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A B S T R A C T

Facial animation on computationally limited systems still heavily relies on linear blend-
shape models. Nonetheless, these models exhibit common issues like volume loss, self-
collisions, and inaccuracies in soft tissue elasticity. Furthermore, personalizing blend-
shapes models demands significant effort, but there are limited options for simulating
or manipulating physical and anatomical characteristics afterwards. Also, second-order
dynamics can only be partially represented.

For many years, physics-based facial simulations have been explored as an alternative
to linear blendshapes, however, those remain cumbersome to implement and result in
a high computational burden. We present a novel deep learning approach that offers
the advantages of physics-based facial animations while being effortless and fast to
use on top of linear blendshapes. For this, we design an innovative hypernetwork that
efficiently approximates a physics-based facial simulation while generalizing over the
extensive DECA model of human identities, facial expressions, and a wide range of
material properties that can be locally adjusted without re-training.

In addition to our previous work, we also demonstrate how the hypernetwork can be
applied to facial animation from a sparse set of tracked landmarks. Unlike before, we no
longer require linear blendshapes as the foundation of our system but directly operate
on neutral head representations. This application is also used to complement an ex-
isting framework for commodity smartphones that already implements high resolution
scanning of neutral faces and expression tracking.

© 2024 Elsevier B.V. All rights reserved.

1. Introduction1

Currently, research in the realm of head avatars and facial an-2

imation primarily revolves around achieving photorealistic out-3

comes using neural networks[1, 2, 3, 4]. These approaches re-4

quire substantial computational resources for operation. How-5

ever, a significant challenge lies in accommodating less pow-6
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erful hardware configurations and scenarios where geometry- 7

based processing is necessary. In such cases, various adapta- 8

tions of linear blendshape models [5] remain the conventional 9

choice for production. 10

Despite decades of intensive research and refinement of lin- 11

ear facial models, they still exhibit known limitations, includ- 12

ing physically implausible distortions, volume loss, anatomi- 13

cally impossible expressions, the absence of volumetric elas- 14

ticity, and self-intersections. To address these issues, physics- 15

based simulations have been proposed, which mitigate most ar- 16
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tifacts associated with linear blendshapes and introduce a range1

of additional capabilities [6, 7, 8, 9, 10, 11, 12]. Researchers2

have explored applications in fields such as medicine, involv-3

ing the visualization of weight changes, paralysis, or surgical4

procedures, as well as visual effects like aging, zombifications,5

gravity alterations, and second-order effects. Moreover, recent6

work has demonstrated that simulations incorporating detailed7

material information result in significantly more realistic facial8

animations compared to linear models [10].9

However, it is important to note that physics-based facial an-10

imation models typically impose a substantial computational11

burden, leading to a considerable body of literature dedicated to12

acceleration techniques. Much of this research has focused on13

evaluating simulations within manually constructed subspaces14

[13] or learned subspaces [14, 15] and corrective blendshapes15

[7]. Among these approaches, learned subspace methods have16

proven to be more versatile and adaptable [14], which is why17

they have already found successful application in full-body ani-18

mations [15]. Nevertheless, there is currently no method that ef-19

fectively extends these advancements in fast physics-based sim-20

ulations to facial animations. The principal contribution of this21

work is closing this gap with a deep learning approach which22

we call SoftDECA.23

SoftDECA introduces an innovative neural network designed24

to animate facial expressions while closely adhering to a dy-25

namic physics-based model. Our approach possesses uni-26

versal applicability, as it can accommodate a wide range of27

physics-based facial animations. However, our specific empha-28

sis lies in approximating a combination of cutting-edge anatom-29

ically plausible and volumetric finite element methods (FEM)30

[6, 7, 8, 16]. For this, we propose a novel adaption of hy-31

pernetworks [17] which yields inference times of about 10ms32

on consumer-grade CPUs and has the same programming in-33

terface as standard linear blendshapes. More precisely, we train34

SoftDECA to be applied as an add-on to arbitrary human blend-35

shape rigs that follow the Apple ARKit system .36

Furthermore, SoftDECA offers straightforward deployment37

without the necessity for intricate customizations or retraining38

efforts due to our extensive compilation of training examples.39

This comprehensive dataset encompasses a substantial domain40

of the intended FEM model and amalgamates data from var-41

ious sources. These sources include CT head scans to cap-42

ture head anatomy, 3D head reconstructions representing di-43

verse head shapes (utilizing DECA as outlined in [18]), and44

facial expressions recorded as ARKit blendshape weights from45

dyadic conversational scenarios. The resulting training dataset46

ensures SoftDECA’s capacity for robust generalization across47

a spectrum of human identities, facial expressions, and the ex-48

tensive parameter space of the targeted FEM model. In con-49

trast to earlier methods [14, 15], the ability to generalize across50

simulation parameters makes extensive and efficient artistic in-51

terventions possible, with SoftDECA even supporting localized52

material adjustments.53

As an additional contribution, we present a novel layered54

head model (LHM) that represents all training instances in55

a standardized way. Unlike fully or partially tetrahedralized56

volumetric meshes conventionally used for FEM, the LHM57

has additional enveloping wraps around bones, muscles, and 58

skin. Based on these wraps, we describe a data-driven fitting 59

procedure that positions muscles and bones within a neutral 60

head while avoiding intersections of the various anatomic 61

structures. A characteristic that was mostly not of concern in 62

previous manually crafted physics-based facial animations but 63

can otherwise lead to numerical instabilities in our automated 64

training data generation approach. 65

66

This paper is an extension to the previously presented 67

SoftDECA [19]. Here, we additionally introduce the adapted 68

SparseSoftDECA, which maps sparsely observed facial land- 69

marks into plausible facial expressions with respect to the 70

foundational physics-based simulation. Again, SparseSoft- 71

DECA is trained to exhibit a high degree of generalization, 72

accommodating a variety of head shapes and landmark posi- 73

tions. As before, we present a pipeline for generating extensive 74

training data that densely samples the input domains. 75

The animation via facial landmarks offers the advantage of 76

eliminating the need for blendshape generation entirely. All that 77

is required for animating a person’s face is SparseSoftDECA 78

and the neutral head shape which can be easily obtained. For 79

instance, Wenniger et al. [20] have demonstrated the quick ac- 80

quisition of a neutral head shape in just a few minutes solely 81

based on smartphone videos. 82

Furthermore, SparseSoftDECA inherently supports person- 83

alized animations when facial landmarks can be reliably 84

tracked. Achieving this level of personalization, such as 85

through linear blendshapes, typically demands several of ad- 86

ditional scans for each individual. 87

2. Related Work 88

2.1. Personalized Anatomical Models 89

Algorithms for generating personalized anatomical models 90

can be categorized into two main paradigms: heuristic-based 91

and data-driven. In the realm of heuristic-based approaches, 92

Anatomy Transfer [21] employs a space warp on a template 93

anatomical structure to conform to a target skin surface, de- 94

forming the skull and other bones only through an affine trans- 95

formation. A similar approach is presented by Gilles et al. [22], 96

incorporating statistical validation of bone shapes derived from 97

artificially deformed bones. In both [7] and [23], an inverse 98

physics-based simulation is utilized to reconstruct anatomical 99

structures from multiple 3D expression scans. Saito et al. 100

[24] focus on simulating the growth of soft tissue, muscles, 101

and bones. In [25], a complete musculoskeletal biomechani- 102

cal model is fitted based on sparse observations, however, no 103

qualitative evaluation is conducted. 104

Primarily, concerns such as data privacy or potential radia- 105

tion exposure keep the number of data-driven anatomy fitting 106

approaches small. The recent OSSO method [26, 27] predicts 107

body skeletons from 2000 DXA images. These images do not 108

contain precise 3D information and bones are placed within the 109

body by predicting solely three anchor points per bone group. 110

Additionally, intersections between skin and bones are not re- 111

solved. In [28], skin-bones intersections are addressed and also 112
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the musculature is fitted. Instead of fitting anatomical struc-1

