantically. It is, therefore, not sur-
prising that the latest developments rely on patchwise LBS, which can
get by with a small number of blendshapes due to their nonlinearity [18].
The lack of personal details in 3DMMs and their restriction to the charac-
teristics of the training data may also result in low retargeting quality or
even prevent them from being applied at all. Above all, dissimilar mesh
tessellations pose a key challenge. Consequently, the most advanced model
in this context is a 3DMM that has been trained on a wide variety of data
resources with varying tessellations, thus enabling independence from par-
ticular data characteristics [92].

Both blendshapes and 3DMM are fundamentally data—driven approa-
ches. Yet, access to the necessary data is often limited, which prompted the
development of heuristic retargeting approaches, as well. Among these, de-
formation transfer (DT) [13, 105] is particularly influential. DT captures
a source expression through deformation gradients with respect to the
neutral source face and retargets by applying the gradients to the neutral
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target face. As DT does not inherently account for personal characteris-
tics, several extensions [84, 122, 9] have been developed to incorporate
personal details and enhance the authenticity of the retargeting.

2.2 PHYSICS-BASED SIMULATIONS

As with facial animations, the history of PBSs goes back to the beginnings
of computer graphics. Researchers developed countless methodologies for
the simulation of rigid bodies [8], fluids [114], and elastic objects [14, 78]
over the course of time. Since this thesis centers around the simulation
of heads, concepts for the simulation of deformable elastic objects are of
particular interest. In the following section, we will accordingly provide a
comprehensive review of the literature in this area, starting with heuristic
foundations to modern data—driven approaches (Section 2.2.1). We then
discuss how these approaches can be applied for simulating heads and out-
line simulations developed specifically for facial animations (Section 2.2.2).

2.2.1 SIMULATION OF DEFORMABLE OBJECTS

HEURISTIC SIMULATIONS

Highly simplified heuristic models mainly characterize the beginnings of
PBSs of deformable elastic objects. Presumably, the most basic are mass-
spring systems, where objects are volumetrically captured by point masses
that influence each other via massless springs [19, 65]. Although these sys-
tems are intuitive and easy to use, they are not very physically accurate
and only allow for simulating simple materials. For more complex ones, ap-
proaches derived from the continuum mechanics perspective have proven
advantageous. Here, especially finite element methods (FEMs) are note-
worthy [43, 82, 26, 17], which can be considered as a generalization of
mass-spring systems. FEMs model objects as continuously connected vol-
umes and discretize them as irregular meshes, e.g., tetrahedral meshes.
The actual simulation involves solving a partial differential equation de-
rived from Newton’s second law that, in simplified terms, relates internal
(material) and external (interaction) forces to accelerations via masses.
The accelerations can then be converted into deformations of the underly-
ing mesh by adopting a time integration scheme.
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As it is often considerably more intuitive to interact with vertex po-
sitions of a mesh than with accelerations, the position—based dynamics
(PBD) paradigm was proposed [78]. This paradigm employs explicit Eu-
ler integration to incorporate external forces and directly adjusts vertex
positions through a gradient—based optimization scheme to account for in-
ternal forces. Despite its high popularity, the explicit integration scheme,
the dependence of the gradient method on various hyperparameters, and
the sequential consideration of internal forces turned out to be challeng-
ing. As a result, along with improvements in PBD [71], another paradigm
emerged: projective dynamics (PD) [14]. Tt uses a more robust implicit
integration scheme and operates much faster by considering all forces si-
multaneously. The latter property mainly stems from a restrictive form of
internal forces and their associated energy potentials. Subspace methods,
which run PD on low—dimensional latent representations [15], or other
optimization accelerators, such as multigrid methods [121], can further
increase the efficiency of PD in general.

Both PD and PBD share the shortcoming that they cannot, at least
canonically, make use of modern, realistic collision handling [60]. While
more straightforward contact mechanisms can be integrated into PD with
only little computational overhead [113, 68], state-of-the-art methods re-
sult in significantly increased runtimes [57].

It is safe to say that the still ongoing developments, extensions, and
improvements [22, 21, 79, 121, 66] of PD as well as PBD underline their
fundamental importance for the simulation of deformable objects even
nowadays. We recommend the very recent survey by Holz et al. [40] for a
more in—depth discussion of both paradigms.

MACHINE LEARNING FOR SIMULATIONS

Common to all the heuristic methods mentioned above is that material
models and associated parameters require manual specifications. Model-
ing complex deformable objects such as heads in this manner is challeng-
ing and sometimes infeasible. For this reason, methods based on machine
learning evolved that learn to approximate physical simulations from ex-
emplary data [64, 99, 39]. However, such models are not guaranteed to
obey physical laws and, therefore, usually do not generalize sufficiently
[29]. This observation, in turn, led to hybrid methods which rely on the
user to specify material models but are able to learn material parameters
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(69, 91, 103, 29, 35, 41, 37, 42]. Due to their simplicity and efficiency,
differentiable versions of PBD [104] and PD [63, 29] gained notable recog-
nition, as well. For a more comprehensive overview of differentiable PBSs,
predominantly used in soft robotics, please refer to the survey Newbury
et al. [83].

2.2.2 SIMULATION OF HEADS

HEURISTIC SIMULATIONS

Alongside the more general concepts of simulating deformable objects, an
extensive body of work conceptualizes head simulations. The purposes of
such simulations are manifold and range from anatomical model identifica-
tion [47] and expression tracking [5] to facial retargeting [110] and anima-
tion [44]. Generally, head simulations can be categorized as forward and
inverse simulations. Forward simulations convert the actuation of muscles
and /or the position of the skull into facial expressions. Inverse simulations
identify the deformations of the head that can cause facial expressions.

The pioneering work of Sifakis et al. [102] was the first to use a volu-
metric FEM to capture and animate the anatomical behavior of a head.
To this end, they represent soft tissue as a tetrahedral mesh, incorporate
muscle fiber direction fields, model the jaw as well as the cranium as trian-
gle surface meshes, and rely on customized forward and inverse simulation
solvers. A later extension, which represents muscle contractions as manipu-
lable B-spline trajectories, further enhances the quality and controllability
of the forward simulation [72]. Unfortunately, their approach can only be
applied to a limited extent in real-world applications, as manually mod-
eling a person’s anatomy requires several days, and simulating a frame
takes several minutes.

The Phace [45] model enriches Sifakis et al. [102] with an automated
positioning of the anatomy in the form of a single tetrahedral mesh, ad-
vanced material models, especially for the muscles, and with much more
efficient forward and inverse simulations that take only seconds instead of
minutes. Phace is controllable like blendshapes via interpolation weights,
although the forward simulation linearly interpolates and evaluates muscle
contractions.

Besides the aforementioned more intricate anatomical simulations [45,
102], methods that can be summarized as volumetric blendshapes exist
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[53, 44]. These methods only consider a general volumetric tissue and the
skull, but refrain from using a sophisticated material model of the mus-
cles. As opposed to LBS (Section 2.1.1), where the geometry of facial
expressions is interpolated directly, here, volumetric deformations are in-
terpolated and subsequently simulated. While volumetric blendshapes are
admittedly faster due to their simpler structure and the help of efficient
solvers such as PD [44], we found in our experiments that they are still not
real-time capable out-of-the-box even on modern high—end hardware. In
principle, more advanced simulation solvers enable real-time simulations
[6] of volumetric blendshapes, yet only for severely limited anatomical
precision.

Simulations based on thin shells in lieu of volumetric representations
have also been developed [52, 7]. Although such simulations tend to be
more efficient due to the reduced complexity of the underlying model, by
construction, they can not adequately simulate many important anatomi-
cal characteristics (e.g., preservation of tissue volume).

HAND-HEAD INTERACTIONS

A contribution of this thesis is the simulation of hand-head interactions,
which the approaches presented above neglected. This fact is somewhat
remarkable as PBSs allow for such interactions, unlike most other ap-
proaches to facial animation (Section 2.1). To the best of our knowledge,
there is only a single work addressing this topic called Decaf [101]. How-
ever, the simulation of Decaf is simplistic and can solely handle basic in-
teractions without long—term time dependencies or dragging movements.
Although there are more general techniques for imitating complex hand—
object interactions [97, 98], there are none for efficient hand—head interac-
tions.

ANATOMICAL MODELS

As already indicated before, every volumetric head simulation first faces
the difficulty of registering anatomy into a head. Regardless of the actual
representation forms (e.g., tetrahedral meshes, triangle meshes, fiber fields,
etc.), the main concern is the positioning of the soft tissue, the muscles,
and the skull. In the most straightforward but at the same time rarest
case, MRI and CT scans of a targeted head exist. Then, one can either
manually [102] or automatically [47] reconstruct the anatomy with precise
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accuracy. In most cases, however, only the neutral surface of the head is
known, requiring a heuristic or data—driven estimation of the interior. For
instance, Phace [45] relies on the heuristic Anatomy Transfer [2], which
warps an anatomical template into any head based on a predefined fat
distribution. Due to the limited availability of appropriate data sources,
data—driven methods are predominantly focused on the positioning of the
skull and still require a heuristic positioning of the musculature [24, 75,
1]. Recently, Keller et al. introduced the HIT model [49], which can also
place muscle tissue. Yet, HIT results in an implicit prediction that must
be converted for explicit simulations.

MACHINE LEARNING FOR HEAD SIMULATIONS

Many current head simulations based on machine learning are closely re-
lated to volumetric blendshapes [44] regarding the conceptual idea. Both
have in common that muscles are neither directly controlled nor modeled.
Instead, the pathbreaking approach of Srinivasan et al. [103] employs a
volumetric mesh representation for all tissue types and an explicit surface—
based description of the skull. For training, they register the anatomy to
numerous exemplary expressions of a person using an adapted differen-
tiable PD solver [29]. During the training, the skull can only move rigidly,
and the tissue can only deform to a regularized extent. Contrary to volu-
metric blendshapes, the deformations determined in this manner are not
directly interpolated and simulated to generate facial animations. Instead,
a neural network approximates them as a function of a latent space. The
control of facial expressions can then be performed in the latent space, and
the geometry of an expression is finally obtained by simulating the pre-
dicted deformations. This method was extended to implicit volumetric rep-
resentations [123] while an application to several persons simultaneously
was developed, too [124]. By leveraging fast simulation—free differentiable
loss functions that capture anatomical properties, Yang et al. [125] can ex-
ploit considerably more training data at once, leading to a similar model
as Srinivasan et al. [103] but with a generalization across head shapes.

Further concepts also apply machine learning techniques to head sim-
ulations with embedded muscle descriptors. For example, the previously
mentioned B-spline trajectories [72] were redesigned to be differentiable
[5], even enabling the inverse simulation to 2D RGB images of real facial
expressions.
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Park and colleagues [86] propose to use deep learning as an accelerator
of head simulations: a head is animated in real-time by a low—resolution
plus anatomically inaccurate PBS and mapped by a neural network (with
likewise real-time capabilities) into a corresponding expression of a slow
but high-resolution plus anatomically very accurate simulation.
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3.1 METHOD SUMMARY

In the publication SoftDECA, we responded to Research Question 1 (Sec-
tion 1.2.1).

The core concept of SoftDECA is to train an efficient neural network
that effectively corrects facial linear blendshapes (LBS) animations with
respect to an anatomically constraining physics—based simulation (PBS).
To that end, it adapts a deep hypernetwork [36] architecture that exe-
cutes in milliseconds on consumer—grade CPUs. The training of this net-
work relies on a training data generation pipeline that enables SoftDECA
to generalize across diverse head shapes, facial expressions, and material
properties. We outline the key components of our approach in more detail
in the following paragraphs.

PHYSICS-BASED SIMULATION

Despite the fact that the network architecture we adopt does not impose
structural constraints on the correcting PBS, we focus on a dynamic, vol-
umetric, and inverse finite element simulation, which we solve with projec-
tive dynamics (PD) [14]. Given an LBS—generated facial expression, the
simulation restores physical and anatomical properties. For instance, it
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respects the volume preservation of soft and muscle tissues, the strain of
skin and soft tissue, the rigidity of the skull, and resolves self—collisions.

The simulation builds on a novel representation of the anatomy, the so—
called layered head model (LHM), which encapsulates the skin and soft
tissue, the muscles, and the skull within enveloping wraps. The wraps
and, thus, the enclosed anatomical structures can be placed within a head
in a data—driven manner. We also propose a simple mechanism to pre-
vent layers from intersecting during the data—driven placement so that no
anatomical inconsistencies can occur.

NETWORK

Soft DECA’s hypernetwork that approximates the simulation is split into
two components. The first, a larger component, processes the neutral head
shape and material properties. Its output defines the weights for a smaller
component that runs the actual simulation. To remain compatible with
standard LBS, blendshape weights still control the animation. As only the
smaller component executes per frame, Soft DECA achieves rapid anima-
tion speeds.

TRAINING DATA

The pipeline for creating training data for the hypernetwork comprises
multiple steps, starting with randomly selecting neutral head surfaces from
the high-resolution DECA head model [32]. Next, we align the LHM with
the sampled heads to enable our simulation. We further use deformation
transfer [105] to automatically map the 52 ARKit blendshapes [4] to the
head samples. Finally, we can create the actual training examples. As the
training input, we animate all heads via the mapped blendshapes. The
animations originate from blendshape weights recorded with a customized
108 app in ten dyadic conversations of real people. For this purpose, we
mounted an iPhone in front of each participant’s face. The corresponding
ground truth results from applying our simulation to the LBS animations
with random material parameters.
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RESULTS

Soft DECA provides an effective, comprehensive, and successful answer to
the posed Research Question 1. The hypernetwork we trained learned to
generalize over nearly all DEC'A model heads, even those not used for train-
ing. Deviations from the underlying corrective simulation are within the
low submillimeter range, and visual results indicate that these deviations
do not depend on the facial expression. Visual results also evidently demon-
strate that eliminating self—collisions and incorporating other anatomical
properties facilitate nonlinear improvements of LBS animations.

In addition, SoftDECA successfully accomplishes the intended general-
ization over material properties. This aspect allows for various manipu-
lations, such as adjusting a person’s weight for therapeutic applications,
simulating surgical interventions, reflecting conditions like paralysis, or the
generation of realistic wrinkles. The latter can be taken to the extreme,
and even “zombifications” can be conducted, underscoring SoftDECA’s
proficiency in learning and replicating even high—frequency details. Besides
internal properties, Soft DECA allows for incorporating and manipulating
constant external influences. Such influences, in turn, can improve realism;
for example, a selfie taken standing up looks very different from one taken
lying down due to the direction of gravity. Furthermore, as Soft DECA’s
simulation is dynamic, effects such as the wobbling of soft tissue can be
animated.

Despite the comprehensive capabilities, Soft DECA executes in less than
10 milliseconds per frame, even on CPUs with limited processing power.
This performance level is adequate for real-time applications and meets
the frame rate requirements essential for virtual reality applications.

Ultimately, it is worth emphasizing that the foundational hypernetwork
of Soft DECA follows the ONNX [27] standard so that the network can be
readily loaded into common animation frameworks like Unity [106]. This
feature significantly increases the usability of our work in addition to the
controllability through blendshape weights.

The by—product of Soft DECA, the LHM that positions the head anato-
my in a data—driven manner, also achieves high precision. The observed
placement errors in areas crucial for facial animation are in the range of
only a few millimeters. Only in rather unimportant parts, such as the neck,
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errors can be as large as one centimeter.

LIMITATIONS

A partially unresolved aspect of Research Question 1 remains whether Soft-
DECA is feasible to accelerate all PBSs for facial animation. While we can
not make a definitive claim, Soft DECA combines various PBS components
of previous state-of-the-art head simulations [45, 72]. We can, therefore, at
least assure high visual quality. Moreover, no theoretical limitations exist
that would hinder the application of the SoftDECA training concept to
other types of simulations.

Arguably, the most significant concerns of our work stem from the train-
ing data we utilized. We focused solely on DECA heads equipped with
algorithmically generated blendshapes. Hence, the crucial questions arise:
Can Soft DECA handle manually created or scanned blendshapes? Can
Soft DECA process heads that fall outside the DECA distribution? A more
detailed explanation of how the hypernetwork functions is necessary to ad-
dress the first question. The hypernetwork does not directly predict facial
expressions but relative geometric deformations as corrections to the un-
derlying LBS animation. As a result, Soft DECA is unaffected by how the
underlying blendshapes are sculpted. To investigate the second question,
we evaluated Soft DECA on an external head dataset that comprises blend-
shapes personalized through scanned facial expressions [58]. Admittedly,
this evaluation resulted in higher approximation errors, but the visual
results remained convincing. In summary, Soft DECA demonstrated sub-
stantial robustness beyond its training data. However, it is crucial to note
that no theoretical guarantees ensure generalization.

In any case, we created SoftDECA solely on the wide—spread semantic
structure of the ARKit [4] blendshape system. To adopt a different struc-
ture, one must reproduce the training data and retrain the hypernetwork,
a process that takes approximately five days on a high—end workstation.
Likewise, changing the type or number of material parameters also neces-
sitates the entire training procedure to be repeated.

Moreover, in contrast to the approximated PBS, the learned hypernet-
work can not incorporate dynamically changing external influences, like
head—-hand interactions, as these are absent from the training process. Gen-
erating suitable training data that reflects such interactions is intricate.
Nevertheless, we propose a solution to this challenge in Chapter 6.
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Finally, it is noteworthy that the implementation of second—order effects
in Soft DECA relies on a linearization, resulting in a simplified yet mostly
adequate representation of dynamics.

RELATED WORK

Previous work related to Soft DECA primarily focuses on developing either
highly realistic PBSs [45, 72] or fast ones with restricted authenticity [6,
7, 44]. However, accelerating realistic ones with machine learning remains
largely unexplored. While there are some universal prior investigations
into this idea [39, 15], to our knowledge, SoftDECA represents the first
effort to accelerate complex PBS for facial animations with deep learn-
ing. Above all, we are unaware of any previous work that curates such an
extensive training dataset as we do.

Most closely related to our approach is the Generalized Physical Face
Model by Yang et al. [125], which appeared after Soft DECA. This model
is trained on approximately 13000 high-resolution 3D scans of real facial
expressions via a differentiable PBS. Due to its extensive data foundation,
it achieves a higher level of realism and is as generally applicable as our
approach. However, it is not designed for fast facial simulations and can
not be used in real-time applications.

The LHM of SoftDECA builds on data from the Achenbach et al. [1]
skull predictor, which does not prevent collisions between the skull and
head, unlike ours. Other works related to the LHM emerging around or
after Soft DECA primarily focus on the kinematic skeleton of the entire
body [117, 24, 50], lacking precision for head bones. However, a notable
recent work, the HIT model [49], accurately positions even muscles in the
head. Unfortunately, HIT is defined implicitly, making it challenging to
extract standardized surface meshes — an important premise for our PD-
based anatomical simulation.

FUTURE WORK

The most obvious advancement of our method would be to train Soft-
DECA on an equally extensive collection of real 3D scans as Yang et al.
[125]. Nonetheless, there are inevitable hurdles as their dataset remains
unpublished, and we are unaware of any comparable publicly available
dataset. Creating such an extensive set of scans requires not only costly
multi-view 3D scanning technology but also a substantial amount of man-
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ual labor by skilled digital artists to purify the scanned information. It
is, therefore, understandable that almost only large corporations can af-
ford to do so and keep the resulting data for themselves. In other words,
future developments will benefit significantly from using more real data.
To accomplish this effectively, however, we must first improve and speed
up photogrammetry techniques. Another promising advancement of our
approach would combine the implicit anatomical model HIT [49] with our
robust LHM.

3.3 PUBLICATION
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Figure 1: a) SoftDECA (brown) compared to linear blendshapes (gray): More realistic non-linear facial animations (left),
biomechanical restrictions like Bell’s Palsy (middle), and interactive manipulations like an increase in weight (right) are only a
few examples that can be efficiently animated. b) The layered head model that encapsulates the skin, the muscles, and the skull
with wraps that builds the foundtion of Soft DECA and for which we present a data-driven fitting algorithm.

ABSTRACT

Facial animation on computationally weak systems is still mostly
dependent on linear blendshape models. However, these models
suffer from typical artifacts such as loss of volume, self-collisions,
or erroneous soft tissue elasticity. In addition, while extensive effort
is required to personalize blendshapes, there are limited options to
simulate or manipulate physical and anatomical properties once a
model has been crafted. Finally, second-order dynamics can only
be represented to a limited extent.

For decades, physics-based facial animation has been investi-
gated as an alternative to linear blendshapes but is still cumber-
some to deploy and results in high computational cost at runtime.
We propose SoftDECA, an approach that provides the benefits of
physics-based simulation while being as effortless and fast to use
as linear blendshapes. Soft DECA is a novel hypernetwork that
efficiently approximates a FEM-based facial simulation while gen-
eralizing over the comprehensive DECA model of human identities,
facial expressions, and a wide range of material properties that
can be locally adjusted without re-training. Along with SoftDECA,
we introduce a pipeline for creating the needed high-resolution
training data. Part of this pipeline is a novel layered head model
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that densely positions the biomechanical anatomy within a skin
surface while avoiding self-intersections.
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1 INTRODUCTION

At present, research in the field of head avatars and facial animation
is mainly concerned with obtaining photorealistic results through
neural networks [Athar et al. 2022; Cao et al. 2022; Grassal et al.
2022; Zielonka et al. 2023] which can be operated on computation-
ally rich systems. What currently falls short, however, is the inclu-
sion of less capable hardware setups and circumstances in which
geometry-based processing must be applicable. For this, various
adaptations of linear blendshape models [Lewis et al. 2014] are still
the usual means in production. Although linear facial models have
been intensively researched and improved over the past decades,
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there are still known shortcomings like physically implausible dis-
tortions, loss of volume, anatomically impossible expressions, miss-
ing volumetric elasticity, or self-intersections. Physics-based simu-
lations have been proposed that overcome most artifacts of linear
blendshapes and allow for manifold additional functionalities [Bar-
rielle et al. 2016; Choi et al. 2022; Cong 2016; Ichim et al. 2017, 2016;
Srinivasan et al. 2021; Yang et al. 2022]. Among them are medical
applications such as visualization of weight changes, paralysis, or
surgeries but also visual effects like aging, zombifications, gravity
changes, and second-order effects. Moreover, it has recently been
shown [Yang et al. 2022] that simulations with detailed extracted
material information lead to much more realistic facial animations
than linear models. The downside of physics-based facial animation
models, however, is that these characteristically cause considerable
computational overhead, giving rise to a body of literature on ac-
celeration techniques. At this, the focus has been mostly on the
evaluation of simulations in either manually constructed [Brandt
et al. 2018] or learned subspaces [Holden et al. 2019; Santesteban
et al. 2020] as well as on corrective blendshapes [Ichim et al. 2016].
The learned subspace methods [Holden et al. 2019] have proven
to be more general and flexible, which is why in SoftSMPL [San-
testeban et al. 2020] they have already been successfully applied to
full-body animations. Nonetheless, so far there is still no method
that transfers these advancements in fast physics-based simula-
tions to facial animations. The principal contribution of this work
is closing this gap with a deep learning approach which we call
SoftDECA.

SoftDECA is a novel neural network architecture that efficiently
animates faces while closely following a dynamic physics-based
model. Although our method is universal in the sense that arbi-
trary physics-based facial animations can be considered, we focus
on approximating a combination of state-of-the-art anatomically
plausible and volumetric finite element methods (FEM) [Cong and
Fedkiw 2019; Cong 2016; Ichim et al. 2017, 2016]. For this, we pro-
pose a novel adaption of hypernetworks [Ha et al. 2016] which
yields inference times of about 10ms on consumer-grade CPUs and
has the same programming interface as standard linear blendshapes.
More precisely, we train Soft DECA to be applied as an add-on to
arbitrary human blendshape rigs that follow the ARKit system!.

At the same time, SoftDECA is easily deployable without the
need for elaborated personalizations or retraining, as we collect
an extensive corpus of training examples. These examples cover
a reasonable domain of the targeted FEM and bring together mul-
tiple data sources such as CT head scans to reflect the anatomy
of heads, 3D head reconstructions in the wild that capture diverse
head shapes (DECA [Feng et al. 2021]), and facial expressions in
the form of recorded ARKit blendshape weights from dyadic con-
versational situations. The resulting overall training set facilitates a
strong generalization of Soft DECA across human identities, facial
expressions, and broad areas of the parameter manifold of the tar-
geted FEM model. In contrast to earlier methods [Holden et al. 2019;
Santesteban et al. 2020], the ability to generalize across FEM param-
eters makes extensive and efficient artistic interventions possible,
with Soft DECA even supporting localized material adjustments.

https://developer.apple.com/
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As an additional contribution, we present a novel layered head
model (LHM) that represents all training instances in a standardized
way. Unlike fully or partially tetrahedralized volumetric meshes
conventionally used for FEM, the LHM has additional enveloping
wraps around bones, muscles, and skin. Based on these wraps,
we describe a data-driven fitting procedure that positions muscles
and bones within a neutral head while avoiding intersections of
the various anatomic structures. A characteristic that was mostly
not of concern in previous manually crafted physics-based facial
animations but can otherwise lead to numerical instabilities in our
automated training data generation approach.

2 RELATED WORK

2.1 Personalized Anatomical Models

Algorithms that create personalized anatomical models can essen-
tially be distinguished according to two paradigms: heuristic-based
and data-driven. Considering heuristic-based approaches, Anatomy
Transfer [Ali-Hamadi et al. 2013] applies a space warp to a template
anatomical structure to fit a target skin surface. The skull and other
bones are only deformed by an affine transformation. A similar
idea is proposed by Gilles et al. [2010]. While they also implement
a statistical validation of bone shapes, the statistics are collected
from artificially deformed bones. In [Ichim et al. 2016; Kadle¢ek
et al. 2016], an inverse physics simulation was used to reconstruct
anatomical structures from multiple 3D expression scans. Saito et
al. [2015] simulate the growth of soft tissue, muscles, and bones.
A musculoskeletal biomechanical model is fitted from sparse mea-
surements in [Schleicher et al. 2021] but not qualitatively evaluated.

There are only a few data-driven approaches because combined
data sets of surface scans and CT, or CT and DXA images are hard
to obtain for various reasons (e.g. data privacy or unnecessary
radiation exposure). The recent work OSSO [Keller et al. 2022]
predicts full body skeletons from 2000 DXA images that do not
carry precise 3D information. Further, bones are positioned within
a body by predicting only three anchor points per bone group
and not avoiding intersections between skin and skull. A model
that prevents skin-skull intersections and also considers muscles
is based on fitting encapsulating wraps instead of the anatomy
itself [Komaritzan et al. 2021]. However, no accurate algorithm
based on medical imaging but a BMI (body mass index) regressor
[Maalin et al. 2021] is used to position the wraps. A much more
accurate, pure face model, was developed by Achenbach et al. [2018].
Here, CT scans are combined with optical scans by a multilinear
model (MLM) which can map from skulls to faces and vice versa. As
before, no self-intersections are prevented and only bones are fitted.
Building on the data from [Achenbach et al. 2018] and following
the idea of a layered body model [Komaritzan et al. 2021], we create
a statistical layered head model including musculature that avoids
self-intersections.

2.2 Physics-Based Facial Animation

A variety of techniques for animating faces have been developed in
the past [Bradley et al. 2010; Ichim et al. 2015; Parke 1991; Zhang
et al. 2008]. Data-driven models [Ichim et al. 2016; Lewis et al. 2014,
2005], which have recently been significantly improved by deep
learning [Athar et al. 2022; Cao et al. 2022; Feng et al. 2021; Garbin
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et al. 2022; Song et al. 2020; Zheng et al. 2022], are certainly domi-
nant. Due to their simplicity and speed, linear blendshapes [Lewis
et al. 2014] are still most commonly used in demanding applica-
tions and whenever no computationally rich hardware is available.
Physics-based models have been developed for a long time [Sifakis
et al. 2005] and avoid artifacts like implausible contortions and self-
intersections, but due to their complexity and computational effort,
they are rarely used. The pioneering work of Sifakis et al. [2005]
is the first fully physics-based facial animation. The simulation is
conducted on a personalized tetrahedron mesh, which can only
be of a limited resolution due to a necessary dense optimization
problem. With Phace [Ichim et al. 2017], this problem was overcome
by an improved physics simulation. An art-directed muscle model
[Bao et al. 2019; Cong and Fedkiw 2019; Cong 2016] additionally
represents muscles as B-splines and allows control of expressions
via trajectories of spline control points. A solely inverse model
for determining the physical properties of faces was proposed in
[Kadle¢ek and Kavan 2019].

