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ABSTRACT2

Realistic full-body avatars play a key role in representing users in virtual environments, where3
they have been shown to considerably improve important effects of immersive experiences such4
as body ownership and presence. Consequently, the demand for realistic virtual humans – and5
methods for creating them – is rapidly growing. However, despite extensive research into 3D6
reconstruction of avatars from real humans, an easy and affordable method for generating realistic7
and VR-capable avatars is still lacking: Existing methods are either limited to complex capture8
hardware and/or controlled lab environments, do not provide sufficient visual fidelity, or cannot be9
rendered at sufficient frame rates for multi-avatar VR applications. To make avatar reconstruction10
widely available, we developed Avatars for the Masses – a client-server-based online service11
for scanning real humans with an easy-to-use smartphone application that empowers even non-12
expert users to capture photorealistic and VR-ready avatars. The data captured by the smartphone13
are transferred to a reconstruction server, where the avatar is generated in a fully automated14
process. Our advancements in capturing and reconstructing allow for higher-quality avatars even15
in less controlled in-the-wild environments. Extensive qualitative and quantitative evaluations show16
our method’s avatars to be on par with the ones generated by expensive expert-operated systems.17
It also generates more accurate replicas in comparison to the current state-of-art in smartphone-18
based reconstruction, produces much less artifacts and provides a much higher rendering19
performance in VR in comparison to three representative neural methods. A comprehensive20
user study confirms similar perception results compared to avatars reconstructed with expensive21
expert-operated systems, and it underscores a sufficient usability of the overall system. To truly22
bring avatars to the masses, we will make our smartphone application publicly available for23
research purposes.24
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1 INTRODUCTION

Avatars are digital representations of users that can be dynamically rendered in virtual environments in real26
time to reflect the behavior of their users (Bailenson and Blascovich, 2004). While avatars can be of almost27
any conceivable shape and appearance, in this research, we specifically refer to humanoid representations28
that vary from stylized to realistically reconstructed 3D models. Such avatars may appear generic, lacking29
distinctive or individual features, or they can be personalized to closely resemble the appearance of their30
respective user. With the recent surge in virtual reality (VR) research (Skarbez and Jiang, 2024) and31
the increasing availability of mature head-mounted displays (HMDs) (Sutherland, 1968), avatars have32
become increasingly important as faithful self-representations of users in almost countless scenarios. These33
scenarios include metaverse-like social VR environments (Latoschik et al., 2019; Yoon et al., 2019; Aseeri34
and Interrante, 2021; Mystakidis, 2022) or VR applications to support mental health (Sampaio et al., 2021;35
Döllinger et al., 2022). Among them are critical applications for which maintaining user identity and36
conveying realistic emotions are crucial for authentic interactions and a sophisticated user experience37
(UX). Prior work has shown that realistically personalized full-body avatars, which can look deceptively38
similar to the user, are superior for the outlined scenarios by increasing the user’s sense of presence and39
embodiment or self-identification with the avatar (Waltemate et al., 2018; Salagean et al., 2023; Fiedler40
et al., 2024; Kim et al., 2023), or to increase emotional response (Gall et al., 2021; Waltemate et al., 2018).41

Unfortunately, many approaches for scanning-based full-body avatar generation rely on complex and42
expensive multi-camera rigs for photogrammetric reconstruction, such as (Achenbach et al., 2017; Shetty43
et al., 2024; Ma et al., 2021). Methods for generating avatars from monocular video input make avatar44
generation more affordable, but early approaches (Alldieck et al., 2018a,b) suffered from insufficient45
quality, as shown in (Wenninger et al., 2020). Recent avatar reconstructions adapt NeRFs (Mildenhall46
et al., 2020) or Gaussian Splatting (Kerbl et al., 2023) as underlying representations, for instance (Jiang47
et al., 2023; Moreau et al., 2024). Although this is an exciting and very promising research direction, our48
experiments in Section 4 clearly demonstrate that these approaches are not (yet) capable of providing49
sufficient visual quality and rendering performance for VR applications. So far, the method of Wenninger50
et al. (2020), which reconstructs mesh-based avatars from smartphone videos, seems to be the most suitable51
for the affordable reconstruction of photorealistic and VR-capable full-body avatars. However, while the52
low hardware requirements make avatar reconstruction more affordable, the scanning process requires53
sufficient experience, the reconstruction process involves commercial products, and the system’s operation54
requires expert knowledge. Consequently, there is still no approach for fast, affordable, and easy-to-operate55
reconstruction of photorealistic and VR-capable full-body avatars. This prevents the full potential of56
photorealistic avatars from being realized for many applications.57

To bridge this gap and make avatar reconstruction both affordable and widely available to non-expert58
users, we present Avatars for the Masses, an easy-to-use system for smartphone-based person scanning and59
server-based avatar reconstruction. In particular, our contributions are:60

• An easy-to-use smartphone application that visually guides the user through the scanning process,61
enabling even non-expert users to achieve high-quality results;62

• A server-based pipeline that fully automatically reconstructs a photorealistic avatar from smartphone-63
captured data in about 20 minutes, without relying on commercial components;64

• Technical improvements in the capture and reconstruction processes that result in high quality results65
even in uncontrolled outdoor environments;66
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• Qualitative and quantitative technical evaluations and comparisons with several state-of-the-art67
approaches that clearly demonstrate the advantages of our system;68

• A user-centric evaluation through a user study that evaluates and confirms both our smartphone app’s69
usability and the resulting avatars’ quality (captured by non-expert first-time users!).70

Our evaluations demonstrate that the proposed system is indeed fast, affordable, and easy to use, and that it71
achieves avatar quality almost on par with that of complex camera rigs – even in challenging “in-the-wild”72
capture scenarios. As such, and due to the lack of commercial components, it has the potential to bring73
avatars to the masses. We will make our system publicly available for research to encourage this.74

2 RELATED WORK

In this section, we describe the mechanisms and implications of representing oneself through an avatar in75
virtual reality (Section 2.1), before discussing different approaches to generate realistic avatars (Section 2.2).76
In the following, we restrict our discussion to avatars personalized (as opposed to generic), realistic (as77
opposed to stylized), and full-body (as opposed to head-only or upper-body-only), because these are the78
most challenging with regard to the outlined desiderata.79

2.1 Avatars for Self-Representation in Virtual Reality80

The egocentric embodiment of avatars for self-representation in VR (Slater et al., 2010) can positively81
impact the UX of virtual environments (Mottelson et al., 2023). This includes improving the key82
psychometric properties of VR, such as the sense of presence (Waltemate et al., 2018; Wolf et al., 2021;83
Skarbez et al., 2017), or intensifying emotional responses to virtual content (Waltemate et al., 2018; Gall84
et al., 2021). Other advantages may include improved spatial perception (Mohler et al., 2010; Leyrer et al.,85
2011), reduced cognitive load (Steed et al., 2016), or higher performance and accuracy (Jung and Hughes,86
2016; Pastel et al., 2020) when performing tasks in VR.87

A crucial aspect in evaluating the effectiveness of avatar embodiment is the sense of embodiment (SoE),88
consisting of the feeling of owning (ownership), controlling (agency), and being located within (self-89
location) a virtual body in a virtual environment (Kilteni et al., 2012; de Vignemont, 2011). Previous work90
has shown that realistic and personalized avatars increase the SoE towards the avatar (Waltemate et al.,91
2018; Fiedler et al., 2023; Salagean et al., 2023) and thus contribute to an overall plausible VR experience92
(Latoschik and Wienrich, 2022).93

Photorealistic and personalized avatars are particularly valuable for maintaining the user’s identity, which94
is beneficial in social VR experiences (Yoon et al., 2019; Aseeri and Interrante, 2021; Mystakidis, 2022)95
or applications supporting mental health (Sampaio et al., 2021; Döllinger et al., 2022; Turbyne et al.,96
2021). Previous work has also shown that self-related cues through avatar embodiment and personalization97
significantly increase self-identification with the avatar (Fiedler et al., 2024), potentially maintaining a98
more accurate self-perception in VR, even in body-swap paradigms (Döllinger et al., 2024). However, a99
realistic personalization of avatars can also harm UX, as their human-like realism combined with their high100
affinity to the user can potentially trigger Uncanny Valley effects, leading to negative emotional responses101
such as eeriness towards the avatars (Mori et al., 2012; Döllinger et al., 2023).102

