
Ray Tracing Harmonic Functions

MARK GILLESPIE, Carnegie Mellon University, USA
DENISE YANG, Carnegie Mellon University / Pixar Animation Studios, USA
MARIO BOTSCH, TU Dortmund University, Germany
KEENAN CRANE, Carnegie Mellon University, USA

Sphere tracing is a fast and high-quality method for visualizing surfaces

encoded by signed distance functions (SDFs). We introduce a similar method

for a completely different class of surfaces encoded by harmonic functions,
opening up rich new possibilities for visual computing. Our starting point

is similar in spirit to sphere tracing: using conservative Harnack bounds on
the growth of harmonic functions, we develop a Harnack tracing algorithm

for visualizing level sets of harmonic functions, including those that are

angle-valued and exhibit singularities. The method takes much larger steps

than naïve ray marching, avoids numerical issues common to generic root

finding methods and, like sphere tracing, needs only perform pointwise

evaluation of the function at each step. For many use cases, the method is fast

enough to run real time in a shader program. We use it to visualize smooth

surfaces directly from point clouds (via Poisson surface reconstruction) or

polygon soup (via generalized winding numbers) without linear solves or

mesh extraction. We also use it to visualize nonplanar polygons (possibly

with holes), surfaces from architectural geometry, mesh “exoskeletons”, and

key mathematical objects including knots, links, spherical harmonics, and

Riemann surfaces. Finally we show that, at least in theory, Harnack tracing

provides an alternative mechanism for visualizing arbitrary implicit surfaces.

CCS Concepts: • Computing methodologies→ Ray tracing; Shape anal-
ysis; • Mathematics of computing→ Numerical analysis.

Additional Key Words and Phrases: Ray tracing, sphere tracing, implicit

surfaces, harmonic function, Harnack inequality

ACM Reference Format:
Mark Gillespie, Denise Yang, Mario Botsch, and Keenan Crane. 2024. Ray

Tracing Harmonic Functions. ACM Trans. Graph. 43, 4, Article 99 (July 2024),
18 pages. https://doi.org/10.1145/3658201

1 INTRODUCTION

x

x2–y2

y

A function 𝑓 : Ω → R on a domain Ω ⊂ R𝑛
is harmonic if it satisfies the Laplace equation

Δ𝑓 (x) =
𝑛∑︁
𝑖=1

𝜕2

𝜕𝑥2

𝑖

𝑓 (x) = 0 (1)

at all points x ∈ Ω. The function 𝑓 (𝑥,𝑦) = 𝑥2−𝑦2
is harmonic onR2

,

and exhibits the saddle shape characteristic of harmonic functions

(see inset). Harmonic functions can be angle-valued (Section 3.2),

Authors’ addresses: Mark Gillespie, Carnegie Mellon University, USA, mgillesp@cs.

cmu.edu; Denise Yang, Carnegie Mellon University / Pixar Animation Studios, USA,

deniseyg29@gmail.com; Mario Botsch, TU Dortmund University, Germany, mario.

botsch@tu-dortmund.de; Keenan Crane, Carnegie Mellon University, USA, kmcrane@

cs.cmu.edu.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

0730-0301/2024/7-ART99

https://doi.org/10.1145/3658201

Fig. 1. We introduce a ray tracing algorithm for a novel class of surfaces
defined by level sets of harmonic functions. Here for instance we directly
visualize a nonplanar polygon which has no well-defined inside or outside—
and hence cannot be represented by an ordinary implicit function or SDF.
Isolines depict a 2D slice of the harmonic function; spheres show conser-
vative Harnack bounds along a ray. Note the smooth reflection lines, even
near edges and vertices where the function is highly singular.

θ (x,y)

–π

+π
θ

(x,y)

0

and can exhibit singularities. The function

𝜃 (𝑥,𝑦) = atan2(𝑦, 𝑥) in the inset is a model

example: it jumps by 2𝜋 at 𝑦 = 0, and is sin-

gular at 𝑥 = 𝑦 = 0. Considering angle-valued

functions allow us to represent implicit sur-

faces with boundary (Figure 1).