tures directly, encapsulating wraps are placed within a body.2

However, this approach relies on a BMI regressor rather than3

accurate medical imaging [29]. Also in [27], skeletons do not4

intersect but are not placed based on medical imaging either.5

A more accurate facial model, developed by Achenbach et al.6

[30], combines CT scans with optical surface scans using a mul-7

tilinear model (MLM) that maps between skulls and faces bidi-8

rectionally. Despite its accuracy, this model does not prevent9

self-intersections and solely focuses on fitting bones. Building10

upon the data from [30] and extending the concept of a layered11

body model [28], we formulate a statistical layered head model12

encompassing musculature while mitigating self-intersections.13

2.2. Physics-Based Facial Animation14

Various paradigms for animating faces have been developed15

in the past [31, 32, 33, 34]. Dominating the field are data-16

driven models [5, 7, 35], which have witnessed significant ad-17

vancements with the application of deep learning techniques18

[36, 37, 1, 18, 38, 3]. Linear blendshapes [5] remain prevalent19

in demanding applications and scenarios lacking computation-20

ally rich hardware due to their simplicity and speed. Physics-21

based simulations, although addressing issues of blendshape22

models like implausible contortions and self-intersections, are23

less commonly used due to their inherent complexity and com-24

putational demands. Sifakis et al.’s [39] pioneering work repre-25

sents the first fully physics-based volumetric facial animation,26

employing a personalized tetrahedron mesh with limited res-27

olution due to an involved dense optimization problem. The28

Phace system [6] successfully overcame this limitation through29

an improved simulation. Art-directed physics-based facial ani-30

mations additionally employ a muscle representation based on31

B-splines [16, 40, 8]. Animations can then be controlled via32

trajectories of spline control points. A solely inverse model for33

determining physical properties of faces is presented in [41].34

Hybrid methodologies incorporate surface-based physics35

into linear blendshapes to enhance the intricacy of facial ex-36

pressions [11, 42, 9, 43]. Nevertheless, due to their design,37

these approaches are unable to represent volumetric effects. The38

introduction of volumetric blendshapes [7] represents a hybrid39

solution that amalgamates the structure of linear blendshapes40

with volumetric physical and anatomical plausibility. However,41

achieving real-time performance necessitates the utilization of42

extensive personalized corrective blendshapes.43

Considering soft bodies in general, deep learning approaches44

have been investigated to approximate physics-based simula-45

tions. For instance, in [15, 44] the SMPL (Skinned Multi-46

Person Linear Model) proposed in [45] was extended with sec-47

ondary motion. Recently, [12, 10, 9] developed methods to48

learn the particular physical properties of objects and faces.49

However, these approaches must be retrained for unseen identi-50

ties and are slow in inference. A fast and general approach for51

learning physics-based simulations is introduced in [14]. Un-52

fortunately, they focused on reflecting the dynamics of single53

objects with limited complexity. We present a real-time capable54

deep learning approach to physics-based facial animations that55

does not need to be retrained and maintains the control structure56

ST , ŜT MT , M̂T BT , B̂T

Fig. 1: All components of the layered head model template T . Skin ST , skin
wrap ŜT , muscles MT , muscles wrap M̂T , skull BT , and the skull wrap B̂T .

of standard linear blendshapes. Additionally, none of the pre- 57

viously described deep learning methods tackle the challenging 58

creation of facial training data, which we also address in this 59

work. 60

3. Method 61

The cornerstone of the SoftDECA animation system lies in a 62

novel layered head representation (Section 3.1). Building upon 63

this foundation, we formulate a physics-based facial animation 64

system (Sections 3.2 & 3.3) and illustrate how to distill it into a 65

defining dataset (Section 3.4). Utilizing this dataset, we train a 66

newly devised hypernetwork (Section 3.5) capable of real-time 67

approximation of the animation system. In addition to our pre- 68

vious work [19], we enhance SoftDECA to be directly address- 69

able by sparse landmarks, rendering it entirely independent of 70

linear blendshapes if desired (Section 3.6). 71

3.1. Layered Head Model 72

3.1.1. Structure 73

We define a head H = ρH (T ) with a neutral expression 74

through a component-wise transformation ρH of a layered head 75

model template 76

T =
(
S T , BT ,MT , Ŝ T , B̂T , M̂T

)
, (1)

comprising six triangle meshes. S T delineates the skin surface, 77

encompassing the eyes, mouth cavity, and tongue. BT denotes 78

the surface of all skull bones including the teeth. MT represents 79

the surface of all muscles, along with the cartilages of the ears 80

and nose. Ŝ T is the skin wrap, i.e. a closed wrap that envelopes 81

S T . B̂T is the skull wrap that encloses BT and M̂T is the mus- 82

cle wrap that encloses MT . For simplicity, other anatomical 83

structures are omitted. The template structures S T , BT , and 84

MT were artistically designed, while the skin, skull, and mus- 85

cle wraps Ŝ T , B̂T , and M̂T were generated by shrink-wrapping 86

the same sphere as closely as possible to the corresponding sur- 87

faces without intersections. The complete template is depicted 88

in Figure 1. 89

The shared triangulation among the wraps of the LHM al- 90

lows to also define a soft tissue tetrahedron mesh ST (between 91

the skin and muscle wraps) and a muscle tissue tetrahedron 92

mesh MT (between the muscle and skull wraps). For this 93
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Fig. 2: a) Procedural overview of the layered head model fitting algorithm.

purpose, each triangular prism spanned between correspond-1

ing wrap faces is canonically split into three tetrahedra. The2

complexities of all template components are detailed in the ap-3

pendix. In the subsequent sections, we denote the number of4

vertices in a mesh as | · |v and the number of faces as | · | f .5

3.1.2. Fitting6

Later on, generating training data involves determining7 (
S , B,M, Ŝ , B̂, M̂

)
= ρH (T ) (2)

when only the skin surface S of the head H is known. For8

this purpose, we employ a hybrid approach that places the9

skull wrap in a data-driven manner, while the remaining tem-10

plate components are fitted using heuristics to ensure anatomi-11

cal plausibility and avoid self-intersections.12

Starting with the fitting of the skin wrap, we set13

Ŝ = rbfS T→S

(
Ŝ T
)
. (3)

Here, the RBF function denotes a space warp based on trihar-14

monic radial basis functions [46], calculated from the template15

skin surface S T to the target S and applied to the template skin16

wrap Ŝ T . Due to the construction of RBFs, the skin wrap un-17

dergoes a semantically consistent warp, adhering closely to the18

targeted skin surface.19

Following, we fit the skull wrap B̂ by first evaluating a linear20

regressor D that predicts distances from the vertices of Ŝ to the21

corresponding vertices of B̂. Then, we minimize with projective22

dynamics [47]23

arg min
X

wrectErect

(
X, Ŝ T

)
+ wdist2 Edist2

(
X, Ŝ , D

(
Ŝ
))

+ wcurvEcurv

(
X, B̂T

)
.