Hybrid approaches add surface-based physics to linear blend-
shapes for more detailed facial expressions [Barrielle et al. 2016;
Bickel et al. 2008; Choi et al. 2022; Kozlov et al. 2017]. However,
by construction, they can not model volumetric effects. With vol-
umetric blendshapes [Ichim et al. 2016], a hybrid approach has
been presented that combines the structure of linear blendshapes
with volumetric physical and anatomical plausibility but can only
achieve real-time performance through personalized corrective
blendshapes.

Considering soft bodies in general, deep learning approaches
have been investigated to approximate physics-based simulations.
For instance, in [Casas and Otaduy 2018; Santesteban et al. 2020] the
SMPL (Skinned Multi-Person Linear Model) proposed in [Loper et al.
2015] was extended with secondary motion. Recently, [Choi et al.
2022; Srinivasan et al. 2021; Yang et al. 2022] developed methods
to learn the particular physical properties of objects and faces.
However, these approaches must be retrained for unseen identities
and are slow in inference. A fast and general approach for learning
physics-based simulations is introduced in [Holden et al. 2019].
Unfortunately, they focused on reflecting the dynamics of single
objects with limited complexity. We present a real-time capable
deep learning approach to physics-based facial animations that
does not need to be retrained and maintains the control structure of
standard linear blendshapes. Additionally, none of the previously
described deep learning methods tackle the challenging creation of
facial training data, which we also address in this work.

3 METHOD

The foundation of the Soft DECA animation system is a novel lay-
ered head representation (Section 3.1). Starting from there, we
design a FEM-based facial animation system (Sections 3.2 & 3.3)
and demonstrate how to distill it into a defining dataset (Section
3.4). With this dataset, we train a newly designed hypernetwork
(Section 3.5) as a real-time capable approximation of the animation
system.
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Figure 2: All components of the layered head model template
7. Skin Sy, skin wrap S, muscles My, muscles wrap My,
skull B7, and the skull wrap B

3.1 Layered Head Model

3.1.1  Structure. We represent a head H = pg,(7") with neutral ex-
pression through a component-wise transformation p¢; of a layered
head model template

T =(5'r, By, Mz, S7, By, M‘T)» (1)

that consists of six triangle meshes. Sg- describes the skin surface
including the eyes, the mouth cavity, and the tongue, By the surface
of all skull bones and teeth, My the surface of all muscles and the
cartilages of the ears and nose. S7- is the skin wrap, i.e. a closed
wrap enveloping Sg, B the skull wrap that envelopes By, and Mg~
the muscle wrap that envelopes My Other anatomical structures
are omitted for simplicity. The template structures S¢, By, and Mg~
were designed by an experienced digital artist. The skin, skull, and
muscle wraps Sq By, and Mg have the same triangulation and
were generated by shrink-wrapping a sphere as close as possible
to the corresponding surfaces without intersections. The complete
template is shown in Figure 2.

Due to the shared triangulation, the wraps of the LHM also
define a soft tissue tet mesh S (i.e. between the skin and the
muscle wraps) and a muscle tissue tet mesh M- (i.e. between the
muscle and the skull wraps). For this, each triangle prism that can be
spanned between corresponding wrap faces is canonically split into
three tets. The complexities of all template components are given
in the supp. material. In the following, we will state the number of
vertices of a mesh as | - |, and the number of faces as | - | 7.

3.1.2  Fitting. Later on, creating training data requires finding
(5. B. M. S, B 8) = pyu(7) )

when only the skin surface S of the head H is known. To this
end, we rely on a hybrid approach that positions the skull in a
data-driven manner while the remaining template components are
fitted by heuristics that ensure anatomic plausibility and avoid
self-intersections.
As the first of the remaining template meshes, we fit the skin
wrap by setting
S =rbfs,,5(S7). ®)
The RBF function is a space warp based on triharmonic radial basis
functions [Botsch and Kobbelt 2005] that is calculated from the
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Figure 3: a) The training scheme of the skin to skull wrap distances regressor D. b) Procedural overview of the layered head
model fitting algorithm. Orange frames indicate input, blue frames output. The enumeration reflects the fitting order. Step 6 is

shown only for the sake of completeness.

template skin surface S to the target S and subsequently applied
to the template skin wrap Sg-. By the construction of RBFs, the skin
wrap will be warped semantically consistent and stick close to the
targeted skin surface.

Next, we fit the skull wrap B by invoking a linear regressor D
that predicts the distances from the vertices of S to the correspond-
ing vertices of B and subsequently minimizing with projective
dynamics [Bouaziz et al. 2014]

arg min WrectErec (X, s}) + waist, Edist, (X, $D (s))
) @
+ WeurvEcury (X, B’]’) .

Here, Eg;s, ensures that the predicted distances are adhered to,
Ecurv is a curvature regularization of the skull wrap, and Eyect avoids
shearing between corresponding skin and skull wrap faces. The
distances are set to a minimum value if they fall below a threshold,
thus, avoiding skin-skull intersections. To ease the flow of reading,
we give formal descriptions of the energy components in the supp.
material. The optimization is initialized with X = S =D(S) - n(S)
where n(S) are area-weighted vertex normals. D is trained on the
dataset of [Gietzen et al. 2019] (SKULLS) that relates CT skull mea-
surements to optical skin surface scans. In Figure 3 a) the linear
regressor training is depicted.

The muscle wrap M is fitted by positioning its vertices at the
same absolute distances between the corresponding skin and skull
wrap vertices as in the template, and only passing on ten percent
of the relative distance changes compared to the template. This
approach assumes that the muscle mass in the facial area is only
moderately affected by body weight and skull size.

The skull mesh is placed by setting
B = rbe‘T—’B (By) . (5)

The properties of the RBF space warp ensure that the skull mesh
remains within the skull wrap if the wrap is of sufficient resolution.

The muscle mesh could be placed in a similar fashion but is not
needed in our pipeline any further.

Finally, the soft and muscle tissue tet meshes S and M can be
constructed as described before. On average, the complete fitting
pipeline takes about 500ms on an AMD Threadripper Pro 3995wx
processor. Figure 3b) visualizes the overall fitting process.

3.2 SoftDECA Animation System

Building on the LHM representation, we now introduce the Soft-
DECA animation system. For this, the classical concept of linear
blendshapes is reviewed first. Thereupon, the dynamic physics-
based facial simulation system which is at the core of Soft DECA is
derived.
For a specific head, a linear blendshape model consists of n
surface blendshapes
iyn
{S"}ies ©)

which animate an unknown facial expression S; as a linear combi-

nation

Se=Y wish )
where the blending weights w; determine the share of each blend-
shape in the expression at frame ¢.

To achieve the same animation with a physical model ¢, one typ-
ically differentiates between forward and inverse methods. Without
loss of the generality, we consider the inverse method in the follow-
ing. Here, the expression S; is converted into the (in the Euclidean
sense) closest ¢—plausible solution by ¢ to

T, =¢" (St p). ®)

where p is a vector of material and simulation parameters on which
¢ depends. For including second-order effects as well, Equation (8)
expands to

Ti=¢ (ySi+2aTi1 — BTi_a p). (9)
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The Soft DECA animation system operates in the same manner, but
the right-hand side is approximated by a computationally efficient
neural network f.

Next, we will describe our realization of ¢ and how to create
representative examples. Nonetheless, please note that Soft DECA
is not restricted to a particular realization of ¢

3.3 Physics-Based Simulations

We implement anatomically plausible inverse physics ¢ as a pro-
jective dynamics energy Egi. At this, state-of-the-art FEM models
[Cong 2016; Ichim et al. 2017; Kadle¢ek and Kavan 2019] are merged
by applying separate terms for soft tissue, muscle tissue, the skin,
the skull, and auxiliary components.

3.3.1 Energy. Considering the soft tissue S, we closely follow the
model of [Ichim et al. 2017] and impose

Eg = wyol Z Eqor(t) + wstr Z Lopgy>eEstr(t), (10)
tes tes

which for each tet t penalizes change of volume and strain, respec-
tively. Strain is only accounted for if the largest eigenvalue o ) of
the stretching component of the deformation gradient F(t) € R3*3
grows beyond e.

To reflect the biological structure of the skin, we additionally

formulate a dedicated strain energy

Es =) Esue(t) (1)

tesS

on each triangle t of the skin which, to the best of our knowledge,
has not been done before.

For the muscle tets M, we follow Kadlecek et al. [2019] that
capturing fiber directions for tetrahedralized muscles is in general
too restrictive. Hence, only a volume-preservation term

Byt = wyol ), Evol(t) (12)
teM

is applied for each tet in M.

The skull is not tetrahedralized as it is assumed to be non-de-
formable even though it is rigidly movable. The non-deformability
of the skull is represented by

Eg= ) Estr(t) + ) Ecurv(xB), (13)

teB x€B

i.e. a strain Eg on the triangles t and mean curvature regulariza-
tion on the vertices x of the skull B. We do not model the non-
deformability as a rigidity constraint due to the significantly higher
computational burden.

To connect the muscle tets as well as the eyes to the skull, con-
necting tets are introduced similar to the sliding constraints in
[Ichim et al. 2017]. For the muscle tets, each skull vertex connects
to the closest three vertices in M to form a connecting tet. For the
eyes, connecting tets are formed by connecting each eye vertex to
the three closest vertices in B. On these connecting tets, the energy
Econ with the same constraints as in Equation (10) is imposed. By
this design, the jaw and the cranium are moved independently from
each other through muscle activations but the eyes remain rigid
and move only with the cranium.
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Finally, the energy
Einy = Z Etar(%, St) (14)

X€S
of soft Dirichlet constraints is added, attracting the skin surface S
vertices to the targeted expression S;.
The weighted sum of the aforementioned energies gives the total
energy

E¢+ = WSES + WMEM + WBEB + WmstrEmstr (15)
+ wsEs + WeonEcon + WinvEiny

of the inverse model ¢ . Altogether, ¢ results in an expression Ty

that in a Euclidean sense is close to the target S; but is plausible

w.r.t. the imposed constraints.

3.3.2  Collisions. Finally, self-intersections are resolved between
colliding lips or teeth in a subsequent projective dynamics update
as in [Komaritzan and Botsch 2018].

3.3.3 Parameters. The construction of ¢ also implies parts of
the parameter vector p. As such, the dynamics parameters «, 5, y,
weights w; of all the constraints, but also other attributes of the
constraints can be considered. For example, the target volume in
E,o1 or scaling factors of the skull bones. Additionally, we include
constant external forces like gravity strength and direction into p.
An overview of all parameters we use and the corresponding value
ranges is given in the supp. material.

3.4 Training Data

By the definition of the animation system in Equation (9), a repre-
sentative training dataset ) must consist of examples that relate
diverse facial expressions created via linear blendshapes to the cor-
responding surfaces that conform ¢. Further, to capture dynamic
effects, the exemplary facial expressions have to form reasonable
sequences. This dataset must also cover a variety of distinct head
shapes as well as simulation parameters.

In the following, we describe a pipeline for creating instances
of such a dataset, which can be roughly divided into six high-level
steps.

(1) We start by randomly drawing a neutral skin surface S from
DECA [Feng et al. 2021], a comprehensive high-resolution
face model. More specifically, we randomly draw an image
from the Flickr-Faces-HQ [Karras et al. 2019] dataset and let
DECA determine the corresponding neutral head shape as
well as a latent representation h.

(2) Next, the template LHM 7 is aligned with the skin surface
S as described in Section 3.1.

(3) In the third step, deformation transfer [Botsch et al. 2006] is
used to transfer ARKit surface-based blendshapes to S.

(4) Subsequently, we create an expression sequence S = (S;);Z
of length m+1 by applying a sequence of blendshape weights
w = (w¢);Z,. The blendshape weights are obtained from 8
around 10 minutes long dyadic conversations recorded with
a custom iOS app.

(5) As the final step before the ¢-plausible counterpart of S can
be generated, simulation parameters have to be sampled on
a proper domain. For continuous parameters, we expect the
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Figure 4: An overview of the Soft DECA facial animation. In Step 1), the hyper-tensor and the dynamic parameters are determined
once for an animation. Subsequently, steps 2-4 are repeatedly evaluated per frame. In Step 2), per-face deformation gradients
are calculated which are applied in Step 3) to form a facial expression. In Step 4), dynamic effects are added.

user to specify lower and upper bounds beforehand. Subse-
quently, for each parameter in p, we independently sample a
value between the respective bounds with uniform distribu-
tion. Discrete parameters are handled in the same way but
without respecting particular constraints.

(6) Finally, T = (¢T(St))t";0 is computed and (T, S, w, p,h) is
added to . Evaluating one time step takes approximately
10 seconds on an AMD Threadripper Pro 3995wx.
3.5 Hypernetwork
3.5.1 Architecture & Training. Having training data, we can now

design a computationally efficient neural network f to approximate
the physics-based simulation from Equation 9. Irrespective of a
particular architecture, the training goal implied by D is to optimize
on each frame

m
min Doy 1T = f(Sewep . (16)

(T.S,w,p.h)eD

In words, f is trained to approximate the ¢-conformal expressions
from the the linearly blended expressions S;, the blending weights
w;, simulation parameters p, and the head descriptions h. Hence,
leaving out dynamic effects to begin with, the probably most naive
approach would be to learn f to directly predict vertex positions.
However, this would not allow the usage of personalized blend-
shapes at inference time that have not been used in the curation of
D. Therefore, we separate f into two high-level components

£(St, Wy, p,h) = DT(S, fpg(we, p, h)), (17)

where DT is a deformation transfer function as in [Sumner and
Popovi¢ 2004] that applies 3 X 3 per-face deformation gradients
(DGs) predicted by fpg(wy, p,h) € RISIFX9 to the linearly blended
St. By doing so, f can also be applied to a facial expression Sy which
has been formed by unseen personalized blendshapes while still
achieving close approximations of ¢ Fortunately, the evaluation of
DT is not more than efficiently finding a solution to a pre-factorized
linear equation system.

To implement the DG prediction network fpg, we evaluated
multiple network architectures such as set transformers [Lee et al.

2019], convolutional networks on geometry images, graph neural
networks [Scarselli et al. 2008], or implicit architectures [Mildenhall
et al. 2021], but all have exhibited substantially slower inference
speeds while reaching a similar accuracy as a multi-layer perceptron
(MLP). Nevertheless, a plain MLP does not discriminate between
inputs that change per frame ¢ and inputs that have to be computed
only once. Therefore, we propose an adaptation of a hypernetwork
MLP [Ha et al. 2016] to implement fp in which the conditioning of
fpc with respect to the simulation parameters as well as the DECA
identity is done by manipulating network parameters. Formally, we
implement

fpc(we,p.h) =z, L(p, h),

where L(p,h) € R32XIS1rX9 returns a tensor that only has to be
calculated once for all frames and z; = f (w;) € R3? is the result
of a small standard MLP that processes the blending weights at
every frame t. Each matrix £ € R32%% in £(p,h) corresponds to a
face in S and the entries are calculated as

= fph(p, h, ﬂ(i)) .

Again, fpp, is a small MLP and  is a trainable positional encoding.
Please consult the supp. material for detailed dimensions of all
networks and see Figure 4 for a structural overview of .

(18)

(19)

3.5.2  Localization. The architecture described above offers exten-
sive possibilities for artistic user interventions at inference time.
For instance, different simulation parameters p; can be used per
face i by changing Equation (19) to

& = fon(psn b, 7(0)), (20)

which enables a localized application of different material models.
The DT function ensures that the models are smoothly combined.

3.5.3 Dynamics. Given that locally differing simulation param-
eters are not reflected in the training data, existing approaches
to integrate dynamics in deep learning [Holden et al. 2019; San-
testeban et al. 2020], cannot be adopted. Therefore, we again use
the hypernetwork concept to achieve a piecewise-linear dynamics



SoftDECA: Computationally Efficient Physics-Based Facial Animations

approximation. More precisely, we recursively extend f to
f(St,ws,ph) =y ©DT(St, fpg(we, p,h))
+2a ©f(S¢-1,ws—1,p, h) (21)
- BOf(St-2, wi—2,p.h),

where a, B,y € R32%ISlo contain per-vertex dynamics parameters.
The first row of Equation (21) is the same as in Equation (17) but
the second and third rows allow for dependencies on the previous
two frames. Each entry of e, B, y is calculated as in Equation (20)
but with dedicated MLPs f,, fﬁ, fy. As aresult, &, B, y are again not
time-dependent and only have to be calculated once.

4 EXPERIMENTS

Before demonstrating the accuracy and efficiency of Soft DECA
(Section 4.2), we first evaluate the fitting precision of the LHM
(Section 4.1).

4.1 LHM Fitting

Omm — TOmm
Figure 5: The per-vertex mean L2-error of the LHM fitting.

Figure 6: Exemplary fits of the LHM components skull wrap,
muscle wrap, and skull.

The fitting of the LHM is mainly composed of the data-driven
positioning of the skull wrap and the subsequent heuristic fitting of
the muscle wrap. We evaluate the crucial fitting of the skull wrap
with the open-source CT SKULLS [Gietzen et al. 2019] dataset. Since
this dataset consists of 43 instances only, a leave-one-out validation
is performed in which the vertex-wise L2 errors are measured.
Earlier methods that position the skull within the head, mainly use
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sparse soft tissue statistics measured in normal directions starting
from very few points on the skull [Beeler and Bradley 2014; Ichim
et al. 2016]. We compare our approach to the multilinear model of
Achenbach et al. [2018; 2019], who have shown a more robust and
precise positioning by capturing dense soft tissue statistics as radii
of spheres surrounding the skull.

Both models cannot achieve a medical-grade positioning with
errors between approximately 2 mm and 4 mm. The MLM achieves
a higher precision with a mean error of 1.98 mm than our approach
that dispositions the skull by 3.83 mm on average. However, the
MLM cannot prevent collisions that might crash physics-based
simulations. Also, our fitting algorithm produces large errors only
in regions that are of less importance for facial simulations as can
be seen in Figure 5. The errors are predominately distributed in the
back area of the skull since here the rectangular constraints of our
fitting procedure can presumably no longer be aligned well with
the skin wrap. Figure 6 displays fitting examples.

4.2 SoftDECA

4.2.1 Dataset & Training. To train and evaluate f, we assemble a
dataset of 500k training and test instances by using the pipeline
from Section 3.4. The parallelized dataset creation took five days
and required one terabyte of storage. To match the uneven sizes
of the parameter spaces, 75% of the produced data is static data in
which all but the dynamic parameters a, f, y are sampled and only
the remaining 25% of the data is simulated dynamically. As a result,
6250 dynamic sequences have been generated, each of which has
a length of 16 while the static examples consist of only one frame
per example. To initialize the dynamic sequences with a reasonable
velocity, a longer sequence of length 2048 has been simulated with
fixed dynamics parameters a priori. For each dynamic sequence,
a random observed velocity of the long sequence is drawn as the
inijtialization. The dataset is split in 90% for training and 10% for
testing while neither the same identity nor the same simulation
parameters nor the same facial expression occurs in both.

For training, the Adam optimizer performs 200k update steps
with a learning rate of 0.0001. The learning rate is linearly decreased
to 0.00005 over the course of training and a batch size of 128 is
applied. In total, the training specifications result in an approxi-
mate runtime of 8 hours on an NVIDIA A6000. The comparatively
short training time can straightforwardly be explained by the effi-
cient network design and the less noisy training data than usually
encountered for instance in image-based deep learning. We quanti-
tatively evaluate Soft DECA based on the L2 reconstruction error
with respect to the targeted physics-based simulation and the com-
putational runtimes. Besides, we compare it against the Subspace
Neural Physics (SNP) [Holden et al. 2019] and the SoftSMPL [San-
testeban et al. 2020] architectures adapted to facial simulations.
These are, to the best of our knowledge, state-of-the-art methods
for fast approximations of physics-based simulations. An overview
of all results is given in Table 1. The stated runtimes are averages of
ten runs measured on a consumer-grade Intel i5 12600K processor.
All implementations rely on PyTorch?.

Zhttps://pytorch.org
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Figure 7: Exemplary results of Soft DECA in comparison to the targeted physics-based facial simulation as well as the inputted

linear blendshape expressions. Reconstruction errors are plotted on the simulated expressions.

Table 1: SoftDECA test results in comparison to adapted SNP [Holden et al. 2019] and SoftSMPL [Santesteban et al. 2020]
architectures as well as ablations. The runtimes are averages measured on a consumer-grade Intel i5 12600K processor. External
refers to the 3Dscanstore dataset. Small and large correspond to the size of the inspected MLP.

Model Ours SoftSMPL SNP Ablation
Static Dynamic External Static (Small) ~Static (Large) Dynamic Dynamic Face-wise Only Vertices
Errorin mm  0.23 0.41 0.44 1.67 0.16 0.22 0.14 0.17 0.16

Time in ms 7.45 9.87 7.45 7.62 46.61 47.39 46.61 34.92 0.72
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4.2.2 Quantitative Analysis. First of all, Soft DECA provides very
close approximations in static and dynamic animations with aver-
age test reconstruction errors of only 0.22mm and 0.41mm, respec-
tively. Hence, overall, it becomes evident that Soft DECA generalizes
across different human identities, facial expressions, and simulation
parameters. Nevertheless, the expressions are all obtained from un-
personalized blendshapes which is why we further evaluate on a
static external dataset from the 3DScanstore3. In this dataset, for
each of seven heads, between 20 and 35 scanned facial expressions
are available which we convert into personalized ARKit blendshap-
es using example-based facial rigging [Li et al. 2010]. Starting from
there, we create a test dataset as before. Although the 3DScanstore
examples are likely not covered by the DECA distribution, the
reconstruction error only slightly increases to 0.44mm.

Despite the high approximation quality, Soft DECA needs only
7.45ms to calculate a static frame on average while a runtime of
9.87ms is needed for a dynamic frame. This brief runtime makes
SoftDECA appealing even for demanding virtual reality applica-
tions. For applications in which unseen personalized blendshape
are not desired, we also test a variant of Soft DECA that directly
predicts vertex positions. This version achieves an accuracy of 0.16
mm and can be accelerated to only 0.71ms per frame.

4.2.3 Static Comparisons. For static simulations, Soft DECA can
only be compared to SoftSMPL as SNP is solely designed to ap-
proximate dynamic effects. Essentially, the difference between the
SoftDECA and the SoftSMPL architecture is the difference between
our hypernetwork MLP and a standard MLP. SoftSMPL is origi-
nally designed for full bodies and has a motion descriptor as input
that describes a body and its state. Adapted to our case, these are
the blendshape weights, simulation parameters, and the identity
code. First, to keep the inference times approximately consistent,
we employ the same network dimensions for the standard MLP
as in the hypernetwork. As a result, the reconstruction error of
the SoftSMPL MLP increases significantly to an average of 1.67mm.
Therefore, we additionally investigate a larger MLP which achieves
approximately the same reconstruction error as Soft DECA. In turn,
however, the runtime increases tremendously to 46.61ms. Another
canonical alternative to the hypernetwork is a standard MLP that in
the last layer does not map to all DGs simultaneously but calculates
the DGs face-wise. The reconstruction error is low with 0.17mm,
but the runtime is also high with 34.92ms. Other architectures like
CNNs, GNNs, or transformers could not be evaluated in real-time
on a consumer-grade CPU with sufficient accuracy.

4.2.4  Dynamic Comparisons. For dynamic simulations, Soft DECA
can be compared against both SoftSMPL and SNP. Contrary to
SoftDECA, SoftSMPL and SNP compute dynamics in a latent space
and not directly on vertices. Both differ from one another in that
SoftSMPL additionally relies on a recurrent GRU network [Chung
et al. 2014], whereas SNP is purely based on a standard MLP. In both
cases, we compare solely with the larger network design mentioned
earlier since we are mainly interested in evaluating the accuracy of
our dynamic approximation and not in comparing runtimes. It can
be observed that the SoftSMPL as well as the SNP design achieve
slightly improved reconstruction errors with 0.22mm and 0.24mm,

3https://www.3dscanstore.com
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respectively. However, since both do not work vertex-wise, they
are not suitable for locally varying simulation parameters.

4.2.5 Qualitative Analysis. A visual demonstration of Soft DECA’s
capabilities is given in Figure 7 where the SoftDECA predictions
are contrasted with the targeted physics-based facial simulation.
For instance, in a) it can be observed that, although collisions are
not guaranteed to be removed, they remain largely dissolved. In b),
the triangle strain of the skin is increased locally in the area of the
cheeks, leading to the formation of wrinkles in this region. In c), it is
demonstrated that external effects can also be included by means of
increased gravity. A surgical manipulation is shown in d), in which
the jaw is lengthened along the vertical axis in the neutral state
while the volume of the head is maintained. The representation of
a humanoid alien in e) illustrates the robustness of Soft DECA even
outside the DECA distribution. This robustness is mainly achieved
by transferring DGs instead of directly predicting vertex positions.
Our interpretation of zombification is achieved in f) by growing
the area of the skin. This effect highlights that Soft DECA is able
to closely approximate such excessive high-frequency details, too.
Finally, in g-h) we present how different weight additions can be
simulated in a non-linear way. For this purpose, we raise the volume
of the soft tissue by 20% and 40%. Due to the already comprehensive
training domain of SoftDECA, many other effects can be animated
in a computationally efficient way that are not displayed in Fig-
ure 7. We refer the reader to the supp. material where additional
simulations are shown in a video including dynamic effects.

5 LIMITATIONS

Although SoftDECA inherits most of the advantages of physics-
based facial animations, it lacks the intrinsic handling of interactive
effects such as wind or colliding objects. Moreover, although we
allow for extensive localized artistic interventions, mixtures of
material properties have not been part of the training data. Incorpo-
rating such mixtures into the training data is difficult as it is hard to
define an adequate mixture distribution. Nonetheless, the smooth
material blending of Soft DECA visually appears to be a sufficient
approximation.

6 CONCLUSION

In this work, we presented Soft DECA, a computationally efficient
approximation of physics-based facial simulations even on consu-
mer-grade hardware. With a few exceptions, most simulation capa-
bilities are retained, such as dynamic effects, volume preservation,
wrinkle generation, and many more. At this, Soft DECA’s runtime
is attractive for high-performance applications and low-budget
hardware. Moreover, it is lightweight to deploy as it generalizes
across different head shapes, facial expressions, and material prop-
erties. Finally, the ability to make localized changes after training
constitutes an attractive framework for artistic customization.

We aim to improve SoftDECA in at least two directions. On the
one hand, with an even more accurate anatomical model that repre-
sents e.g. trachea and esophagus more precisely. On the other hand,
recent results [Romero et al. 2022] show that contact deformations
can also be efficiently learned. Since people touch their faces dozens
of times [Spille et al. 2021] a day, adding contact-handling for more
realistic gestures may improve immersion significantly.
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4.1 METHOD SUMMARY

In the publication SparseSoft DECA, we responded to Research Question 2
(Section 1.2.2).

SparseSoft DECA’s method expands Soft DECA (Chapter 3) but focuses
on generating personalized animations directly from sparsely observed fa-
cial landmarks; effectively decoupling it from traditional blendshape sys-
tems. Distinctions between SparseSoftDECA and SoftDECA mostly be-
come necessary as landmarks constitute a higher—-dimensional and person-
alized input compared to unpersonalized blendshape weights. In partic-
ular, adjustments in both the training data generation pipeline and the
physics—based simulation (PBS) are required. Nonetheless, the idea of ap-
proximating the PBS via an efficient hypernetwork [15] design remains
essentially unchanged. As before, we describe the integral components of
SparseSoft DECA in more detail in the following.

PHYSICS-BASED SIMULATION

The simulation of SparseSoftDECA is similar to that of SoftDECA, how-
ever, the simulation is no longer used to correct entire [inear blendshapes
(LBS) expressions, but to register a neutral head to sparsely tracked facial
landmarks in an anatomically and physically plausible manner.
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NETWORK

Also, the hypernetwork architecture of SparseSoft DECA is almost identi-
cal to the hypernetwork of Soft DECA. Simply, the input of the smaller
(animation) component is changed to facial landmarks, which has a negli-
gible influence on the rapid inference speed.

TRAINING DATA

When generating the training data for SparseSoftDECA’s hypernetwork,
however, we make two substantial adjustments in comparison to Soft-
DECA. First, we enhance the capabilities of the custom ¢OS app of Soft-
DECA to track 150 facial landmarks using the ARKit [4] framework. Here,
we primarily target key facial contours such as the mouth, the eyes, and
the jawline. Second, unlike blendshape weights, the tracked landmarks are
specific to the head shapes of the individuals in the recorded conversations
and can not be directly applied to DECA heads. Consequently, we em-
ploy deformation transfer [105] to convert the tracked landmarks between
different identities. Besides the adaptation of the tracked landmarks to
manifold identities, the training data undergoes extensive augmentations
like Gaussian noise to improve the robustness of SparseSoftDECA.