Overall, comprehensive evidence exists for notable effects of photorealistic personalized avatars on103
important user states. Consequently, we will employ representative psychometric measures for a prominent104
selection of the aforementioned effects of avatars to evaluate the 3D reconstruction quality achieved with105
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our developed system. Therefore, Section 5 reports on a user study evaluating our avatars with respect to106
the sense of embodiment, plausibility, and a potential uncanny valley effect. In addition, this user study107
also evaluates the general usability and user satisfaction of the smartphone front-end to ensure appropriate108
ease of use and user satisfaction.109

2.2 Generation of Realistic Personalized Avatars110

The growing demand for virtual avatars has triggered a lot of research in scanning-based avatar111
reconstruction in the recent years. We restrict ourselves to realistic full-body avatars and discuss related112
approaches with respect to our target application requirements: The avatar generation should be affordable113
and easy to use, the resulting avatars should accurately resemble the scanned person, and the avatars should114
be suitable for VR applications – meaning they can be rendered from arbitrary camera views and at a115
sufficiently high frame rate for multi-avatar (social) VR applications.116

Many approaches employ complex and expensive rigs of 50–100 cameras to capture high-quality photos117
or videos of the person to be scanned (Feng et al., 2017; Achenbach et al., 2017; Ma et al., 2021; Kwon118
et al., 2023; Salagean et al., 2023; Morgenstern et al., 2024; Shetty et al., 2024; Pang et al., 2024). While119
these methods achieve highly accurate reconstructions, they are restricted to dedicated capture laboratories120
whose operation requires expert knowledge.121

Instead of simultaneously taking images with multiple cameras, other approaches use a single monocular122
camera (or smartphone) to capture a sequence of images or videos. While this design choice considerably123
reduces hardware cost and complexity, it increases the capture time, which inevitably causes small124
movements of the scanned person and reduces geometric accuracy. Early approaches suffer from125
considerably lower quality compared to camera rigs (Alldieck et al., 2018a,b, 2019), most visible in126
the face region. Wenninger et al. (2020) address this problem by incorporating close-ups of the head into127
the avatar reconstruction, producing a quality that is objectively quite close and subjectively very similar to128
those of camera rigs (Bartl et al., 2021). On the downside, their method is rather complicated to operate,129
is intended for controlled indoor environments, and relies on commercial components, which prevents130
widespread use by researchers and non-experts.131

More recently, neural geometry representations, such as Neural Radiance Fields (NeRFs) (Mildenhall132
et al., 2020) or 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) have been extensively adapted to avatar133
reconstruction. Neural avatar representations (Peng et al., 2021b; Zhao et al., 2022; Jiang et al., 2024;134
Guo et al., 2023; Xiao et al., 2024; Lin et al., 2024) are capable of reconstructing fine details, since they135
are not restricted to a fixed mesh topology. Avatars based on NeRFs (Liu et al., 2021; Peng et al., 2021a;136
Jiang et al., 2023, 2022; Wang et al., 2023; Yu et al., 2023; Wang et al., 2024; Zheng et al., 2022, 2023) or137
3DGS (Hu et al., 2024; Shao et al., 2024; Moreau et al., 2024; Li et al., 2024; Habermann et al., 2023) are138
therefore better suited for reconstructing clothing and hair. However, as our experiments with recent neural139
avatars show (see Section 4), their generation from image and video data can be very time-consuming140
(from hours up to days), their rendering is not fast enough for multi-avatar VR applications (where 90 fps141
at 2k resolution for left/right eye is desired), and their visual fidelity is not sufficient (when viewed from142
directions not covered by training data). This last point is a particularly challenging limitation, since in143
multi-user social VR applications there is no control over viewing directions and avatar poses, which can144
quickly lead to visual artifacts.145

We therefore employ a traditional mesh-based representation for virtual avatars and build on the approach146
of Wenninger et al. (2020), which we advance in several important aspects. First, our smartphone147
application visually guides the user through the capture process, thereby ensuring high-quality input148
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Figure 1. The user scans a subject with our smartphone application (top left). The captured images are
uploaded to our processing server (right), where a fully automatic reconstruction pipeline generates a avatar
in about 20 minutes. The user can then download his/her avatar into any VR application (bottom left).

data. Second, we technically improve the data acquisition, image pre-processing, and template fitting,149
leading to more accurate and more robust avatar reconstructions. Third, we replace the commercial150
components of Wenninger et al. (2020) with carefully selected non-commercial alternatives, allowing us to151
make our system publicly available. Finally, we evaluate our approach (i) by qualitative and quantitative152
comparisons to state-of-the-art avatar reconstruction methods, and (ii) in terms of a carefully designed user153
study, in which first-time users successfully reconstruct and evaluate avatars.154

3 AVATAR RECONSTRUCTION

Our approach extends and improves the work by Wenninger et al. (2020). We start with a brief overview of155
their method in order to point out our specific technical improvements later on. Wenninger et al. (2020)156
record two videos of the to-be-scanned person: The body video circles around the scanning subject twice157
to capture both the lower and the upper body. The head video circles around the face/head in a close-up158
manner to capture facial details. From these two videos, individual frames are extracted and fed into159
Agisoft Metashape (Agisoft, 2023), a commercial photogrammetry reconstruction tool, resulting in two160
point clouds for the body and head. A template mesh is then fitted to the point clouds in a two-step process:161
The template is first fitted to the body point cloud (for the overall shape) and then to the head point cloud162
(for fine-tuning facial features). Landmarks detected by OpenPose (Cao et al., 2019) guide the template163
fitting process. In a final step, the avatar texture is generated from the input images.164

Our approach, as outlined in Figure 1, introduces guided smartphone-based data capturing (Section 3.1)165
and a fully automatic server-based reconstruction pipeline (Section 3.2). In the following, we describe the166
components of both phases and point out the main contributions and technical improvements compared to167
Wenninger et al. (2020).168

3.1 Smartphone-Based Data Acquisition169

Analogous to Wenninger et al. (2020), we capture people by performing (i) a full-body scan in A-pose170
and (ii) a close-up head scan using a smartphone (see Figure 1, top left). However, our approach differs in171
the kind of data that is captured (Section 3.1.1) and how the user performs the scanning (Section 3.1.2).172
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Figure 2. Point clouds reconstructed via photogrammetry from video frames suffer from compression
artifacts (left). The higher quality of individually captured images yields more accurate point clouds (right).

3.1.1 Capturing Videos vs. Images173

Videos captured with current smartphone cameras are compressed using H.264 or H.265. These algorithms174
are optimized for viewing each video frame for a fraction of a second only, hence allowing for rather175
aggressive per-frame compression. In addition, inter-frame compression exploits blockwise similarity of176
consecutive frames, which further degrades image quality (Wiegand et al., 2003). As photogrammetry177
algorithms use image gradients to detect feature points, the block edges can negatively influence the quality178
of the resulting 3D point cloud (Figure 2, left). Furthermore, extracted video frames can be affected by179
motion blur, which Wenninger et al. (2020) had to handle explicitly.180

In contrast, individual photographs can be captured at considerably higher quality, since they suffer181
much less from motion blur, avoid the inter-frame block compression artifacts, and allow to use less182
aggressive compression in general. Higher-quality images in turn yield more accurate photogrammetry183
results (Figure 2, right), which will eventually result in more accurate avatars with fine geometric details184
and higher-quality textures. Our capture process (described next) therefore records individual photographs185
instead of videos, at a resolution of 3024× 4032 pixels.186

In addition to the high-resolution RGB images, we also capture coarse depth images (576× 768 pixels)187
using the smartphone’s depth sensor and the phone’s orientation (resp. gravity vector). The former helps to188
determine the reconstructed subject’s correct size/scaling, and the latter to determine its correct orientation.189
Our scanning application is designed for Apple iOS devices, and this additional information is conveniently190
included in the meta-data of Apple’s HEIC image format.191

3.1.2 Scanning UI192

Our extensive experience with the approach of Wenninger et al. (2020) revealed that the quality of the193
photogrammetry reconstruction strongly depends on the correct distance and orientation of the camera to194
the subject. If the camera is too close, some regions (e.g. feet, hands) might not be captured. If the camera195
is too far away, valuable image resolution is wasted and the point cloud becomes less dense and more noisy.196
Those errors typically occurred to unexperienced users – despite detailed previous instructions.197
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Figure 3. The guided scanning procedure of the smartphone application. Top row, from left to right: Initial
overlay before starting the body scan; overlay during the body scan; end of body scan. Bottom row, from
left to right: Initial overlay before starting the head scan; overlay during the head scan; end of head scan.