(4)

In this optimization, Edist2 ensures the adherence to the pre-24

dicted distances, Ecurv represents a curvature regularization for25

the skull wrap, and Erect prevents shearing between correspond-26

ing faces of the skin and skull wraps. The distances are set to27

a minimum value if they fall below a threshold, thereby pre- 28

venting skin-skull intersections. For formal descriptions of the 29

energy components, please refer to the appendix. The optimiza- 30

tion is initialized with X = Ŝ −D(S ) · n(Ŝ ), where n(Ŝ ) denotes 31

area-weighted vertex normals. The linear regressor D is trained 32

on the dataset from [48] (SKULLS), which correlates CT skull 33

measurements with optical skin surface scans. For a visual il- 34

lustration of the training process of the linear regressor please 35

refer to Wagner et al. [19]. 36

The muscle wrap M̂ is placed almost at the same absolute 37

distances between corresponding vertices of the skin and skull 38

wraps as in the template. Only ten percent of the relative dis- 39

tance changes compared to the template are incorporated, as- 40

suming that the muscle mass in the facial area is only moder- 41

ately influenced by body weight and skull size. 42

The skull mesh is placed by setting 43

B = rbfB̂T→B̂(BT ) . (5)

The characteristics of the RBF space warp ensure that the skull 44

mesh remains enclosed within the skull wrap, provided the 45

wrap has sufficient resolution. While the muscle mesh could 46

be positioned similarly, it is not utilized further in our pipeline. 47

Finally, the tetrahedron meshes representing soft and muscle 48

tissue S and M are constructed as described before. On average, 49

the complete fitting pipeline takes about 500ms on an AMD 50

Threadripper Pro 3995wx processor. Figure 2 visualizes the 51

overall fitting process. 52

3.2. SoftDECA Animation System 53

Building upon the LHM representation, we now introduce 54

the SoftDECA animation system by, first, revisiting the concept 55

of linear blendshapes. Subsequently, we derive the dynamic 56

physics-based facial simulation system, which forms the core 57

of SoftDECA. 58

In a linear blendshape model, n surface blendshapes 59{
S i
}n
i=1

(6)

animate a facial expression S t as a linear combination 60

S t =
∑N

i=1
wi

tS
i, (7)

where the blending weights wt determine the contribution of 61

each blendshape to the expression at frame t. 62

To achieve the same animation with a physics-based model 63

ϕ, one typically employs either forward or inverse simulations. 64

Without loss of generality, we consider inverse simulations in 65

the following. Here, the expression S t is converted into the (in 66

the Euclidean sense) closest ϕ−plausible solution by ϕ† to 67

Tt = ϕ
†(S t, p) , (8)

where p is a vector of material and simulation parameters on 68

which ϕ depends. For including second-order effects as well, 69

Equation (8) expands to 70

Tt = ϕ
†(γ S t + 2α Tt−1 − β Tt−2, p) . (9)
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The SoftDECA animation system operates in a similar manner,1

but the right-hand side of Equation 9 is approximated by a com-2

putationally efficient neural network f.3

Ensuing, we will elucidate our implementation of ϕ† and the4

process of generating representative examples. However, please5

note that SoftDECA is not confined to a specific implementa-6

tion of ϕ†.7

3.3. Physics-Based Simulations8

We implement anatomically plausible inverse physics ϕ† as a9

projective dynamics energy Eϕ† . At this, state-of-the-art FEM10

models [8, 6, 41] are merged by applying separate terms for soft11

tissue, muscle tissue, the skin, the skull, and auxiliary compo-12

nents.13

3.3.1. Energy14

Considering the soft tissue S, we closely follow the model of15

[6] and impose16

ES = wvol

∑
t∈S

Evol(t) + wstr

∑
t∈S

1σF(t)>ϵEstr(t), (10)

which for each tetrahedron t penalizes change of volume and17

strain, respectively. Strain is only accounted for if the largest18

eigenvalue σF(t) of the stretching component of the deformation19

gradient F(t) ∈ R3×3 grows beyond ϵ.20

To reflect the biological structure of the skin, we additionally21

formulate a dedicated strain energy22

ES =
∑
t∈S

Estr(t) (11)

on each triangle t of the skin which, to the best of our knowl-23

edge, has not been done before.24

For the muscle tetrahedra M, we follow Kadleček et al. [41]25

that capturing fiber directions for tetrahedralized muscles is in26

general too restrictive. Hence, only a volume-preservation term27

EM = wvol

∑
t∈M

Evol(t) (12)

is applied for each tetrahedron in M.28

The skull is not tetrahedralized as it is assumed to be non-29

deformable even though it is rigidly movable. The non-30

deformability of the skull is represented by31

EB =
∑
t∈B

Estr(t) +
∑
x∈B

Ecurv(x, B) , (13)

i.e. a strain Estr on the triangles t and mean curvature regu-32

larization on the vertices x of the skull B. We do not model33

the non-deformability as a rigidity constraint due to the signifi-34

cantly higher computational burden.35

To connect the muscle tetrahedra as well as the eyes to the36

skull, connecting tetrahedra are introduced similar to the slid-37

ing constraints in [6]. For the muscle tetrahedra , each skull38

vertex connects to the closest three vertices in M to form a con-39

necting tet. For the eyes, connecting tetrahedra are formed by40

connecting each eye vertex to the three closest vertices in B.41

On these connecting tetrahedra , the energy Econ with the same 42

constraints as in Equation (10) is imposed. By this design, the 43

jaw and the cranium are moved independently from each other 44

through muscle activations but the eyes remain rigid and move 45

only with the cranium. 46

Finally, the energy 47

Einv =
∑
x∈S

Etar(x, S t) (14)

of soft Dirichlet constraints is added, attracting the skin surface 48

S vertices to the targeted expression S t. 49

The weighted sum of the aforementioned energies gives the 50

total energy 51

Eϕ† = wSES + wMEM + wB EB + wmstrEmstr

+ wS ES + wconEcon + winvEinv
(15)