Despite their special form, harmonic functions arise naturally in

many contexts. From a variational perspective, they describe the

smoothest function that agrees with given observations—providing

a powerful tool for interpolating data over geometric domains (e.g.,
color [Orzan et al. 2008] or displacement [Joshi et al. 2007]). From

a spectral perspective, Fourier basis functions on R𝑛 can be ex-

tended to harmonic functions on R𝑛+1, allowing any function to be

well-approximated by a “slice” of a harmonic one (as explored in Sec-

tion 4.7.1). Finally, from an integral perspective, harmonic functions

are characterized by the fact that 𝑓 (x) is equal to the mean value of

𝑓 over any ball around x—connecting them to steady-state solutions

for a vast array of physical equations (electrostatics, gravitation,

heat transfer, etc.). This so-called mean value property is the starting

point for the Harnack inequality used in our algorithm to bound

the change in the value of a positive harmonic function (Section 2).

Although Harnack inequalities are widely applied in the mathemat-

ical analysis of partial differential equations, they have not (to our

knowledge) been applied to rendering or image synthesis.

In this paper, we are interested in ray tracing level sets of a har-
monic function 𝑓 , i.e., sets

S = {x ∈ R3 | 𝑓 (x) = 𝑓 ∗}, (2)

where 𝑓 ∗ is a fixed target value. In particular, given a ray

r(𝑡) = r0 + 𝑡v (3)

ACM Trans. Graph., Vol. 43, No. 4, Article 99. Publication date: July 2024.

https://doi.org/10.1145/3658201
https://doi.org/10.1145/3658201

99:2 • Gillespie, Yang, Botsch, and Crane

lower bound

R

upper bound

Fig. 2. For any positive harmonic function 𝑓 (x) on a ball of radius 𝑅, the
Harnack inequality gives an upper and lower bound on the values of this
function, purely in terms of 𝑅 and the value 𝑓 (x0) at the ball center.

starting at a point r0 and extending in the direction v, we seek to find
the first time 𝑡 > 0 such that 𝑓 (r(𝑡)) = 𝑓 ∗. Unfortunately, general-
purpose intersection strategies (detailed in Section 5) do not provide

a robust solution, since they (i) provide no first-hit guarantee, (ii) do

a poor job near singularities, and (iii) do not handle angle-valued

functions. To date, ray intersection algorithms provide guarantees

only for a few special classes of surfaces, enumerated in Section 5.2.

Our method adds one more entry to this list: surfaces defined by

harmonic functions. More precisely, it enables reliable ray tracing

of

• level sets of harmonic functions (possibly with singularities),

• lower-dimensional slices through harmonic level sets, and

• height fields of harmonic functions (possibly multivalued).

Our method is inspired by the sphere tracing algorithm of Hart

[1996], which ray traces level sets of a function 𝑓 with a known

Lipschitz bound, i.e., a value 𝐶 > 0 such that, for all points x, y we

have |𝑓 (x) − 𝑓 (y) | ≤ 𝐶 ∥x − y∥. At any time 𝑡 , one can hence be

certain that no point of the surface S is contained within a ball of

radius 𝑅 = (𝑓 (r(𝑡)) − 𝑓 ∗)/𝐶—providing a conservative step size for

ray tracing. An important special case are signed distance functions
(SDFs), with Lipschitz constant 𝐶 = 1. Sphere tracing was originally

motivated by ray tracing fractal quaternion Julia sets [Hart et al.
1989], which admit closed-form distance bounds; in more recent

times, it has become a basic strategy for evaluating neural implicit

surfaces [Takikawa et al. 2021, Section 2]. Just as in sphere tracing,

we truncate the ray by the largest “safe” sphere—the key difference

is that this safe radius is determined by reasoning about harmonic

functions, rather than a Lipschitz function.