4.2 DISCUSSION

RESULTS

Given the structural similarities between SparseSoft DECA and Soft DECA,
it is unsurprising that SparseSoft DECA effectively addresses its associated
research question, as well. Although the learned approximation exhibits
a slightly higher inaccuracy than before, the errors stay within the sub-
millimeter range. The model also maintains its broad applicability to di-
verse head shapes and can be run with nearly 100 frames-per-second on
consumer—grade CPUs, too. Additionally, other valuable features of Soft-
DECA, such as the control or manipulation of material properties, are
preserved. In an ablation study, we could prove that our data augmen-
tations enhance the generalization capabilities of SparseSoftDECA to a
considerable extent.



4.2 DISCUSSION

LIMITATIONS

SparseSoft DECA carries over limitations of its predecessor. The primary
concern is still the animation of heads outside the DECA distribution.
To investigate such circumstances, we used SparseSoft DECA to animate
heads with landmarks retrieved from other individuals. Although there
was a slight reduction in the approximation quality, our approach remained
robust and did not produce inauthentic results.

Another drawback of SparseSoftDECA is that it is tied to a specific
facial landmark topology, which requires retraining if it is to be changed.
Due to the involved renewal of training data, retraining unfortunately
takes several days on a high—end workstation.

RELATED WORK

Previous methods for converting sparse facial landmarks into dense facial
expressions typically involve the fitting of either 3D morphable models
(3DMMs) [118] or LBS [56]. To the best of our knowledge, no other ap-
proach employs a PBS like SparseSoft DECA. Compared to the two clas-
sical concepts, our simulation has the advantage that it can be registered
flexibly and only adheres to anatomical constraints. 3SDMMs or LBS, on
the other hand, are limited to their original data—driven domain and may
not be able to represent details contained by the landmarks. Nonetheless,
our approach also holds a significant advantage even when landmarks pro-
vide only low—frequency information: as demonstrated in SoftDECA, we
can authentically add high—frequency features like wrinkles by altering
material properties.

FUTURE WORK

The most intriguing future development we envision for SparseSoft DECA
is inspired by the current restriction to a predefined landmark topology.
Principally, our data generation pipeline already allows us to incorporate
various topologies within one training dataset. However, for this feature
to be truly beneficial, the hypernetwork [15] must also be able to cope
with a varying number of input landmarks. Our current architecture does
not support this flexibility and requires a constant number of input dimen-
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sions. Neural network architectures like set transformer [55] can manage
varying input sizes but are renowned for their slow inference speed. An
extension that considers the occlusion of landmarks would be as valuable
as varying topologies, but would encounter similar challenges. Ultimately,
the concept of SparseSoft DECA can potentially be enhanced to the extent
that the processing of noisy point clouds with random structure becomes
feasible. This improvement would be particularly thrilling, as such point
clouds can usually be readily generated from 3D multi—view scanners, but
the time—consuming tasks of cleaning and standardizing the point clouds
would no longer be needed. One starting point for such improvements
might be tesselation—agnostic facial rigging [92].

4.3 PUBLICATION
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Facial animation on computationally limited systems still heavily relies on linear blendshape models. Nonethe-
less, these models exhibit common issues like volume loss, self-collisions, and inaccuracies in soft tissue
elasticity. Furthermore, personalizing blendshapes models demands significant effort, but there are limited
options for simulating or manipulating physical and anatomical characteristics afterwards. Also, second-order
dynamics can only be partially represented.

For many years, physics-based facial simulations have been explored as an alternative to linear blendshapes,
however, those remain cumbersome to implement and result in a high computational burden. We present
a novel deep learning approach that offers the advantages of physics-based facial animations while being
effortless and fast to use on top of linear blendshapes. For this, we design an innovative hypernetwork that
efficiently approximates a physics-based facial simulation while generalizing over the extensive DECA model
of human identities, facial expressions, and a wide range of material properties that can be locally adjusted
without re-training.

In addition to our previous work, we also demonstrate how the hypernetwork can be applied to facial
animation from a sparse set of tracked landmarks. Unlike before, we no longer require linear blendshapes as
the foundation of our system but directly operate on neutral head representations. This application is also used
to complement an existing framework for commodity smartphones that already implements high resolution
scanning of neutral faces and expression tracking.

1. Introduction ization of weight changes, paralysis, or surgical procedures, as well as
visual effects like aging, zombifications, gravity alterations, and second-
Currently, research in the realm of head avatars and facial anima- order effects. Moreover, recent work has demonstrated that simulations
tion primarily revolves around achieving photorealistic outcomes using
neural networks [1-4]. These approaches require substantial computa-
tional resources for operation. However, a significant challenge lies in
accommodating less powerful hardware configurations and scenarios
where geometry-based processing is necessary. In such cases, various
adaptations of linear blendshape models [5] remain the conventional
choice for production.

Despite decades of intensive research and refinement of linear fa-

incorporating detailed material information result in significantly more
realistic facial animations compared to linear models [10].

However, it is important to note that physics-based facial animation
models typically impose a substantial computational burden, leading to
a considerable body of literature dedicated to acceleration techniques.
Much of this research has focused on evaluating simulations within
manually constructed subspaces [13] or learned subspaces [14,15] and

cial models, they still exhibit known limitations, including physically
implausible distortions, volume loss, anatomically impossible expres-
sions, the absence of volumetric elasticity, and self-intersections. To
address these issues, physics-based simulations have been proposed,
which mitigate most artifacts associated with linear blendshapes and
introduce a range of additional capabilities [6-12]. Researchers have
explored applications in fields such as medicine, involving the visual-

* Corresponding author.
E-mail address: nicolas.wagner@tu-dortmund.de (W. Nicolas).
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corrective blendshapes [7]. Among these approaches, learned subspace
methods have proven to be more versatile and adaptable [14], which is
why they have already found successful application in full-body anima-
tions [15]. Nevertheless, there is currently no method that effectively
extends these advancements in fast physics-based simulations to facial
animations. The principal contribution of this work is closing this gap
with a deep learning approach which we call SoftDECA.
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SoftDECA introduces an innovative neural network designed to
animate facial expressions while closely adhering to a dynamic physics-
based model. Our approach possesses universal applicability, as it
can accommodate a wide range of physics-based facial animations.
However, our specific emphasis lies in approximating a combination
of cutting-edge anatomically plausible and volumetric finite element
methods (FEM) [6-8,16]. For this, we propose a novel adaption of
hypernetworks [17] which yields inference times of about 10 ms on
consumer-grade CPUs and has the same programming interface as
standard linear blendshapes. More precisely, we train SoftDECA to be
applied as an add-on to arbitrary human blendshape rigs that follow
the Apple ARKit system .

Furthermore, SoftDECA offers straightforward deployment without
the necessity for intricate customizations or retraining efforts due to
our extensive compilation of training examples. This comprehensive
dataset encompasses a substantial domain of the intended FEM model
and amalgamates data from various sources. These sources include
CT head scans to capture head anatomy, 3D head reconstructions
representing diverse head shapes (utilizing DECA as outlined in [18]),
and facial expressions recorded as ARKit blendshape weights from
dyadic conversational scenarios. The resulting training dataset ensures
SoftDECA’s capacity for robust generalization across a spectrum of
human identities, facial expressions, and the extensive parameter space
of the targeted FEM model. In contrast to earlier methods [14,15], the
ability to generalize across simulation parameters makes extensive and
efficient artistic interventions possible, with SoftDECA even supporting
localized material adjustments.

As an additional contribution, we present a novel layered head
model (LHM) that represents all training instances in a standardized
way. Unlike fully or partially tetrahedralized volumetric meshes con-
ventionally used for FEM, the LHM has additional enveloping wraps
around bones, muscles, and skin. Based on these wraps, we describe a
data-driven fitting procedure that positions muscles and bones within a
neutral head while avoiding intersections of the various anatomic struc-
tures. A characteristic that was mostly not of concern in previous man-
ually crafted physics-based facial animations but can otherwise lead
to numerical instabilities in our automated training data generation
approach.

This paper is an extension to the previously presented Soft DECA [19].

Here, we additionally introduce the adapted SparseSoftDECA, which
maps sparsely observed facial landmarks into plausible facial expres-
sions with respect to the foundational physics-based simulation. Again,
SparseSoftDECA is trained to exhibit a high degree of generalization,
accommodating a variety of head shapes and landmark positions. As
before, we present a pipeline for generating extensive training data that
densely samples the input domains.

The animation via facial landmarks offers the advantage of elimi-
nating the need for blendshape generation entirely. All that is required
for animating a person’s face is SparseSoftDECA and the neutral head
shape which can be easily obtained. For instance, Wenniger et al. [20]
have demonstrated the quick acquisition of a neutral head shape in just
a few minutes solely based on smartphone videos.

Furthermore, SparseSoftDECA inherently supports personalized an-
imations when facial landmarks can be reliably tracked. Achieving this
level of personalization, such as through linear blendshapes, typically
demands several of additional scans for each individual.

2. Related work
2.1. Personalized anatomical models

Algorithms for generating personalized anatomical models can be
categorized into two main paradigms: heuristic-based and data-driven.
In the realm of heuristic-based approaches, Anatomy Transfer [21]
employs a space warp on a template anatomical structure to conform to
a target skin surface, deforming the skull and other bones only through
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an affine transformation. A similar approach is presented by Gilles
et al. [22], incorporating statistical validation of bone shapes derived
from artificially deformed bones. In both [7,23], an inverse physics-
based simulation is utilized to reconstruct anatomical structures from
multiple 3D expression scans. Saito et al. [24] focus on simulating the
growth of soft tissue, muscles, and bones. In [25], a complete muscu-
loskeletal biomechanical model is fitted based on sparse observations,
however, no qualitative evaluation is conducted.

Primarily, concerns such as data privacy or potential radiation
exposure keep the number of data-driven anatomy fitting approaches
small. The recent OSSO method [26,27] predicts body skeletons from
2000 DXA images. These images do not contain precise 3D information
and bones are placed within the body by predicting solely three anchor
points per bone group. Additionally, intersections between skin and
bones are not resolved. In [28], skin-bones intersections are addressed
and also the musculature is fitted. Instead of fitting anatomical struc-
tures directly, encapsulating wraps are placed within a body. However,
this approach relies on a BMI regressor rather than accurate medical
imaging [29]. Also in [27], skeletons do not intersect but are not placed
based on medical imaging either.

A more accurate facial model, developed by Achenbach et al. [30],
combines CT scans with optical surface scans using a multilinear model
(MLM) that maps between skulls and faces bidirectionally. Despite its
accuracy, this model does not prevent self-intersections and solely fo-
cuses on fitting bones. Building upon the data from [30] and extending
the concept of a layered body model [28], we formulate a statisti-
cal layered head model encompassing musculature while mitigating
self-intersections.

2.2. Physics-based facial animation

Various paradigms for animating faces have been developed in the
past [31-34]. Dominating the field are data-driven models
[5,7,35], which have witnessed significant advancements with the
application of deep learning techniques [1,3,18,36-38]. Linear blend-
shapes [5] remain prevalent in demanding applications and scenarios
lacking computationally rich hardware due to their simplicity and
speed. Physics-based simulations, although addressing issues of blend-
shape models like implausible contortions and self-intersections, are
less commonly used due to their inherent complexity and computa-
tional demands. Sifakis et al.’s [39] pioneering work represents the first
fully physics-based volumetric facial animation, employing a personal-
ized tetrahedron mesh with limited resolution due to an involved dense
optimization problem. The Phace system [6] successfully overcame this
limitation through an improved simulation. Art-directed physics-based
facial animations additionally employ a muscle representation based on
B-splines [8,16,40]. Animations can then be controlled via trajectories
of spline control points. A solely inverse model for determining physical
properties of faces is presented in [41].

Hybrid methodologies incorporate surface-based physics into linear
blendshapes to enhance the intricacy of facial expressions [9,11,42,43].
Nevertheless, due to their design, these approaches are unable to repre-
sent volumetric effects. The introduction of volumetric blendshapes [7]
represents a hybrid solution that amalgamates the structure of lin-
ear blendshapes with volumetric physical and anatomical plausibility.
However, achieving real-time performance necessitates the utilization
of extensive personalized corrective blendshapes.

Considering soft bodies in general, deep learning approaches have
been investigated to approximate physics-based simulations. For in-
stance, in [15,44] the SMPL (Skinned Multi-Person Linear Model)
proposed in [45] was extended with secondary motion. Recently, [9,
10,12] developed methods to learn the particular physical properties
of objects and faces. However, these approaches must be retrained
for unseen identities and are slow in inference. A fast and general
approach for learning physics-based simulations is introduced in [14].
Unfortunately, they focused on reflecting the dynamics of single objects
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Fig. 1. All components of the layered head model template 7. Skin Sy, skin wrap S,
muscles M, muscles wrap M, skull B;, and the skull wrap B;.

with limited complexity. We present a real-time capable deep learning
approach to physics-based facial animations that does not need to be
retrained and maintains the control structure of standard linear blend-
shapes. Additionally, none of the previously described deep learning
methods tackle the challenging creation of facial training data, which
we also address in this work.

3. Method

The cornerstone of the SoftDECA animation system lies in a novel
layered head representation (Section 3.1). Building upon this founda-
tion, we formulate a physics-based facial animation system (Sections
3.2 & 3.3) and illustrate how to distill it into a defining dataset (Sec-
tion 3.4). Utilizing this dataset, we train a newly devised hypernetwork
(Section 3.5) capable of real-time approximation of the animation
system. In addition to our previous work [19], we enhance SoftDECA
to be directly addressable by sparse landmarks, rendering it entirely
independent of linear blendshapes if desired (Section 3.6).

3.1. Layered head model

3.1.1. Structure
We define a head H = py(7) with a neutral expression through a
component-wise transformation p;, of a layered head model template

T =(Sy, By, Mz, 87, By, My), (6]

comprising six triangle meshes. .S delineates the skin surface, encom-
passing the eyes, mouth cavity, and tongue. B; denotes the surface
of all skull bones including the teeth. M, represents the surface of
all muscles, along with the cartilages of the ears and nose. Sy is
the skin wrap, i.e. a closed wrap that envelopes S;. By is the skull
wrap that encloses By and M is the muscle wrap that encloses M.
For simplicity, other anatomical structures are omitted. The template
structures Sy, By, and M, were artistically designed, while the skin,
skull, and muscle wraps S, By, and M; were generated by shrink-
wrapping the same sphere as closely as possible to the corresponding
surfaces without intersections. The complete template is depicted in
Fig. 1.

The shared triangulation among the wraps of the LHM allows to
also define a soft tissue tetrahedron mesh S; (between the skin and
muscle wraps) and a muscle tissue tetrahedron mesh M (between
the muscle and skull wraps). For this purpose, each triangular prism
spanned between corresponding wrap faces is canonically split into
three tetrahedra. The complexities of all template components are
detailed in the appendix. In the subsequent sections, we denote the

number of vertices in a mesh as | - |, and the number of faces as | - | ;.
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3.1.2. Fitting
Later on, generating training data involves determining

(S.B.M,S,B, M) = p;(T) )

when only the skin surface S of the head H is known. For this
purpose, we employ a hybrid approach that places the skull wrap
in a data-driven manner, while the remaining template components
are fitted using heuristics to ensure anatomical plausibility and avoid
self-intersections.

Starting with the fitting of the skin wrap, we set

S = rbe74,S(S‘T) . 3)

Here, the RBF function denotes a space warp based on triharmonic
radial basis functions [46], calculated from the template skin surface
S to the target S and applied to the template skin wrap ;. Due to the
construction of RBFs, the skin wrap undergoes a semantically consistent
warp, adhering closely to the targeted skin surface.

Following, we fit the skull wrap B by first evaluating a linear regres-
sor D that predicts distances from the vertices of S to the corresponding
vertices of B. Then, we minimize with projective dynamics [47]
arg rr}}n wreclErect (X’ ST) + wdisl2 Edisl2 (X! S’ D(S)) (4)

+ wcurvEcurv (X’ E‘T) .

In this optimization, Egg, ensures the adherence to the predicted
distances, E,,, represents a curvature regularization for the skull wrap,
and E, prevents shearing between corresponding faces of the skin
and skull wraps. The distances are set to a minimum value if they
fall below a threshold, thereby preventing skin—skull intersections.
For formal descriptions of the energy components, please refer to the
appendix. The optimization is initialized with X = $—D(S)-n(S), where
n(S) denotes area-weighted vertex normals. The linear regressor D is
trained on the dataset from [48] (SKULLS), which correlates CT skull
measurements with optical skin surface scans. For a visual illustration
of the training process of the linear regressor please refer to Wagner
et al. [19].

The muscle wrap M is placed almost at the same absolute distances
between corresponding vertices of the skin and skull wraps as in the
template. Only ten percent of the relative distance changes compared
to the template are incorporated, assuming that the muscle mass in the
facial area is only moderately influenced by body weight and skull size.

The skull mesh is placed by setting

B = rbf1§1—>1§(BT) . (5)

The characteristics of the RBF space warp ensure that the skull mesh
remains enclosed within the skull wrap, provided the wrap has suffi-
cient resolution. While the muscle mesh could be positioned similarly,
it is not utilized further in our pipeline.

Finally, the tetrahedron meshes representing soft and muscle tissue
S and M are constructed as described before. On average, the complete
fitting pipeline takes about 500 ms on an AMD Threadripper Pro
3995wx processor. Fig. 2 visualizes the overall fitting process.

3.2. SoftDECA animation system

Building upon the LHM representation, we now introduce the Soft-
DECA animation system by, first, revisiting the concept of linear blend-
shapes. Subsequently, we derive the dynamic physics-based facial sim-
ulation system, which forms the core of SoftDECA.

In a linear blendshape model, » surface blendshapes

{Si}:’;l (6)

animate a facial expression .S, as a linear combination

N
S, =Y wis', 7
i=1
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Fig. 2. (a) Procedural overview of the layered head model fitting algorithm.

% Move Like /) rbf - Warp

where the blending weights w, determine the contribution of each
blendshape to the expression at frame 7.

To achieve the same animation with a physics-based model ¢, one
typically employs either forward or inverse simulations. Without loss
of generality, we consider inverse simulations in the following. Here,
the expression .S, is converted into the (in the Euclidean sense) closest
¢—plausible solution by ¢’ to

T,=¢'(S.p). ®

where p is a vector of material and simulation parameters on which ¢
depends. For including second-order effects as well, Eq. (8) expands to

T,=¢"(rS,+2aT,_, - T, p). ©)

The SoftDECA animation system operates in a similar manner, but
the right-hand side of Eq. (9) is approximated by a computationally
efficient neural network f.

Ensuing, we will elucidate our implementation of ¢" and the pro-
cess of generating representative examples. However, please note that
SoftDECA is not confined to a specific implementation of ¢.

3.3. Physics-based simulations

We implement anatomically plausible inverse physics ¢ as a projec-
tive dynamics energy E,;. At this, state-of-the-art FEM models [6,8,41]
are merged by applying separate terms for soft tissue, muscle tissue, the
skin, the skull, and auxiliary components.

3.3.1. Energy
Considering the soft tissue S, we closely follow the model of [6] and
impose

ES = Wyol Z Evol(t) + Wi Z ]lap(t)>eEstr(t)’ (10)
teS teS

which for each tetrahedron t penalizes change of volume and strain,
respectively. Strain is only accounted for if the largest eigenvalue o
of the stretching component of the deformation gradient F(t) € R
grows beyond e.

To reflect the biological structure of the skin, we additionally for-
mulate a dedicated strain energy

ES = Z Estr(t) (11)
tes

on each triangle t of the skin which, to the best of our knowledge, has
not been done before.
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For the muscle tetrahedra M, we follow Kadlecek et al. [41] that
capturing fiber directions for tetrahedralized muscles is in general too
restrictive. Hence, only a volume-preservation term

Ey = wy Z Eq(® (12)
teM
is applied for each tetrahedron in M.
The skull is not tetrahedralized as it is assumed to be non-deform-
able even though it is rigidly movable. The non-deformability of the
skull is represented by

Eg= Y Eq(®)+ Y Ecuy(x. B), 13)
teB XEB

i.e. a strain E,, on the triangles t and mean curvature regularization on

the vertices x of the skull B. We do not model the non-deformability

as a rigidity constraint due to the significantly higher computational

burden.

To connect the muscle tetrahedra as well as the eyes to the skull,
connecting tetrahedra are introduced similar to the sliding constraints
in [6]. For the muscle tetrahedra, each skull vertex connects to the
closest three vertices in M to form a connecting tet. For the eyes,
connecting tetrahedra are formed by connecting each eye vertex to the
three closest vertices in B. On these connecting tetrahedra, the energy
E,,, with the same constraints as in Eq. (10) is imposed. By this design,
the jaw and the cranium are moved independently from each other
through muscle activations but the eyes remain rigid and move only
with the cranium.

Finally, the energy

E;, = 2 Elar(x7 St) 14
XES
of soft Dirichlet constraints is added, attracting the skin surface §
vertices to the targeted expression S,.
The weighted sum of the aforementioned energies gives the total
energy

E¢f = wsEg + wy By + wg Eg + Wy Epgr

(15)
+ wsEg + weo Econ + Winy Einy

con--con

of the inverse model ¢'. Altogether, ¢’ results in an expression 7, that
in a Euclidean sense is close to the target .S, but is plausible w.r.t. the
imposed constraints.

3.3.2. Collisions

Finally, self-intersections are resolved between colliding lips or
teeth in a subsequent projective dynamics update as in [49]. The
decisive characteristic of this approach is that no gaps can occur after
the resolution of self intersections. For example, in the case of a lip
collision, the corresponding lower and upper lip points are simulated
to the same position.

3.3.3. Parameters

The construction of ¢ also implies parts of the parameter vector
p- As such, the dynamics parameters a,f,y, weights w, of all the
constraints, but also other attributes of the constraints are considered.
For example, the target volume in E, or scaling factors of the skull
bones are included. We also add constant external forces like gravity
strength and direction into p. An overview of all parameters we use
and the corresponding value ranges is given in the appendix.

3.4. Training data

According to the definition of the animation system in Eq. (9), a
comprehensive training dataset D should include examples that link
various facial expressions generated through linear blendshapes to
the corresponding surfaces conforming to ¢. Moreover, to encompass
dynamic effects, the exemplary facial expressions should form coherent



W. Nicolas, S. Ulrich and B. Mario

Computers & Graphics 119 (2024) 103903

Materlal & Weights Deformation Dlr.ec.t
Identity Transfer Prediction
(S [N
el = ph(p7h777(1)) \
Weights w
[2 = ph(p7h1 7"(2)) \ )
£ = fon (p, b, m(3)) s
\_ <
&4 = fon (p, b, m(4)) P e
LRRXRRRRKS

‘C(pa h) Zy

SoftDECA

£(S¢, w;p, h) Z

f(Lt7 P, h)

SparseSoftDECA

Fig. 3. An overview of SoftDECA and SparseSoftDECA facial animations. In Step (1), for both, the hyper-tensor and the dynamic parameters are determined once for an
animation. Subsequently, steps 2-3 are repeatedly evaluated per frame and either map blendshapes weights to deformation gradients (SoftDECA) or landmarks to vertex position

(SparseSoftDECA).

sequences. This dataset also needs to encompass a range of diverse head
shapes and simulation parameters.

In the following, we describe a pipeline for creating instances of
such a dataset, which can be roughly divided into six high-level steps.

1. We commence by randomly selecting a neutral skin surface
S from DECA [18], an extensive high-resolution face model.
Specifically, we pick an image at random from the Flickr-Faces-
HQ [50] dataset and let DECA determine the corresponding
neutral head shape along with a latent representation h.

2. The template LHM 7 is aligned with the skin surface S as
described in Section 3.1.

3. Deformation transfer [51] is applied to map ARKit surface-based
blendshapes to S.

4. An expression sequence S = (S’ of length m + 1 is generated
by applying a sequence of linear blendshape weights w = (w,)}" .
These blendshape weights are derived from 8 approximately
10 min long dyadic conversations recorded using a custom iOS
app.

5. As the final step before generating the ¢-plausible counterpart of
S, it is necessary to sample simulation parameters within appro-
priate domains. We expect the user to specify lower and upper
bounds for continuous parameter beforehand. Then, for each
continuous entry in p, a value is independently sampled from
a uniform distribution between the specified bounds. Discrete
parameters are treated similarly, without specific constraints.

6. Finally, T = (¢*(S,,p)):"=0 is computed and (T,S,w,p,h) is
appended to D. Evaluating one time step takes approximately
10 s on an AMD Threadripper Pro 3995wx.

3.5. Hypernetwork

3.5.1. Architecture & training

Having training data, we can now design a computationally effi-
cient neural network f to approximate the physics-based simulation
from Eq. (9). Irrespective of a particular architecture, the training goal
implied by D is to optimize on each frame

m

min T,-f h)| . 1

" Bl
In words, f is trained to approximate the ¢-conformal expressions from
the linearly blended expressions S, the blending weights w,, simulation
parameters p, and the head descriptions h. Hence, leaving out dynamic
effects to begin with, the probably most naive approach would be to
learn f to directly predict vertex positions. However, this would not
allow the usage of personalized blendshapes at inference time that have

not been used in the curation of D. Therefore, we separate f into two
high-level components

£(S;, ;. p.h) = DT(S. fpg(w,.p.h)) . an

where DT is a deformation transfer function as in [52] that applies
3 x 3 per-face deformation gradients (DGs) predicted by £, (w,,p.h) €
R!S17*9 to the linearly blended S,. By doing so, f can also be applied
to a facial expression S, which has been formed by unseen person-
alized blendshapes while still achieving close approximations of ¢'.
Fortunately, the evaluation of DT is not more than efficiently finding a
solution to a pre-factorized linear equation system.

To implement the DG prediction network fj;, we evaluated multi-
ple network architectures such as set transformers [53], convolutional
networks on geometry images, graph neural networks [54], or implicit
architectures [55], but all have exhibited substantially slower inference
speeds while reaching a similar accuracy as a multi-layer perceptron
(MLP). Nevertheless, a plain MLP does not discriminate between inputs
that change per frame ¢ and inputs that have to be computed only
once. Therefore, we propose an adaptation of a hypernetwork MLP [17]
to implement f;; in which the conditioning of f,; with respect to
the simulation parameters as well as the DECA identity is done by
manipulating network parameters. Formally, we implement

fpG (W, p.h) =2z,L(p,h), 18)

where £(p,h) € R¥¥I517% returns a tensor that only has to be calcu-
lated once for all frames and z, = f,,(w,) € R is the result of a small
standard MLP that processes the blending weights at every frame ¢.
Each matrix 7, € R3>® in £(p,h) corresponds to a face in S and the
entries are calculated as

¢ = fon(p, h, z(0)) . 19)

Again, f,;, is a small MLP and 7 is a trainable positional encoding.
Please consult the appendix for detailed dimensions of all networks and
see Fig. 3 for a structural overview of f.

3.5.2. Localization

The architecture described above offers extensive possibilities for
artistic user interventions at inference time. For instance, different
simulation parameters p; can be used per triangle i by changing Eq. (19)
to

;= fon (P 7(0) s (20)

which enables a localized application of different material models. The
DT function ensures that the models are smoothly combined.
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3.5.3. Dynamics

Given that locally differing simulation parameters are not reflected
in the training data, existing approaches to integrate dynamics in deep
learning [14,15], cannot be adopted. Therefore, we again use the
hypernetwork concept to achieve a piecewise-linear dynamics approx-
imation. More precisely, we recursively extend f to

£(S;, Wi, p.h) = ¥ © DT(S,, fpg (W, p.h))
+ 2 0© f(S,_l,w,_l,p,h) @D
- po f(S,_z,Wz—Z’P’h) 4

where a, 8,y € R32%ISlv contain per-vertex dynamics parameters. The
first row of Eq. (21) is the same as in Eq. (17) but the second and third
rows allow for dependencies on the previous two frames. Each entry
of a, B,y is calculated as in Eq. (20) but with dedicated MLPs f,, f4.1,.
As a result, «, B,y are again not time-dependent and only have to be
calculated once.

3.6. Sparse animation control

Previously, we assumed that SoftDECA is supposed to map an ex-
pression S, generated by linear blendshapes (Eq. (7)) into a ¢'-plausible
expression 7, (Eq. (8)). In the following, we now assume that only
temporally consistent landmarks L, € S, can be observed per frame
t. At the same time, we no longer require S, to be derived from a
specific linear blendshape system for inference. We refer to the adapted
variant which processes landmarks instead of blendshape weights as
SparseSoftDECA. In other words, SparseSoftDECA can create personal-
ized animations from tracked landmarks requiring only a neutral scan
as input. In this section, we first explain the adaptation of the physics
model to the sparse input. Subsequently, which training data is required
for SparseSoftDECA is discussed. Finally, we described changes in the
hypernetwork topology of SoftDECA to allow landmarks to be used as
input.