of the inverse model ϕ†. Altogether, ϕ† results in an expres- 52

sion Tt that in a Euclidean sense is close to the target S t but is 53

plausible w.r.t. the imposed constraints. 54

3.3.2. Collisions 55

Finally, self-intersections are resolved between colliding lips 56

or teeth in a subsequent projective dynamics update as in [49]. 57

The decisive characteristic of this approach is that no gaps can 58

occur after the resolution of self intersections. For example, in 59

the case of a lip collision, the corresponding lower and upper 60

lip points are simulated to the same position. 61

3.3.3. Parameters 62

The construction of ϕ† also implies parts of the parameter 63

vector p. As such, the dynamics parameters α, β, γ, weights 64

w∗ of all the constraints, but also other attributes of the con- 65

straints are considered. For example, the target volume in Evol 66

or scaling factors of the skull bones are included. We also add 67

constant external forces like gravity strength and direction into 68

p. An overview of all parameters we use and the corresponding 69

value ranges is given in the appendix. 70

3.4. Training Data 71

According to the definition of the animation system in Equa- 72

tion (9), a comprehensive training datasetD should include ex- 73

amples that link various facial expressions generated through 74

linear blendshapes to the corresponding surfaces conforming to 75

ϕ. Moreover, to encompass dynamic effects, the exemplary fa- 76

cial expressions should form coherent sequences. This dataset 77

also needs to encompass a range of diverse head shapes and 78

simulation parameters. 79

In the following, we describe a pipeline for creating instances 80

of such a dataset, which can be roughly divided into six high- 81

level steps. 82

1. We commence by randomly selecting a neutral skin sur- 83

face S from DECA [18], an extensive high-resolution face 84

model. Specifically, we pick an image at random from the 85

Flickr-Faces-HQ [50] dataset and let DECA determine the 86

corresponding neutral head shape along with a latent rep- 87

resentation h. 88
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Fig. 3: An overview of SoftDECA and SparseSoftDECA facial animations. In Step 1), for both, the hyper-tensor and the dynamic parameters are determined
once for an animation. Subsequently, steps 2-3 are repeatedly evaluated per frame and either map blendshapes weights to deformation gradients (SoftDECA) or
landmarks to vertex position (SparseSoftDECA).

2. The template LHM T is aligned with the skin surface S as1

described in Section 3.1.2

3. Deformation transfer [51] is applied to map ARKit3

surface-based blendshapes to S .4

4. An expression sequence S = (S t)m
t=0 of length m + 1 is5

generated by applying a sequence of linear blendshape6

weights w = (wt)m
t=0. These blendshape weights are de-7

rived from 8 approximately 10 minutes long dyadic con-8

versations recorded using a custom iOS app.9

5. As the final step before generating the ϕ-plausible counter-10

part of S, it is necessary to sample simulation parameters11

within appropriate domains. We expect the user to specify12

lower and upper bounds for continuous parameter before-13

hand. Then, for each continuous entry in p, a value is in-14

dependently sampled from a uniform distribution between15

the specified bounds. Discrete parameters are treated sim-16

ilarly, without specific constraints.17

6. Finally, T =
(
ϕ†(S t,p)

)m
t=0

is computed and (T,S,w,p,h)18

is appended toD. Evaluating one time step takes approxi-19

mately 10 seconds on an AMD Threadripper Pro 3995wx.20

3.5. Hypernetwork21

3.5.1. Architecture & Training22

Having training data, we can now design a computation-23

ally efficient neural network f to approximate the physics-based24

simulation from Equation 9. Irrespective of a particular archi-25

tecture, the training goal implied by D is to optimize on each26

frame27

min
f

∑
(T,S,w,p,h)∈D

∑m

t=0
∥Tt − f(S t,wt,p,h)∥2 . (16)

In words, f is trained to approximate the ϕ-conformal expres-28

sions from the the linearly blended expressions S t, the blending29

weights wt, simulation parameters p, and the head descriptions30

h. Hence, leaving out dynamic effects to begin with, the proba-31

bly most naive approach would be to learn f to directly predict32

vertex positions. However, this would not allow the usage of 33

personalized blendshapes at inference time that have not been 34

used in the curation of D. Therefore, we separate f into two 35

high-level components 36

f(S t,wt,p,h) = DT(S t, fDG(wt,p,h)) , (17)

where DT is a deformation transfer function as in [52] that ap- 37

plies 3 × 3 per-face deformation gradients (DGs) predicted by 38

fDG(wt,p,h) ∈ R|S | f×9 to the linearly blended S t. By doing 39

so, f can also be applied to a facial expression S t which has 40

been formed by unseen personalized blendshapes while still 41

achieving close approximations of ϕ†. Fortunately, the evalu- 42

ation of DT is not more than efficiently finding a solution to a 43

pre-factorized linear equation system. 44

To implement the DG prediction network fDG, we evaluated 45

multiple network architectures such as set transformers [53], 46

convolutional networks on geometry images, graph neural net- 47

works [54], or implicit architectures [55], but all have exhibited 48

substantially slower inference speeds while reaching a similar 49

accuracy as a multi-layer perceptron (MLP). Nevertheless, a 50

plain MLP does not discriminate between inputs that change per 51

frame t and inputs that have to be computed only once. There- 52

fore, we propose an adaptation of a hypernetwork MLP [17] to 53

implement fDG in which the conditioning of fDG with respect to 54

the simulation parameters as well as the DECA identity is done 55

by manipulating network parameters. Formally, we implement 56

fDG(wt,p,h) = ztL(p,h), (18)

where L(p,h) ∈ R32×|S | f×9 returns a tensor that only has to be 57

calculated once for all frames and zt = fw(wt) ∈ R32 is the result 58

of a small standard MLP that processes the blending weights at 59

every frame t. Each matrix ℓi ∈ R32×9 in L(p,h) corresponds to 60

a face in S and the entries are calculated as 61

ℓi = fph(p,h, π(i)) . (19)
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Again, fph is a small MLP and π is a trainable positional encod-1

ing. Please consult the appendix for detailed dimensions of all2

networks and see Figure 3 for a structural overview of f.3

3.5.2. Localization4

The architecture described above offers extensive possibil-5

ities for artistic user interventions at inference time. For in-6

stance, different simulation parameters pi can be used per trian-7

gle i by changing Equation (19) to8

ℓi = fph
(
pi,h, π(i)

)
, (20)

which enables a localized application of different material mod-9

els. The DT function ensures that the models are smoothly com-10

bined.11

3.5.3. Dynamics12

Given that locally differing simulation parameters are not re-13

flected in the training data, existing approaches to integrate dy-14

namics in deep learning [14, 15], cannot be adopted. Therefore,15

we again use the hypernetwork concept to achieve a piecewise-16

linear dynamics approximation. More precisely, we recursively17

extend f to18

f(S t,wt,p,h) = γ ⊙ DT(S t, fDG(wt,p,h))

+ 2α ⊙ f(S t−1,wt−1,p,h)