To avoid these errors, our smartphone application visually guides the user through the scanning process:198
On top of the camera feed, we overlay in green the silhouette of a virtual human model (of average size199
and shape) as seen from the intended camera position (see Figure 3). The user adjusts the phone/camera to200
roughly match the silhouette of the subject and the model. It is not necessary to precisely fit the overlay to201
the subject. The purpose of the overlay only is to guide the user to maintain proper distance and orientation.202
To also guide the user’s movement around the scanned subject, the virtual camera moves around the green203
virtual model in the same way that the user should move around the scanned subject. In addition, the204
direction of the movement is indicated by a white arrow.205

During the scanning process, the app captures images at a frequency of 1Hz and a resolution of206
3024× 4032 pixels. The speed of the virtual camera’s movement is chosen to result in 105 images for the207
entire scanning process, as this number experimentally turned out to be the best compromise: Fewer images208
degraded the point cloud quality, more images did not improve the results but increased the computation209
time. Thanks to this well-controlled capture process, we require just one circle around the subject for210
the full-body scan and one for the head scan – thus reducing the scanning time to about two-thirds of211
Wenninger et al. (2020). Since a shorter scanning time reduces artifacts caused by subject movement, it212
also improves geometric accuracy.213

A dialog informs the user when the full-body and head scans are complete (Figure 3, right column), after214
which the captured images are uploaded to the reconstruction server. All further user instructions or hints215
during the scanning procedure are displayed in Figure 3. The entire scanning process can also be seen216
in the accompanying video. To further minimize scanning errors, the app displays a step-by-step tutorial217
before the scanning process, covering subject preparation (hairstyle, accessories, shoes, and clothes), scan218
pose requirements (A pose), and scan process explanations (body/head scan procedure).219
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Figure 4. When segmenting foreground and background of the input images, Apple’s person segmentation
(center) better preserves small details, such as hair and clothing creases, compared to DeepLabV3 (right).

3.2 Server-Based Reconstruction Pipeline220

The avatar reconstruction pipeline, whose individual tasks are described in this section, includes several221
computationally expensive tasks. To speed up the avatar generation process and to reduce the load on222
the smartphone’s resources, the captured images are uploaded to a compute server, where the avatar is223
automatically reconstructed and can be downloaded by the user.224

3.2.1 Image Preprocessing225

Our experiments with Wenninger et al. (2020) revealed that their method works well in controlled indoor226
environments, but in outdoor environments it often gives noticeably worse results. This is due to non-static227
background, such as leaves moving in the wind or cars driving by. These background movements violate228
the photogrammetry assumption of a static scene, leading to incorrect extrinsic camera parameters and229
consequently to errors in the reconstructed 3D point cloud.230

To eliminate these problems and thereby make the reconstruction process much more robust with respect231
to “in-the-wild” capture environments, we segment the input images into foreground and background232
and mask out the background before passing the images to the photogrammetry process. To this end, we233
compared DeepLabV3 (Chen et al., 2017) and Apple’s person segmentation (Apple Inc., 2023d) (on macOS234
15.3.1), and decided for the latter since it produced slightly more accurate and more detailed masks in our235
experiments (see Figure 4). Moreover, as the image background is excluded from the reconstruction, the236
number of image features to be matched by the photogrammetry is significantly reduced (accelerating this237
process by 30%), the resulting point cloud contain considerably fewer points (accelerating later template238
fitting), and the point clouds contain significantly less noise and outliers (improving accuracy and robustness239
of the template fitting). Overall, this image preprocessing leads to faster computations and much cleaner240
point clouds – in particular in uncontrolled outdoor environments (see Figure 5).241
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(a) (b) (c) (d)

Figure 5. Point clouds reconstructed from unprocessed input images captured in outdoor environments
suffer from significant noise, outliers, and misalignments in the face region (a, c). By processing the images
through person segmentation and background removal, these artifacts are largely eliminated (b, d).

Figure 6. The (meshed) photogrammetry reconstructions of Agisoft Metashape (left) and Apple’s
RealityKit (right) are very similar in geometric fidelity, texture quality, and computational performance.

3.2.2 Photogrammetry242

The captured and segmented images are passed to the photogrammetry stage, which reconstructs a dense243
3D point cloud (see Figure 1). Wenninger et al. (2020) employ Metashape (Agisoft, 2023) for this task, a244
widely used commercial photogrammetry software. Unfortunately, its license restrictions explicitly prohibit245
the use in server-based reconstruction scenarios (which we aim for). In order to make our system publicly246
available for research purposes, we compared several non-commercial alternatives for photogrammetric247
reconstruction, including MeshRoom (Alice Vision, 2025), COLMAP (Schönberger and Frahm, 2016), and248
Apple’s RealityKit (Apple Inc., 2023b) (on macOS 15.3.1). From these frameworks, Apple’s RealityKit249
consistently produced the highest-quality results, which are very similar in terms of geometric fidelity,250
texture quality, and processing time to those of Agisoft Metashape (see Figure 6).251
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Apple’s high-level photogrammetry API allows one to specify different configuration options, where252
we found the settings raw detail, high feature sensitivity, and unordered samples to yield best results. In253
addition to the high-resolution RGB images, we also provide segmentation masks, coarse depth images,254
gravity vectors, and EXIF data, which significantly improves the photogrammetry results compared to255
processing only the RGB images. The depth data and gravity vectors help to determine the correct scale256
and orientation of the reconstructed object, which make the upcoming steps more reliable.257

3.2.3 Landmark Detection258

The previous photogrammetry stage produces a (static) high-resolution textured triangle mesh (see259
Figure 6). This mesh can suffer from artifacts in insufficiently scanned regions and is lacking animation260
controls (body skeleton, facial blendshapes). The well-established approach is to fit a high-quality template261
mesh with all required animation controls to the photogrammetry output (point cloud or mesh). This results262
in a reconstructed avatar mesh that inherits its triangulation, UV texture layout, and animation controls263
from the template model, while closely resembling the geometric shape and the texture/material of the264
photogrammetry scan. This template fitting process (described in the next subsection) has to be initialized265
and guided by a set of landmarks on both the template model (where they are pre-selected once) and the266
photogrammetry output (where they have to be manually selected or automatically detected).267

Wenninger et al. (2020) detect body and face landmarks in the 2D input images using OpenPose (Cao268
et al., 2019) and (Dlib, 2022), respectively, where they select the best suited (e.g., most frontal) input269
images based on heuristics. The detected 2D landmarks are re-projected onto the photogrammetry point270
cloud. While working well in most cases, their approach can fail if wrong images are selected for landmark271
detection or if a 2D landmark in sparsely sampled regions back-projects to the wrong surface part. We272
avoid both problems by rendering the photogrammetry mesh (Figure 6) from several camera positions and273
performing landmark detection on the resulting synthetic images. Our controlled capturing process enables274
the straightforward selection of suitable camera views, and the back-projection onto the rendered 3D mesh275
is well-defined for any detected 2D landmark.276

We detect 4 hand landmarks (two knuckles on the left and right hands) and 37 face landmarks (eye277
contours, tip of the nose, and mouth features), which are passed on to the template-fitting stage. To ensure278
accurate and reliable landmark detection, we compared on a wide range of examples the face/hand landmark279
detection of OpenPose (Cao et al., 2019), Dlib (2022), Apple’s Vision Framework (Apple Inc., 2023c,280
2025), and Google’s MediaPipe (Lugaresi et al., 2019). Since MediaPipe produced the most reliable results281
in our experiments, we chose this landmark detector for our reconstruction pipeline.282

3.2.4 Template Fitting283

The previous two stages result in two high-resolution textured photogrammetry meshes from the body284
and head scans of the subject standing in A-pose with neutral facial expression, as well as a set of 37 face285
and 4 body landmarks. We perform curvature-adaptive point sampling on the two photogrammetry meshes286
to convert them into two point clouds for body and head, respectively. To reconstruct the avatar, we fit a287
fully rigged statistical template mesh to the photogrammetry data, guided by the landmarks.288