1.1 Outline
Section 2 gives some brief background on the Harnack inequality,

used to define our Harnack tracing algorithm in Section 3. Section 4

walks through a variety of examples, including derivation of some

bounds and formulas needed to apply our algorithm to several

classes of surfaces. Here we also perform numerical evaluation of

our method. We defer a discussion of related work to Section 5,

in order to simultaneously make numerical comparisons to our

method. Limitations and future work are discussed in Section 6.

2 THE HARNACK INEQUALITY
Let 𝑓 : 𝐵𝑅 (x0) → R≥0 be a positive harmonic function on the

open ball 𝐵𝑅 (x0) of radius 𝑅 > 0 centered at a point x0 ∈ R𝑛 . The
Harnack inequality, illustrated in Figure 2, provides a conservative

upper and lower bound on the value of 𝑓 for every point x ∈ 𝐵𝑅 (x0)
in terms of the distance 𝜌 := ∥x − x0∥ < 𝑅 and the value of 𝑓 at x0:

(𝑅 − 𝜌)𝑅𝑛−2

(𝑅 + 𝜌)𝑛−1
𝑓 (x0) ≤ 𝑓 (x) ≤

(𝑅 + 𝜌)𝑅𝑛−2

(𝑅 − 𝜌)𝑛−1
𝑓 (x0) (4)

(see Harnack [1887, §19] or Axler et al. [2013, §3.4]). Note in partic-

ular that the upper bound goes to +∞ as 𝜌 → 𝑅, reflecting the fact

that a harmonic function can have arbitrarily large values along

the boundary of the ball. Likewise, the lower bound goes to zero

as 𝜌 → 𝑅, since a positive function can go to zero at any boundary

point. The reason 𝑓 must be positive is that there is no bound on

the growth of a general harmonic function within a ball depend-

ing only on 𝑅 and 𝑓 (x0). For instance, a linear function on 𝐵𝑅 (x0)
can have arbitrarily large slope, but forcing a linear function to be

positive ensures that its slope is no greater than 𝑓 (x0)/𝑅. Although
the Harnack inequality applies only to positive harmonic functions,

we can still use it to build algorithms that ray trace more general

harmonic functions, as discussed in Section 3.1.

2.1 Largest Step Size
We will rewrite the Harnack inequality in a form that makes it more

directly useful for our algorithms. In particular, suppose we are

standing at a point x0 ∈ R3
and want to know the maximum step

size 𝜌
lower

we can take in any direction v such that 𝑓 (x0 + 𝜌v) is no
smaller than a given lower bound 𝑓− ∈ (0, 𝑓 (x0)). In 3D, we have

𝜌
lower

:=
𝑅

2

(
−(2 + 𝑎−) +

√︃
𝑎2− + 8𝑎−

)
, (5)

where 𝑎− := 𝑓 (x0)/𝑓− . Likewise, if we want to avoid exceeding an

upper bound 𝑓 + ∈ (𝑓 (x0),∞), then we have a maximum step size

𝜌upper :=
𝑅

2

(
𝑎+ + 2 −

√︃
𝑎2

+ + 8𝑎+

)
, (6)

where 𝑎+ := 𝑓 (x0)/𝑓+. Hence, if our goal is to intersect a level set

with value 𝑓 ∗, we can simply compute a single step size

𝜌 :=
𝑅

2

���𝑎 + 2 −
√︁
𝑎2 + 8𝑎

��� , (7)

where𝑎 := 𝑓 (x0)/𝑓 ∗. This bound provides a conservative (i.e., “safe”)
step size, whether 𝑓 (x0) is above or below 𝑓 ∗.

3 ALGORITHM
Our algorithm—which we call Harnack tracing—finds the first point
along a ray intersecting the level set of a given harmonic function.