− β ⊙ f(S t−2,wt−2,p,h) ,
(21)

where α,β,γ ∈ R32×|S |v contain per-vertex dynamics parame-19

ters. The first row of Equation (21) is the same as in Equation20

(17) but the second and third rows allow for dependencies on21

the previous two frames. Each entry of α,β,γ is calculated as22

in Equation (20) but with dedicated MLPs fα, fβ, fγ. As a re-23

sult, α,β,γ are again not time-dependent and only have to be24

calculated once.25

3.6. Sparse Animation Control26

Previously, we assumed that SoftDECA is supposed to map27

an expression S t generated by linear blendshapes (Equation (7))28

into a ϕ†-plausible expression Tt (Equation (8)). In the follow-29

ing, we now assume that only temporally consistent landmarks30

Lt ∈ S t can be observed per frame t. At the same time, we31

no longer require S t to be derived from a specific linear blend-32

shape system for inference. We refer to the adapted variant33

which processes landmarks instead of blendshape weights as34

SparseSoftDECA. In other words, SparseSoftDECA can cre-35

ate personalized animations from tracked landmarks requiring36

only a neutral scan as input. In this section, we first explain37

the adaptation of the physics model to the sparse input. Subse-38

quently, which training data is required for SparseSoftDECA is39

discussed. Finally, we described changes in the hypernetwork40

topology of SoftDECA to allow landmarks to be used as input.41

3.6.1. Adapted Physics-Based Simulation42

The foundation of SparseSoftDECA is a modified physics-43

based model φ† which in principle optimizes the same energy44

as ϕ†. However, the targeted landmarks are enforced by simul- 45

taneously optimizing for 46

Elmk =
∑
x∈L

Etar(x, Lt) . (22)

In our experiments, it has proven beneficial to keep the previ- 47

ous target energy Einv as a regularization term. Otherwise, since 48

Lt is usually only a sparse observation of S t, i.e. |L|v ≪ |S |v, 49

solely non-uniformly distributed actuation signals would act in 50

φ† which would cause distortions. 51

In summary, φ† is composed by the overall energy 52

Eφ† = wSES + wMEM + wB EB + wmstrEmstr

+ wS ES + wconEcon

+ wregEinv + wlmkElmk,

(23)

where wreg indicates the strength of the regularization and is 53

included in the parameter vector p. 54

3.6.2. Adapted Training Data 55

Fig. 4: The set of landmarks used for SparseSoftDECA.

To generate training data for SparseSoftDECA we, basically 56

follow the same data generation pipeline as described in Section 57

3.4. Merely the steps 4 and 6 must be adjusted to produce train- 58

ing instances with landmarks rather than blendshape weights. 59

Concerning step 4, we have extended the custom iOS app 60

such that not only weight vector wt but also about 150 corre- 61

sponding landmarks Lt are captured by Apple’s ARKit. These 62

landmarks mainly represent the contours of a face and are vi- 63

sualized in Figure 4. Contrary to the blendshape weights, the 64

captured landmarks are tailored to the recorded head. 65

Concerning step 6, a training instance is now formed as 66

(T,S,L,p,h) where 67

L = (σ(Lt))m
t=0,

T = (φ†(σ(Lt) , S t,p))m
t=0.

(24)

Here, σ is an augmentation function which serves two pur- 68

poses. On the one hand, the landmarks must be personalized to 69

account for the difference between the recorded and simulated 70

head shape S drawn in Step 1 of the data generation pipeline. 71

On the other hand, the notably larger domain as opposed to the 72

blendshape weights requires a denser sampling in the training 73

set, as we will show empirically in Section 4.3. Therefore, σ is 74

composed of a deformation transfer [52] that accomplishes the 75

personalization followed by a coordinate-wise Gaussian noise 76

to achieve a robust domain coverage. 77
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3.6.3. Adapted Hypernetwork1

For SparseSoftDECA, the efficient hypernetwork topology2

presented earlier for SoftDECA (Section 3.5) is fundamentally3

preserved. However, so far, SoftDECA focused on deforming4

a linear blended surface according to specified material proper-5

ties. Since SparseSoftDECA is intended to reconstruct a facial6

expressions without being tied to a particular linear blendshape7

system, neither the linear blended surface S t nor the blendshape8

weights wt can be utilized as input for the adapted hypernet-9

work. For the same reason, mesh coordinates can be predicted10

directly without the intermediate step of forming and resolving11

deformation gradients. Formally, the static hypernetwork f of12

SparseSoftDECA is implemented as13

f(Lt,p,h) = fL(Lt)L(p,h) , (25)

where L(p,h) ∈ R32×|S |v×3 returns a tensor that only has to be14

calculated once for all frames and fL(Lt) ∈ R32 is the result15

of a small standard MLP that processes the landmarks at every16

frame t. The dynamic variant is derived as before in Equation17

(21). A structural overview is given in Figure 3.18

3.7. Personalized Animation From Commodity Smartphones19

We will release SparseSoftDECA trained on the skin topol-20

ogy used in Wenninger et al. [20]. In their work, they demon-21

strate how to quickly create high-resolution (face) avatars from22

a single smartphone video. Combining both the high resolu-23

tion avatars and our models allows for computationally efficient24

realistic facial animation with real-time tracking even on low25

budget hardware. Due to the compatibility with ARKit and26

software based thereon, SoftDECA and SparseSoftDECA can27

readily be deployed in environments from Apple, Unity, and28

many more.29

4. Experiments30

Prior to outlining the accuracy and efficiency of SoftDECA31

(Section 4.2), we first evaluate the precision of the LHM fitting32

(Section 4.1). Afterwards, we examine both quantitatively and33

qualitatively SparseSoftDECA (Section 4.3).34

4.1. LHM Fitting35

0mm 10mm
Fig. 5: The per-vertex mean L2-error of the LHM fitting.

The fitting process of the LHM involves the data-driven po-36

sitioning of the skull wrap and the subsequent heuristic fitting37

of the muscle wrap. Our evaluation focuses on the critical fit-38

ting of the skull wrap using the CT SKULLS dataset from [48],39

consisting of 43 instances. To assess precision, a leave-one-40

out validation is conducted, measuring vertex-wise L2 errors.41

Muscle Wrap Skull Wrap SkullFig. 6: Exemplary fits of the LHM components skull wrap, muscle wrap, and
skull.