Our template mesh was designed by a skilled artist (to be free of license restrictions) and has a slightly289
higher resolution (23752 vertices) than the template from the Autodesk Character Generator in Wenninger290
et al. (2020). Its animation rig consists of a full-body skeleton with 59 joints, as well as 52 facial blends291
that are compatible with ARKit (Apple Inc., 2023a). The template was fit to 1700 scans of the CAESAR292
database (Robinette et al., 1999) to derive a 30-dimensional PCA subspace of human body shapes.293
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In a first step, the template is coarsely fitted to the point clouds by iteratively optimizing alignment294
(position, orientation, scale), overall body shape (PCA weights), and body pose (skeleton joint angles).295
In the second step, the initial template fit is refined by optimizing all individual vertex positions. Both296
optimization phases minimize the sum of squared distances of photogrammetry points to their closest297
points on the template mesh in a non-rigid ICP manner, guided by the landmark points. Both steps are298
regularized to prevent overfitting: the first step by Tikhonov regularization on the PCA weights, the second299
step by a discrete bending energy (see Achenbach et al. (2017); Wenninger et al. (2020) for details).300

Our method differs from Wenninger et al. (2020) in two aspects: Wenninger et al. first fit the template to301
the body point cloud and then refine the result by fitting it to the head point cloud. Since in their approach302
the absolute scaling of these point clouds is unknown, the proportions of body to head can be slightly303
wrong. In contrast, our coarse depth images determine the absolute scale. We also pre-align the body and304
head point clouds using landmark-guided ICP and then fit the template to both point clouds simultaneously.305
In this process, closest-point correspondences to the head/body regions of the template mesh are computed306
from the head/body point clouds only, respectively. This approach effectively avoids the wrong body-head307
proportions (see Figure 9). In addition, since our advanced scanning process yields more accurate point308
clouds, we require less regularization in the fine-scale fitting step, resulting in more geometric details.309

3.2.5 Texture Transfer310

After reconstructing the geometric shape of the avatar in the previous step, the final step reconstructs
the texture image. The two photogrammetry meshes already feature high-quality textures generated from
the input images, but with a rather poor UV texture layout. To have a uniform texture layout for all
avatars, we transfer textureP of the photogrammetry mesh to textureA of the avatar mesh (having the
high-quality texture layout of the template). For each texel uA in the avatar’s UV layout we determine the
corresponding 3D point xA on the avatar mesh (based on texture coordinates), find its closest point xP on
the photogrammetry mesh, and copy its color by its texture coordinate uP :

textureA [uA]← textureP [uP ]

Note that we actually fill two textures, from the body and head scan, respectively. These two texture311
images are then combined into one using Poisson Image Editing (Pérez et al., 2003). This final step of the312
reconstruction pipeline results in a textured avatar mesh (see Figure 7 for some examples).313

4 QUANTITATIVE AND QUALITATIVE EVALUATION

Reconstructing an avatar with our approach starts by capturing a person using our iPhone application314
(iPhone 12 Pro and iPhone 13 Pro Max in our experiments). The app visually guides the user through315
the scanning procedure and takes 105 images (45 full-body and 60 head images), which takes about316
two minutes and is shown in the accompanying video. The captured image data (about 320 MB) is then317
uploaded to our server, which takes less than one minute over WiFi. The reconstruction is performed in a318
fully automatic manner on the server (Mac Studio, M1-Max 10-Core CPU, 32-Core integrated GPU, 64 GB319
RAM) and takes about 19 minutes (1 min segmentation, 7 min photogrammetry, 5 min offscreen rendering,320
2 min landmark detection, 4.5 min template fitting and texture generation). The whole process, therefore,321
takes about 22 minutes only, after which the avatar can then be downloaded in file formats compatible with322
VR and game engines.323
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Figure 7. Avatars reconstructed with our appraoch, all being scanned in uncontrolled outdoor settings.

In the following, we compare our results to those of a complex multi-camera rig Achenbach et al. (2017),324
to the smartphone-based method of Wenninger et al. (2020), and to three recent neural avatar techniques325
based on NeRFs or 3D Gaussian Splatting (Müller et al., 2022; Shao et al., 2024; Lei et al., 2024).326

4.1 Quantitative Comparisons327

Following Wenninger et al. (2020), we evaluate the accuracy of our avatar reconstruction by reporting328
reprojection errors. To this end, we render the resulting textured avatar onto the images captured during the329
scan process using the camera calibration data from the photogrammetry process (see Figure 8), and then330
compute the root-mean-square errors over all rendered pixels in CIELab color space, averaged over all331
images. This metric allows us to measure errors resulting from inaccuracies in both color and geometry.332

We perform this evaluation on the 33 subjects that were scanned during the user study described in333
Section 5. These participants were scanned by (i) another 33 non-expert first-time users of our smartphone334
application, as well as (ii) an expert using the multi-camera rig at the Embodiment Lab of JMU Würzburg335
(106 Canon EOS 1300D DSLR cameras, based on Achenbach et al. (2017)). Generating the avatars using336
the expert-operated multi-camera rig took about 15 minutes. Our pipeline, on the other hand, took around 22337
minutes. Despite the tremendous difference in expertise of the scanning person and in cost and complexity338
of the scanner setup, the results obtained with the camera rig are only slightly better than our smartphone339
scans (see Figure 8). Averaging over all 33 scans and comparing our RSME (M = 32.83, SD = 4.88) with340
that of the multi-camera rig (M = 32.29, SD = 6.36) reveals that the error increases by less than 2%, while341
the financial cost decreases by more than 98%.342

4.2 Qualitative Comparisons343

Besides the easy-to-use visually guided scanning procedure, our method improves the approach of344
Wenninger et al. (2020) by several technical contributions, as described in Section 3.2. To evaluate345
the effect of these contributions, we compare with their method in Figure 9. The two subjects were346
captured in an outdoor environment by recording videos (for their method) and images (for our method)347
on the same iPhone 12 Pro. The avatar generation took 15 minutes (their method) and 22 minutes348
(our method). Our method produces noticeably more accurate results, with more geometric detail and349
higher-quality textures. This results from more accurate photogrammetry point clouds (due to recording350
higher-resolution images instead of videos and due to background removal) and from better template351
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Figure 8. (a): We evaluate the accurate of our approach by reprojecting our avatars (left half of images) into
the captured images (right half of images). (b): Despite the significant difference in hardware complexity,
the reprojection errors of our smartphone scans are only slightly worse than those of the multi-camera rig.

fitting (due to simultaneously fitting to body and head point clouds, and requiring less regularization). The352
results of Wenninger et al. (2020) suffer from considerably less geometric details and wrong body-to-head353
proportions. These differences are even more prevalent for the lower subject, where the head is unnaturally354
deformed due to camera misalignments in the photogrammetry step (see Figure 5 c).355

In order to evaluate whether neural avatars are a viable alternative to mesh-based avatars for VR356
applications, we experimented with three recent approaches: the NeRF-based InstantAvatar (Jiang et al.,357
2023) and the 3DGS-based methods SplattingAvatar (Shao et al., 2024) and GART (Lei et al., 2024) – since358
those methods reported fast training times and high rendering performance. To achieve optimal results, we359
followed the recommendations of these projects and use their training scripts. Since all three methods can360
reconstruct avatars from the People Snapshot format (Alldieck et al., 2018b), we recorded equivalent videos361
(1080 × 1080 pixels, subject rotating in A-pose) using the same iPhone as for our scans. These videos362
are then converted to the People Snapshot format using (Alldieck et al., 2018b), and the per-frame SMPL363
poses are refined using Anim-NeRF (Chen et al., 2021). On this prepared data we ran InstantAvatar using364
their provided scripts. The data resulting from InstantAvatar then act as input for running SplattingAvatar365
and GART. We used batch size 4 for InstantAvatar and 2min training of GART, as these produced the best366
results. The results from different configurations are shown in the supplementary material.367

The (required) video pre-processing (landmark detection, segmentation, VideoAvatars pipeline, and368
Anim-NeRF) took about 17 hours on a compute server with three Nvidia RTX 6000 having 48 GB GPU369
memory each. Training of InstantAvatar, SplattingAvatar, and GART took another 2–5 minutes, 25 minutes,370
and 2 minutes, respectively, on a different server with Nvidia RTX A5000 and 24 GB GPU memory. With371
more than 17 hours, the overall reconstruction time of these methods is 45 times longer than ours.372