Unlike the Harnack inequality from Section 2, we do not require

that this function be positive. Instead, we require only that its value

can be bounded from below within some ball around any given

point. We first describe the algorithm in the case where 𝑓 is smooth

everywhere; later we will consider cases where 𝑓 exhibits jumps

and singularities (Section 3.2), which are important for applications.

ACM Trans. Graph., Vol. 43, No. 4, Article 99. Publication date: July 2024.

Ray Tracing Harmonic Functions • 99:3

3.1 Harnack Tracing
Let 𝑓 : R3 → R be a harmonic function, and let r(𝑡) be the ray

r(𝑡) := r0 + 𝑡v

starting at r0 ∈ R3
and moving in direction

v ∈ R3
(see inset). For a target value 𝑓 ∗, the

Harnack tracing algorithm computes the

smallest time 𝑡∗ > 0 such that

𝑓 (r(𝑡∗)) = 𝑓 ∗,
i.e., the time where the ray first pierces the surface

S := 𝑓 −1 (𝑓 ∗) = {x ∈ R3 | 𝑓 (x) = 𝑓 ∗}.
To do so, we use the inequalities from Section 2.1 to find the largest

step size 𝜌 for which the ray is guaranteed not to pass through S.
However, since these inequalities apply only to positive functions,
we effectively “shift” 𝑓 within a local ball to get a safe step size.

More explicitly, suppose that for any point x ∈ R3
, we have a

radius 𝑅 > 0 and value 𝑐 ∈ R such that 𝑓 (y) > 𝑐 for all points y ∈
𝐵𝑅 (x). To find a step size 𝜌 at some time 𝑡 , we evaluate Equation 7,

but using the shifted function value 𝑓 (r(𝑡)) − 𝑐 and shifted target

value 𝑓 ∗ − 𝑐 . We then increment 𝑡 by 𝜌 and repeat this process until

𝑓 (r(𝑡)) is sufficiently close to 𝑓 ∗, or 𝑡 exceeds some maximum time

𝑡max. Algorithm 1 provides pseudocode for this procedure, and we

prove that it converges linearly to the target level set in Appendix A.

Algorithm 1 HarnackTrace(r0, v, 𝑓 ∗, 𝑓 (x), 𝑅(x), 𝑐 (x), 𝜀, 𝑡max)
Input: A ray origin r0 ∈ R3

, unit ray direction v ∈ R3
, target level

set value 𝑓 ∗ ∈ R, harmonic function 𝑓 : R3 → R, a radius
function 𝑅 : R3 → R>0, lower bound function 𝑐 : R3 → R,
stopping tolerance 𝜀 > 0, and maximum ray time 𝑡max > 0.

Output: The time 𝑡∗ of the first intersection, or −1 if no intersection

occurs.

1: 𝑡 ← 0

2: do
3: r𝑡 ← r0 + 𝑡v ⊲current point along ray
4: 𝑓𝑡 ← 𝑓 (r𝑡) ⊲current function value
5: if |𝑓𝑡 − 𝑓 ∗ | ≤ 𝜀∥∇𝑓 (r𝑡)∥ then ⊲stopping condition (§3.1.2)
6: return 𝑡
7: 𝑅𝑡 ← 𝑅(r𝑡) ⊲radius of ball used to bound step size
8: 𝑐𝑡 ← 𝑐 (r𝑡) ⊲shift that makes 𝑓 positive on ball 𝐵𝑅𝑡 (r𝑡)
9: if 𝑓 ∗ ≤ 𝑐𝑡 then ⊲if 𝑓 ∗ lies below the lower bound...
10: 𝜌 ← 𝑅 ⊲...we can safely take the maximum step of 𝑅
11: else
12: 𝑎 ← (𝑓𝑡 − 𝑐𝑡)/(𝑓 ∗ − 𝑐𝑡) ⊲otherwise, shift f and...
13: 𝜌 ← 1