3.6.1. Adapted physics-based simulation

The foundation of SparseSoftDECA is a modified physics-based
model ¢t which in principle optimizes the same energy as ¢. However,
the targeted landmarks are enforced by simultaneously optimizing for

Epy = Z Ei; (X’ Lt) . (22)
xeL

In our experiments, it has proven beneficial to keep the previous
target energy E;, as a regularization term. Otherwise, since L, is
usually only a sparse observation of §,, i.e. |L|, < |S],, solely non-
uniformly distributed actuation signals would act in ¢’ which would
cause distortions.

In summary, ¢’ is composed by the overall energy

Ewt = wgEs + wy Ey + wg Eg + W Engr
+ wsEg + we,, E, (23)

con-~con

+ wregEinv + wlmkElmk’

where w,., indicates the strength of the regularization and is included
in the parameter vector p.

3.6.2. Adapted training data

To generate training data for SparseSoftDECA we, basically follow
the same data generation pipeline as described in Section 3.4. Merely
the steps 4 and 6 must be adjusted to produce training instances with
landmarks rather than blendshape weights.

Concerning step 4, we have extended the custom iOS app such
that not only weight vector w, but also about 150 corresponding
landmarks L, are captured by Apple’s ARKit. These landmarks mainly
represent the contours of a face and are visualized in Fig. 4. Contrary
to the blendshape weights, the captured landmarks are tailored to the
recorded head.
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Fig. 4. The set of landmarks used for SparseSoftDECA.

Concerning step 6, a training instance is now formed as (T, S, L, p, h)
where

L= ("(Lt)):n:o’
T=(¢'(o(L,).S,p) o

Here, ¢ is an augmentation function which serves two purposes. On
the one hand, the landmarks must be personalized to account for the
difference between the recorded and simulated head shape S drawn
in Step 1 of the data generation pipeline. On the other hand, the
notably larger domain as opposed to the blendshape weights requires
a denser sampling in the training set, as we will show empirically in
Section 4.3. Therefore, ¢ is composed of a deformation transfer [52]
that accomplishes the personalization followed by a coordinate-wise
Gaussian noise to achieve a robust domain coverage.

24

3.6.3. Adapted hypernetwork

For SparseSoftDECA, the efficient hypernetwork topology presented
earlier for SoftDECA (Section 3.5) is fundamentally preserved. How-
ever, so far, SoftDECA focused on deforming a linear blended surface
according to specified material properties. Since SparseSoftDECA is
intended to reconstruct a facial expressions without being tied to a
particular linear blendshape system, neither the linear blended surface
S, nor the blendshape weights w, can be utilized as input for the
adapted hypernetwork. For the same reason, mesh coordinates can
be predicted directly without the intermediate step of forming and
resolving deformation gradients. Formally, the static hypernetwork f
of SparseSoftDECA is implemented as

f(Ly, p,h) =fL(L)L(p, ), (25)

where L(p, h) € R32¥I51:X3 returns a tensor that only has to be calculated
once for all frames and f;(L,) € R is the result of a small standard
MLP that processes the landmarks at every frame r. The dynamic
variant is derived as before in Eq. (21). A structural overview is given
in Fig. 3.

3.7. Personalized animation from commodity smartphones

We will release SparseSoftDECA trained on the skin topology used in
Wenninger et al. [20]. In their work, they demonstrate how to quickly
create high-resolution (face) avatars from a single smartphone video.
Combining both the high resolution avatars and our models allows
for computationally efficient realistic facial animation with real-time
tracking even on low budget hardware. Due to the compatibility with
ARKit and software based thereon, SoftDECA and SparseSoftDECA can
readily be deployed in environments from Apple, Unity, and many
more.

4. Experiments

Prior to outlining the accuracy and efficiency of SoftDECA (Sec-
tion 4.2), we first evaluate the precision of the LHM fitting (Sec-
tion 4.1). Afterwards, we examine both quantitatively and qualitatively
SparseSoftDECA (Section 4.3).
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Fig. 5. The per-vertex mean L2-error of the LHM fitting.

Fig. 6. Exemplary fits of the LHM components skull wrap, muscle wrap, and skull.

4.1. LHM fitting

The fitting process of the LHM involves the data-driven positioning
of the skull wrap and the subsequent heuristic fitting of the muscle
wrap. Our evaluation focuses on the critical fitting of the skull wrap
using the CT SKULLS dataset from [48], consisting of 43 instances.
To assess precision, a leave-one-out validation is conducted, measuring
vertex-wise L2 errors. Prior methods positioning the skull within the
head primarily rely on sparse soft tissue statistics derived from a few
points on the skull [7,56]. We evaluate our approach against the
multilinear model (MLM) proposed by Achenbach et al. [30,48] which
demonstrated more robust and precise positioning through the capture
of dense soft tissue statistics represented as radii of spheres surrounding
the skull.

Both models fall short of achieving medical-grade positioning, ex-
hibiting errors ranging between approximately 2mm and 4 mm. The
MLM demonstrates higher precision with a mean error of 1.98 mm,
surpassing our approach, which positions the skull with an average
error of 3.83 mm. However, the MLM lacks collision prevention, posing
a potential issue for physics-based simulations. Moreover, our fitting
algorithm produces significant errors primarily in regions of lesser
importance for facial simulations, as depicted in Fig. 5. Notably, errors
are concentrated in the back area of the skull, where the rectangular
constraints of our fitting procedure may no longer align well with the
skin wrap. Fig. 6 provides visual examples of the fitting process.

4.2. SoftDECA

4.2.1. Dataset & training

To train and evaluate f, we construct a dataset comprising 500k
training and test instances using the pipeline detailed in Section 3.4.
The parallelized creation of the dataset spanned five days and ne-
cessitated one terabyte of storage. To address the disparate sizes of
the parameter spaces, 75% of the generated data consists of static
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instances where all parameters except the dynamic ones a,f,y are
sampled. The remaining 25% of the data is dynamically simulated,
resulting in the generation of 6250 dynamic sequences, each with a
length of 16 frames. To initiate dynamic sequences with a reasonable
velocity, a longer sequence of length 2048 is pre-simulated with fixed
dynamics parameters. For each dynamic sequence, a random observed
velocity from the long sequence is drawn as the initialization. The
dataset is divided into 90% for training and 10% for testing, ensuring
no repetition of the same identity, simulation parameters, or facial
expression in both sets.

During training, the Adam optimizer executes 200k update steps
with a learning rate of 0.0001, linearly decreasing to 0.00005, and a
batch size of 128. The training specifications result in an approximate
runtime of 8 h on an NVIDIA A6000. The relatively brief training
duration can be attributed to the efficient network design and less
noisy training data compared to scenarios typically encountered in
image-based deep learning.

4.2.2. Quantitative analysis

We quantitatively evaluate SoftDECA based on the L2 reconstruc-
tion error with respect to the targeted physics-based simulation and the
computational runtimes. Additionally, we compare SoftDECA against
Subspace Neural Physics (SNP) [14] and SoftSMPL [15] architectures
adapted for facial simulations, recognized as state-of-the-art methods
for rapid approximations of physics-based simulations. An overview
of all results is provided in Table 1. The reported runtimes represent
averages of ten runs measured on a consumer-grade Intel i5 12600 K
processor. All implementations rely on PyTorch.!

SoftDECA outputs precise approximations for both static and dy-
namic animations, showcasing average test reconstruction errors of
only 0.22mm and 0.41 mm, respectively. The results underscore Soft-
DECA'’s capacity to generalize effectively across diverse human iden-
tities, facial expressions, and simulation parameters. However, the test
data fully stems from unpersonalized blendshapes, necessitating further
assessment using an external dataset obtained from 3DScanstore.?

The external data is compromised of 20 to 35 scanned facial expres-
sions for each of seven human identities. We create personalized ARKit
blendshapes per head using example-based facial rigging [57]. Subse-
quently, a test dataset is generated as before. Despite the possibility
that the 3DScanstore examples may not align with the DECA distribu-
tion, the reconstruction error experiences only a marginal increase to
0.44 mm.

Noteworthy is SoftDECA’s swift performance, with an average run-
time of 7.45ms for static frames and 9.87 ms for dynamic frames. This
rapid processing makes SoftDECA an appealing choice for resource-
demanding applications. Additionally, in scenarios where unseen per-
sonalized blendshapes are undesirable, we explored a variant of Soft-
DECA directly predicting vertex positions. This alternative achieves an
accuracy of 0.16mm and can be executed at an accelerated pace of
0.71 ms per frame.

4.2.3. Static comparisons

In static simulations, SoftDECA is compared with SoftSMPL, as
SNP is exclusively tailored for approximating dynamic effects. The key
distinction between the SoftDECA and SoftSMPL architectures lies in
the choice between our hypernetwork MLP and a conventional MLP.
Originally designed for full-body applications, SoftSMPL takes a motion
descriptor as input, summarizing a body and its state. In our case, this
translates to blendshape weights, simulation parameters, and the iden-
tity code. To maintain consistent inference times, we employ identical
network dimensions for the standard MLP as those in the hypernetwork.
Consequently, the SoftSMPL MLP experiences a notable increase in the
reconstruction error, averaging 1.67 mm. We also explore a larger MLP

1 https://pytorch.org
2 https://www.3dscanstore.com
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Table 1
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SoftDECA test results in comparison to adapted SNP [14] and SoftSMPL [15] architectures as well as ablations. The runtimes are averages
measured on a consumer-grade Intel i5 12600K processor. External refers to the 3Dscanstore dataset. Small and large correspond to the size of

the inspected MLP.

Model Ours SoftSMPL SNP Ablation

Static Dynamic  External Static (Small) Static (Large) Dynamic Dynamic Face-wise  Only Vertices
Error in mm  0.23 0.41 0.44 1.67 0.16 0.22 0.14 0.17 0.16
Time in ms  7.45 9.87 7.45 7.62 46.61 47.39 46.61 34.92 0.72

that achieves a comparable reconstruction error to Soft DECA, however,
this results in a substantial increase in runtime to 46.61ms.

Another canonical alternative to the hypernetwork is a standard
MLP that does not map to all DGs simultaneously but is evaluated face-
wise. This approach yields a low reconstruction error of 0.17 mm, yet
it comes with a higher runtime of 34.92ms. Other architectures like
CNNs, GNNs, or transformers could not be evaluated in real-time on
a consumer-grade CPU with sufficient accuracy. For CNNs and GNNs,
this is due to the fundamental sparse convolutions that are depended
on very deep network layers to represent global effects (CNN, GNN).
Further, transformer architectures usually require an attention mecha-
nism with quadratic runtime but even optimized set transformer [53]
involve significantly more operations than standard MLPs.

4.2.4. Dynamic comparisons

For dynamic simulations, we compare SoftDECA with SoftSMPL
and SNP. Unlike SoftDECA, both SoftSMPL and SNP perform dynamic
computations in a latent space rather than directly on vertices. Further,
SoftSMPL incorporates a recurrent GRU network [58], while SNP relies
solely on a standard MLP. For this comparison, we only consider the
larger network design mentioned earlier, as our primary focus is on
evaluating the accuracy of our dynamic approximation rather than
comparing runtimes. At this, both SoftSMPL and SNP exhibit slightly
improved reconstruction errors at 0.22mm and 0.24 mm, respectively.
However, since both methods do not operate vertex-wise, they are
not suitable for handling locally varying parameters of the dynamic
simulation.

4.2.5. Qualitative analysis

A visual illustration of SoftDECA’s capabilities is given in Fig. 7,
presenting a comparison between SoftDECA predictions and the tar-
geted physics-based facial simulation. For example, in (a), it is evident
that while collisions are not guaranteed to be entirely eliminated, they
are largely mitigated. In (b), a localized increase in triangle strain on
the skin around the cheeks results in the formation of wrinkles in that
region. The result in (c) demonstrates the incorporation of external
effects as heightened gravity. A surgical manipulation is shown in (d),
where the jaw is lengthened along the vertical axis in the neutral
state while maintaining the head’s volume. The representation of a
humanoid alien in (e) illustrates Soft DECA’s robustness even outside the
DECA distribution. This robustness is primarily achieved by transferring
DGs instead of directly predicting vertex positions. Our interpretation of
zombification in (f) is realized by expanding the skin area, highlighting
SoftDECA’s capability to closely approximate high-frequency details.
Lastly, in (g-h), we depict the simulation of different weight additions
in a non-linear manner, raising the soft tissue volume by 20% and 40%,
respectively. Given the extensive training domain of SoftDECA, many
other effects can be animated efficiently which are not displayed in
Fig. 7. Additional results, including dynamic effects, are available in
the supplementary material video.

4.3. SparseSoftDECA

4.3.1. Dataset & training

For the training and assessment of SparseSoftDECA, we create a
dataset consisting of 500k training and test examples by following
the procedure outlined in Section 3.6.2. Specifically, we simulate 50

Table 2

SparseSoftDECA test results using both the same and a different head shape for
personalization. Additionally, we investigate the influence of applying noise to the
facial landmarks in the training set.

Model Ours Ablation
Same Other With Without
Identity Identity Noise Noise
Error in mm 0.54 0.62 0.55 0.73

distinct sets of facial expressions for each of 10,000 randomly selected
identities. The dataset is divided into 90% for training and 10% for
testing, ensuring that neither the same identity nor the same facial land-
marks appear in both sets. To further rigorously evaluate the robustness
of SparseSoftDECA in the face of incorrect and noisy inputs, as well as
its generalization capacities, we extend ¢ in Eq. (24). In contrast to
training examples, for test examples the process of personalizing the
landmarks applies a separate test identity.

The training process and hyperparameters used are consistent with
those described in Section 4.2.1.

4.3.2. Quantitative analysis

SparseSoftDECA demonstrates the ability to closely mimic sparse
landmark-guided simulations, as illustrated in Table 2. Whether person-
alization involves the same individual or a different one appears to be
almost irrelevant. The minimal L2-errors of 0.54 mm and 0.62 mm affirm
the robustness of SparseSoftDECA in handling erroneous and noisy in-
puts. We also investigated the influence of training data augmentation
with Gaussian noise (standard deviation of 0.01). A slight improvement
of the error from 0.73 mm to 0.55mm can be observed.

In general, the errors observed are greater compared to those of
SoftDECA. This can be attributed to the increased complexity of the
task. Previously, the learning focus was primarily on changes in sim-
ulation properties, whereas now the learning task involves predicting
entire facial expressions.

4.3.3. Qualitative analysis

The images depicted in Fig. 8 illustrate landmarks, corresponding
simulations, and predictions generated by SparseSoftDECA. In b), skin
textures are exhibited aside of the geometry to demonstrate the quality
of the final animation result. For the last row of b), Gaussian noise was
applied to the landmarks, while all other examples are free of noise.
On one hand, the reproduction quality evident from the measured
test errors is visually confirmed. On the other hand, the benefits of
physics-based simulations are reemphasized, highlighting their capacity
to transform even highly noisy landmark inputs into anatomically
plausible facial expressions. The principal advantage, however, is that
all expressions were generated using only sparse landmarks as input
and no underlying blendshapes had to laboriously sculpted. As a side
effect, no blendshapes need to be stored, which can greatly reduce the
memory footprint depending on the type of animation.

To observe the temporal consistency of SparseSoftDECA we kindly
refer the reader to the attached video.
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LBS Simulation

LBS Simulation Ours

3mm

Fig. 7. Exemplary results of SoftDECA in comparison to the targeted physics-based facial simulation as well as the inputted linear blendshape expressions. Reconstruction errors

are plotted on the simulated expressions.

5. Limitations

Although SoftDECA inherits most of the advantages of physics-based
facial animations, it lacks the intrinsic handling of interactive effects
such as wind or colliding objects. Moreover, although we allow for ex-
tensive localized artistic interventions, mixtures of material properties
have not been part of the training data. Incorporating such mixtures
into the training data is difficult as it is hard to define an adequate
mixture distribution. Nonetheless, the smooth material blending of
SoftDECA visually appears to be a sufficient approximation.

Despite SparseSoftDECA differing from SoftDECA in that it is not
constrained by a specific set of blendshape weights, it operates on a
predefined set of landmarks. However, this limitation could potentially
be overcome in future research by implementing a training process
that utilizes randomly selected landmark sets. In general, identifying
an optimal set of landmarks is left to future work.

6. Conclusion
In this work, we have presented SoftDECA, which provides a com-

putationally efficient approximation to physics-based facial simula-
tions, even on consumer-grade hardware. With a few exceptions, most

simulation capabilities are retained, such as dynamic effects, volume
preservation, wrinkle generation, and many more. Soft DECA’s runtime
performance is attractive for high-performance applications and low-
cost hardware. In addition, it is versatile as it supports different head
shapes, facial expressions, and material properties. The ability to make
local adjustments after training makes it a valuable framework for
artistic customization.

Our future goals for improving SoftDECA are twofold. On the one
hand, we want to refine the anatomical model to achieve an even more
accurate representation, especially for structures such as the trachea
and esophagus. On the other hand, latest results demonstrate the
efficient learning of contact deformations [59]. Given that people often
touch their face several times a day, introducing a contact treatment for
more realistic gestures could significantly improve immersion.

In continuation of the earlier presentation of SoftDECA [19], this
work also includes the introduction of SparseSoftDECA. SparseSoft-
DECA enables blendshape-free facial animation based on sparse land-
marks and exhibits the same generalization characteristics as Soft-
DECA. SparseSoftDECA seamlessly integrates with the avatar genera-
tion pipeline proposed by Wenninger et al. [20], making it straightfor-
ward to deploy.
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Fig. 8. Exemplary results of SparseSoftDECA (right) in comparison to the targeted physics-based facial simulation (left) as well as the inputted landmarks (red dots). Additionally,
in (b), the combination of SparseSoftDECA with skin textures is displayed. In the last row of (b), Gaussian noise has been applied to the landmarks.
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Appendix A. Simulation parameters

In the following, we describe all simulation parameters that haven
been sampled during the creation of the SoftDECA training data. More-
over, we state the sampling range for each parameter. This list is not
complete in the sense that SoftDECA is not committed to it. However,
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these parameters already provide a comprehensive test of Soft DECA’s
capabilities and allow for extensive individualization opportunities.

» Dynamics We sample each of the parameters a, #,y that steer the
dynamic second order effects in a range from 0 to 2.

Constraint Weights All weights w, associated with the constraints
of ¢! are sampled between 0.001 and 100.

Volume The target determinant in the volume energy E
sampled from 0.5 to 1.5.

Maximum Strain We allow a varying amount of maximum soft
tissue strain by adjusting the ¢ from 0.7 to 1.3.

Gravity An additional gravity force is applied in a range from
standard earth’s gravity up to two times the standard. Further,
the gravity direction is sampled.

Skull We incorporate changes in the skull bones by sampling
coordinate-wise scaling factors for both the cranium and jaw in
the range from 0.5 to 1.5.

vol 18

Appendix B. Energies

In the following, we formally state all energies under optimization.

Volume & Strain

Eyq(t) =(det(F@) - 1)? (B.1)
Eq() = min [IF() = RIl} (B.2)

F(t) denotes the deformation gradient of a tetrahedron 7, R € SO(3) the
optimal rotation, and ||-||?F the Frobenius norm.

Bending
Equry(x, B) = A, || Ax — RAb, ||’ (8.3)

The matrix R € SO(3) denotes the optimal rotation keeping the vertex
Laplacian Ax as close as possible to its initial value 4b,. The vertex
Laplacian is discretized using the cotangent weights and the Voronoi
areas A, [60].

Soft Dirichlet
Ey (x! Sexp) = ||x - Sx||2 > (B.4)

attracts each vertex x of the skin surface .S to the corresponding vertex
s, from the target expression Sy
Fitting Distances

A N 2
Eqy, (X, 8, D(8)) = X (Ilx = .l - ) (B.5)

x€X

ensures that for each vertex x € X the predicted distance d, € D(S) is
adhered to.

Appendix C. Template layered head model

Table C.3 states the cardinality of each component of the layered
head model template. By subdividing the wrap meshes or the triangle
prisms between the wraps, the resolution of the template tetrahedron
meshes can easily be adjusted. We will provide a mapping between the
DECA and our topology.

Appendix D. Network dimensions

See Fig. D.9.

Appendix E. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.cag.2024.103903.
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Table C.3
Template dimensions.
Mesh Sy B; M, Sy
#Vertices 35621 14572 16388 7826
#Faces/#Tetrahedrons 71358 28856 32370 15648
Mesh B, M, Sy M,
#Vertices 7826 7826 49852
#Faces/#Tetrahedrons 15648 15648 123429 73681
f, f5 £,
FC FC FC FC FC FC
X 32 32 X 32 32
32 32 32 32 32 1
Leaky || || Leaky || Identity Leaky ||| Leaky 1+
ReLU ReLU ReLU ReLU Tanh
\ \ J
\ &
FC FC FC FC
X 32 32 32
32 32 32 32
Leaky Leaky Leaky Leaky
ReLU ReLU ReLU ReLU

Fig. D.9. Network dimensions. Each fully connected layer (FC) is represented as a
box. For each FC, the input and output dimensions are stated as well as the applied
activation function.
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5.1 METHOD SUMMARY

In the publication AnaConDaR, we responded to Research Question 3
(Section 1.2.3).

This publication contributes to facial retargeting in two ways. Firstly,
an anatomical deformation transfer (A-DT), which relies on a physics—
based simulation (PBS) to transfer a facial expression from a source to a
target character, and explicitly endeavors to preserve the perception of ex-
pression characteristics. Secondly, a data—driven extension to A-DT that
additionally leverages exemplary facial expressions of the target. In the
following, we provide more details on the two contributions and refer to
the extension with AnaConDaR.

ANATOMICAL DEFORMATION TRANSFER

The idea of A-DT is inspired by the original deformation transfer (DT)
[13, 105], please refer to Section 2.1.4 for an algorithmic description. Here,
however, we first register the neutral source head to the facial expression to
be transferred with an inverse PBS akin to that of Soft DECA (Chapter 3).
Subsequently, we transfer the identified volumetric anatomical deforma-
tions to the neutral target head, also by means of a (forward) PBS.

In the forward simulation, we additionally consider the perception of the
transferred expression. This aspect is inherently subjective and challeng-
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ing to define precisely. As guidance, we engaged in a thought experiment:
when shown a facial expression in a photograph and asked to imitate this
expression using a mirror, what characteristics do humans focus on? We
concluded that relative changes in facial proportions (e.g., how open the
mouth or eyes are) and mouth contours are most vital. Consequently, we
integrate these characteristics into the forward simulation through suit-
able constraints.

PATCHWISE LINEAR BLENDSHAPES

For A-DT, we only need to know the neutral target head; however, if ex-
emplary facial expressions of the target character are available, incorporat-
ing them via example-based facial rigging (EBFR) [58] has proven effective
for enhancing the original DT. EBFR aims to retarget facial expressions
such that the retargeting results can simultaneously reproduce the target
examples via weighted linear interpolation. In other words, EFBFR relies
on linear blendshapes (LBS), which suffer from the well-known linearity—
related drawbacks as discussed before (Section 2.1.1).

In contrast, patchwise LBS [18, 119], which employ varying blendshape
weights across different facial patches, offer superior expressiveness due to
their inherent nonlinearity. Patchwise LBS already demonstrated to be es-
pecially beneficial for facial retargeting [18], even though they can lead to
unnatural edges between patches. For AnaConDaR, we integrate A-DT
with patchwise LBS instead of FBFR and handle implausible edges, as
always in this thesis, by leveraging an anatomically plausible PBS. Un-
like FBFR, we incorporate target examples only when they offer valuable
information for retargeting. If they do not contribute to the expression
transfer, we locally fall back to the A-DT retargeting. Due to this adap-
tive blending scheme, AnaConDaR is devoid of artifacts that might result
from an insufficient data foundation.

5.2 DISCUSSION

RESULTS

Evaluating facial retargeting poses a significant challenge due to the sub-
jective perception of the results, making it difficult to quantitatively com-
pare the performance of different concepts. Therefore, we conducted two
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comprehensive user studies involving approximately 30 participants. The
first study directly compared AnaConDaR with a state-of-the-art peer
group, while the second study validated the effectiveness of individual
components of our approach in an ablation study. The former study addi-
tionally investigated how the number of available target examples affects
the user perception. Our findings indicate that users consistently perceive
AnaConDaR as more authentic across all scenarios and that all method
components make a valid contribution to the overall results. Notably, our
method becomes even more convincing when fewer target examples are
provided. This is a crucial observation since 3D scanning and manual edit-
ing are very time—-consuming, a problem that we already faced several
times in this thesis.

Through visual results, we demonstrate that AnaConDaR is tempo-
rally consistent and illustrate the intuition of the local blending scheme.
Moreover, the publication entails visually convincing examples that A-
DT preserves facial characteristics better than DT and that AnaConDaR
generally generates more expressivity from exemplary target data than
EBFR.

Finally, AnaConDaR offers numerous straightforward artistic interven-
tion possibilities, such as adjusting patchwise blendshape weights and ma-
nipulating facial characteristics like the mouth contour. Similar to Soft-
DECA, a user can tweak simulation and material parameters, enabling
effects such as body fat changes with minimal effort. Unlike our previ-
ously discussed approaches, AnaConDaR does not involve neural networks,
which preserves all the advantageous features of PBSs. For instance, dy-
namic external effects such as fluctuating winds can be directly incorpo-
rated into the retargeting process.

LIMITATIONS

The most significant limitation of AnaConDaR stems from its initial con-
ception, where we design facial characteristics on theoretical assumptions
instead of an empirical validation. Although our ablation studies demon-
strated the benefits of these characteristics, they did not verify the foun-
dational thought experiment that guided their selection. Conducting pre-
liminary studies to identify what users genuinely focus on when assessing
retargeting quality could have led us to choose more effective characteris-
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tics and potentially improved outcomes. Unfortunately, we overlooked the
opportunity to explore this question within our user studies, too.

Another limitation of our work is that the current implementation of
AnaConDaR does not support real-time processing; it operates at less
than one frame per second when utilizing all features. However, for the
overarching framework of this thesis, the impact of this limitation is rather
small. This is because we primarily intend to use A-DT to algorithmically
generate blendshapes once, which can then be animated in real-time using
our own SoftDECA. In many other scenarios, such as studio productions
or game cutscenes, online (real-time) retargeting is not necessary either.
Nonetheless, it is worth noting that our results rely on a pure CPU-based
implementation, utilizing widely adopted frameworks for which numer-
ous GPU alternatives exist. Therefore, AnaConDaR has the potential to
achieve real-time execution speed with appropriate optimization and hard-
ware acceleration.

Lastly, AnaConDaR currently adheres to a predetermined topology, ne-
cessitating that both the source expressions to be retargeted and the tar-
get examples conform to this structure. Otherwise, the patch and facial
characteristic definitions, which are based on vertex selections, would no
longer be valid. While several algorithmic methods exist for finding map-
pings between different topologies [100], achieving a sufficient accuracy
usually requires manual intervention. We mitigate this issue by employing
a standard template topology across all our contributions, which ensures
direct compatibility between methods like A-DT and SoftDECA. In this
context, we also want to point out that we have not evaluated the effects
of a change to the patch configuration. Nevertheless, other research on
patchwise LBS indicates that these effects are generally minimal [18].

RELATED WORK

The related work on AnaConDaR divides into two main areas: previous ef-
forts concerning the “data—free” A-DT, and data—driven facial retargeting
as implemented by AnaConDaR in total.

Between the original DT [105] and A-DT, only a few enhancements
specifically related to faces emerged, likely due to the original’s fundamen-
tally compelling and reliable results. Xu et al. [122] use a customized DT
for edges focusing on lip and eye contours, Bhat et. al. [9] show how to
transfer lip contours to humanoid aliens, and, most closely related to our
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A-DT, Onizuka et al. [84] propose a DT with locally scaled vertex tar-
gets to keep facial contours consistent. None of the existing approaches
considers facial characteristics to the extent our method does, nor do they
incorporate them within a volumetric simulation of the anatomy.

In addition to the discussion of reusing more general, data—driven facial
animation methods for retargeting as described in Chapter 2, we want
to highlight how AnaConDaR differs from the previous state-of-the-art
Anatomical Local Model [18]. This earlier approach also employs patchwise
LBS but relies on a simplified surface description of anatomical properties
instead of a volumetric one. This simplification limits artistic flexibility
and fails to resolve issues like self—collisions. Furthermore, the Anatomical
Local Model requires the target examples to be semantically related to the
source expression — a considerable limitation that AnaConDaR does not
share.

FUTURE WORK

We anticipate that future developments most relevant to this thesis will
primarily be related to A-DT and, therefore, automatic blendshape gener-
ation. As can currently be observed with many heuristic facial animation
methods, a ceiling for improvements becomes very close, and data—driven
approaches promise breakthroughs [70, 90]. An attempt to generate per-
sonalized blendshapes without target examples using neural networks has
already been made [59]. However, this network is trained on a small train-
ing corpus and is only partially convincing in terms of the level of detail
compared to DT, for example. Hence, considerable development poten-
tial exists, especially for hybrid methods that predict deformations and
then robustly simulate them with A-DT. Such approaches could effec-
tively combine the strengths of both worlds: leveraging neural networks’
predictive power alongside the constraining capabilities of PBSs.