Figure 10 shows the resulting avatars in a training pose and from a training camera view. While373
InstantAvatar produces visual clutter, both SplattingAvatar and GART are visually appealing – although374
more blurry than our reconstruction. However, as shown in Figure 11 and the accompanying video, when it375
comes to novel poses and/or novel viewpoints, the quality of neural avatars quickly degrades to a level not376
acceptable for social VR applications. In particular, for multi-avatar VR applications, where users/avatars377
can take on arbitrary poses and be viewed from arbitrary camera positions, the artifacts shown in Figure 11378
are more the rule rather than the exception. Avoiding these generalization problems would require much379
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Figure 9. Two subjects captured in an outdoor environment (left), with avatars reconstructed using
(Wenninger et al., 2020) (center) and our approach (right). Our avatars are considerably more accurate
in terms of geometry and texture, while those of Wenninger et al. (2020) suffer from photogrammetry
misalignments, (required) strong regularization, and wrong body-to-head proportions.

more training data, i.e., capturing the subject in significantly more poses and from significantly more380
camera views, which in turn would make the scanning significantly more complex and the reconstruction381
significantly more expensive – therefore requiring a complex multi-camera video recording setup. Our382
mesh-based avatars, in contrast, are sufficiently regularized by the statistical human body template and its383
animation controls to enable generalization to novel views and novel poses, even when captured from 105384
smartphone images only.385

In addition to long reconstruction times and suboptimal visual quality, the rendering performance386
of neural avatars is not (yet) sufficient for VR applications, where currently HMDs require around387
90 fps stereoscopic rendering (i.e., 180 fps monoscopic rendering) at about 2k resolution per eye. We388
therefore evaluated the rendering performance at a resolution of 2160× 2160 pixels on a VR workstation389
(AMD Ryzen 9 7950X CPU, RTX 4090 24GB GPU, 64GB RAM). For this monoscopic rendering,390
InstantAvatar achieved 1.22 fps (819 ms/frame), SplattingAvatar 171 fps (5.9 ms/frame), and GART 245 fps391
(4.1 ms/frame). While InstantAvatar was far from the required frame rate for VR application, rendering392
performance of SplattingAvatar and GART were just on the edge of VR applicability. However, contrary to393
these rather low performance results, our mesh-based representation can be rendered at 4615 fps – therefore394
comfortably allowing even multiple avatars in the same virtual environment at the same time.395
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InstantAvatar SplattingAvatar GART Ours

Figure 10. Reconstructed avatars rendered in a pose and view from the training data. From left to right:
InstantAvatar (Jiang et al., 2023), SplattingAvatar (Shao et al., 2024), GART (Lei et al., 2024), and ours.

5 USER STUDY

We conducted a comprehensive user study following a multi-method approach. The study evaluated396
the quality of our generated avatars (called below smartphone avatars) by measuring their impact on a397
prominent selection of well-known and often studied avatar effects. In addition, it also evaluated the general398
usability and user satisfaction of the smartphone front-end. The purpose was to assess the quality of the399
avatars subjectively and to improve the user experience of scanning and being scanned with the smartphone400
app.401

To this end, we arranged the participants into dyads, where one participant had to perform a smartphone402
app scan of another participant. While the scanning participant evaluated the app’s usability afterward (in403
the following called smartphone app evaluation), the scanned participant assessed the perception of the404
scanning processes and the generated avatar (in the following called avatar evaluation).405

For the smartphone app evaluation, participants performing the smartphone scan were asked to assess406
the app’s usability using standardized questionnaires, allowing for comparison with validated benchmarks.407
Additionally, we conducted semi-structured interviews to gather more feedback on the user experience of408
both scanning and being scanned with the smartphone app. The results are used as part of a user-centered409
design process to improve the app.410

For the avatar evaluation, we adopted and extended the approach from Bartl et al. (2021) and utilized a411
counterbalanced within-subject design comparing our generated smartphone avatars to (a) photorealistically412
reconstructed personalized avatars from a state-of-the-art expert system (in the following called camera rig413
avatar, see Section 4.1) and (b) gender- and ethnicity-matched generic avatars. We chose condition (a) to414
compare the quality of our smartphone avatars to the quality of personalized avatars frequently used in415
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InstantAvatar SplattingAvatar GART Ours

Figure 11. Avatar reconstructions animated in novel poses. From left to right: InstantAvatar (Jiang et al.,
2023), SplattingAvatar (Shao et al., 2024), GART (Lei et al., 2024), and our result. Although InstantAvatar,
SplattingAvatar, and GART produced visually appealing results in the training poses, the reconstructions
get noisier and blurrier in novel poses. Details, e.g., hands and faces, are hardly recognizable anymore and
the renderings get even blurrier. Our results in contrast are as sharp and detailed as in the training poses.

recent avatar research but reconstructed by a rather costly and complex technical setup. This allowed us to416
assess the impact of the proposed method’s reconstruction quality on typical well-known and often studied417
avatar effects in relation to the much lower technical requirements of our method. We chose condition (b)418
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to assess the quality of both reconstruction methods in terms of self-similarity and self-attribution of the419
resulting avatars and to measure the overall effect of personalization. An additional in-VR comparison to420
any of the neural avatars (see Section 4.2) unfortunately was still unreasonable. The given state of the art421
was inadequate for a VR evaluation due to the low rendering performance but most importantly due to the422
significant artifacts (see Figure 11 and video), specifically given the arbitrary poses and camera positions423
typical for the VR exposure.424

During individual one-by-one exposures, the scanned participants embodied each of the three avatar425
types successively while engaging in various body-centered movement tasks in front of a virtual mirror426
within a VR environment. Afterward, they evaluated the avatars regarding (a) sense of embodiment427
and self-identification, (b) plausibility, and (c) uncanny valley effects. In a final side-by-side exposure,428
participants simultaneously embodied each type of avatar while observing them exclusively from an429
allocentric perspective in three different virtual mirrors (one for each type) and answering different430
preference questions. Afterward, we asked the participants why they preferred their chosen avatars.431

5.1 Apparatus432

5.1.1 Avatars433

In the following, we explain the integration of the three different avatar types utilized in our study.434

Each participant attending the smartphone app evaluation (in the following called scanning participant)435
used our smartphone app to create a personalized avatar for the corresponding participant attending the436
avatar evaluation (in the following called scanned participant). We maintained uniform lighting conditions437
to enhance the avatars’ comparability with the camera rig avatars. The scanning participant received438
instructions from the smartphone app tutorial and was directed to guide the scanned participant accordingly.439
No further post-processing was performed on the smartphone avatars.440

We created a personalized camera rig avatar for each participant in the avatar evaluation using the441
expert body scanner of the Embodiment Lab at the University of Würzburg (see Section 4.1). No further442
post-processing was performed on the camera rig avatars.443

Since avatars that do not match the user’s gender and ethnicity have been shown to impact SoE particularly444
negatively (Do et al., 2024) and consequently would lead to an unequal comparison with personalized445
avatars that are matched in gender and ethnicity, we decided to match both between user and generic446
avatars. To this end, we chose the Validated Avatar Library for Inclusion and Diversity (VALID) (Do et al.,447
2023). Through a LimeSurvey questionnaire, each participant in the avatar evaluation was asked to select448
the VALID avatar that most closely matched their own gender and ethnicity. As the participants typically449
attend studies dressed casually, they could choose between 42 casually dressed VALID avatars, consisting450
of three male and three female avatars, each of seven different ethnicities.451

5.1.2 Virtual Reality System452

The VR system was realized using Unity 2020.3.25f1 (Unity Technologies, 2020). We utilized a Valve453
Index head-mounted display (HMD) featuring a resolution of 1440 × 1600 px per eye and a total field454
of view of 114.1 × 109.4° (Wolf et al., 2022a). Its refresh rate was set to 90 Hz. Participants’ hand and455
finger movements were tracked through two Index controllers and their built-in proximity sensors. Four456
SteamVR base stations covered the 3× 3m tracking area. All mentioned components were integrated into457
the VR system using SteamVR version 2.3 (Valve Corporation, 2024a) and its corresponding Unity plug-in458
version 2.7.3 (Valve Corporation, 2024b). We routed the HMD’s cable to a VR-capable workstation (Intel459
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Core i7-7700K CPU, NVIDIA GeForce GTX 1080, 16 GB RAM) running the VR system on Windows460
10. For body tracking, we utilized the markerless body tracking system from Captury. Body poses were461
captured using eight FLIR Blackfly S BFS-PGE-16S2C RGB cameras running at 100 Hz, which have been462
connected via two 4-port 1 GBit/s ethernet frame-grabber to a high-end workstation (NVIDIA GeForce463
RTX 3080 Ti, 32 GB RAM, AMD Ryzen 9 5900x) running Captury Live in version 259 (Captury, 2023a)464
on Ubuntu 18 LTS. The body poses were continuously integrated into the VR system using Captury’s465
corresponding Unity plug-in (Captury, 2023b).466