2
𝑅𝑡

���𝑎 + 2 −
√
𝑎2 + 8𝑎

��� ⊲...compute a safe step size

14: 𝑡 ← 𝑡 + 𝜌 ⊲take step
15: while 𝑡 < 𝑡max

16: return −1 ⊲ray does not hit surface

3.1.1 Radii and Bounds. The only challenge in applying Harnack

tracing to a given application scenario is determining values for 𝑅

and 𝑐 . An important observation, following from lines 12 and 13 of

Algorithm 1, is that the largest step size will be achieved by using (i)

the tightest possible lower bound 𝑐 on 𝑓 and (ii) the largest possible

radius 𝑅. The reason is that the step size 𝜌 approaches the maximum

R = 1
c = -1.75

ρ

R = .5
c = -1.75

R = 1
c = -5

R = 1
c = -10

R = .25
c = -1.75

Fig. 3. To determine a conservative step size 𝜌 , we need a lower bound 𝑐 on
the value of the harmonic function within a ball of radius 𝑅. As seen here,
tighter bounds yield larger step sizes, as do larger radii. However, these two
goals are often in conflict, as larger balls will contain lower values—obtaining
efficient step sizes requires balancing these two considerations.

to
p

vi
ew

bo
�

om
 v

ie
w

invalid lower bound

Fig. 4. Harnack tracing requires a lower bound 𝑐 (x) on the implicit function
𝑓 (x) . If 𝑐 is invalid—i.e. fails to bound 𝑓 —then rays may pass through the
surface, yielding artifacts which become more severe as 𝑐 increases (left).
The artifacts are also worse for rays approaching from below (𝑓 < 𝑓 ∗),
rather than above (𝑓 > 𝑓 ∗), as 𝑓 takes on higher values above the surface.
We describe how to obtain valid bounds in a variety of important cases.

step size 𝜌 = 𝑅 as 𝑐 → 𝑓 (r𝑡), and approaches zero as 𝑐 → −∞ (Fig-

ure 3). Simultaneously, the step size grows in proportion to the ball

radius 𝑅. However, for harmonic functions (which are saddle-like

everywhere) larger balls inevitably contain more negative values.

To achieve efficient computation, one must hence balance the choice

of 𝑅 and 𝑐 .

Lipschitz vs. Harnack Bounds. This situation is not so different

from classic sphere tracing: to render any new class of implicit func-

tions, one must derive problem-specific bounds—as done gradually

over the years for Lipschitz sphere tracing (Section 5.2.2). In both

cases, however, finding some reasonable bound is typically possible,

even if the optimal bound is hard to find. We walk through the

derivation of several lower bounds in Section 4, enabling us to ap-

ply Harnack tracing in a variety of application scenarios. As in the

Lipschitz case, one can also (as a fallback) simply “guess and check”,

adjusting 𝑐 until the algorithm produces a valid result (Figure 4).

Moreover, one can always take the maximum step size among any

collection of conservative bounds (since all are “safe”)—including

both Lipschitz and Harnack bounds. In this sense, the Harnack ap-

proach can be viewed as complementary to the Lipschitz approach,

rather than as a “competitor.”

ACM Trans. Graph., Vol. 43, No. 4, Article 99. Publication date: July 2024.

99:4 • Gillespie, Yang, Botsch, and Crane

Fig. 5. If 𝑓 (x) is a signed distance function, then terminating intersection
queries when | 𝑓 (x) − 𝑓 ∗ | < 𝜀 ensures that x is within 𝜀 of the chosen level
set. But, when 𝑓 (x) is a general function, this condition loses its geometric
meaning and produces an uneven profile along the target surface (left). We
can obtain a more meaningful stopping condition using the gradient ∇𝑓 (x) ,
to relate changes in function value to changes in position (center, right).