Prior methods positioning the skull within the head primarily 42

rely on sparse soft tissue statistics derived from a few points on 43

the skull [7, 56]. We evaluate our approach against the multilin- 44

ear model (MLM) proposed by Achenbach et al. [30, 48] which 45

demonstrated more robust and precise positioning through the 46

capture of dense soft tissue statistics represented as radii of 47

spheres surrounding the skull. 48

Both models fall short of achieving medical-grade position- 49

ing, exhibiting errors ranging between approximately 2 mm and 50

4 mm. The MLM demonstrates higher precision with a mean 51

error of 1.98 mm, surpassing our approach, which positions the 52

skull with an average error of 3.83 mm. However, the MLM 53

lacks collision prevention, posing a potential issue for physics- 54

based simulations. Moreover, our fitting algorithm produces 55

significant errors primarily in regions of lesser importance for 56

facial simulations, as depicted in Figure 5. Notably, errors are 57

concentrated in the back area of the skull, where the rectangu- 58

lar constraints of our fitting procedure may no longer align well 59

with the skin wrap. Figure 6 provides visual examples of the 60

fitting process. 61

4.2. SoftDECA 62

4.2.1. Dataset & Training 63

To train and evaluate f, we construct a dataset comprising 64

500k training and test instances using the pipeline detailed in 65

Section 3.4. The parallelized creation of the dataset spanned 66

five days and necessitated one terabyte of storage. To address 67

the disparate sizes of the parameter spaces, 75% of the gener- 68

ated data consists of static instances where all parameters ex- 69

cept the dynamic ones α, β, γ are sampled. The remaining 25% 70

of the data is dynamically simulated, resulting in the generation 71

of 6250 dynamic sequences, each with a length of 16 frames. To 72

initiate dynamic sequences with a reasonable velocity, a longer 73

sequence of length 2048 is pre-simulated with fixed dynamics 74

parameters. For each dynamic sequence, a random observed ve- 75

locity from the long sequence is drawn as the initialization. The 76

dataset is divided into 90% for training and 10% for testing, en- 77

suring no repetition of the same identity, simulation parameters, 78

or facial expression in both sets. 79
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During training, the Adam optimizer executes 200k update1

steps with a learning rate of 0.0001, linearly decreasing to2

0.00005, and a batch size of 128. The training specifications3

result in an approximate runtime of 8 hours on an NVIDIA4

A6000. The relatively brief training duration can be attributed5

to the efficient network design and less noisy training data com-6

pared to scenarios typically encountered in image-based deep7

learning.8

4.2.2. Quantitative Analysis9

We quantitatively evaluate SoftDECA based on the L2 recon-10

struction error with respect to the targeted physics-based simu-11

lation and the computational runtimes. Additionally, we com-12

pare SoftDECA against Subspace Neural Physics (SNP) [14]13

and SoftSMPL [15] architectures adapted for facial simulations,14

recognized as state-of-the-art methods for rapid approximations15

of physics-based simulations. An overview of all results is pro-16

vided in Table 1. The reported runtimes represent averages of17

ten runs measured on a consumer-grade Intel i5 12600K pro-18

cessor. All implementations rely on PyTorch1.19

SoftDECA outputs precise approximations for both static and20

dynamic animations, showcasing average test reconstruction er-21

rors of only 0.22 mm and 0.41 mm, respectively. The results un-22

derscore SoftDECA’s capacity to generalize effectively across23

diverse human identities, facial expressions, and simulation pa-24

rameters. However, the test data fully stems from unperson-25

alized blendshapes, necessitating further assessment using an26

external dataset obtained from 3DScanstore2.27

The external data is compromised of 20 to 35 scanned fa-28

cial expressions for each of seven human identities. We create29

personalized ARKit blendshapes per head using example-based30

facial rigging [57]. Subsequently, a test dataset is generated as31

before. Despite the possibility that the 3DScanstore examples32

may not align with the DECA distribution, the reconstruction33

error experiences only a marginal increase to 0.44 mm.34

Noteworthy is SoftDECA’s swift performance, with an av-35

erage runtime of 7.45 ms for static frames and 9.87 ms for dy-36

namic frames. This rapid processing makes SoftDECA an ap-37

pealing choice for resource-demanding applications. Addition-38

ally, in scenarios where unseen personalized blendshapes are39

undesirable, we explored a variant of SoftDECA directly pre-40

dicting vertex positions. This alternative achieves an accu-41

racy of 0.16 mm and can be executed at an accelerated pace42

of 0.71 ms per frame.43

4.2.3. Static Comparisons44

In static simulations, SoftDECA is compared with Soft-45

SMPL, as SNP is exclusively tailored for approximating dy-46

namic effects. The key distinction between the SoftDECA and47

SoftSMPL architectures lies in the choice between our hyper-48

network MLP and a conventional MLP. Originally designed49

for full-body applications, SoftSMPL takes a motion descriptor50

as input, summarizing a body and its state. In our case, this51

translates to blendshape weights, simulation parameters, and52

1https://pytorch.org
2https://www.3dscanstore.com

the identity code. To maintain consistent inference times, we 53

employ identical network dimensions for the standard MLP as 54

those in the hypernetwork. Consequently, the SoftSMPL MLP 55

experiences a notable increase in the reconstruction error, av- 56

eraging 1.67 mm. We also explore a larger MLP that achieves 57

a comparable reconstruction error to SoftDECA, however, this 58

results in a substantial increase in runtime to 46.61ms. 59

Another canonical alternative to the hypernetwork is a stan- 60

dard MLP that does not map to all DGs simultaneously but is 61

evaluated face-wise. This approach yields a low reconstruc- 62

tion error of 0.17 mm, yet it comes with a higher runtime of 63

34.92 ms. Other architectures like CNNs, GNNs, or transform- 64

ers could not be evaluated in real-time on a consumer-grade 65

CPU with sufficient accuracy. For CNNs and GNNs, this is 66

due to the fundamental sparse convolutions that are depended 67

on very deep network layers to represent global effects (CNN, 68

GNN). Further, transformer architectures usually require an at- 69

tention mechanism with quadratic runtime but even optimized 70

set transformer [53] involve significantly more operations than 71

standard MLPs. 72

4.2.4. Dynamic Comparisons 73

For dynamic simulations, we compare SoftDECA with Soft- 74

SMPL and SNP. Unlike SoftDECA, both SoftSMPL and SNP 75

perform dynamic computations in a latent space rather than di- 76

rectly on vertices. Further, SoftSMPL incorporates a recurrent 77

GRU network [58], while SNP relies solely on a standard MLP. 78

For this comparison, we only consider the larger network de- 79

sign mentioned earlier, as our primary focus is on evaluating the 80

accuracy of our dynamic approximation rather than comparing 81

runtimes. At this, both SoftSMPL and SNP exhibit slightly im- 82

proved reconstruction errors at 0.22 mm and 0.24 mm, respec- 83

tively. However, since both methods do not operate vertex-wise, 84

they are not suitable for handling locally varying parameters of 85

the dynamic simulation. 86

4.2.5. Qualitative Analysis 87

A visual illustration of SoftDECA’s capabilities is given in 88

Figure 7, presenting a comparison between SoftDECA predic- 89

tions and the targeted physics-based facial simulation. For ex- 90

ample, in (a), it is evident that while collisions are not guar- 91

anteed to be entirely eliminated, they are largely mitigated. In 92

(b), a localized increase in triangle strain on the skin around the 93

cheeks results in the formation of wrinkles in that region. The 94

result in (c) demonstrates the incorporation of external effects 95

as heightened gravity. A surgical manipulation is shown in (d), 96

where the jaw is lengthened along the vertical axis in the neutral 97

state while maintaining the head’s volume. The representation 98

of a humanoid alien in (e) illustrates SoftDECA’s robustness 99

even outside the DECA distribution. This robustness is primar- 100

ily achieved by transferring DGs instead of directly predicting 101

vertex positions. Our interpretation of zombification in (f) is re- 102

alized by expanding the skin area, highlighting SoftDECA’s ca- 103

pability to closely approximate high-frequency details. Lastly, 104

in (g-h), we depict the simulation of different weight additions 105

in a non-linear manner, raising the soft tissue volume by 20% 106

and 40%, respectively. Given the extensive training domain 107

https://pytorch.org
https://www.3dscanstore.com
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Fig. 7: Exemplary results of SoftDECA in comparison to the targeted physics-based facial simulation as well as the inputted linear blendshape expressions.
Reconstruction errors are plotted on the simulated expressions.