5.1.3 Avatar Embodiment467

We realized avatar embodiment by retargeting the participant’s tracked body pose to the used avatar in468
real-time following the joint approaches described in previous work (Döllinger et al., 2022; Wolf et al.,469
2022b). During a short calibration process, in which the participant had to stand rigidly and upright, the470
embodied avatar was calibrated to continuously follow the position of the HMD and scaled to match471
the participant’s eye height. To avoid sliding feet and inaccuracies in hand and feet positions caused by472
variations in skeletal structure, segment lengths, or insufficient hand tracking, we utilized an IK-supported473
end-effector optimization using FinalIK version 2.1. Due to a higher accuracy and sampling rate, hand474
positions and finger poses were taken from the Index controllers, while elbow, knee, and foot positions475
were taken from Captury.476

5.1.4 Virtual Environment and Tasks477

Our virtual environment was based on different Unity assets, which we adapted to create a realistically478
rendered setting. Figure 12 depicts the virtual environment, accommodating up to three virtual mirrors.479
Following the guidelines for self-observation mirror placement by Wolf et al. (2022a), each virtual mirror480
was placed at a distance of 1.5 m from the participant during the study.481

During each one-by-one exposure, participants embodied one of the three avatars in the virtual482
environment, where only the middle virtual mirror was shown. They could either observe their embodied483
avatar directly from an egocentric perspective or look into the virtual mirror to receive an allocentric484
perspective. Participants were asked to perform various body movement tasks in front of the virtual mirror485
to promote visuomotor coupling and induce SoE (Slater et al., 2010; González-Franco et al., 2010). The486
body movement tasks adhered to a structured protocol adapted from Roth and Latoschik (2020) and can be487
found in the supplements of this work.488

During the side-by-side exposure, participants embodied all three avatars simultaneously in the virtual489
environment, where all three virtual mirrors were shown. While they received no egocentric perspective490
on the avatars, they could observe each avatar through a virtual mirror. The mirrors were labeled with491
small numbers, and participants responded to four different preference questions by identifying the mirror492
number displaying their preferred avatar. The assignment of avatars to mirrors changed randomly after493
each question. The preference questions can be found in the supplements of this work. Figure 12 depicts494
the side-by-side exposure.495

5.2 Measures496

5.2.1 Quantitative Measures497

We assessed all quantitative measures using previously published questionnaires. When available, we498
used validated translated German versions of the utilized questionnaires. Otherwise, we used back-and-forth499
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Figure 12. The three mirrors showing the expert (left), smartphone (middle), and generic (right) avatar of
a female participant during the side-by-side exposure.

translations to translate the items into German. Participants answered all questionnaires on a MacBook Pro500
using LimeSurvey (Limesurvey GmbH, 2024).501

We captured the usability of the smartphone app using the System Usability Scale (SUS) (Brooke, 1996).502
It provides a fast and simple way to assess a system’s usability using ten questionnaire items each answered503
on a 5-point Likert scale. The calculated overall score ranges between 0 and 100 (100 = highest usability)504
and can be compared with benchmarks provided by previous work (Bangor et al., 2009; Sauro and Lewis,505
2016; Kortum and Sorber, 2015).506

For assessing Sense of Embodiment and Self-Identification (SoE) towards the avatars, we captured507
virtual body ownership (VBO) and agency (AG) utilizing the corresponding items of the Virtual508
Embodiment Questionnaire (VEQ) (Roth and Latoschik, 2020) and self-location (SL) using the additional509
items introduced by Fiedler et al. (VEQ+) (Fiedler et al., 2023). We used the items capturing self-similarity510
(SS) and self-attribution (SA) from the VEQ+ to assess self-identification towards the avatars. Each factor511
measured comprises four items rated on a 7-point Likert scale (7 = highest VBO, AG, SL, SS, and SA).512

We captured the avatars’ plausibility utilizing the Virtual Human Plausibility Questionnaire (VHPQ)513
(Mal et al., 2022, 2024). It consists of seven items that assess the avatars’ appearance and behavior514
plausibility (ABP) and four items for matching the virtual environment (MVE). Each item is rated on a515
7-point Likert scale (7 = highest ABP and MVE).516

We captured tendencies of the avatars’ appearance towards the uncanny valley using the revised version517
of the Uncanny Valley Index (UVI) (Ho and MacDorman, 2017). It comprises four items each to assess518
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the avatars’ humanness (HU) and attractiveness (AT) and eight items to capture the avatars’ eeriness (EE).519
While the items are answered on a range between -3 and 3, we report them on a range between 1 and 7 (7520
= highest HU, AT, EE).521

As a control measure, we captured participants’ physical symptoms associated with VR sickness in522
a pre-post comparison using the Virtual Reality Sickness Questionnaire (VRSQ) (Kim et al., 2018). It523
consists of nine items, each of which represents a typical symptom of VR sickness and is answered on a524
scale between 0 and 3 (3 = highest symptomatology). The total score of the VRSQ ranges between 0 and525
100 (100 = highest VR sickness).526

5.2.2 Qualitative Measures527

We conducted semi-structured interviews to assess the user experiences related to both scanning and528
being scanned with the smartphone app. The interview protocols incorporated a retrospective thinking-529
aloud approach (Bowers and Snyder, 1990; Simon and Ericsson, 1993) to comprehensively analyze the530
interactions with the smartphone app while not influencing the scan experiences. We further included531
predefined questions to query positive and negative feelings experienced during the use of the app and while532
being scanned, the app’s functionality and its intended purpose, the impact of the scanning participant on533
comfort or discomfort when being scanned, and the clarity and comprehensibility of the scanning process.534
Additionally, participants described aspects of the process they found efficient or challenging and reported535
any problematic incidents they faced. Finally, participants could suggest improvements to both the scan536
app functionality and the scanning process and were asked about their scan preferences and if they would537
participate in a body scan again. Participants in the avatar evaluation were further asked which avatar they538
preferred regarding self-representation similarity, fidelity, plausibility, and suitability, along with reasons539
behind their choices. The complete interview protocols and exact phrasing of the preference questions can540
be found in the supplements of this work.541

5.3 Procedures542

In the following, we describe the standardized experimental procedures of our smartphone app and543
avatar evaluations. Figure 13 visualizes both procedures and highlights their intersection during the544
smartphone app scan. Initially, participants in both procedures received information about the study and545
privacy, consented to participate, and generated two pseudonymization codes to store personal (i.e., voice546
recordings and avatars) and evaluation data separately. Subsequently, they proceeded with their respective547
evaluation procedures.548

5.3.1 Smartphone App Evaluation549

Each participant in the smartphone app evaluation first completed a tutorial on how to perform a body550
scan using the smartphone app. As soon as the other participant arrived for the scan in the laboratory,551
both participants were introduced to each other. The participant performing the scan verified that all552
requirements for the scan were met and instructed the scanned participant not to speak or move during the553
scan. To ensure that an assessable avatar was generated, the scanning participant performed two successive554
scans. After scanning, the scanned participant left the laboratory, and the scanning participant answered555
the SUS questionnaire using LimeSurvey. Following that, the participant was interviewed and completed556
demographics. On average, the entire smartphone app evaluation took approximately 41 min.557
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Figure 13. Experimental procedure of a dyad, illustrating the process of evaluating the smartphone app
(left) and the avatars (right).