5.3 PUBLICATION
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Offline facial retargeting, i.e., transferring facial expressions from a source to a target character, is a common
production task that still regularly leads to considerable algorithmic challenges. This task can be roughly
dissected into the transfer of sequential facial animations and non-sequential blendshape personalization.
Both problems are typically solved by data-driven methods that require an extensive corpus of costly target
examples. Other than that, geometrically motivated approaches do not require intensive data collection but
cannot account for character-specific deformations and are known to cause manifold visual artifacts.

We present AnaConDaR, a novel method for offline facial retargeting, as a hybrid of data-driven and
geometry-driven methods that incorporates anatomical constraints through a physics-based simulation. As
a result, our approach combines the advantages of both paradigms while balancing out the respective
disadvantages. In contrast to other recent concepts, AnaConDaR achieves substantially individualized results
even when only a handful of target examples are available. At the same time, we do not make the common
assumption that for each target example a matching source expression must be known. Instead, AnaConDaR
establishes correspondences between the source and the target character by a data-driven embedding of
the target examples in the source domain. We evaluate our offline facial retargeting algorithm visually,

quantitatively, and in two user studies.

1. Introduction

Creating high-fidelity facial expressions for human or humanoid
characters is one of the most challenging problems in computer graph-
ics applications. To that end, it is common practice to record a source
actor with high-resolution motion capture technology and subsequently
transfer the scanned expressions to the targeted character either frame-
by-frame or via blendshapes [1]. A comprehensive corpus of research
focuses on the latter step, the so-called offline facial performance
retargeting. While deep learning predominates in various facial anima-
tion tasks, here, more traditional approaches retain distinct advantages
and are commonly used in production [2]. Particularly, due to the
still limited availability of high-resolution facial expression meshes
for training, the risk of generalization gaps is ubiquitous [3]. The
reliance on implicit representations within current neural telepresence
applications [4,5] underscores the lack of suitable training data.

Two main streams of work can be identified within which most
of the current non-learning methodologies can be categorized. On the
one hand, there are data-driven methods that have access to numerous
exemplary facial expressions of the target character and form new
expressions by combining these [2,6]. On the other hand, there are
geometry-driven methods that try to transfer the geometric deforma-
tions of the source actor’s face to the target character [7-9]. Both
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E-mail address: nicolas.wagner@tu-dortmund.de (N. Wagner).
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methodologies offer complementary advantages and disadvantages. For
instance, data-driven methods can consider anatomy-specific differ-
ences between the source and the target, whereas geometry-driven
methods force deformations regardless of the structure of the respective
heads. In return, geometry-driven methods do not rely on elaborately
recorded or artistically sculpted examples of the target character and
are, therefore, usually more efficient than data-driven methods.
Generally, there is a trade-off between the cost and complexity of
data acquisition and retargeting quality. When time and effort are not
a constraint, establishing extensive corresponding linear blendshape
(LBS) systems [1] between the source and target character can be
the most reasonable approach to facial retargeting. As such situations
rarely occur in reality, the current state-of-the-art Anatomical Local
Model (ALM) [2] has been developed. ALM requires a significantly
reduced amount of blendshapes due to replacing plain LBS with more
expressive patchwise LBS (PLBS). However, the authors point out that
insufficiently comprehensive PLBS nonetheless result in severe retar-
geting artifacts and recognize the limitation that non-corresponding
source and target blendshapes are not supported. Similar shortcomings
in LBS can partially be overcome by employing example-based facial
rigging (EBFR) [6], which supplements the data-driven retargeting with
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a geometry-driven deformation transfer [7]. Unfortunately, there has
not been an adaption to ALM so far.

In this work, we improve on ALM and fill this very gap by in-
troducing AnaConDaR, an anatomically-constrained and data-adaptive
facial retargeting. Here, corresponding PLBS systems are derived from
the available target examples and used for an initial retargeting in a
data-driven manner. The parts that are not explainable by PLBS are
retargeted by a novel anatomical deformation transfer (ADT). In a final
step, both the PLBS and ADT results are added together and a physics-
based simulation ensures anatomical plausibility, also with combined
retargeting. Moreover, this simulation enables artistic interventions
on material properties, can incorporate external forces, and preserves
expression-specific characteristics.

We evaluate AnaConDaR in two user studies and a quantitative
comparison. In one user study, we asked the participants to bench-
mark the state-of-the-art peer group against AnaConDaR, while the
other focused on the necessity of individual algorithmic components.
Quantitative comparisons of facial retargeting algorithms are generally
challenging, as the subjective nature of perceiving facial expressions
makes it difficult to establish a definitive ground truth. Therefore, we
quantitatively showcase the advantages of AnaConDaR over ALM in a
particularly construed retargeting scenario.

The key novelties and contributions we present in this paper can be
summarized as follows:

» A novel hybrid approach for offline facial performance retargeting
that can leverage a small number of target examples.

* A new, fully volumetric deformation transfer for faces, which
respects anatomical and physical constraints. During the defor-
mation transfer, expression-specific characteristics are retained.

» Two user studies, a quantitative analysis, and various visual
examples that evaluate and showcase AnaConDaR.

2. Related work
2.1. Facial retargeting in general

Besides offline performance targeting, there are several other vari-
ants of facial retargeting, which are all related but can also be clearly
distinguished.

First, the 2D variant in which so-called deep fakes [10-18] swap
faces directly in images almost entirely independent of the underlying
geometry [16,19]. While these works can generate outstanding results,
they are hardly artist-controllable, cannot integrate physics-based ef-
fects, and lose mesh-based advantages like shading adjustments. Our
approach offers all of the features mentioned above.

Second, online performance retargeting algorithms that animate
characters in real time. Usually, such methods are either of low qual-
ity [1,20] or need time consuming training on extensive datasets [21-
27]. Our approach can handle high resolutions, is applicable without
training, and only requires a handful of expression examples.

Third, more general (neural) face models [3,28-32] that capture
both human identities and facial expressions in latent spaces. Un-
fortunately, their generalization capabilities usually do not meet the
quality requirements of sophisticated CGI productions [30,32]. More-
over, many models can only perform the facial retargeting task for
low-resolution geometries [28,29,33]. Starting from a reversed perspec-
tive, the neural physics-based facial animation of Yang et al. [26] has
recently been extended into a more comprehensive face model [3].
Nonetheless, this model is severely limited to only a handful of identi-
ties and adding a novel identity requires five days of retraining [26].
Further, they expect access to 30 s of performance capture per identity
while the captured expressions must be semantically aligned. The like-
wise neural approach Animatomy [25] faces similar problems. Neither
of the latter two algorithms [3,25] was evaluated concerning facial
retargeting.
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Finally, image-based face avatars primarily work on low-resolution
geometries [4,5] and, hence, do not meet production requirements, as
well. Overall, we follow the recent assessment of Chandran et al. [2]
that deep learning for facial retargeting still cannot fully compete with
more traditional techniques.

2.2. Offline facial performance retargeting

As the introduction notes, offline facial performance retargeting
without learning can be divided mainly into data-driven and geometry-
driven methods. For data-driven methods, linear blendshapes [1] are
still the gold standard due to their simplicity and computational speed.
Since the nonlinear aspects of facial expressions have a significant
influence, a variety of extensions [34-36] have been developed over
the years. Nonetheless, only minor improvements have been achieved,
and it remains common practice to model or scan a large number of
linear blendshapes to account for nonlinearity. In an effort to reduce
costs, methods have been developed that generate extensive blendshape
rigs from just a few exemplary expressions [6,33]. Often, however,
these only exhibit weak personalization. Recently, Chandran et al. [2]
demonstrated how to gain more expressiveness from expression sam-
ples using piecewise linear blendshapes. To the best of our knowledge,
none of the aforementioned data-driven techniques deals with missing
information due to insufficient training data. The method we present
in this work addresses this problem by combining piecewise linear
blendshapes with a geometry-driven approach.

The most widely used geometry-driven facial retargeting approach
is deformation transfer [7-9]. This approach extracts deformation gra-
dients from a source expression and applies them to the neutral target
face. Closely related is delta transfer, which transfers deformations
in the form of (scaled) per-vertex displacements. However, neither
deformation nor delta transfer can prevent the retargeting of character-
specific details. Further, many known artifacts arise, such as loss of
volume, self-collisions, and incorrectly transmitted deformation ampli-
tudes. A body of related work is therefore concerned with explicitly
distinguishing expression-specific from character-specific details [9,37,
38]. For instance, Onizuka et al. [9] propose a locally scaled defor-
mation transfer to keep facial contours consistent, Xu et al. [37] use
an adapted deformation transfer for edges to focus on lip and eye
contours, and Bhat et al. [38] show how to transfer lip contours to
humanoid aliens. In contrast to previous work, we design facial features
that aim to retain not only contours but also other facial proportions.
Furthermore, we use a fully volumetric approach to avoid artifacts like
volume loss and self-collisions.

3. Method
3.1. Problem statement & method overview

The input to offline facial performance retargeting is a facial anima-
tion of a source character captured as a set S = {S,-}'ZO of N +1
surface meshes with identical tessellation. The overall goal is to curate
a corresponding set of surface meshes 7 = {T,}:lo for a different target
character, such that each expression 7; exhibits the same characteristics
as S;. These characteristics are primarily rooted in human perception
and, therefore, difficult to capture through formal means.

To achieve this goal, we present AnaConDaR (Section 3.2), a mainly
data-driven approach to facial retargeting, which is supplemented by
a geometry-driven component (Section 3.3) whenever the available
data is not sufficiently expressive. Moreover, anatomical plausibil-
ity and expression characteristics are ensured through a quasi-static
physics-based simulation (Section 3.4).

In the ensuing formal derivation of AnaConDaR, we follow a top-
down scheme in which we first explain the fundamental functionality
of our approach (Section 3.2). Afterward, individual constituents are
explained in more detail (Sections 3.3, 3.4, and 3.5). To ease the
reading flow, Table 1 gives a summary of the notation. We slightly
abuse the notation by denoting a surface mesh and the corresponding
vector of stacked vertex positions with the same symbol.
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Table 1

An overview of the notation of AnaConDaR.
Notation Description
M Surface mesh and stacked vertex positions
S, T Source and retargeted animation
Se. Te Source and target examples
S, T Neutral head surfaces
S, T, Source expression and AnaConDaR retargeting
SE,TF Reconstruction and retargeting of S; with LBS
SP. TP Reconstruction and retargeting of S; with PLBS
wk, wP Optimal LBS and PLBS reconstruction weights
SM v Missing delta blendshapes
sM. M Missing blendshapes
S, M Template soft and muscle tissue tetrahedra meshes
Hg,Hp Source and target heads
F Facial characteristics

Fig. 1. The patch layout (80 patches) we use has been automatically determined with
METIS [39].

3.2. Anatomically-constrained data-adaptive facial retargeting

3.2.1. Data-driven component

For the derivation of the data-driven component of AnaConDaR,
we initially assume to have access to a set of target examples 7, with
corresponding expressions S C S. This assumption will be lifted
in Section 3.5. Further, we expect the neutral head surfaces S and
T of both characters to be known. In such situations, a variety of
blendshape concepts can be applied for data-driven facial retargeting.
For example, plain linear blendshapes (LBS) [1] first approximate each
source expression S; € S by a linear combination

SE=85+ Y whs; -9

Rjr=c ! M
of the source examples S,. The optimal blending weights wl =
(.., wf;, ... ) are the solution of the linear least squares problem

2
L .
w; =argmin |[.S + Z w;;(S; —S)-8;
' Wi S;€Sy v ' (2)

+ Areg Wil

where the first term draws the blended surface SI.L to the targeted
expression S;. Since this reconstruction is underconstrained, the second
term adds the squared norm ||w; ||2 of the blending weights to regularize
them to be close to zero. The factor 4,, € R controls the strength of

the regularization. Subsequently, the LBS retargeting

TL =T+ Z wh(T; = T) ©)]
T;€T¢

is obtained by simply applying the optimized weights w’ to the target
examples 7.

Patchwise linear blendshapes (PLBS) outperform the classical LBS
in efficiency and expressiveness [2,40]. Our implementation parti-
tions all vertices consistently into a set of small (non-overlapping)
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patches (Fig. 1) and performs the LBS retargeting defined in Egs. (1)-
(3) independently for each patch. We refer to the resulting source
approximation of PLBS as S} and to the retargeted expression as T,”.

The PLBS retargeting T,.P is the data-driven component of AnaCon-
DaR.

3.2.2. Geometry-driven component
Although variants of PLBS are the foundation of the current state-
of-the-art in facial retargeting [2], errors in the source approximation

SM =5, -5s° C))

are inevitably retargeted, as well. Seen from a different perspective, S‘IM
is a missing delta blendshape for which no corresponding blendshape
TM =TM + T is known. We approximate

TM = adt(SM,S,T) (5)

with a novel (geometry-driven) deformation transfer adt (Section 3.3),
which transfers the deformations of the missing blendshape SI.M =
S‘IM + S from the source to the target character. As opposed to the
original deformation transfer [7], adt is physics-based, volumetric, and
anatomically-constrained. Moreover, adt preserves expression-specific
characteristics from S™ in TM.

The retargeted missing delta blendshape TM = TM - T is the
geometry-driven component of AnaConDaR.

3.2.3. Assembling the components

AnaConDaR processes the sum of both the actual patchwise blend-
shapes TI.P (data-driven component) and the missing delta blendshape
f"[M (geometry-driven component) with the physics-based simulation
anacon (Section 3.4) to form the final retargeting

T, = anacon(TiP + YA}M,S,-,S,T) . 6)

Conceptually, anacon is similar to adt and also enhances the retar-
geting plausibility through anatomical constraints as well as expression-
specific characteristics. Additionally, visible patch boundaries are
eliminated, which can occur in the PLBS result 7.

Summarized in words, AnaConDaR retargets as extensively as pos-
sible through exemplary data but does not lose valuable information
due to source approximation errors, since these are corrected with the
geometry-driven component. The overview of AnaConDaR described so
far is also visualized in steps 2 and 3 of Fig. 2.

Next, we will depict adt and anacon in more detail. As both
only differ slightly, we will explain them using the example of adt
(Section 3.3) and then discuss the differences to anacon (Section 3.4).
Finally, we will resolve the initial assumption of corresponding source
and target examples S, and 7, (Section 3.5).

3.3. Anatomical deformation transfer

3.3.1. Overview

Given the neutral head surfaces S and T of the source and target
character, adt executes four fundamental functions for retargeting the
missing blendshape SM to T as outlined in Algorithm 1. To facilitate
the introduction of adt, we again follow a top-down scheme and first
give a brief overview of every function in this section. The subsequent
Section 3.3.2 provides the corresponding detailed descriptions, each of
which can be found in an identically named paragraph.

Template fitting. As a first step, the function fitHead creates volumetric
head representations for the source and target character by fitting a
template head H = (S,M, B) to the neutral surfaces .S and T. The
template comprises a soft tissue tetrahedra mesh S, a muscle tissue
tetrahedra mesh M, and a skull surface mesh B. Please refer to Fig. 3
for a visualization of the corresponding surfaces and more details. The
resulting heads

Hg =(Sg, Mg, Bg) = fitHead(S,H)
Hy =(Sp, My, By) = fitHead(T, H)

consist of the fitted components.

)
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Fig. 2. An overview of AnaConDaR (Section 3.2). In the first step, the target examples 7, are mapped into the source domain (Section 3.5). In the second step, the embedded
expressions S, are used to form a PLBS approximation S’ of the targeted expression .S, by optimizing the patchwise blending weights w’ (Section 3.2.1). In step three, the
evaluation of the same patchwise weights in the target domain 7" is supplemented with the adt result (Section 3.3) of the missing blendshape T/ (Section 3.2.2). Lastly, anacon

ensures anatomical plausibility of the final AnaConDaR retargeting 7; (Section 3.4).

Algorithm 1 Anatomical Deformation Transfer

Input
S,.M The missing blendshape
S,T The neutral head surfaces
Function adt(sM,s,T)
// Section 3.3.2 Template Fitting.
Hg = fitHead(S,H), H; = fitHead(T.H)
// Section 3.3.2 Inverse Simulation.
(VS, VM, VB) = invSim(SM, Hy)
// Section 3.3.2 Facial Characteristics.
F,=fc(SM,s.T)
// Section 3.3.2 Forward Simulation.
TM = fwdSim((VS, VM, VB),F;, Hy)

// Return the retargeted missing blendshape.
return TM
end Function

Inverse simulation. After fitting the template, the inverse physics-based
simulation

(VS, VM, VB) = invSin(SM, Hy) (8)

identifies volumetric changes of the source head Hg to form the tar-
geted missing blendshape SiM while respecting bio-mechanical and
physical properties. Here, VS and VM are stacked per tetrahedron 3 x 3
deformation gradients that capture changes in soft and muscle tissue
Sg and My, respectively. For the jaw and cranium parts of By, rigid
movements are individually captured by VB.

Facial characteristics. Alongside the volumetric changes, the function
fc identifies expression-specific facial characteristics

F, =tfc(SM,S,T) ©)

in the missing blendshape SM and adapts them to the target char-
acter. These characteristics are our answer to the following thought
experiment:

Fig. 3. The surfaces of all anatomical structures that are part of the volumetric head
template we use for AnaConDaR. From left to right, the surface of the soft tissue, the
surface of the muscle tissue, and the skull surface. The soft tissue includes the neutral
head surface, the muscle tissue is connected to the skull as well as the soft tissue, and
the skull is separated into jaw and cranium.

“If you are given a picture of an expression to mimic and a mirror
to look at yourself, what do you use as guidance?”

We assume that human perception is guided by relative changes
of face openings and facial contours which can be influenced through
muscle activation. More specifically, we assume that the eyes in the
missing and the retargeted blendshape should open and close by almost
the same relative proportions while the skin around the eye sockets is
assumed to move in a consistent manner. Furthermore, we expect the
lips to form similar contours in both, since these can be manipulated
by humans with a great degree of control.

Forward simulation. Finally, the forward physics-based simulation
fwdSim generates the retargeted missing blendshape

TM = fudSim((VS, VM, VB),F,, Hy) (10)
by applying the previously calculated volumetric changes (VS, VM, V B)

and facial characteristics F; to the target head Hy.

3.3.2. Constituents
In the remainder of this section the four adt functions fitHead,
invSim, fc, and fwdSim are precisely described.
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Eyelid Eye Socket

Jaw

Cranium

Fig. 4. The supplementary meshes that are used to determine the position of the jaw
and cranium bones, as well as the expression-specific characteristics.

Template fitting. The template fitting fitHead, which fits the volumet-
ric head template H = (S, M, B) to the neutral source and target head
surfaces S and T, performs two steps.

1. The skull B is placed by a dense linear model trained on the
computed tomography dataset of Achenbach et al. [41]. This
model maps from the vertex positions of the head surface to the
vertex positions of the skull surface.

2. Soft and muscle tissue S,M are positioned by a radial basis
function (RBF) space warp [42] calculated from the template
to the targeted head and skull surfaces. By the construction of
RBFs, the vertices of S and M are warped to a similar semantic
position as in the template.

Inverse simulation. The inverse simulation invSim, which aligns the
source head Hg = (Sg, Mg, Bg) with the targeted blendshape S, is
composed of two steps.

1. Both skull parts of Bg, cranium and jaw, are each directly
positioned by independent rigid transformations VB that are
calculated between respective subsets of S and SM. The subsets
are visualized in Fig. 4 Cranium and Jaw.

2. Soft tissue and muscle tissue are deformed by minimizing the
following energies that reflect anatomical properties. The energy
for soft tissue is defined as

ES(SS)=Z< min [v(1.55) - K[

5. \ReSOG) an

+ (det(V (£,S5)) — 1) )

which for each soft tissue tetrahedron ¢ penalizes changes in
volume and strain. Here, R € SO(3) denotes the optimal rota-
tion, V(¢,Sg) € R¥3 the deformation gradient of 7, and ||-|| - the
Frobenius norm.

For the muscle tetrahedra, only a volume-preservation term

Ey(Ms) = Y (det(V(r.Mg)) - 1)° a2)
teMg

is applied to allow for muscle contractions.
Finally, the source head surface .S C Sg is drawn to the targeted
missing blendshape SM via

Elar(SS’SiM) = HS_ SiM”z' (13)
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In total, we minimize the weighted energy

Einy(Ss:Ms, SM) = ws Es(Ss) + wyg Eyg (M) a4
+ wlarEtar (SS’ SiM)

with respect to the vertex positions of the soft and muscle tissue
meshes Sg, Mg in the projective dynamics framework [43]. The
values of all weights can be found in Table 3.

Paired with the rigid transformations of the skull VB, the deformations
caused by the simulation are passed on to the forward simulation
fwdSim in the form of stacked per tetrahedron deformation gradients
VS (soft tissue), VM (muscle tissue).

Facial characteristics. In correspondence to the facial characteristics
described above, fc is composed of three methods

f¢ = (£Cgp, £Ceg, £ ) (15)

which specify objectives for the eye opening (fc.,), the eye sockets
(fc.,), and the lip contour (fc, ) in the forward simulation fwdSim.

To capture the eye characteristics with fc., and fc,,, we add sup-
plementary triangles between the upper and lower eyelids (Eyelid) and
between the upper and lower boundaries of the eye sockets (Eye Socket)
as visualized in Fig. 4. Hereafter, we refer to these triangles as EO and
ES, respectively. Since the eye characteristics are intended to transfer
relative movements, we define them such that the scaling of the surface
area of the previously added triangles is identical in both the targeted
and the retargeted blendshape. More formally, the characteristic F,, =
¢, (SM, S, T) is a vector which contains the surface area of each EO
triangle in T, scaled by the ratio of the corresponding triangle areas
in the targeted SM and the neutral S. Fo, = fc.(SM,S,T) is defined
accordingly.

We define the characteristic of the lip contour F, on a set of
vertices LC as visualized in Fig. 4 Lips. Here, we intend to transfer the
vertex positions of the contour from the targeted SiM to the retargeted
blendshape TiM as similar as possible. To that end, we first apply the
original deformation transfer dt [7] to determine the coarse shape and
position of the targeted lip contour in the retargeting result. Afterward,
we correct dt by finding an optimal similarity mapping. Formally, we
define

Fie = £ (SM, 8, T) = sR (SM)" 41, 16)

where s € R (scaling), R € SO(3) (rotation), t € R? (translation)
represent the optimal similarity mapping regarding

. LC Lc 2
min as (5. 5.7)™ - sR (s}M)" — | a7
and (-)'C selects the vertices of the lip contour.

Forward simulation. The forward simulation fwdSim, which applies
the previously identified deformations (VS, VM, VB) and expression-
specific facial characteristics F; to the target head Hy = (S;, My, By),
consists of three steps.

1. As for invSim, the skull B; is directly positioned by applying
the rigid transformations VB. However, to align the range of
motions, we scale the translational components by %, where
BB calculates diameters of the respective bounding boxes.

2. The weighted energy
E; oS, My, VS, VM, F,)) =
wys Evg (St, VS) + wyy Evy (Mg, VM) (18)
+ wpEg(S,F))
is minimized, which applies the deformation gradients VS, VM
to the respective tissue while adhering to the facial characteris-
tics F;. All energies in Eq. (18) act similar to Eq. (13) and are

formally defined in the Appendix. Again, we rely on projective
dynamics for solving the minimization problem.
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3. Finally, we resolve self-collisions between lips similar to Ko-
maritzan et al. [44]. Here, each collided lower lip point and
the closest upper lip point in vertical direction on the head
surface are resolved to the average position of both. The average
position is enforced in an additional run of the second step.

After both optimizations, the retargeted missing blendshape TM c S
can be extracted.

3.4. Anatomical plausibility

Based on the functions of adt, we can now implement anacon, the
final physics-based simulation of AnaConDaR (Eq. (6)). By setting

T, = anacon(Tl.P + T,.M, S, 8.T) 19)
= tuasin(1nvSin(T + T, Hy ). F. Hy ),

the anatomical constraints involved in invSim (Section 3.3.2 Inverse
Simulation) improve the anatomical plausibility of the combined retar-
geting T + f“iM while preventing visible patch boundaries. Moreover,
expression-specific facial characteristics F; = fc(S,., S, T ) (Section 3.3.2
Facial Characteristics) derived from the targeted expression S; are also
reflected in the final AnaConDaR result 7;.

3.5. Target example embedding

Although all components are now specified, AnaConDaR is still un-
able to handle situations where the target examples 7, lack correspond-
ing expressions in the source animation S, a common limitation of
other data-driven facial retargeting approaches [1,2]. We remove this
initial assumption (Section 3.2.1) by embedding the target examples in
the source domain.

To that end, we first retarget 7, with adt to create an initial
embedding

S2% ={adt (T}, T, S) (20)

}T]eTg )
As adt is geometry-driven, S;‘“ might still exhibit character-specific
details of the target character. In a second step, we therefore exploit
the observation that, in most cases, the source animation S is extensive
and expressive in linear combinations.

More precisely, we reconstruct each S € S3% by solving linear
least squares problems as in Egs. (1)—(3). This time, however, all source
expressions S; € S act as blendshapes. The resulting optimal blending

weights w2?® = ( w;"jfit, ) are then used to form the data-driven

embedding

Se =18+ ) wi(s; - S : (21)
S;es
Siadtesgdt

By construction, S, is fully embedded in the source domain and no
longer includes details of the target character. The embedding process
is also illustrated in step 1 of Fig. 2, which completes the visual
overview of AnaConDaR.

4. Experiments

Before visually demonstrating AnaConDaR’s capabilities for offline
facial performance retargeting in Section 4.2, we discuss implementa-
tion details and runtimes in Section 4.1. Thereafter, in Section 4.3, a
user study investigates the human perception of AnaConDaR in compar-
ison to the most relevant peers. In Section 4.4, a quantitative analysis
demonstrates the advantages of AnaConDaR over the state-of-the-art
ALM [2] algorithm. However, we also elaborate on why quantitative
evaluations only have limited meaningfulness for facial retargeting.
Section 4.5 focuses on an extensive ablation study, while Section 4.6
showcases selected AnaConDaR features in more detail.
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4.1. Implementation & runtimes

We implement all projective dynamics simulations with the CPU-
based ShapeOp framework [45] and exploit parallelism wherever ap-
plicable. Table 2 gives the dimensions of all template components,
and Table 3 states the weights of all experiments. All runtimes were
determined on an AMD Ryzen Threadripper PRO 3995WX processor.

Overall, once the simulations are initialized (x9s), AnaConDaR can
be run at either approximately 10fps (without collision resolving) or
0.3fps (with collision resolving). There are many GPU-based solvers
available (e.g., http://suitesparse.com) that can optimize the runtime
in general. Collision resolution could also be accelerated, as most of
the time spent on collision resolution is due to the refactorisation
of the projective dynamics solver. In Wang et al. [46], for instance,
an efficient alternative is proposed. However, as our focus has been
on methodological improvements, not on inference speed, we leave
computationally more efficient implementations as future work.

4.2. Qualitative evaluation

Fig. 5 and Fig. 6 display representative retargeting results of Ana-
ConDaR. All shown 3D models are part of the commercial 3Dscanstore.
com database and have been acquired with a high-resolution optical
multi-view scanner. We manually established a common topology using
faceform.com. The retargeted expressions are either facial movements
like cheek puffer and mouth stretch or emotions like sad, happy, and
surprise.

Fig. 5 displays results obtained from a 7, composed of only 5 target
examples, whereas for the results from Fig. 6, an extensive set of 30
examples has been available. For each retargeting result, a different
T, has been randomly drawn. Please refer to the attached video for a
demonstration of the temporal consistency of AnaConDaR.

4.2.1. Peer group

We compare AnaConDaR to Example-Based Facial Rigging [6]
(EBFR), Anatomical Local Models [2] (ALM), Deformation Transfer
[9] (DT), Linear Blendshapes [1] (LBS), and our own Anatomical Defor-
mation Transfer (ADT).! Generally, ALM and LBS require expressions
in the source animation S that correspond to the target examples 7.
Therefore, we follow the suggestion by the authors of ALM to use EBFR
as preprocessing if this requirement is not fulfilled.

4.2.2. Discussion

The subsequent discussion of the presented outcomes follows along
the structural varieties of all compared algorithms. For easier traceabil-
ity of our analysis, Fig. 7 provides a visual overview.

» The DT implementation we investigate [9] is the most recent
adaption to faces. Here, locally adapted delta transfers for pre-
defined landmarks are additionally incorporated. Previous find-
ings [2] already indicated minimal distinctions between delta
transfer and DT. Our results consistently demonstrate that also
this DT variant transfers character-specific details and not only
deformations related to the targeted expressions.