Model
Ours SoftSMPL SNP Ablation

Static Dynamic External Static (Small) Static (Large) Dynamic Dynamic Face-wise Only Vertices

Error in mm 0.23 0.41 0.44 1.67 0.16 0.22 0.14 0.17 0.16
Time in ms 7.45 9.87 7.45 7.62 46.61 47.39 46.61 34.92 0.72

Table 1: SoftDECA test results in comparison to adapted SNP [14] and SoftSMPL [15] architectures as well as ablations. The runtimes are averages measured on a
consumer-grade Intel i5 12600K processor. External refers to the 3Dscanstore dataset. Small and large correspond to the size of the inspected MLP.
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Fig. 8: Exemplary results of SparseSoftDECA (right) in comparison to the targeted physics-based facial simulation (left) as well as the inputted landmarks (red dots).
Additionally, in b), the combination of SparseSoftDECA with skin textures is displayed. In the last row of b), Gaussian noise has been applied to the landmarks.
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Model
Ours Ablation

Same Other With Without
Identity Identity Noise Noise

Error in mm 0.54 0.62 0.55 0.73

Table 2: SparseSoftDECA test results using both the same and a different head
shape for personalization. Additionally, we investigate the influence of applying
noise to the facial landmarks in the training set.

of SoftDECA, many other effects can be animated efficiently1

which are not displayed in Figure 7. Additional results, includ-2

ing dynamic effects, are available in the supplementary material3

video.4

4.3. SparseSoftDECA5

4.3.1. Dataset & Training6

For the training and assessment of SparseSoftDECA, we cre-7

ate a dataset consisting of 500k training and test examples by8

following the procedure outlined in Section 3.6.2. Specifically,9

we simulate 50 distinct sets of facial expressions for each of10

10,000 randomly selected identities. The dataset is divided into11

90% for training and 10% for testing, ensuring that neither the12

same identity nor the same facial landmarks appear in both13

sets. To further rigorously evaluate the robustness of Spars-14

eSoftDECA in the face of incorrect and noisy inputs, as well as15

its generalization capacities, we extend σ in Equation (24). In16

contrast to training examples, for test examples the process of17

personalizing the landmarks applies a separate test identity.18

The training process and hyperparameters used are consistent19

with those described in Section 4.2.1.20

4.3.2. Quantitative Analysis21

SparseSoftDECA demonstrates the ability to closely mimic22

sparse landmark-guided simulations, as illustrated in Table 2.23

Whether personalization involves the same individual or a dif-24

ferent one appears to be almost irrelevant. The minimal L2-25

errors of 0.54 mm and 0.62 mm affirm the robustness of Spars-26

eSoftDECA in handling erroneous and noisy inputs. We also27

investigated the influence of training data augmentation with28

Gaussian noise (standard deviation of 0.01). A slight improve-29

ment of the error from 0.73 mm to 0.55 mm can be observed.30

In general, the errors observed are greater compared to those31

of SoftDECA. This can be attributed to the increased complex-32

ity of the task. Previously, the learning focus was primarily on33

changes in simulation properties, whereas now the learning task34

involves predicting entire facial expressions.35

4.3.3. Qualitative Analysis36

The images depicted in Figure 8 illustrate landmarks, corre-37

sponding simulations, and predictions generated by SparseSoft-38

DECA. In b), skin textures are exhibited aside of the geometry39

to demonstrate the quality of the final animation result. For40

the last row of b), Gaussian noise was applied to the land-41

marks, while all other examples are free of noise. On one42

hand, the reproduction quality evident from the measured test43

errors is visually confirmed. On the other hand, the benefits of44

physics-based simulations are reemphasized, highlighting their 45

capacity to transform even highly noisy landmark inputs into 46

anatomically plausible facial expressions. The principal advan- 47

tage, however, is that all expressions were generated using only 48

sparse landmarks as input and no underlying blendshapes had 49

to laboriously sculpted. As a side effect, no blendshapes need 50

to be stored, which can greatly reduce the memory footprint 51

depending on the type of animation. 52

To observe the temporal consistency of SparseSoftDECA we 53

kindly refer the reader to the attached video. 54

5. Limitations 55

Although SoftDECA inherits most of the advantages of 56

physics-based facial animations, it lacks the intrinsic handling 57

of interactive effects such as wind or colliding objects. More- 58

over, although we allow for extensive localized artistic interven- 59

tions, mixtures of material properties have not been part of the 60

training data. Incorporating such mixtures into the training data 61

is difficult as it is hard to define an adequate mixture distribu- 62

tion. Nonetheless, the smooth material blending of SoftDECA 63

visually appears to be a sufficient approximation. 64

Despite SparseSoftDECA differing from SoftDECA in that 65

it is not constrained by a specific set of blendshape weights, it 66

operates on a predefined set of landmarks. However, this limita- 67

tion could potentially be overcome in future research by imple- 68

menting a training process that utilizes randomly selected land- 69

mark sets. In general, identifying an optimal set of landmarks 70

is left to future work. 71

6. Conclusion 72

In this work, we have presented SoftDECA, which provides 73

a computationally efficient approximation to physics-based fa- 74

cial simulations, even on consumer-grade hardware. With a few 75

exceptions, most simulation capabilities are retained, such as 76

dynamic effects, volume preservation, wrinkle generation, and 77

many more. SoftDECA’s runtime performance is attractive for 78

high-performance applications and low-cost hardware. In ad- 79

dition, it is versatile as it supports different head shapes, facial 80

expressions, and material properties. The ability to make local 81

adjustments after training makes it a valuable framework for 82

artistic customization. 83

Our future goals for improving SoftDECA are twofold. On 84

the one hand, we want to refine the anatomical model to achieve 85

an even more accurate representation, especially for structures 86

such as the trachea and esophagus. On the other hand, latest re- 87

sults demonstrate the efficient learning of contact deformations 88

[59]. Given that people often touch their face several times a 89

day, introducing a contact treatment for more realistic gestures 90

could significantly improve immersion. 91

In continuation of the earlier presentation of SoftDECA [19], 92

this work also includes the introduction of SparseSoftDECA. 93

SparseSoftDECA enables blendshape-free facial animation 94

based on sparse landmarks and exhibits the same generalization 95

characteristics as SoftDECA. SparseSoftDECA seamlessly 96

integrates with the avatar generation pipeline proposed by 97
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Wenninger et al. [20], making it straightforward to deploy.1