5.3.2 Avatar Evaluation558

Each participant in the avatar evaluation first participated in a smartphone and expert scan conducted559
in a counterbalanced order. After the scans, the participant was interviewed about the scan processes,560
chose a generic avatar as described above, completed the demographics, and answered the pre-VRSQ.561
The one-by-one exposures followed in a counterbalanced order, each lasting on average 7.6 min. After562
each exposure, the participant answered the VEQ, VEQ+, and UVI. The following side-by-side exposure563
averaged 4.2 min and was accompanied by the preference questions answered verbally in VR. For each564
exposure, a vision test and the avatar embodiment calibration were performed following the instructions565
on a virtual whiteboard. In addition, the participant received audio instructions for all tasks. Finally, the566
participant completed the post-VRSQ. On average, the entire avatar evaluation lasted 103 min.567

5.4 Participants568

Adhering to the ethical standards of the Declaration of Helsinki, our study received approval from the569
ethics review board of the Institute Human-Computer-Media (MCM) at the University of Würzburg 1.570
We recruited a total of 66 participants organized into 33 dyads using the local participant management571
system and compensated them either by course credits or cash, both depending on the duration of their572
participation. In none of the dyads, participants knew each other before the study. All participants had573
normal or corrected vision and no hearing impairment. Participants evaluating the smartphone app (19574

1 https://www.mcm.uni-wuerzburg.de/forschung/ethikkommission/
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female, 14 male) were aged between 19 and 41 (M = 26.60, SD = 5.48). None of them had used the575
smartphone app before. Participants evaluating the avatars (25 female, 8 male) were aged between 20 and576
49 (M = 27.64, SD = 6.90). While none of them had been scanned with the smartphone app before, nine577
participants had previously taken part in an expert scan. Most participants in the avatar evaluation (29578
White, 2 Asian, 1 MENA) chose a generic avatar that matched their ethnicity. Only one White participant579
chose a Hispanic avatar. Ten participants used VR for the first time, 20 up to ten times, one more than ten580
times, and two more than 20 times.581

We excluded one dyad from our statistical analysis as one participant used the smartphone app contrary582
to the instructions, resulting in an unusable avatar. While all participants stated that they had more than583
five years of experience with the German language, we had to exclude another participant from the avatar584
evaluation as the experimenter felt that the participant did not understand the questions and instructions585
correctly, which was confirmed by implausible answers and outliers in the data. Hence, 32 datasets586
remained for the smartphone app and 31 for the avatar evaluation.587

5.5 Data Analysis588

We conducted all quantitative analyses using SPSS version 29.0.2.0 (IBM, 2022). Before running the589
statistical tests, we checked whether our data met the assumption of normality and sphericity for parametric590
testing. Shapiro-Wilk tests showed clear violations of the normality assumption for both dimensions of591
the VHPQ and minor violations for VEQ agency and VEQ+ self-location. Mauchly’s test for sphericity592
confirmed homoscedasticity between the groups for all of our measures. Since variance analysis shows593
robustness to slight violations of normality for groups with N ≥ 30 (Wilcox, 2022), we decided to perform594
parametric tests for all measures except those from the VHPQ. All main tests have been performed against595
an α of .05, while post-hoc tests have been Bonferroni adjusted.596

The qualitative feedback has been analyzed following the principles of thematic analysis (Braun and597
Clarke, 2006). Due to space restrictions, we decided to report the results mainly based on the frequency of598
certain feedback while mostly refraining from direct quotes.599

5.6 Results600

5.6.1 Smartphone App Evaluation601

The quantitative evaluation of the smartphone app’s usability resulted in a reasonably high SUS score602
(M = 78.83, SD = 12.23). We compared the results to absolute benchmarks from existing literature.603
According to Sauro and Lewis (2016), our smartphone app shows above-average usability. While a score604
between 77.2 and 78.8 leads to a usability grade of B+, a score between 78.9 and 80.7 relates to an A-.605
This grade matches the classifications of the adjective rating scale of Bangor et al. (2009), where a score606
above 71.4 is considered good, while a score above 85.5 would be excellent. According to the work of607
Kortum and Sorber (2015), our smartphone app’s usability can almost keep up with the usability of the ten608
most-used iPhone apps, which have an average SUS score of 79.3.609

When analyzing interviews about the usability of the smartphone app, the majority of the 32 participants610
performing the smartphone app scan found it highly usable. Twenty-nine participants found the app’s611
functionality and purpose easy to understand, while 26 reported that they constantly knew how to612
use it. As particularly useful features, 20 participants highlighted the overlay for controlling scan613
distance and movement, 16 participants the initial tutorial, and five participants the arrows indicating614
the movement direction. Nonetheless, challenges were also noted. Twenty-three participants reported615
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Table 1. Exact descriptive values for each measure of the avatar evaluation per group and statistical results
of the group comparisons.

Smartphone Camera Rig Generic Group Comparisons
M (SD) M (SD) M (SD)

Sense of Embodiment
VEQ Ownership (VBO) 4.10 (1.50) 4.79 (1.28) 3.75 (1.44) F (2, 60) = 11.011, p < .001, η2p = .268
VEQ Agency (AG) 5.57 (0.96) 5.97 (0.79) 5.79 (0.81) F (2, 60) = 2.845, p = .066, η2p = .087
VEQ+ Self-Location (SL) 4.11 (1.07) 4.14 (1.03) 3.73 (1.13) F (2, 60) = 3.502, p = .036, η2p = .275
VEQ+ Self-Similarity (SS) 5.69 (1.11) 5.85 (0.68) 2.69 (1.23) F (2, 60) = 82.651, p < .001, η2p = .734
VEQ+ Self-Attribution (SA) 4.69 (1.21) 4.99 (0.99) 3.37 (1.16) F (2, 60) = 31.390, p < .001, η2p = .511

Plausibility
VHPQ Appearance/Behaviour (ABP) 4.84 (0.82) 5.33 (0.78) 5.27 (0.78) χ2(2) = 4.581, p = .101,W = .074
VHPQ Match to VE (MVE) 5.15 (0.98) 5.47 (1.14) 5.80 (0.65) χ2(2) = 5.782, p = .056,W = .093

Uncanny Valley
UVI Humanness (HU) 3.46 (1.16) 3.84 (1.08) 3.36 (0.90) F (2, 60) = 2.444, p = .095, η2p = .075
UVI Eeriness (EE) 4.05 (0.79) 3.87 (0.97) 3.15 (0.79) F (2, 60) = 19.313, p < .001, η2p = .392
UVI Attractiveness (AT) 3.90 (1.20) 4.13 (0.84) 4.52 (0.69) F (2, 60) = 3.264, p = .045, η2p = .098

difficulties maintaining an appropriate moving pace while scanning, with six participants emphasizing this616
problem, especially for the head scan. Similarly, seven and six participants reported issues with aligning617
the overlay while moving and keeping the correct distance, respectively. Six participants mentioned the618
need for high concentration, and 18 felt a bit uncomfortable due to the close proximity to the scanned619
participant. Six participants considered the relatively long duration of the scan process as unpleasant. To620
address the mentioned aspects, eight participants suggested a more detailed tutorial, and another four621
suggested an initial overlay mapping to the height of the scanned participant. To improve the scan process,622
five participants recommended more interaction with the scanned person, five more additional feedback on623
pacing their movement during the scan, and another five stressed the need to shorten the scan duration.624

In addition to feedback on performing the scan, we obtained reports from the 32 scanned participants625
on their scanning experience. Overall, the process was clear and manageable, with 30 participants626
completely understanding the required actions. All participants confirmed their willingness to participate in627
a smartphone app scan again. However, compared to expert scans, 21 participants noted the smartphone628
app scan was slower, and 22 found it less comfortable. Prolonged posing discomfort was mentioned629
by twelve participants, while wardrobe and hairstyle constraints were issues for another four. Fourteen630
participants anticipated a difference between an expert and a beginner performing the smartphone scan,631
with four believing the expert would be faster. When asked about suggestions for improvement, four632
participants indicated that they would accelerate the process to reduce the discomfort of holding the scan633
pose. Regarding the head scan, four participants suggested a fixation to aid focus, and three to increase the634
distance between the camera and the head.635

5.6.2 Avatar Evaluation636

To perform group comparisons on our avatar evaluation data, we calculated either a repeated-measures637
ANOVA for measures that met the requirements for parametric analysis or Friedman tests as a non-638
parametric alternative. The descriptive data and the results of the group comparisons can be found in639
Table 1. For all tests revealing significant differences between groups, we calculated Bonferroni-corrected640
pairwise post-hoc comparisons that are reported in Figure 14.641
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Figure 14. Bar charts for each measure and each group of the avatar evaluation, including statistical test
results of the group comparisons and post-hoc tests where applicable. Error bars represent 95 % confidence
intervals. Statistical significance indicators: ∗ p < .05; † p < .01; ‡ p < .001.