EBFR seeks a target animation 7 such that a linear combination
of 7'\ T, can approximate the target examples 7. Since this is a
strongly underdetermined optimization problem, the DT results
are used for regularization. As a consequence, depending on
the solver, either only a few expressions of 7 contribute to the
explanation of each example in 7 or all contribute only a small
fraction to the explanation. In any case, this leads to only minor
personalization beyond DT, especially when only 5 examples are
available.

1 We compare to our own implementations of the peer group.
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Fig. 5. AnaConDaR in comparison to the state-of-the-art peer group EBFR [6], ALM [2], DT [9], LBS [1], and to our ADT. Furthermore, the source reconstruction after applying
anatomical constraints (i.e., anacon w/o facial characteristics) is shown for a reasonable comparison. Plotted on the reconstruction is the PLBS reconstruction error (in centimeters).
The difference between ADT and AnaConDaR is plotted on the ADT expression. All results have been achieved with five randomly drawn examples of the target character.
Especially in this setting, with only a few target examples, AnaConDaR leads to considerable improvements.

» The state-of-the-art ALM approach [2] is closely related to LBS
[1]. After establishing a corresponding set of source examples
S to the target examples 7, with EBFR, both form the target
animation 7 by blending 7. The blending weights are found by
rebuilding the source animation S with S,. ALM mainly differs

In our experiments, LBS suffers from a strong bias which pre-
vents an adequate reconstruction of source expressions, leading to
the retargeting of different expressions. Put differently, the poor
results primarily stem from the missing blendshape as described

from LBS in that the blending is conducted on small patches and
not on complete meshes (please refer to Section 3.2.1 for more
details).

in Section 3.2.2. The PLBS of ALM significantly mitigate this
issue, especially when having access to 30 target examples 7.
Nonetheless, notable reconstruction errors remain.
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Fig. 6. The same experiment as in Fig. 5, however, 30 examples of the target character have been available. In principle, reconstruction errors decrease with more target examples,
reducing the influence of the missing blendshape. Nevertheless, considerable benefits of AnaConDaR can also be recognized in this setting, as even with more examples, a complete
reconstruction is not guaranteed. Moreover, other advantages, such as the fully volumetric simulation or the preservation of facial features, weigh in.

» Our AnaConDaR approach exhibits a high degree of personaliza- blendshape ensures that AnaConDaR does not lose information
tion even with only a few examples from the target character and due to informational gaps of the exemplary target data. Lastly,
can still achieve more appealing results than ALM, LBS, EBFR, DT, different from EBFR, in our approach the target examples 7
or ADT if the number of examples is high. explain each expression to be transferred in S, and not all expres-
In contrast to DT, the data-driven AnaConDaR component ab- sions to be transferred explain the target examples. This strategy
stains from transferring character-specific details wherever fea- effectively avoids the explanation problem associated with EBFR,
sible. Unlike ALM and LBS, additionally retargeting the missing as discussed before.
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Fig. 7. A structural overview of AnaConDaR and other state-of-the-art facial retargeting
approaches. Below each algorithm name, the variables under direct optimization are
stated. Source and target expressions correspond only if depicted in the same row.

In summary, AnaConDaR achieves convincing visual results by
compensating the conceptual weaknesses of other algorithms
while adopting their respective advantages.

4.3. User study

In a user study, we presented the following task.

“Please rank the images according to how natural the transfer of the
expression seems to you from best to worst.”

The study involves 15 randomly selected retargeting instances, with
five each produced using 5, 15, and 30 examples of the target character.
Participants ranked the results of AnaConDaR, DT, EBFR, and ALM,
respectively. The design of the study is aligned with Chandran et al. [2],
an illustration can be found in Appendix B. To ensure independent
documentation, we used survio.com for the technical implementation.
The outcome shown in Fig. 8 summarizes 33 responses by university
members and computer graphics students from two universities who
were not familiar with facial retargeting algorithms. We performed
Wilcoxon Signed-Rank tests to inspect if the tendency of the AnaCon-
DaR mean rank in comparison to the other peers is significant. We can
confirm this hypothesis for all peers on a significance level of 0.05.
The user study emphasizes that AnaConDaR is perceived as a
more natural facial retargeting. Nonetheless, perception variations are
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Fig. 8. A user study among university members and computer graphics students
from two universities supports that AnaConDaR is perceived as a more natural facial
retargeting. The combined results (top) as well as the results per number of target
examples (bottom) are shown.

Fig. 9. An example of the diverse ways in which individuals interpret the same
expression (here, Surprise). For more examples please refer to Wu et al. [40].

evident from the ranking variances shown in Fig. 8. Probably by con-
struction, the data-infused EBFR outperforms the solely geometry-based
DT. Interestingly, EBFR also outperforms ALM, while ALM exhibits
the highest variance. This was to be expected to some extent, as
ALM is the only method lacking a geometry-based component and its
retargeting quality, therefore, heavily depends on the number of target
examples. The latter observation is further supported by the separated
representation of the user study in Fig. 8.

4.4. Quantitative evaluation

In previous work, quantitative evaluations have only been con-
ducted in cherry-picked individual cases but not in empirically compre-
hensive investigations [2,6]. This is mostly due to ambiguities in facial
expressions (see Fig. 9 and Wu et al. [40] for examples) as well as vary-
ing human perception. Our user study (Section 4.3) underscores the
latter issue. Although the perceived qualities of individual retargeting
methods differ significantly, the variances are not negligible. Some-
times cyclic errors, i.e., mapping from the source to the target and back,
are considered as a suitable evaluation protocol. Nonetheless, they only
validate how well geometric transformations are preserved in the cycle.
By construction, deformation transfer [7] would be unsurpassed in this
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Fig. 10. A quantitative comparison of AnaConDaR against ALM [2] based on synthe-
sized ground truth (Section 4.4). The results are grouped by the number of available
target examples and reported in terms of the L2 error (mm). AnaConDar outperforms
ALM in each scenario.

Table 2
The dimensions of all template components in our experiments.
Mesh N B S M
# Vertices 29826 14572 61875
# Faces/Tetrahedra 59648 28727 126612 107 437
Table 3
The weights of the physics-based simulations and the PLBS reconstruction.
Wys Wy Wg Wg Wy Wiar Areg
1.0 1.0 10.0 1.0 1.0 100.0 0.01

evaluation, while the flaws of geometry-driven approaches are well
known.

To nonetheless quantitatively compare AnaConDaR to ALM, we first
synthesize an appropriate dataset. More precisely, we use EBFR [6]
to create personalized ARKit> blendshape rigs for each identity of
the 3Dscanstore.com database. Subsequently, we create the same 250
random facial expressions for all identities through linear blending of
the ARKit rigs with blending weights recorded in dyadic conversa-
tions [47]. In the resulting dataset, corresponding facial expressions
exhibit reduced ambiguities and, hence, can rather be regarded as
ground truth.

Therefore, we conduct the following experiment on this dataset. To
begin with, five source expressions S as well as either 5, 15, or 30
target examples 7, are randomly drawn for all source-target identity
combinations. Afterward, we run AnaConDaR and ALM for each source
expression and measure the average of the vertex-wise L2 differences
to the ground truth in mm. The findings of this experiment, reported in
Fig. 10, indicate that AnaConDaR outperforms ALM, especially when
only a few target examples are available. A moderate improvement
can still be recognized when many target examples are available. This
quantitative evaluation ignores human perception but is nonetheless
consistent with the previously discussed user study (Section 4.3).

4.5. Ablation study

We examine the main components of AnaConDaR in another user
study, which is summarized in Fig. 11 and visualized in Fig. 12. Par-
ticularly, we compare the regular AnaConDaR to AnaConDaR without
expression-specific facial characteristics, without the missing blend-
shape, and with the standard deformation transfer dt [7] instead of our
adt. The design of the user study is mostly as described in Section 4.3.

2 https://developer.apple.com/augmented-reality/arkit/.
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Fig. 11. A user study among university members and computer graphics students from
two universities proves the benefits of each AnaConDaR component.

However, no similar example has been provided to the 29 participants.
Please refer to Appendix B for an exemplary question from this study.

Deformation transfer. The most noticeable visual differences arise in
the setting in which dt is used rather than adt. Here, the artifacts
caused by PLBS patch boundaries are transferred by dt, and the strain
constraint in anacon does not provide a sufficient countermeasure.
An increased strain weight wg could potentially compensate for this
but would also remove high-frequency details. Since adt, unlike dt,
also applies anatomical constraints, similar artifacts do not occur in
the regular AnaConDaR results. The user study supports this visual
observation as the dt variant is ranked last.

Instead of an amplified strain, another option would be to eliminate
the patch boundaries directly in the source estimation S,.P before cal-
culating the missing blendshape SM. For this, there are at least two
obvious solutions. The first solution is to set up anatomical models as
described in ALM [2,40]. However, this adds considerable unnecessary
complexity, mainly due to additional optimization steps. Since these
models only use data-driven anatomical surface constraints, they also
cannot be used as an alternative to anacon. Particularly, they are not
applicable to unseen expressions, cannot enforce facial characteristics,
and cannot resolve collisions. The second solution is to apply anacon
to the source estimation S”. Essentially, this means applying the same
physics-based simulations as in adt to a different input. Nevertheless,
we decided to favor adt for theoretical reasons. Particularly, as adt
applies anatomical constraints and expression-specific facial character-
istics during the retargeting and not before. Neither of the two variants
was visually superior in our experiments.

Facial characteristics & missing blendshape. The AnaConDaR modifica-
tions without facial characteristics and missing blendshape demonstrate
that both components are essential, although their importance varies
depending on the retargeting scenario. For instance, in the first row
of Fig. 12, the expression-specific facial characteristics are especially
important, whereas in the second row, the missing blendshape has a
strong impact. Again, the user study confirms this visual observation,
in which AnaConDaR is ranked ahead of both modifications.

The influence of the facial characteristics and the missing blend-
shape can also be observed in Fig. 13, in which each retargeting is
performed once with 5 and once with 30 target examples. Although the
relevance of both components is most evident when only a few target
examples are available, the effects of both are still not negligible, even
when there are many available target examples.



N. Wagner, U. Schwanecke and M. Botsch Computers & Graphics 122 (2024) 103988

Expression AnaConDaR PLBS + Anatomy Missing BS w/o Facial Char.  w/o Missing BS w/ DT

Fig. 12. A visual ablation study that illustrates the individual components of AnaConDaR. In particular, the effects of enforcing expression-specific facial characteristics, adding
the missing blendshape, and using ADT over DT become apparent. Additionally, the PLBS result and the missing blendshape are depicted. Please note, that we show the PLBS
results after applying anatomical constraints (i.e., anacon w/o facial characteristics) for a reasonable comparison.

Expression Ours 5 PLBS + Anatomy Missing BS Ours 30 PLBS + Anatomy Missing BS

Fig. 13. AnaConDaR retargetings with 5 and 30 available target examples. For each instance, the PLBS component (after imposing anatomical constraints) and the missing
blendshape are shown.
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~ Before After

Fig. 14. An example of our method for resolving collisions. The lips get disentangled
and the arising forces propagate through the soft tissue.

After

Before

Fig. 15. An example of an artistic intervention into anacon. The targeted contour
(red) is realized and the surrounding tissue is moved appropriately.

4.6. Collisions and artistic control

In this paragraph, we will briefly highlight two features that become
feasible through the physics-based simulations involved in AnaConDaR.

First, Fig. 14 displays our approach to resolving lip collisions.
Not only do the upper and lower lip get disentangled, but the final
volumetric simulation anacon of AnaConDaR (Section 3.4) propagates
the displacements through the soft tissue.

Second, Fig. 15 shows an example of artistic intervention into
anacon. To that end, we manually modify vertices of the lip contour and
add corresponding soft Dirichlet constraints to the forward component
fwdSim. For streamlining the process, we move only a few control
points and govern the remaining lip contour points through an RBF
space warp [42].

This example only serves as one illustration of applicable artistic
interventions. For instance, material properties, the weight of a char-
acter, or external forces, like varying gravity directions [47], can also
be manipulated. Furthermore, artistic interventions into the patchwise
blending weights of PLBS are inherited from ALM. For a more detailed
description, please refer to [2].

5. Limitations

We assume that no global rigid motion occurs in facial expressions.
Effective methods to achieve this prerequisite are available [48]. More-
over, AnaConDaR requires a shared mesh/patch topology of all source
and target expressions. If this is not the case, a mapping can be found
with unsupervised approaches [49,50] or manually, for instance, using
faceform.com. Concerning the physics-based simulations, we focus on
the projective dynamics simulator [43] and do not add dynamic effects
to obtain temporal independence. We chose projective dynamics be-
cause of its simplicity and sufficient efficiency, but other simulators can
be used as drop-in replacements. Finally, we only handle self-collisions
of the lips, while lip-teeth and eyelid collisions might also occur.
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6. Conclusion

In this work, we introduced AnaConDaR, a method that integrates
data-driven and geometry-driven facial retargeting algorithms. More
precisely, the geometry-driven approach bridges informational gaps
resulting from insufficiently expressive target examples within the data-
driven approach. As a result, we enhance the current state-of-the-
art ALM [2] to attain superior retargeting outcomes, particularly in
situations where only a minimal number of target examples is available.

Due to the usage of patchwise linear blendshapes and the volumetric
head representation, the user can readily guide and tailor AnaConDaR.
The presented visually convincing qualitative examples of our approach
are supported by two user studies and a quantitative analysis.

Promising future directions for improving AnaConDaR are to em-
ploy even more anatomically precise physics-based simulations and
fully volumetric blendshapes [51]. Also, a more in-depth user study
that queries rationales may facilitate targeted improvements. Finally,
an accelerated GPU implementation of AnaConDaR could potentially
achieve real-time operating speeds.
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Appendix A. Energies

In the following, we formally state the individual energies of the
forward simulation simFwd (Eq. (18)).

A.1. Facial characteristics

The energy for the facial characteristics

EF(STvFi) = Eeo(STvFeo) + Ees(ST’Fes) + Elc (ST’Flc) (A'l)

is composed of terms for the eye openings, the eye sockets, and the lip
contour.
The energy for eye openings

Eeo(ST’Feo) = Z (A(STv f) - aeo(f))z

f€EO

(A.2)

penalizes for each triangular face f € EO deviations in the surface area
A(Sy, f) from the corresponding targeted surface area a,(f) € Fe,.
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Similar Example

Fig. B.16. An instance of the user study, wherein 33 participants ranked the peer group
of AnaConDaR. Consistent with the user study conducted by Chandran et al. [2], a real
target example supported the participants in ranking. In this illustration, A-D are the
results of EBFR, DT, AnaConDaR, and ALM. Generally, the results were placed in a
random order.

Expression

Fig. B.17. An instance of the user study, wherein 29 participants ranked individual
components of AnaConDaR. In this illustration, A-D are the results of AnaConDaR
without the missing blendshape, AnaConDaR, AnaConDaR with DT, and AnaConDaR
without facial features. Generally, the components were placed in a random order.

The energy for the eye sockets

E(Sp.Fe) = Y (A() - an()?

f€ES

(A.3)

penalizes for each triangular face f € ES deviations in the surface area
A(ST, f ) from the corresponding targeted surface area a.(f) € F.
The energy for the lip contours

Ey(Sr.Fy) = “(ST)LC - F (A4
draws the vertices (ST)LC € Sy to the corresponding vertices F,.
A.2. Tissue deformations
The energy for the soft tissue
Eyg(S7.VS) = Y ”V(t, Sp) - DGVS(I)HZF (A.5)

teSy
penalizes for each tetrahedron 7 € S; deviations from the deformation
gradient V(z,S) to the corresponding targeted deformation gradient
DGys(1) € VS.
The energy for the muscle tissue

Egy (M7, VM) = Y ”V(t,MT) —DGVM(t)“jr

teMyp

(A.6)

13

Computers & Graphics 122 (2024) 103988

penalizes for each tetrahedron r € M deviations from the deformation
gradient V(1,M) to the corresponding targeted deformation gradient
DGy (1) € VM.

Appendix B. User studies
See Figs. B.16 and B.17 for examples of the user studies.
Appendix C. Supplementary data

Supplementary material related to this article can be found online

at https://doi.org/10.1016/j.cag.2024.103988.
References

[1] Lewis JP, Anjyo K, Rhee T, Zhang M, Pighin FH, Deng Z. Practice and theory
of blendshape facial models. Eurographics (State Art Rep) 2014;1(8):2.
Chandran P, Ciccone L, Gross M, Bradley D. Local anatomically-constrained facial
performance retargeting. ACM Trans Graph (ToG) 2022;41(4):1-14.
Yang L, Zoss G, Chandran P, Gotardo P, Gross M, Solenthaler B, Sifakis D. An
implicit physical face model driven by expression and style-supplemental. 2023.
Zielonka W, Bolkart T, Thies J. Instant volumetric head avatars. In: Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition. 2023,
p. 4574-84.
Qian S, Kirschstein T, Schoneveld L, Davoli D, Giebenhain S, Niefner M.
GaussianAvatars: Photorealistic head avatars with rigged 3D Gaussians. 2023,
arXiv preprint arXiv:2312.02069.
Li H, Weise T, Pauly M. Example-based facial rigging. Acm Trans Graph (ToG)
2010;29(4):1-6.
Sumner RW, Popovi¢ J. Deformation transfer for triangle meshes. Acm Trans
Graph (ToG) 2004;23(3):399-405.
Botsch M, Sumner R, Pauly M, Gross M. Deformation transfer for detail-
preserving surface editing. In: Vision, modeling & visualization. Citeseer; 2006,
p. 357-64.
Onizuka H, Thomas D, Uchiyama H, Taniguchi R-i. Landmark-guided defor-
mation transfer of template facial expressions for automatic generation of
avatar blendshapes. In: Proceedings of the IEEE/CVF international conference
on computer vision workshops. 2019.
Chen R, Chen X, Ni B, Ge Y. Simswap: An efficient framework for high fidelity
face swapping. In: Proceedings of the 28th ACM international conference on
multimedia. 2020, p. 2003-11.
Garrido P, Valgaerts L, Rehmsen O, Thormahlen T, Perez P, Theobalt C.
Automatic face reenactment. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2014, p. 4217-24.
Kim H, Elgharib M, Zollhofer M, Seidel H-P, Beeler T, Richardt C, Theobalt C.
Neural style-preserving visual dubbing. Acm Trans Graph (ToG) 2019;38(6):1-13.
Nirkin Y, Keller Y, Hassner T. Fsgan: Subject agnostic face swapping and
reenactment. In: Proceedings of the IEEE/CVF international conference on
computer vision. 2019, p. 7184-93.
Perov I, Gao D, Chervoniy N, Liu K, Marangonda S, Umé C, Dpfks M, Facen-
heim CS, RP L, Jiang J, et al. DeepFaceLab: Integrated, flexible and extensible
face-swapping framework. 2020, arXiv preprint arXiv:2005.05535.
Ren Y, Li G, Chen Y, Li TH, Liu S. Pirenderer: Controllable portrait image
generation via semantic neural rendering. In: Proceedings of the IEEE/CVF
international conference on computer vision. 2021, p. 13759-68.
Wang Y, Chen X, Zhu J, Chu W, Tai Y, Wang C, Li J, Wu Y, Huang F, Ji R.
Hififace: 3d shape and semantic prior guided high fidelity face swapping. 2021,
arXiv preprint arXiv:2106.09965.
Zhang J, Zeng X, Wang M, Pan Y, Liu L, Liu Y, Ding Y, Fan C. Freenet:
Multi-identity face reenactment. In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 2020, p. 5326-35.
Moser L, Chien C, Williams M, Serra J, Hendler D, Roble D. Semi-supervised
video-driven facial animation transfer for production. Acm Trans Graph (ToG)
2021;40(6):1-18.
Hong Y, Peng B, Xiao H, Liu L, Zhang J. Headnerf: A real-time nerf-based
parametric head model. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 2022, p. 20374-84.
Bouaziz S, Wang Y, Pauly M. Online modeling for realtime facial animation. Acm
Trans Graph (ToG) 2013;32(4):1-10.
Chen L, Cao C, De la Torre F, Saragih J, Xu C, Sheikh Y. High-fidelity face
tracking for ar/vr via deep lighting adaptation. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 2021, p. 13059-69.
Lombardi S, Saragih J, Simon T, Sheikh Y. Deep appearance models for face
rendering. Acm Trans Graph (ToG) 2018;37(4):1-13.
Cao C, Simon T, Kim JK, Schwartz G, Zollhoefer M, Saito S-S, Lombardi S,
Wei S-E, Belko D, Yu S-I, et al. Authentic volumetric avatars from a phone scan.
Acm Trans Graph (ToG) 2022;41(4):1-19.

[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]



N. Wagner, U. Schwanecke and M. Botsch

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Garbin SJ, Kowalski M, Estellers V, Szymanowicz S, Rezaeifar S, Shen J,
Johnson M, Valentin J. VolTeMorph: Realtime, controllable and generalisable
animation of volumetric representations. 2022, arXiv preprint arXiv:2208.00949.
Choi B, Eom H, Mouscadet B, Cullingford S, Ma K, Gassel S, Kim S, Moffat A,
Maier M, Revelant M, et al. Animatomy: an animator-centric, anatomically
inspired system for 3D facial modeling, animation and transfer. In: SIGGRApH
Asia 2022 conference papers. 2022, p. 1-9.

Yang L, Kim B, Zoss G, GOzcii B, Gross M, Solenthaler B. Implicit neural
representation for physics-driven actuated soft bodies. Acm Trans Graph (ToG)
2022;41(4):1-10.

Kim S, Jung S, Seo K, i Ribera RB, Noh J. Deep learning-based unsupervised
human facial retargeting. In: Computer graphics forum. vol. 40, Wiley Online
Library; 2021, p. 45-55.

Feng Y, Feng H, Black MJ, Bolkart T. Learning an animatable detailed 3D face
model from in-the-wild images. Acm Trans Graph (ToG) 2021;40(4):1-13.

Li T, Bolkart T, Black MJ, Li H, Romero J. Learning a model of facial shape and
expression from 4D scans. ACM Transactions on Graphics 2017;36(6):1-17.
Chandran P, Bradley D, Gross M, Beeler T. Semantic deep face models. In: 2020
international conference on 3D vision. 3DV, IEEE; 2020, p. 345-54.

Zhang J, Chen K, Zheng J. Facial expression retargeting from human to avatar
made easy. IEEE Trans Vis Comput Graphics 2020;28(2):1274-87.

Yang H, Zhu H, Wang Y, Huang M, Shen Q, Yang R, Cao X. Facescape: a
large-scale high quality 3d face dataset and detailed riggable 3d face prediction.
In: Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 2020, p. 601-10.

Li J, Kuang Z, Zhao Y, He M, Bladin K, Li H. Dynamic facial asset and rig
generation from a single scan. ACM Transactions on Graphics 2020;39:1-18.
Kim PH, Seol Y, Song J, Noh J. Facial retargeting by adding supplemental
blendshapes. In: PG (short papers). 2011.

Song J, Choi B, Seol Y, Noh J. Characteristic facial retargeting. Comput Animat
Virtual Worlds 2011;22(2-3):187-94.

Ribera RBI, Zell E, Lewis JP, Noh J, Botsch M. Facial retargeting with automatic
range of motion alignment. Acm Trans Graph (ToG) 2017;36(4):1-12.

Xu F, Chai J, Liu Y, Tong X. Controllable high-fidelity facial performance transfer.
Acm Trans Graph (ToG) 2014;33(4):1-11.

Bhat KS, Goldenthal R, Ye Y, Mallet R, Koperwas M. High fidelity facial
animation capture and retargeting with contours. In: Proceedings of the 12th
ACM SIGGRApH/eurographics symposium on computer animation. 2013, p.
7-14.

14

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

Computers & Graphics 122 (2024) 103988

Karypis G, Kumar V. METIS: A software package for partitioning unstructured
graphs, partitioning meshes, and computing fill-reducing orderings of sparse
matrices. 1997.

Wu C, Bradley D, Gross M, Beeler T. An anatomically-constrained local
deformation model for monocular face capture. Acm Trans Graph (ToG)
2016;35(4):1-12.

Achenbach J, Brylka R, Gietzen T, zum Hebel K, Schomer E, Schulze R, Botsch M,
Schwanecke U. A multilinear model for bidirectional craniofacial reconstruction.
In: Proceedings of the eurographics workshop on visual computing for biology
and medicine. 2018, p. 67-76.

Botsch M, Kobbelt L. Real-time shape editing using radial basis functions. In:
Computer graphics forum. vol. 24, Blackwell Publishing, Inc Oxford, UK and
Boston, USA; 2005, p. 611-21.

Bouaziz S, Martin S, Liu T, Kavan L, Pauly M. Projective dynamics: Fus-
ing constraint projections for fast simulation. Acm Trans Graph (ToG)
2014;33(4):1-11.

Komaritzan M, Botsch M. Projective skinning. Proc ACM Comput Graph Interact
Tech 2018;1(1):1-19.

Deuss M, Deleuran AH, Bouaziz S, Deng B, Piker D, Pauly M. ShapeOp—a robust
and extensible geometric modelling paradigm. In: Modelling behaviour. Springer;
2015, p. 505-15.

Wang Q, Tao Y, Brandt E, Cutting C, Sifakis E. Optimized processing of localized
collisions in projective dynamics. In: Computer graphics forum. vol. 40, Wiley
Online Library; 2021, p. 382-93.

Wagner N, Botsch M, Schwanecke U. Softdeca: Computationally efficient physics-
based facial animations. In: Proceedings of the 16th ACM SIGGRApH conference
on motion, interaction and games. 2023, p. 1-11.

Beeler T, Bradley D. Rigid stabilization of facial expressions. Acm Trans Graph
(ToG) 2014;33(4):1-9.

Achenbach J, Zell E, Botsch M. Accurate face reconstruction through anisotropic
fitting and eye correction. In: VMV. 2015, p. 1-8.

Schmidt P, Pieper D, Kobbelt L. Surface maps via adaptive triangulations. In:
Computer graphics forum. vol. 42, Wiley Online Library; 2023, p. 103-17.
Ichim AE, Kavan L, Nimier-David M, Pauly M. Building and animating user-
specific volumetric face rigs. In: Symposium on computer animation. 2016, p.
107-17.






NEPHIM — SIMULATION OF EXTERNAL
INTERACTIONS

NePHIM: A Neural Physics-Based Head-Hand Interaction Model
Nicolas Wagner, Ulrich Schwanecke, and Mario Botsch

Computer Graphics Forum 44, 2025

DOI: 10.1111/cgf.70045

6.1 METHOD SUMMARY

In the publication NePHIM, we responded to Research Question 4 (Sec-
tion 1.2.4).

NePHIM aims at the efficient animation of head—hand interactions and
uses a concept similar to that of Soft DECA (Chapter 3), albeit imple-
mented in a completely different manner. Here, too, an efficient neu-
ral network is employed to approximate a heuristically defined interac-
tion physics—based simulation (PBS). However, training such a network
presents different challenges than for our previous contributions, primarily
due to the lack of an extensive data foundation like provided by DECA [32].
Moreover, the interaction simulation is inherently more complex, as long—
term dependencies and friction must be considered to animate push and
pull interactions authentically. The simulation requirements, in turn, ne-
cessitate the neural approximation to account for long—term dependencies,
too, something for which the hypernetworks [15] from (Sparse)Soft DECA
are not equipped. As in the previous chapters, the most important com-
ponents of NePHIM are described in more detail below.

PHYSICS-BASED SIMULATION

The NePHIM PBS is again based on projective dynamics [14] and relies
on similar constraints that establish physical and anatomical plausibility
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as in our previous works. The actual simulation of head—hand interactions
stems from novel heuristics we introduce for both push and pull contacts
that recognize collisions, respect temporal dependencies, and render so-
phisticated friction calculations unnecessary.

NETWORK

NePHIM relies on the well-established method subspace neural physics
(SNP) [39] to accelerate the previously described simulation through a
neural approximation. SNP first maps simulated heads and hands into re-
spective compact subspaces and learns the simulation within these. This
reduction of complexity enables a small and therefore very efficient neu-
ral network to be employed, which can effectively account for long—term
dependencies due to a clever training procedure.

TRAINING DATA

To generate training data for NePHIM’s neural network, we assembled
a complex multi—view rig that operates 16 video cameras synchronously
to capture a person performing exemplary head—hand interactions. Es-
tablished multi—view reconstruction methods subsequently transform the
video recordings into per—frame tracked head and hand surface meshes.
These meshes serve as the training input. Ground truth is obtained from
the simulation of the tracked meshes, whereby the temporal sequence of
the recordings is preserved. Our dataset comprises up to ten sequences
for each of eight individuals. All sequences last about 30 seconds with 20
frames-per-second.