2

3

4
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[10] Yang, L, Kim, B, Zoss, G, Gözcü, B, Gross, M, Solenthaler, B. Im-35

plicit neural representation for physics-driven actuated soft bodies. ACM36

Transactions on Graphics (TOG) 2022;41(4):1–10.37

[11] Barrielle, V, Stoiber, N, Cagniart, C. Blendforces: A dynamic frame-38

work for facial animation. In: Computer Graphics Forum; vol. 35. 2016,39

p. 341–352.40

[12] Srinivasan, SG, Wang, Q, Rojas, J, Klár, G, Kavan, L, Sifakis, E.41

Learning active quasistatic physics-based models from data. ACM Trans-42

actions on Graphics (TOG) 2021;40(4):1–14.43

[13] Brandt, C, Eisemann, E, Hildebrandt, K. Hyper-reduced projective44

dynamics. ACM Transactions on Graphics (TOG) 2018;37(4):1–13.45

[14] Holden, D, Duong, BC, Datta, S, Nowrouzezahrai, D. Subspace neural46

physics: Fast data-driven interactive simulation. In: Proceedings of the47

18th annual ACM SIGGRAPH/Eurographics Symposium on Computer48

Animation. 2019, p. 1–12.49

[15] Santesteban, I, Garces, E, Otaduy, MA, Casas, D. SoftSMPL: Data-50

driven Modeling of Nonlinear Soft-tissue Dynamics for Parametric Hu-51

mans. In: Computer Graphics Forum; vol. 39. 2020, p. 65–75.52

[16] Cong, M, Fedkiw, R. Muscle-based facial retargeting with anatomical53

constraints. In: ACM SIGGRAPH 2019 Talks. 2019, p. 1–2.54

[17] Ha, D, Dai, A, Le, QV. Hypernetworks. arXiv preprint arXiv:16090910655

2016;.56

[18] Feng, Y, Feng, H, Black, MJ, Bolkart, T. Learning an animatable57

detailed 3D face model from in-the-wild images. ACM Transactions on58

Graphics (TOG) 2021;40(4):1–13.59

[19] Wagner, N, Botsch, M, Schwanecke, U. SoftDECA: Computationally60

Efficient Physics-Based Facial Animations. In: Proceedings of the 16th61

ACM SIGGRAPH Conference on Motion, Interaction and Games. 2023,62

p. 1–11.63

[20] Wenninger, S, Achenbach, J, Bartl, A, Latoschik, ME, Botsch, M.64

Realistic virtual humans from smartphone videos. In: Proceedings of65

the 26th ACM Symposium on Virtual Reality Software and Technology.66

2020, p. 1–11.67

[21] Ali-Hamadi, D, Liu, T, Gilles, B, Kavan, L, Faure, F, Palombi, O, et al.68

Anatomy transfer. ACM Transactions on Graphics (TOG) 2013;32(6):1– 69

8. 70

[22] Gilles, B, Reveret, L, Pai, DK. Creating and animating subject-specific 71

anatomical models. In: Computer Graphics Forum; vol. 29. 2010, p. 72

2340–2351. 73
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[41] Kadleček, P, Kavan, L. Building accurate physics-based face models 132

from data. Proceedings of the ACM on Computer Graphics and Interac- 133

tive Techniques 2019;2(2):1–16. 134

[42] Bickel, B, Lang, M, Botsch, M, Otaduy, MA, Gross, MH. Pose-Space 135

Animation and Transfer of Facial Details. In: Symposium on Computer 136

Animation. 2008, p. 57–66. 137
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Appendix A. Simulation Parameters1

In the following, we describe all simulation parameters that2

haven been sampled during the creation of the SoftDECA train-3

ing data. Moreover, we state the sampling range for each pa-4

rameter. This list is not complete in the sense that SoftDECA is5

not committed to it. However, these parameters already provide6

a comprehensive test of SoftDECA’s capabilities and allow for7

extensive individualization opportunities.8

• Dynamics We sample each of the parameters α, β, γ that9

steer the dynamic second order effects in a range from 0 to10

2.11

• Constraint Weights All weights w∗ associated with the12

constraints of ϕ† are sampled between 0.001 and 100.13

• Volume The target determinant in the volume energy Evol14

is sampled from 0.5 to 1.5.15

• Maximum Strain We allow a varying amount of maximum16

soft tissue strain by adjusting the ϵ from 0.7 to 1.3.17

• Gravity An additional gravity force is applied in a range18

from standard earth’s gravity up to two times the standard.19

Further, the gravity direction is sampled.20

• Skull We incorporate changes in the skull bones by sam-21

pling coordinate-wise scaling factors for both the cranium22

and jaw in the range from 0.5 to 1.5.23

Appendix B. Energies24

In the following, we formally state all energies under25

optimization.26

27

Volume & Strain28

Evol(t) = (det(F(t)) − 1)2 (B.1)

Estr(t) = min
R∈S O(3)

∥F(t) − R∥2F (B.2)

F(t) denotes the deformation gradient of a tetrahedron t,29

R ∈ S O(3) the optimal rotation, and ∥·∥2F the Frobenius norm.30

31

Bending32

Ecurv(x, B) = Ax ∥∆x − R∆bx∥
2 (B.3)

The matrix R ∈ S O(3) denotes the optimal rotation keeping the33

vertex Laplacian ∆x as close as possible to its initial value ∆bx.34

The vertex Laplacian is discretized using the cotangent weights35

and the Voronoi areas Ax [60].36

37

Soft Dirichlet38

Etar

(
x, S exp

)
= ∥x − sx∥

2 , (B.4)
attracts each vertex x of the skin surface S to the corresponding39

vertex sx from the target expression S exp.40

41

Fitting Distances42

Edist2

(
X, Ŝ ,D

(
Ŝ
))
=
∑
x∈X

(∥x − sx∥ − dx)2 (B.5)

ensures that for each vertex x ∈ X the predicted distance dx ∈43

D(Ŝ ) is adhered to.44

Appendix C. Template Layered Head Model 45

Table C.3 states the cardinality of each component of the lay- 46

ered head model template. By subdividing the wrap meshes 47

or the triangle prisms between the wraps, the resolution of the 48

template tetrahedron meshes can easily be adjusted. We will 49

provide a mapping between the DECA and our topology. 50

Mesh S T BT MT Ŝ T
#Vertices 35621 14572 16388 7826
#Faces / #Tetrahedrons 71358 28856 32370 15648

Mesh B̂T M̂T ST MT
#Vertices 7826 7826 49852
#Faces / #Tetrahedrons 15648 15648 123429 73681

Table C.3: Template dimensions.

Appendix D. Network Dimensions 51
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Fig. D.9: Network dimensions. Each fully connected layer (FC) is represented
as a box. For each FC, the input and output dimensions are stated as well as the
applied activation function.
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