During the side-by-side exposure, we asked participants about their preferences regarding self-642
representation similarity, fidelity, plausibility, and suitability, along with reasons behind their choices. Out643
of the 31 participants included in the analysis, 16 perceived the smartphone avatars to be more similar to644
themselves, while 13 preferred the camera rig avatars. Regarding self-representation fidelity, 11 participants645
preferred the smartphone avatars, 19 chose the camera rig avatars, and one favored the generic one. To feel646
most plausibly represented in VR, 12 participants chose the smartphone avatars, 18 the camera rig avatars,647
and one the generic one. When asked which avatar the participants would prefer to be represented in VR,648
10 chose the smartphone avatars, 17 the camera rig avatars, and four the generic ones. When asked for649
their reasoning, participants favoring smartphone avatars mostly mentioned a detailed facial reconstruction650
and realism as key factors. Those participants who preferred camera rig avatars highlighted the accuracy651
of body shape reconstruction, noting issues with smartphone avatars’ body proportions, particularly the652
arms. Participants who chose generic avatars consistently did so because of overall dissatisfaction with653
their personal appearance rather than avatar quality.654

6 DISCUSSION

In this section, we discuss the results of the comparisons with the different avatar reconstruction methods655
and the results of our user study and present the limitations of our work.656

6.1 Smartphone App Evaluation657

We evaluated the usability of our smartphone app quantitatively using the SUS questionnaire and658
qualitatively using semi-structured interviews, including a retrospective thinking-aloud approach. The659
SUS results showed that our smartphone app is already well usable. The qualitative feedback confirmed660
this impression and highlighted the overlay and tutorial as particularly positive features. However, the661
qualitative feedback also revealed areas for improvement.662

As part of the user-oriented design process, we already incorporated suggested improvements. To address663
comments regarding the duration of the scan and the pace, we added the option to shorten or extend the664
scan speed using technical means. The unclear parts of the tutorial have been improved to prepare users665
for the scan better. Furthermore, we have also added warnings if the scanned person is not sufficiently666
centered. Other feedback could not be implemented due to technical limitations or requires further research.667
For example, the distance between the smartphone and the scanned person, especially during the head668
scan, could only be increased by the loss of detail in the reconstructed avatars. However, since the high669
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Table 2. Comparison of the different avatar reconstruction methods regarding our requirements. The
symbols represent: ✓ completely, ● partially, ✗ not fulfilled.

Method Easy Fast Affordable Realistic Full-Body VR-Ready

Achenbach et al. (2017) ✗ ✓ ✗ ✓ ✓ ✓

Wenninger et al. (2020) ✗ ✓ ✓ ✓ ✓ ✓

Jiang et al. (2023) ● ✗ ✓ ● ✓ ✗

Shao et al. (2024) ● ✗ ✓ ● ✓ ✗

Lei et al. (2024) ● ✗ ✓ ● ✓ ✗

Ours ✓ ✓ ✓ ✓ ✓ ✓

quality of the faces is a significant advantage of our system, we decided to keep the required distance.670
Furthermore, the interaction between the scanning and scanned person and visual aids (e.g., fixation point)671
for the scanned person lies outside the influence of our smartphone application.672

6.2 Avatar Evaluation673

Our quantitative and qualitative comparisons in Section 4 demonstrate that our smartphone application674
enables even non-experts to reconstruct avatars of a similar quality and accuracy as those produced with an675
expert-operated multi-camera rig – at a fraction of the price, complexity, and required expertise. Compared676
to the previous smartphone-based reconstruction (Wenninger et al., 2020), our proposed method is easier to677
use and gives higher-quality results even in more challenging in-the-wild scenarios.678

Our experiments with InstantAvatar (Jiang et al., 2023), SplattingAvatar (Shao et al., 2024), and GART679
Lei et al. (2024) revealed that neural avatars generalize rather poorly to poses and camera views far680
from training data – a situation that cannot be avoided in multi-avatar VR applications. Although these681
generalization problems can be reduced with more training data, this is beyond the capabilities of a simple682
smartphone-based scanning solution. Also in terms of reconstruction times and rendering performance are683
neural avatars not yet suitable for VR applications, such that classical mesh-based avatars appear to still be684
the preferred representation. Table 2 summarizes the fulfillment of our requirements with respect to avatar685
reconstruction. Although many methods show their strengths in a subset of the criteria, only our system686
fulfills all of them.687

Compared to the work of Waltemate et al. (2018), our user study confirmed that realistic avatars still offer688
substantial benefits over generic avatars for self-representation, even when the generic avatars are also689
personalized in gender and ethnicity (Do et al., 2023, 2024). With regard to the comparison, some further690
notable findings need to be addressed. The statistically significant difference in virtual body ownership691
between the smartphone and camera rig avatars can potentially be attributed to observed motion artifacts,692
which can degrade the avatars’ appearance. However, smartphone avatars still perform descriptively693
better than generic avatars. Regarding self-identification, the smartphone and camera rig avatars both694
show significant advantages to generic avatars, although the smartphone avatars were generated using695
a significantly cheaper method than the camera rig avatars. For the smartphone avatars, participants696
emphasized particularly the high similarity of the head. However, results also showed that the eeriness of697
realistic avatars was significantly higher than generic avatars. This is likely attributable to an Uncanny698
Valley effect originating from the emotional relatedness to self-personalized avatars, which has also been699
observed in other research (Mori et al., 2012; Döllinger et al., 2023). When considering the plausibility of700
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the avatars, it is noticeable that the reconstruction described most realistically had the lowest match with701
the perceived plausibility. This discrepancy might be attributed to the incongruence between the virtual702
environment’s realistic style and the avatars’ photorealistic style (Latoschik and Wienrich, 2022).703

6.3 Limitations704

Since our method uses photogrammetry software to generate point clouds from images, the input images705
must contain as little movement as possible. If movement occurs in the background, the segmentation706
significantly improves the photogrammetry results. However, the motions of the scanned subject violate the707
photogrammetry assumption, i.e., that the scanned object is rigid and not moving, leading to less accurate708
point clouds and, therefore, geometric deformations in the final avatar. Figure 7 shows this problem in709
more detail, as the arms of the second avatar (from left) have visible differences in thickness.710

We use a mesh-based representation for our avatars. On the one hand, this enables high-performance711
rendering and novel pose generation. On the other hand, we represent cloth, hair, and skin by a single712
textured mesh, which can lead to visual artifacts. An interesting direction for future work would be713
to combine mesh-based avatars (potentially with multiple layers for skin and cloth) with volumetric714
details (such as hair) represented by Gaussian Splatting – as this would combine the strengths of both715
representations.716

Our system uses image segmentation to preprocess the input and mask out regions that do not contain717
people. For that reason, people in the background are a challenging task, as they are not removed. We want718
to explore the capabilities of the depth sensor to remove people in the background from the masks.719

We rely on Apple frameworks for both our scanning client and reconstruction server. For the client, an720
Android-based app would be possible, but we chose iOS because Apple’s photogrammetry yields correctly721
scaled results thanks to the LiDAR sensor of the pro-level iPhones. On the reconstruction server, only the722
photogrammetry and the segmentation frameworks are Apple-specific, all other parts of the reconstruction723
pipeline are cross-platform compatible. We chose Apple’s RealityKit and Vision frameworks since in our724
extensive tests this platform produced the best results while not being limited by restrictive licensing.725

The sample in our study consisted of white participants only. As this potentially limits the generalizability726
of our results, in future work a larger population sample with greater variability in age, sex, and ethnicity727
should be tested.728

7 CONCLUSION

We presented Avatars for the Masses, a system that allows non-expert users to scan people and automatically729
reconstruct realistic VR-ready full-body avatars that achieve similar perception results compared to avatars730
reconstructed with expensive expert-operated systems. Inspired by the approach of Wenninger et al. (2020),731
we presented methods to resolve present obstacles that prevent the wide accessibility of realistic full-body732
avatars. Our custom smartphone application enables laypeople to easily and quickly capture high-quality733
input images, which, together with background segmentation and an improved template fitting algorithm,734
result in more convincing reconstructions while reducing restrictions on scanning locations. Our end-to-end735
solution computes VR-ready avatars that can be easily integrated into existing VR pipelines. To further736
empower people to create realistic full-body avatars and encourage more avatar-related studies, we will737
make Avatars for the Masses publicly available for research purposes.738
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