6.2 DISCUSSION

RESULTS

The evaluation of NepHIM mainly centers around the perception of the
simulated head—hand interactions. In the PBSs of our previous works,
we were able to rely on state-of-the-art components that had been tried
and tested several times in real-world applications. However, for our new
interaction heuristics, it was uncertain if these components would pro-
duce authentic animations. Consequently, we conducted an extensive user
study involving approximately 50 participants to evaluate the realism of
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our approach compared to related work and non—simulated interactions.
For every example shown in the user study, NepHIM was judged as sig-
nificantly more “natural” than its peers. We support these findings with
visual examples that evidently demonstrate the extensive range of interac-
tions NepHIM can animate. For instance, it is able to simulate convoluted
interactions such as pulling the nose, pushing down a lip with one finger,
or lifting the cheeks with flat hands. Moreover, a visual ablation study
verifies the benefits of the individual aspects of the newly developed sim-
ulation heuristics.

The difficult nature of interaction handling and long—term temporal
dependencies also raise doubts about the ability of the fast yet relatively
simple SNP approach to learn our simulation sufficiently. To address these
concerns, we conducted a range of quantitative analyses. Our observations
indicate that SNP can approximate our simulation with an accuracy of
less than one millimeter on test data, irrespective of whether the train-
ing involves a single individual or all eight from our recordings. At the
same time, the approximation is remarkably efficient and can be executed
on consumer—grade CPUs and GPUs with 50 and 200 frames-per-second,
respectively.

Although SNP is fast and effective, it comes with the disadvantage that
it cannot be controlled intuitively in the underlying latent spaces. In an
ideal world, NePHIM should be steerable via tracked 2D landmarks from
a single camera. To that end, we conducted another experiment in which
we train a small multilayer perceptron to map 2D facial and hand land-
marks [126] captured by the most frontal camera of our multi—view rig into
the latent spaces of SNP. Our findings reveal that while the approxima-
tion accuracy remains nearly unaffected, the runtimes are slightly slower.
However, this is primarily due to the tracking of 2D landmarks on images
rather than the newly added multilayer perceptron itself. Nonetheless, we
still achieve a performance of 66 frames-per-second on the GPU.

LIMITATIONS

In general, we successfully address the associated research question with
NePHIM, although some limitations persist across various aspects. For in-
stance, despite our PBS being convincing in the user study, the anatomical
model we employ limits realism. Above all, we do not specifically model
ear or nose cartilages, making these components appear overly flexible
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during interactions, and neglect self—collisions of the lips or the lips with
the teeth.

Another apparent limitation is the generalization capability of NePHIM,
which was not our focus but is desirable for ease of use. In general, we can
learn a personalized SNP network for any individual within five hours on a
high—end workstation, if they are willing to be scanned for a few minutes in
our 3D scanner. To train NePHIM to be more broadly applicable, the key
challenge lies in recruiting an adequate number of participants willing to
undergo the scanning procedures. However, the data processing of so many
participants would introduce additional issues. For instance, recording 30
seconds in our scanner already generates approximately 100GB of data.

The last limitation we want to name extends beyond the scope of this
thesis. While we can realistically simulate many different kinds of head—
hand interactions, these simulations fundamentally rely on accurate track-
ing of heads and hands. To that end, we rely on the publicly available
Mediapipe models [126], which generally exhibit high accuracy. However,
they occasionally produce significant discrepancies depending on the view-
ing angle and output erroneous predictions due to occlusions. Particularly,
errors can occur in the multi—view 3D reconstruction step and then lead to
contaminated training data. Errors can also manifest when deploying the
trained models in production applications. We safeguard NePHIM against
tracking errors, for example, by not resolving interaction collisions when
a hand penetrates too deeply into the skull. Thereby, the rigidity of the
skull is maintained, yielding more realistic animations.

RELATED WORK

As mentioned in Chapter 2, there is only one previous work in the re-
search field of NePHIM. This method, labeled Decaf [101], relies on a
strongly simplified position—based dynamics [78] simulation of the face sur-
face rather than on a volumetric representation of the head anatomy. It
also does not account for long—term dependencies, limiting its ability to
represent authentic interactions, and entirely neglects skin—pulling. More-
over, Decaf takes several seconds to simulate one frame and is designed for
only a few predetermined interactions. For our dataset, we did not instruct
participants on how to interact with the head. Decaf holds an advantage
over our approach as it generalizes across the FLAME head model [61]
and, hence, is more broadly applicable. Nevertheless, the question can be



6.3 PUBLICATION

raised as to what extent this is desirable, as FLAME typically depicts
facial expressions with strong smoothness and minimal detail compared
to more involved head models like DECA [32]. In NePHIM, we represent
facial expressions through blendshape rigs of significantly higher quality.

Concurrently with NePHIM, DICE [120] was developed. However, DICE
builds upon the Decaf simulation and complements our work as it solely
improves on the visual tracking of interactions.

FUTURE WORK

We can think of at least two directions for further developing NePHIM.
First, adapting the trend of photorealistic Gaussian splatting [51] — which
is currently driving numerous innovations and improvements in facial ani-
mations [90, 70] — could benefit our use case. For instance, similar to Gaus-
sianAvatars [90], attaching Gaussian splats to the simulated head meshes
and training them with a photogrammetric loss might correct oversimpli-
fied or incorrect simulation assumptions when rendering.

The second direction is to improve the NePHIM PBS. Although en-
hancing the interaction heuristics, the anatomical representation, or the
material parameters could yield better outcomes, manually modeling simu-
lations of intricate natural processes remains challenging. Therefore, recent
efforts in facial animation have focused on learning such simulations using
deep learning [124, 123]. Unfortunately, an extensive and detailed ground
truth dataset is a prerequisite for these approaches. As always, creating
such a dataset requires enormous manual effort to clean up recorded 3D
multi-view reconstructions and to convert them into standardized hand
and head meshes.

6.3 PUBLICATION
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Figure 1: The different steps of NePHIM by means of a single frame: a) Two of the 16 views of our multi-camera rig used to capture head-hand
interactions and corresponding landmarks. b) Our proposed simulation for head-hand interactions in comparison to the tracked input (after
fitting template surfaces to the landmarks (IK)) and the simulation used in the previous state-of-the-art [SGPT23]. c) Prediction of the efficient
neural network trained to approximate our simulation.

Abstract

Due to the increasing use of virtual avatars, the animation of head-hand interactions has recently gained attention. To this
end, we present a novel volumetric and physics-based interaction simulation. In contrast to previous work, our simulation
incorporates temporal effects such as collision paths, respects anatomical constraints, and can detect and simulate skin pulling.
As a result, we can achieve more natural-looking interaction animations and take a step towards greater realism. However, like
most complex and computationally expensive simulations, ours is not real-time capable even on high-end machines. Therefore,
we train small and efficient neural networks as accurate approximations that achieve about 200 FPS on consumer GPUs,
about 50 FPS on CPUs, and are learned in less than four hours for one person. In general, our focus is not to generalize the
approximation networks to low-resolution head models but to adapt them to more detailed personalized avatars. Nevertheless,
we show that these networks can learn to approximate our head-hand interaction model for multiple identities while maintaining
computational efficiency.

Since the quality of the simulations can only be judged subjectively, we conducted a comprehensive user study which confirms
the improved realism of our approach. In addition, we provide extensive visual results and inspect the neural approximations
quantitatively. All data used in this work has been recorded with a multi—view camera rig. Code and data are available at
https://gitlab.cs.hs-rm.de/cvmr_releases/HeadHand.

1 Introduction that, on average, people touch their heads several dozen times an

hour [KGM15,RMF20, MMG19]. There are many ways to inter-

How many times per hour do you think you touch your face?
Probably more often than you are aware of. Although the an-
swer to this question varies in scientific studies, it can be said

act, such as touching, stroking, scratching, rubbing, pulling, tug-
ging, squeezing, and caressing, to name but a few. Behavioral sci-
ences do not conclusively answer why people touch their faces,
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yet the implications even extend to computer graphics. Due to the
frequency and expressiveness of head-hand interactions, simulating
them in facial animations would considerably improve user per-
ception. Especially with the focus on photo-realistic avatars these
days [QKS*24,MWSZ24,7ZBT23, AXS*22, GKE*22], the relevance
of authentic facial animations is further accentuated.

Only recently, attempts to incorporate head-hand interactions
into facial animations have been proposed [SGPT23, WDX*24].
In particular, these approaches address two main challenges. Nat-
urally, the simulation of interactions is the main emphasis, but
three-dimensional tracking of the head and hands is also a pre-
requisite for realistic animations. Shimada et al. [SGPT23] and
Wau et al. [WDX*24] are impressive in determining simulated 3D
head and hand surfaces from a single monocular image. However,
both neglect the fidelity of the interaction animation as they are
based on the same rather coarse physics-based surface simulation.
More sophisticated, detailed, and anatomically accurate volumetric
physics-based simulations of heads have been explored in other
contexts [SNF05,IKKP17,Conl6,CZ24].

This work introduces a substantially improved physics-based
simulation of head-hand interactions and designs more realistic
interaction mechanisms. For instance, in contrast to the previous
methods, we consider pulling interactions and the influence of the
skull. Since this simulation is not real-time capable, we also learn
a personalized neural network as an approximation. Both our sim-
ulation and the network process tracked head and hand surfaces
and thus remain compatible with the tracking concepts of previous
approaches [SGPT23, WDX*24]. Another contribution of this work
is the creation of a dataset of real head-hand interactions. To this end,
we built a multi-view rig with 16 high-resolution and synchronized
video cameras with which we recorded several subjects. Unlike the
only other comparable dataset available [SGPT23], we did not in-
struct the participants which head-hand interactions to perform. We
simply asked the participants to perform arbitrary interactions and
can, therefore, reproduce an even wider range of hand movements in
our data. Among other things, we also capture skin pulling, which
was previously ignored. Figure 1 is an exemplary illustration that
shows a recorded pulling frame, the associated simulation, and the
approximation by our neural network.

We evaluate our approach qualitatively using visual examples
and the accompanying video of dynamic head-hand interaction an-
imations. Furthermore, we conducted an extensive user study that
confirms that our approach is perceived more naturally than pre-
vious ones. Quantitative experiments demonstrate that the neural
approximation can be created in just a few hours and adapted to mul-
tiple human identities simultaneously. The trained network achieves
around 50 frames-per-second (FPS) even on slower CPUs.

2 Related Work

In this section, we discuss three literature fields related to our ap-
proach. First, Section 2.1 presents physics-based facial animations in
general. Next, Section 2.2 addresses recent developments focusing
specifically on animated head-hand interactions. Finally, Section 2.3
examines work in which neural networks approximate physics-based
simulations.

2.1 Physics-Based Facial Animations

Heuristic physics-based facial simulations have been developed for
a long time and principally intend to compensate for shortcom-
ings of simpler but popular facial animation methods like linear
blendshapes [LAR* 14]. For instance, artifacts like implausible con-
tortions and self-intersections can be avoided by including volumet-
ric and anatomical constraints. The pioneering work of Sifakis et
al. [SNFO05] is a volumetric physics-based facial simulation that runs
on a personalized tetrahedral mesh. Unfortunately, the tetrahedral
mesh can only be of limited resolution due to an associated dense op-
timization problem. With Phace [IKKP17,IKNDP16], an improved
simulation concept has been introduced, which is also defined on
a tetrahedral mesh but can handle higher resolutions and considers
anatomical structures more precisely. In addition to a tetrahedral
mesh, the art-directed muscle models [CF19,BCGF19,Con16] repre-
sent muscles as B-splines that steer facial expressions via trajectories
of spline control points. A solely inverse model for determining the
physical properties of faces was proposed in [KK19].

Thanks to increased computing capabilities, data-driven physics-
based facial simulations have also become appealing recently. An
example is the model of Yang et al. [YKZ*22] that learns to vol-
umetrically animate a person’s face from multi-view videos with
the help of differentiable physics [DWM*21]. Although Yang et
al. [YZC*23] extend the model to cover several identities, adding
a novel identity requires five days of retraining and the inference
of one frame runs multiple seconds. While faster alternatives ex-
ists [WBS23], generally, heuristic as well as data-driven physics-
based simulations are not commonly used in real applications due
to their complexity and computational effort. Other data-driven ap-
proaches include Animatomy [CEM*22], which represents muscles
as curves, and the implicit model of Chandran et al. [CZ24]. The
aforementioned data-driven simulations are not designed to handle
collisions and external interactions.

2.2 Head-Hand Interactions

All previously discussed simulations have in common that they are
primarily aimed at facial animation, facial retargeting, or face re-
construction, but not at the simulation of external influences such
as hands. Although models like Phace [IKKP17] are theoretically
applicable in such scenarios, the non-trivial practical implemen-
tation of interactions has not happened until lately. Shimada et
al. [SGPT23] propose the first head-hand interaction simulation, De-
caf, and demonstrate how a neural network can learn the simulation
while generalizing over the FLAME head model [LBB*17] and the
MANO hand model [RTB17]. Decaf focuses on mapping a single
RGB image to interaction deformations, using only a surface-based
simulation that, in terms of quality and realism, falls short of the
volumetric simulations discussed in Section 2.1. Also, the low res-
olution and the sometimes too smooth representation of heads in
FLAME are often insufficient for demanding applications. Wu et
al. [WDX*24] advance Decaf by an extended generalization to in-
the-wild images. Unfortunately, the underlying simulation remains
the same. Consequently, we focus on a more realistic simulation for
personalized and more detailed head avatars.

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.
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Variable Description

S,J,C Tetrahedral meshes of soft tissue, jaw,
and cranium

H,L.R,J,C Surface meshes of head, left hand, right hand,
jaw, and cranium

E, Energies

Wi, S Scalar weights

C. Vertex targets of hand interactions

L Set or dictionary of vertex indices

*¢ Indicates the time step ¢ of a variable

#51¢ Indicates the source src of a variable

Xr Sequence (Xr)szl of T surface meshes X;

X Projection into PCA space of surface mesh X

v,cC,t A geom. element like a vertex v, a cylinder c,
or a tetrahedron t

func Denotes a function

Table 1: The notation of the main concepts of Section 3.

a) b) c) d)

Figure 2: a) Full-body template which includes the head template
surface H shown in b). c) Cross section of the connected tetrahe-
dral meshes S,J],C. d) The template jaw and cranium surfaces J,C
embedded in the tetrahedral meshes.

2.3 Approximating Physics-Based Simulations

As we accelerate our approach with efficient neural networks, we
also give a brief overview of the literature on neural approximations
of physics-based simulations. On the one hand, there are general
methodologies [SWR*21] that also explicitly deal with interac-
tions of two or more objects [RCCO22, RCPO21]. On the other
hand, there are methods with a focus on bodies [SGOC20, CO18]
or heads [WBS23]. For NePHIM, we adopt the general method
of subspace neural physics [HDDN19] that is, in particular, com-
putationally efficient for approximating simulations of interacting
objects.

3 Method

This section first outlines the objectives of our approach (Section 3.1)
and then presents the formal implementation (Sections 3.2-3.5). To
support the reading flow, we slightly misuse the notation in the
following derivations by denoting a mesh and the corresponding
vector of stacked vertex positions with the same symbol. Table 1
gives a summary of the notation.

© 2025 The Author(s).
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3.1 Objectives & Method Overview

We consider an animation at time 7 with tracked surfaces for the
left hand LY, the right hand R, and the head Hj™ of a person.
Given the corresponding neutral head surface mesh H as well as
tracked sequences (consisting of all previous frames up to T') for
the left hand L7 = (L), right hand Ry = (R¥)!_,, and head
Hr = (Ht‘”)tT: | our first objective is to deform the tracked head
surface mesh at time T, Hj™, to

HE™ = phy(Ry, L1, Hr , H), (1

such that head-hand interactions are resolved realistically through
a physics-based simulation phy. Previous methods [SGPT23,
WDX*24] determine deformations through a simple surface-based
simulation [MHHRO7] incorporating only constraints for the skin
surface and (static) pushing hand interactions. We improve realism
by implementing phy (Section 3.3) as a volumetric simulation that
additionally respects

e Jong-term collision paths of pushing interactions,
e pulling hand interactions,
e and volumetric anatomical constraints.

Although the resulting H2" appears more natural (Section 4.4),
our simulation phy is not real-time capable and, hence, potential
applications are restricted. Therefore, our second objective is to train
a neural network net (Section 3.5) that approximates H:"Y while
being real-time capable even on CPUs.

3.2 Volumetric Template

In the remainder of this section, we will precisely state phy and
net. However, as our approach is intended to reflect volumetric
constraints, we first introduce a head template (H,J,C,S,J,C) as the
foundation of phy. The template includes the neutral head surface
mesh H C S that encloses a soft tissue tetrahedral mesh S. The two
template surface meshes J,C form the corresponding skull as jaw
and cranium and are filled with respective tetrahedral meshes J and
C. All tetrahedral meshes are connected, and the surface vertices
of H can be addressed in S with the same indices. An experienced
digital artist designed the template surfaces while the tetrahedral
meshes were created with TetGen [Han15].

Figure 2 b—d visualize all template components; all dimensions
can be found in Appendix A. The tessellation of H is aligned with
a full-body avatar (Figure 2a), which is part of the code release to
easily integrate NePHIM into other applications.

To register the volumetric template to a tracked person, we ex-
pect the neutral head surface H of this person to be known. Then,
we reposition the skull components by a dense linear model that
we trained on the computed tomography dataset of Achenbach et
al. [ABG*18]. Formally, this model maps from the vertex positions
of H to the vertex positions of the jaw J and the cranium C. The
vertices of each tetrahedral mesh S, J, C are placed by radial basis
function space warps [BKOS5] calculated from the respective enclos-
ing surfaces in the template fo the corresponding surfaces of the
tracked person.
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f a) Multi-View Capture & Reconstruction

b) Simulation & Creation of Training Data

c) Training of Approximation ‘
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4. Run IK to fit
Surfaces

3. Simulate
Interactions

3. Reconstruct 3D
< Landmarks

Interactions

4. Corrections

e

. Repeat 1-4 for each frame

4 Repeat 1-4 for each frame o net  ~phy||2
”H:T' — H;YH w.rt.net

Repeat for each frame multiple times
and apply gradient descent on

Figure 3: Overview of the three stages of our approach. a) Data capturing as described in Section 4.1. b) All steps of our physics-based
simulation phy as explained in Section 3.3. c) Efficient neural approximation net of phy as explained in Section 3.5.

3.3 Simulation

Building on the volumetric template, we can now continue with
the detailed introduction of our physics-based simulation phy. As
Algorithm 1 outlines, phy conducts four steps that are described in
separate subsections from Section 3.3.1 to Section 3.3.4. Figure 3b
visualizes an exemplary cycle of all steps. Since we want to take
long-term effects such as collision paths and skin pulling into ac-
count, it is not sufficient to consider only the last time step T to
determine H?hy. Instead, we start at the beginning of the tracked
sequences and run all four simulation steps consecutively for each
time step 7.

3.3.1 Expression Fitting

As the initial simulation step, we deform the neutral volumetric
tetrahedral meshes S, J, and C in an anatomically plausible manner
to fit the tracked surface H* instead of the neutral surface H. To
this end, we minimize a constraint-based energy in the projective
dynamics (PD) simulation framework [BML* 14]. The first objective

(@)

attracts the surface vertices H C S of the soft tissue tetrahedral mesh
towards the tracked head surface. The second objective

f— 1 — 2
Egtrain(S) _tezésth;gz3) [V(t) - R[[r 3)

Etarget(H,Httra) = HH _HttraHZ

models strain for each soft tissue tetrahedron t € S. Here, R € SO(3)
denotes the optimal rotation, V(t) € R3*3 the deformation gradient
of t (w.r.t. the neutral rest shape), ||-||» the Frobenius norm, and
st € (0,1] is a stiffness value calculated as in [SGPT23]. In intuitive

and simplified terms, the stiffness decreases the further a tetrahedron
is located from the skull. Analogous to the soft tissue strain, we also
add strain energies for the jaw Egy,in (J) and the cranium Egg,;, (C).
Overall, the weighted energy

Eusacked (Hy™,S,J,C) = WiarBuarget (H H;™) +
wsEitrain (S) +
W1 Estrain (J) +
W Estrain (C)

is minimized. To reflect that both jaw and cranium are rigid, we set
the weights wy and wc to a high value compared to wy,r and ws and
apply a constant stiffness of one. The values of all weights and other
simulation parameters can be found in Appendix B. The outputs of
the optimization are the tracked tetrahedral meshes

(Strav Jtra7 (Ctra) = aégjn(én Etracked (Httra7 S ’ 01] ) C) . (5)

@

Please note that although there are more detailed simulation meth-
ods than PD [LFS*20, IKKP17, YKZ*22], these are often more
complex and cannot outweigh the efficiency of PD in our use case.

3.3.2 Detect Interactions

Subsequently, we detect pushing and pulling head-hand interactions
and translate them into target positions of the head vertices Cpysp
and Cpyy1, which we will simulate in the next step (Section 3.3.3).

Pushing Interactions We first explain how we handle pushing in
phy. Previous approaches [SGPT23,WDX*24] would simply iterate
over the vertices of the head surface H{™ and if a vertex enters
either the left hand L{"™ or the right hand RY™, it is moved in the

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.
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Algorithm 1 Volumetric Physics-Based Simulation phy

Algorithm 2 Pushing Interaction

Function phy(Ry, Ly, Hr,H)
// Section 3.2 Register Template to Neutral
Register volumetric template (Figure 2) to obtain the tracked per-
son’s volumetric head description (H,J,C,S,J,C).

t=1

whiler < T do
// Section 3.3.1 Expression Fitting
Step 1 Determine the tracked tetrahedral meshes S, J* C'*2 by
aligning S, J,C with the tracked head surface H{™ as described
in Equation (5).

// Section 3.3.2 Detect Interactions
Step 2 Determine the push and pull target positions Cpysh, Cpunl
as described in Algorithm 2 and Algorithm 3, respectively.

// Section 3.3.3 Simulate Interactions

Step 3 Determine the interaction tetrahedral meshes ™™, Jint, Cint
by applying the push and pull targets Cpush, Cpurt to Hf™ as de-
scribed in Equation (9).

// Section 3.3.4 Corrections

Step 4 Determine the corrected tetrahedral meshes S€°F, J€°r, Ceor
by resolving remaining collisions I as described in Equa-
tion (11). Extract HP™ from S¢'.

t=t+1

// Return the simulated head surface
return H2"Y

direction of the corresponding inverted normal until the collision
is resolved. Unfortunately, this strategy largely ignores temporal
dependencies, and the normal direction only provides an imprecise
collision resolution.

For this reason, we rely on the linear movements between Htpfly
and H{™, L™ and L™, as well as R, and R{"™, i.e., between the
previous simulated frame and the current tracked frame, as formally
described in Algorithm 2. Expressed in words, we check at short
intervals e between the time steps # — 1 and r whether one of the two
hands touches a vertex of the head. If so, the head vertex is dragged
from the initial point of contact with the hand at € to the same point
on the hand at time 7. Please see Figure 4a for a visual explanation.
Our way of resolving hand pushing is more natural and incorporates
long-term effects per construction. Although there are more involved
and time-consuming forms of continuous collision detection, these
did not yield substantially better results in our experiments.

Pulling Interactions Pulling is considerably more challenging and
has not been addressed in prior approaches. We present a heuristic in
Algorithm 3 that does not require cumbersome friction calculations
but, unfortunately, still has an elaborated notation. Yet, the founda-
tional idea of our heuristics can easily be put into words. First, we
form cylinders with radius r between the fingertips of all fingers
(index, middle, ring, little) and the thumb as illustrated in Figure 4b.
Then, for each cylinder, we determine whether it grabs, i.e., has
shortened in length from time step ¢ — 1 to time step 7. If so, and if
the length falls below a minimum /,,;,, all head vertices inside the
cylinder at time ¢ are marked as pulled. We maintain a dictionary
Ioun over time that stores a set of the pulled vertices for each finger.

© 2025 The Author(s).
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Function push(H""Y ,H™, L™ LI R RI™)
// Initialize linear movement directions
Hgy = H{™ — HP'Y
Ldir = L}ra - L;r,al
Rair = R —R™
// Initialize push targets
Cpush = {}
I={}
// Iterate over linear movements
for e = 0;e < 1;e +=A€ do
// Iterate over head surface vertices
for v ¢ (H,pf]y +e- Hd;r) do
// Find collisions with left hand
if vi7 collides with (L}rj‘l —+ G'Ldir) and i ¢ I then
// Find nearest neighbor in current left hand
Vi =nn(v,L* +e-La)
// Add same vertex of final left hand as target position
Add (v, 7) 10 Cpugy
Additol
Repeat the same if-clause for the right hand

// Return the push targets
return Cpysn

The target positions of the pulled vertices Cpy) are calculated so
that they form smooth ridges within the cylinders (see Figure 4b).
The shape of the ridges imitates the skin’s natural deformation due
to pinching. A pulled vertex is unmarked once the corresponding
cylinder exceeds /iy, 1.€., the finger no longer grabs.

3.3.3 Simulate Interactions

For applying the previously determined push and pull targets Cpysh
and Cpy to the tracked head H™, we again make use of a PD
simulation on the fitted tetrahedral meshes S', J"®, and C'" (Sec-
tion 3.3.1). Here, we establish anatomical plausibility similar as
before by adding strain constraints Egiain (S™), Egtrain (J™), and
Estrain ((C“a) to the simulation. Also as before, we add

] ] . . o 2
Busg (% 1) = = (B 5 (2 ) ) [ 0

to draw the surface vertices H'™ C S' of the soft tissue to the
tracked surface. This time, however, including damped velocities of
the head, where s denotes the size of a time step. A low damping
factor o adds natural-looking dynamic effects to the interactions.

New to the simulation are the target constraints

Epush(Htravcpush) = Z ||p_ViH2:
(P,i)ECpus
tra - 2 )
Epu]](H 7Cpull) = Z Hp_ViH s
(pwi)ecpull

which draw interacting vertices v; € H'™ to their precalculated target
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Algorithm 3 Pulling Interaction

Notation
c,L'f Cylinder of finger f of the left hand L at timestep ¢
len Length of a cylinder

Lui[L, f] Dictionary entry of key L, f, i.e., a set

Function pul 1(H™ L™ L™ R"™ R L)

// Initialize pull targets
Cpull = {}
// Check if new vertices are pulled per cylinder
for f=1;f<4f+=1do
// Pull only if cylinder gets smaller and is small enough
if 1en (') < 1en(c) ) and 1en (e ) < i then
// Check for each head vertex if inside cylinder
for v; € H™ do
if v; inside c,L‘f then
Append i to Iy [L, f]
// Check if vertices are no longer pulled per cylinder
for f=1;f<4;f+=1do
if len <c,L~f ) > Imin then
Ipull [L:ﬂ =0
// Calculate target positions of pulled vertices per cylinder by
// creating a ridge per cylinder as defined in Appendix C
for f=1;f<4;f+=1do
Append ridge <Ipu11 [L7f]7Httmv Cfﬂf) to Cpull
Repeat same procedure for the right hand

// Return the pull targets
return Gy

position p. Overall, the weighted energy
Einter (Cpush» Count, Hi™, 8™, I, C?) =

WpushEpush (H™, Cpush ) +
Wpull Eputl (H™, Cpunt) +
Wiar Etarget (H™, H"™ ) + 3
WsEgtrain (S™) +
Wy Etrain (™) +
weEsirain ((Clra)

is minimized, where we again set the weights wj and wc to a high
value for approximating a rigid skull. Likewise, the weights wyysy
and wpy are set to a high value to enforce the target positions, but
lower as wj, wc. By balancing the previously mentioned weights,
we achieve a more natural simulation since the bones do not bend
in the case of tracking errors and too deeply penetrating hands. The
outputs of the optimization are the interaction tetrahedral meshes

int yint int :
(Sm e ) = argmin Ejper (Cpushchullv
Slru ’Jlra 7(Clra (9)

tra tra ftra tra
Ht 7S ?J 7([: )

3.3.4 Corrections

The preceding steps of phy do not fully resolve all head-hand
collisions. For instance, the last step in Section 3.3.3 allows soft

Wagner et al. / NePHIM
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interpolation
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Figure 4: a) Visualization of pushing as described in Section 3.3.2
and Algorithm 2. Here, € is a substep between the time steps t — 1
and t. b) lllustration of a finger cylinder with radius r, length [, and
an exemplary ridge shape that is used for pulling as described in
Algorithm 3.

tissue vertices that previously did not collide to move inside the
hands. To correct most remaining colliding vertices, summarized
with their indices in leorr, We perform the previous PD simulation
again but add an additional constraint. This constraint

Ecorr (Sichorr) = Z Hnn (VhL;ra’R;ra) —ViH (10

i€leor

draws each colliding vertex v; € S™ to the nearest neighbor
nn(vi, L™, R™) of v; on the left or right hand L{™, Ri"™. The outputs
of the optimization are the corrected tetrahedral meshes

(Scor”ﬂcor7 Ccor) _ argmin WeorrEcorr (Sim,lcorr) +
Sim ,J‘"‘,(C‘"‘ ( 1 1 )

tra gint fint c~int
Einter(CpushacpullaHt aS au]] 7(C )

The deformed surface H*™Y = phy(R;, L, H;,H) C S°F can
now be extracted as the outer boundary of the soft tissue mesh. After
the four steps of phy described in Sections 3.3.1-3.3.4 have been
carried out consecutively for all time steps through to 7', H?hy is
obtained.

3.4 Recursive Formulation

The previous description of phy serves the intuitive derivation, but
suggests that the computational effort increases linearly with each
additional frame. However, this is not the case, since by the design

© 2025 The Author(s).
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Figure 5: An overview of the efficient network architecture of net.
Basically, a simple MLP with only 65536 parameters.

of phy, we can rewrite Equation (1) recursively as
thy — phy(Ltra7RtTra7 ;ga_‘
t t h
LTEZLDRTF'ZLDH?_EL (12)
phy
HP™).

Hence, we can reuse simulated frames instead of always simulating
all time steps.

3.5 Neural Simulation Approximation

As the derivations in the previous sections already indicate, phy is
not real-time capable. Therefore, we construct net, a neural net-
work that can be evaluated even on CPUs with 50 FPS (Table 4) and
that closely approximates phy. From the wide corpus of techniques
that already exist for approximating physic-based simulations (Sec-
tion 2.3), we adapt subspace neural physics (SNP) [HDDN19] to our
needs. Here, we only explain our adapted architecture of net, as
the original publication extensively describes the training algorithm
and we do not modify it.

The principle idea of SNP is to project all inputs and outputs into
smaller linear subspaces (e.g. using principal component analysis
(PCA)) and to train net on the projection. In the following, the
pedant of a variable in its respective subspace is referenced with an
overlying tilde. The inputs of net with regard to phy as defined in
Equation (12) are

tra ptra tra ytra tra net net
Ly*, Ry Hy® L™ Ry, Hp 2, H 25, 13)

Consequently, we have to create PCA subspaces for the tracked left
hand, the tracked right hand, the tracked head, and the simulated
head, respectively. The overall training goal is then to minimize

2

. fjnet _ fpphy

w5

where
A7 = net (L, RE A
7 tra ptra fynet
L%, RZ HrZy, (15)

17%5).
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A visual illustration of the inputs and outputs of net is depicted in
Figure 3c and our architecture can be found in Figure 5. To recover
HPet from HZ*, the PCA of the simulated heads is applied. By
selecting an appropriate number of components of the subspace, we
prevent the loss of geometric details.

4 Results

The result section is organized as follows. First, we outline how we
capture and process real head-hand interactions to form training and
test data (Section 4.1). The same subsection also contains a descrip-
tion of the resulting dataset and details on training and evaluation
protocols. In Section 4.2, we discuss qualitative characteristics of the
simulation phy and the approximation net using visual examples.
In Section 4.3, we examine quantitative characteristics and also take
a closer look at running times as well as training times. Finally, we
present the results of a user study (Section 4.4) that supports the
more natural perception of our approach.

4.1 Dataset & Training

To capture real head-hand interactions, we use a multi—view rig
consisting of 16 synchronized and calibrated XIMEA [Xim24] RGB
cameras generating 12-megapixel images at 20 FPS. In each cap-
tured image, we predict 2D landmarks for both hands and head
using existing tracking methods [BT17,ZBV*20]. For the hands, a
landmark is predicted for each joint, each fingertip, and the wrists.
For heads, we only capture the contours of the eyes and the mouth,
as can be seen in Figure 1. From the 2D landmarks, we generate 3D
landmarks per frame using a basic bundle adjustment algorithm.

Since our simulation phy is conceptualized to work on tracked
surfaces, the last step in the capturing pipeline is to fit appropriate
template surfaces to the 3D landmarks. Regarding the head, we
initially create a high-resolution personalized head avatar for the
recorded person with an automated 3D reconstruction and (nonlin-
ear) template fitting pipeline [WAB*20]. Afterward, we add linear
blendshapes to the avatar by an automated volumetric deformation
transfer [WSB24, SP04] of a set of template blendshapes. The tem-
plate blendshapes represent the 52 ARKit expressions [App24] and
were manually sculpted once by a professional digital artist. Finally,
we optimize per frame a set of corresponding blendshape weights, a
translation vector, and a rotation matrix to fit the head surface to the
respective 3D landmarks. Regarding the hands, we adopt a similar
approach. Here, however, we do not use a personalized hand model
but optimize the pose and shape parameters of the MANO [RTB17]
hand model to match the respective 3D landmarks. Contrary to the
pose parameters, the shape parameters are the same for each frame.
We use gradient descent as the optimizer for the surface fittings.
Figure 3a illustrates all steps of the capturing pipeline.

The dataset we compiled contains up to 10 recordings of each
of 8 individuals. The individuals are Caucasian males aged 26 to
54 with a body mass index ranging from slightly underweight to
obese. Each recording lasts approximately 30 seconds and captures
arbitrary head-hand interactions. In particular, we did not instruct

T The template blendshapes are part of the code release.
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Tracked Ours

Decaf [SGPT23]

Tracked Ours Decaf [SGPT23]

Figure 6: The figure shows examples of our simulation phy and compares them to the tracked surfaces as well as the simulation of
Decaf [SGPT23]. In the top left, for example, the advantage of simulating the skull becomes apparent near the cheekbone. In the top right
image, a pulling interaction is shown and the lower images demonstrate the importance of (time-dependent) collision paths.

the individuals on which hand movements or facial expressions
they should perform. Appendix D summarizes the frequency and
the types of interactions. Overall, we captured, reconstructed, and
simulated around 50000 frames for this work. All of the following
experiments concerning the neural network net are always stated as
an average of five runs, and we uniformly (i.e., non-consecutively)
draw random train/test splits (90%/10%) for each run. All PCA
subspaces have 32 components, which is sufficient in our case as
we do not intend to generalize over large head or hand models.
We rebuilt the subspaces for each run on the respective training
data, and if several individuals are part of an experiment, we form
joint subspaces. Neural networks and the inference of PCAs are
implemented with PyTorch [PGM*19] while PCA subspaces are
constructed with the default implementation of Scikit [PVG*11].

4.2 Qualitative Evaluation

Figure 6 (and additional examples in Appendix E) display instances
of the simulation phy in comparison to the tracked surfaces as well
as the simulation of the current state-of-the-art Decaf [SGPT23].
Please note that we implemented the latter simulation ourselves
as the announced implementations are not (yet) available. Decaf
results sometimes appear slightly different to those from [SGPT23],
which mainly stems from the fact that our head avatars are more

detailed than FLAME [LBB*17] and that we did not instruct the
recorded persons which head-hand interactions they should perform.
In the shown examples, it is especially striking that our temporal
processing of hand pushes leads to effects such as a bent nose, a
pushed-up mouth corner, or even a pushed-down lip. Moreover, the
pulling of skin is readily recognizable and appears natural. None
of these effects can be observed with the other methods. The ac-
companying video demonstrates the advantages of our method for
dynamic scenes.

Besides the more general examples, we show further visual com-
parisons to inspect individual stages of our approach. Figure 7 em-
phasizes the necessity of the correction step of phy (Section 3.3.4)
while Figure 8 stresses the relevance of modeling temporal effects
in our simulation. However, Figure 8 not only exhibits the impact
of temporal effects on our simulation but also contrasts our simu-
lation without temporal effects to the Decaf [SGPT23] simulation.
Finally, Figure 9 underpins the advantage of a volumetric anatomy
simulation by contrasting bendable and rigid bones.

Examples of our simulation phy along with the learned approxi-
mation net are depicted in Figure 10. For this purpose, we trained
net on all identities in our dataset simultaneously. Although minor
discrepancies can be recognized, these do not appear to be decisive
for visual perception. Moreover, the quality of the approximation is

© 2025 The Author(s).
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Tracked

Without With

Figure 7: Examples of our simulation phy without and with the
correction step (Section 3.3.4). Errors due to the missing correction
step can accumulate over time.

Tracked

Decaf [SGPT23] Without With

Figure 8: Examples of our simulation phy without and with tempo-
ral effects as well as the Decaf [SGPT23] simulation.

not affected by whether the head-hand interactions are pushing or
pulling. Again, the accompanying video contains further examples.

4.3 Quantitative Evaluation
4.3.1 Accuracy

This section mainly investigates the quantitative properties of the
network net and the simulation phy. To begin with, we have a look
at the approximation accuracy of net. For this purpose, Table 2
summarizes average train and test subspace errors (mean squared
error) of net as well as the average and maximum reconstruction

© 2025 The Author(s).
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Tracked 0.0 0.5 1.0

Figure 9: Example of our simulation phy applying either 0%, 50%,
or 100% of the bone weights wy,wc.

Dataset  # Identities Subspace Reconstruction
Mean MSE ~ Mean (> Max (2
Train One 0.011 0.02cm  0.11 cm
Eight 0.041 0.04cm 0.18cm
Test One 0.052 0.09cm 0.23cm
Eight 0.056 0.10cm  0.35cm

Table 2: Train and test errors of the neural approximation net of
the simulation phy. The table is separated by the number of identi-
ties net was trained on. The errors stated for one identity are the
average over separate networks for all identities in our dataset.

errors on the actual surfaces (¢2 error). There is also a breakdown by
the number of identities with which we trained and tested net. The
table indicates that the reconstruction test errors are never greater
than a millimeter on average, and our implementation of net has
sufficient capacity to generalize over several identities. Moreover,
the likewise small maximum reconstruction errors indicate that all
kinds of simulated deformations can be adequately approximated
by net without hallucinating non-existent interactions.

4.3.2 Plausibility

In Table 3, we compare the plausibility of our network net, our
simulation phy, and the simulation of Decaf [SGPT23] by means of
quantitative metrics introduced in Shimada et al. [SGPT23]. Among
them is the Non Collisions metric, which captures the number of
collision-free frames after applying a method. We also state the Col-
lision Distance, which measures the average per-vertex depth of the
remaining collisions. We complement the existing metrics with the
Deformation Distance, which calculates the average per-vertex de-
formation of the tracked head caused by a method. Table 3 indicates
that all methods significantly reduce the number of colliding frames,
and the remaining collisions are less deep. Although Decaf appears
to better resolve collisions at first glance, this is to be expected, as it
is able to bend bones unnaturally, for instance. This expectation is
also supported by the Deformation Distance, which demonstrates
that Decaf tends to apply larger deformations in general.

4.3.3 Timings

Table 4 summarizes the average running times of phy and net.
On the one hand, with a runtime of 876 ms per frame on an AMD
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Tracked

Simulation Approximation

Tracked Simulation Approximation

Figure 10: Examples of our simulation phy along with the tracked surfaces as well as the learned neural approximation net (trained on all
identities in our dataset). The quality of the approximation is independent of whether it is a pushing or a pulling interaction.

Method  Non Collisions  Collision Dist.  Deformation Dist.
Tracked 53 % 1.20 cm 0.00 cm
phy 69 % 0.19 cm 0.11 cm
net 68 % 0.20 cm 0.09 cm
Decaf 8 % 0.09 cm 0.16 cm

Table 3: Plausibility metrics to compare our simulation phy, the
Decaf simulation [SGPT23], and our network net to the tracked
input. Non Collisions is the percentage of frames without collisions,
Collision Distance measures the average per-vertex penetration
depth of the remaining collisions, and Deformation Distance indi-
cates the average per-vertex deformation by the respective method.

. phy net net
fnputSize cp;  cpu  GPU
1 x 876 ms 19.2ms 5.1 ms

2 X 2248 ms 34.6ms 7.3 ms
4 x 6553ms 79.2ms 9.4 ms

Table 4: The average inference times of the simulation phy and
the neural approximation net depending on the input size, i.e., the
number of surface vertices, the number of volumetric vertices, and
the size of the PCA subspaces.

Ryzen Threadripper PRO 3995WX, phy is evidently not realtime-
capable. On the other hand, net can be executed not only on a
consumer-grade GPU (NVIDIA RTX 3090) but also on a weaker
CPU (Intel i5 12600K) with more than 50 FPS. In comparison, our
implementation of the simulation of Decaf [SGPT23] runs in 178 ms
per frame on the Threadripper CPU. The entire pipeline, as shown in
Figure 3, from data acquisition to training net only takes about 20
hours for eight identities and 3.5 hours for one identity. We trained
on a NVIDIA A6000 GPU for four hours (eight identities) or one

Tracking + net Decaf Dice

153ms/66 FPS 88 ms/11.5FPS 19590 ms/0.05 FPS

Table S: GPU inference times of our neural approximation
net compared to Decaf [SGPT23] and Dice [WDX*24]. For a
fair comparison, since Decaf and Dice include tracking components,
we added Mediapipe’s [BT17, ZBV*20] head and hand tracking
ahead of our network. The times were measured on a 128-core AMD
Ryzen CPU and a NVIDIA A6000 GPU.

and a half hours (one identity). The short training time is mainly
due to the efficient network architecture.

The aforementioned running times depend on the resolution of
the underlying template. Although our template is already able
to capture detailed deformations, Table 4 also shows that we can
still efficiently execute net if the template is further refined. To
that end, we doubled and quadrupled the number of surface and
volumetric template vertices (remeshing) as well as the size of the
PCA subspaces. On the CPU, net still runs at interactive rates if
the resolution is doubled, whereas on the GPU, even a quadrupling
is feasible. Nevertheless, as can also be seen in Table 4, the running
time of the simulation increases substantially, and so does the time
needed for generating training data.

We have intentionally designed net to be independent of any
particular tracking method, and the running times stated in Table 4
imply that it can readily be integrated with other applications. How-
ever, in order to compare the inference times with those of De-
caf [SGPT23] and Dice [WDX*24], we trained a slightly modified
net. For this modification, we input 2D head and hand landmarks
tracked by Mediapipe [BT17,ZBV*20] on the most frontal camera
of our multi—view rig instead of PCA subspace representations of
the undeformed surfaces. The test errors of this network are close

© 2025 The Author(s).
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User Study

100%
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Figure 11: A user study among 53 participants supports that our
approach is recognized as more natural. For each video shown in
the user study, our approach received the most votes.

to those stated in Table 2 (see Appendix F). Since the other two
methods are not intended to run on the CPU, we only compare the
GPU (A6000) running times listed in Table 5. It becomes apparent
that, including visual tracking, our approach is still around 6 times
faster than Dice and 1300 times faster than Decaf.

4.4 User Study

To support the qualitative results, we conducted an online user study
with 53 participants from two universities. Each participant watched
five random example videos that compared the tracked surfaces, the
simulated surfaces of Shimada et al. [SGPT23], and our (neural)
approximated surfaces as in Figure 6. The videos are randomly
drawn from the sequences in our dataset. Participants were asked
to choose the most natural-looking of the three variants for each
video. To avoid any bias, we rendered all surfaces in the same color
and arranged the variants in random orders. To ensure independent
documentation, we used survio.com for the technical implemen-
tation.

Figure 11 summarizes the outcome of the user study as the pro-
portion of votes each variant received. Our approach achieved the
most votes for all videos by a considerable margin.

5 Limitations

The most significant limitations of our approach result from missing
details in the foundational physics-based simulation phy as demon-
strated in Figure 12. For instance, tracking errors can cause hands
to move too deep into the head such that the skull is penetrated. In
this case, we consider it more natural to not fully resolve collisions
rather than bend bones (Figure 12a). We also do not resolve self-
collisions between lips or lips and teeth (Figure 12b). Finally, in our
anatomical head model, cartilage components are not sufficiently
taken into account, causing the nose or ears to bend a bit too much
when the hands push firmly (Figure 12c¢).

Regarding the efficient approximation of phy by the neural net-
work net, one can consider a lack of generalization over an exten-
sive set of head shapes as a limitation. However, in contrast to pre-

© 2025 The Author(s).
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(a) (b) (c)

Figure 12: (a) displays remaining collisions due to rigid bones, (b)
self-intersections of lips, and (c) a too bendy nose due to missing
cartilage.

vious work [SGPT23, WDX*24] our focus is on personalized head
avatars that exhibit a much higher level of detail and authenticity
than commonly used head models [LBB*17, FFBB21]. Moreover,
our experiments with multiple head shapes (Section 4.3) indicate
generalization capacities of net, and the short training time of our
approach should be sufficient in most scenarios to train net to a
given personalized head avatar.

Finally, a greater diversity in our dataset would be desirable.
Although we cover a wide range of head shapes with different
anatomical compositions, a more diverse coverage of genders and
ethnicities would strengthen our results.

6 Conclusion

In this work, we presented NePHIM, a neural physics-based head-
hand interaction model. NePHIM extends previous interaction sim-
ulations [SGPT23, WDX*24] with various features such as time-
dependent collision paths, pulling of skin, and a higher anatomical
precision. Comprehensive experiments and a user study show that
our approach is perceived as being considerably closer to reality
than the previous state-of-the-art [SGPT23]. Furthermore, we suc-
cessfully learned a neural approximator of the simulation that allows
for rapid inference even on consumer-grade devices.

Nevertheless, we also discussed limitations that provide various
starting points for future work. For instance, more detailed anatomi-
cal structures and physical properties may enhance the simulation.
Moreover, learning the deformation of interactions directly from
multi-view videos can contribute to further improvements.
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Appendix

A Template Dimensions
Mesh H J C S J C
# Vertices 6688 886 4220 11001 899 3354

#Faces/Tets 13372 1768 8444 31456 4190 15634

Table 6: The dimensions of all template components in our experi-
ments.

B Weights & Parameters

Wiar ws wj wc Wpush Wpull Weorr
102100 10* 10* 107 102 102

Table 7: The weights of the physics-based simulations of phy.

Proj. Dyn. Iterations o Lmin r s Ae
10 001 25cm  05cm  50ms  0.05

Table 8: The parameters of the physics-based simulations of phy.

C Ridge Calculation

Algorithm 4 Cylinder Ridge

c Cylinder

H Head Surface

I Indices of vertices that are in ¢

vl Vertex i of H

len,start,end Length, start, end of a cylinder
plane(r,n) Plane in normal form

mean Mean of vertices

proj(v,p) Project vertex v on plane p

Function ridge(l,H,c)
// Initialize ridge targets
Cridge = {}
// Calculate mean of cylinder
r=(start(c)+end(c))/2
// Calculate normal of cylinder plane
n=r—mean(H)
n/=lnl
// Calculate cylinder plane
p=plane(r,n)
// Calculate targets
for i €/ do
// Calculate plane position
VP = pro3 (vp)
// Calculate a height offset factor
k= min(||start(c) - v||,|lend(c) = v|]) /(Len(c) /2)
// Add ridge target
Add (v +x-Len(c) - n,i) to Crigge

// Return the ridge targets
return Crigge
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D Dataset

Single  Multiple Open Closed

Movement Finger  Fingers Palm Fist

I 11 1 11 1 11 1 11

Poke / Touch

Cheeks - 4 2 3 - 4 - _
Nose 2 - - - - - - -
Forehead - - 1 - - - - -
Chin - - - - - - 4 -

Pinch / Squeeze
Lips - - 5 - - - - -
Cheeks - - 13 - - 2 - 3

Rub / Stroke
B—F -2 6 1 1 12 -
F—B - - - 2 -
D—-U - - - -
U—D -2 3 3
L—R - - - - -
R—L - - - - -
Circle -2 - 7 -

' '
] i [\e) Y] —

—_— = 3 W
1

3
1
1

Punch
Cheeks - - - - 6 - 4 3

Pull / Tug

Lips 1
Cheeks -7 - 8 - - - -
Nose 2 - - - - - - -

Sum 5 20 33 24 13 4 8 12

Table 9: Quantitative description of the captured hand-head inter-
actions. The number of involved hands is indicated by I and II. A
direction is indicated by — where B,ED,U,L, and R abbreviate back,
front, down, up, left, and right, respectively.

Wagner et al. / NePHIM

E Additional Simulation Examples

Tracked Ours

Decaf [SGPT23]

Figure 13: The figure shows examples of our simulation phy and
compares them to the tracked surfaces as well as the simulation
of Decaf [SGPT23]. Here, the hands are solely rendered for the
tracked meshes to accentuate the simulated deformations.

F Tracking Network

Dataset  # Identities Reconstruction
Mean (2 Max (>
One 0.11lcm 0.29cm
Test

Eight 0.14cm 0.46 cm

Table 10: Test errors of the neural approximation net of the sim-
ulation phy paired with Mediapipe [BT17, ZBV*20] tracking as
described in Section 4.3.3.
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CONCLUSION

To conclude this thesis, we first concisely summarize our contributions
(Section 7.1). Subsequently, we assess their potential impact and offer

an outlook on future developments of facial animations in general (Sec-
tion 7.2).

7.1 SUMMARY

In this thesis, we explored the multifaceted challenge of enhancing linear
facial animations by integrating physics—based simulation (PBS). More
precisely, we tackled four foundational research questions.

1. The first question (Section 1.2.1) we investigated was whether it
was feasible to accelerate a state-of-the-art corrective PBS of head
anatomy to improve linear blendshapes (LBS) in real-time. With
Soft DECA [107] (Chapter 3), we provided a successful answer, which
approximates such corrections with the help of a hypernetwork [15]
that is generally applicable to manifold head— and blendshapes, and
can be executed in less than 10 ms per frame even on consumer—
grade CPUs. In addition, we can also manipulate simulation pa-
rameters and material properties in the learned approximation and,
thus, enable a wide range of applications beyond a pure correction
of LBS animations. Nonetheless, minor limitations remain, such as
the oversimplified modeling of second-order effects and the absence
of dynamic external influences.

2. As the second question (Section 1.2.2), we examined whether we
can adapt SoftDECA to map sparsely tracked facial landmarks to
dense facial expressions instead of correcting linear animations. With
SparseSoft DECA [111] (Chapter 4), we introduced our solution to
that question, which again relies on an efficient hypernetwork to ap-
proximate a PBS. While this simulation differs only slightly from the
original Soft DECA simulation, achieving high generalization and ap-
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proximation quality was a challenge. Mostly, as personalized tracked
landmarks can carry more information than unpersonalized blend-
shape weights, we needed to implement augmentation strategies for
the training data to achieve a comprehensive generalization. Spars-
eSoft DECA, in general, enables more detailed facial animations. Yet,
the underlying approximated PBS persists as a contingent limitation
of realism, as we are still dependent on widely applicable heuristics
that do not allow for person—specific details.

3. We addressed the third research question (Section 1.2.3) with Ana-

ConDaR [110] (Chapter 5), aiming to enhance solutions for facial
retargeting with PBSs. Specifically, we contributed to two subareas
of facial retargeting: first, an anatomically more plausible volumet-
ric deformation transfer (DT) [105] that facilitates the algorithmic
generation of blendshapes without exemplary facial expressions of
the targeted person. Second, we improved facial retargeting when
exemplary expressions of the target are known via the simulation of
patchwise LBS [18]. Especially, the volumetric DT proves beneficial
within our overall thesis framework by enabling the creation of more
authentic blendshapes for Soft DECA. Although both contributions
of AnaConDaR enhance retargeting authenticity according to a user
study we conducted, they can only partially compensate for limited
access to genuine expressions of the target.

. In the final research question (Section 1.2.4), we explored whether

we can accelerate the simulation of dynamic external effects on heads
to be executable in real-time. Specifically, due to their significance
for non—verbal communication, with NePHIM [112] (Chapter 6), we
focused on head-hand interactions. To begin with, we constructed
an elaborate 3D video scanner to record exemplary interactions. Sub-
sequently, we developed a simulation capable of realistically depict-
ing the pulling and pushing animations observed in these recordings,
even accounting for long—term effects. Finally, we demonstrated that
an efficient neural network [39] could learn to approximate this sim-
ulation. Admittedly, the demonstration has been conducted only for
individual cases so far; generalizing our approach to apply to every-
one remains an ongoing task.



7.2 OUTLOOK & IMPACT

In summary, we went various ways to achieve the goal we set in Chap-
ter 1 of an efficient, accessible, but at the same time authentic framework
for facial animation. In the subsequent section, we will name a variety of
arguments as to why it will be worthwhile to develop the core ideas of our
contributions further in the future and assess their potential impact.

7.2 OUTLOOK & IMPACT

In the Chapters 3 — 6, we provided direct insights into how our methods
can be expanded upon. At this stage, we offer a broader perspective on
facial animation, aiming to evaluate the potential impact of our contri-
butions. While inherently speculative, we anticipate advancements across
three distinct time horizons.

CURRENTLY

In the current time, traditional explicit LBS—based methods remain pre-
dominant in production environments [23], many animation engines [10,
106, 31] support them, and they come with precise tracking solutions [4,
126]. Additionally, a vast pool of digital artists is well-versed in their appli-
cation, and there are established best practices for beginners [56]. Further-
more, these methods ensure stereoscopic consistency by design, making
them highly suitable, alongside their speed, for virtual reality applications.

MID—TERM

Overtly, research already investigates more advanced techniques, whereby
the current focus predominantly centers on implicit radiance field meth-
ods [51, 74] for facial animations [90, 70, 33, 87]. However, these methods
face several limitations: right now, they can only be executed in real-time
on high—performance GPUs, do not adhere to stereoscopic consistency as
they are dependent on the viewing direction, and research into artistic
manipulations is still nascent [20, 38]. Additionally, such models are typ-
ically trained on images or videos of actual people, complicating their
application to artificial humanoid characters.

Nonetheless, since the photorealistic results are convincing and the re-
search activities in this field are enormously high, we reckon that they will
be able to establish themselves soon and that existing disadvantages will
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be quickly resolved. The most recent trend towards hybrid solutions [90,
70] underscores this expectation. For instance, developments that rely on
foundational LBS systems [70] or 3D morphable models [90] benefit from
exploiting the explicit properties of the long—established techniques. In
the same spirit, the widespread use of Gaussian splats [51] to accelerate
radiance fields is frankly just a revival of point—based rendering techniques
[12].

LONG—TERM

But of course, fully implicit or hybrid methods in facial animation do
not have a clearly defined timeline before becoming fully supported by
production systems. Another potential future scenario is that image— or
video—based approaches completely bypass traditional computer graphics,
utilizing black-box neural networks for generating facial animations in
videos [67] or even games [3]. Concepts like DeepFakes [95, 34], which
animate faces directly in images through deep learning, exemplify this di-
rection. In this context, the achievable level of realism has recently been
greatly elevated [115]. The extensive advancements in diffusion-based gen-
erative models [96] and, more generally, artificial intelligence [85] suggest a
future where everything can be “tokenized” and processed via black—boxes,
if endeavored.

Our perspective on developing and integrating such methods is highly
speculative, as we can only rely on publicly available research outcomes.
Nonetheless, we expect that black-box approaches will take longer to be-
come fully applicable for all facial animation tasks due to challenges similar
to those before. Besides artist—friendly control mechanisms and computa-
tional efficiency, these are, above all, time consistency and the reproduc-
tion quality of personal details.

IMPACT

When examining possible developments in facial animation technology
as described above, it is plausible to conclude that the wide usage of
efficient explicit or hybrid methods will continue in the foreseeable fu-
ture. These approaches leverage head geometry for animation purposes
and are notably prevalent within current production systems. In other
words, methods that, in one way or another, rely on the explicit model-
ing of head geometries. As in this thesis, we improve the most popular



7.2 OUTLOOK & IMPACT

and universal of such methods, LBS, with efficient PBSs, we can envi-
sion an influential impact of our work. To further amplify this impact,
we have, for example, largely integrated SoftDECA into a soon-to-be-
available open—source virtual reality framework and made parts of the
unique NePHIM data publicly available at https://gitlab.cs.hs-rm.
de/cvmr_releases/HeadHand. At the same location, the code of the most
important components of our simulations is also publicly available. As the
topics addressed in this thesis are, in general, largely dominated by non—
European companies, independent and non—commercial research such as
ours is crucial for promoting digital independence.

Notable recognitions further substantiate the impact of our work. For
instance, Soft DECA received an honorable mention as the best paper, high-
lighting its significance and innovation. Further, among others, Disney Re-
search [125] recently paid attention to our work. The latter is noteworthy,
given that direct insights into private research institutes and production
companies are typically limited.

In general, the research findings presented within this thesis have been
disseminated through highly regarded academic journals and conferences,
ensuring that they reach a broad audience of scholars and practitioners
in the related fields. In this spirit, this thesis aims not only to enhance
the current state of research in facial animation but also to encourage re-
searchers and users to leverage the many benefits that PBSs offer. Specif-
ically, we hope to have contributed to making PBSs for facial animations
more popular in practice and not just known for their theoretically valu-
able properties.
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