3.1.2 Stopping Condition. When 𝑓 is a signed distance function,

a natural stopping condition is to ask that |𝑓 (x) − 𝑓 ∗ | < 𝜀, which

ensures that x lies within a small geometric distance 𝜀 of the level set

𝑓 ∗. When 𝑓 is harmonic, however, this stopping condition does not

carry the same geometric meaning: 𝑓 (x) can be very far from—or

unnecessarily close to—the target surface. To get a more meaningful

stopping criterion near the surface, we hence use the condition

|𝑓 (x) − 𝑓 ∗ |
∥∇𝑓 (x)∥ < 𝜀,

which gives a good estimate of distance for values of 𝑓 (x) near
𝑓 ∗ provided that 𝑓 is sufficiently smooth. As seen in Figure 5, this

condition ensures that rays terminate in a region of near-uniform

thickness, whereas the naïve condition |𝑓 (x) − 𝑓 ∗ | < 𝜀 leads to sig-

nificant variability. This uniformity is especially important near sin-

gularities, where 𝑓 has a steep gradient and requires extremely small

steps to meet the stringent requirements of the naïve condition—

Figure 22 visualizes the iteration counts resulting from both stopping

conditions. Uniformity is also essential when shooting secondary

rays (e.g. to render shadows), where error estimates for the point

of intersection are needed to ensure that the outgoing ray does not

get “stuck” at the point of departure [Pharr et al. 2023, Chapter 6.8].

3.1.3 Surface Normals. We can compute a unit normal n at any

intersection point x by simply normalizing the gradient of our func-

tion 𝑓 , i.e., n = ∇𝑓 /∥∇𝑓 ∥. This gradient can be computed using a

closed-form or automatically-derived expression if available, or any

standard finite difference approximation. For finite differences, we

use the tetrahedral scheme advocated by Quilez [2015]; however,

even careful treatment of finite differences can yield visual arti-

facts on singular functions (see e.g. Figure 12). We hence also give

closed-form gradient expressions for specific examples in Section 4.

3.1.4 Acceleration. The “over stepping” technique used by Keinert

et al. [2014, §3.1] for sphere tracing also provides a simple and

effective method to accelerate Harnack tracing. The core insight is

that at iteration 𝑘 , a step is safe so long as it is less than the sum
of the safe step sizes 𝜌𝑘 from iteration 𝑘 and 𝜌𝑘+1 from iteration

𝑘 + 1: we know that the target level set cannot come within 𝜌𝑘 of

our position at iteration 𝑘 or within 𝜌𝑘+1 of our position at iteration

𝑘 + 1. So rather than taking steps of size 𝜌𝑘 , we can use a larger step

size 𝛿𝑡 , and then check whether 𝛿𝑡 ≤ 𝜌𝑘 + 𝜌𝑘+1. In practice, we set

𝛿𝑡 ← 1.75𝜌𝑘 , falling back to a step of size 𝜌𝑘 if 𝛿𝑡 is too large.

Discontinuous Function Continuous Lift

Fig. 6. Many harmonic functions naturally arise as angle-valued functions.
Although such functions appear discontinuous when plotted in the range
[0, 2𝜋) , they can always be lifted to form a continuous harmonic function
on any simply-connected domain. Importantly, we never need to construct
this lift explicitly: its mere existence is sufficient for the bound to hold.

3.2 Angle-Valued Functions
An important class of harmonic functions is those that are angle-

valued (see especially Sections 4.2–4.6). More precisely, we say a

real-valued function is angle-valued if it is continuous modulo 2𝜋 ,

i.e., real values that differ by an integer multiple of 2𝜋 encode the

same angle. In this way, functions with discontinuous real values

can still describe continuously-varying angles (e.g., Section 1, inset).
Although angle-valued functions are often computed using ex-

pressions that give values in the range [0, 2𝜋) or [−𝜋, 𝜋), yielding
apparent discontinuities, they can locally be lifted to a continuous

function (Figure 6). Importantly, we never need to explicitly compute
or construct such a lift: its mere existence is sufficient for the Harnack

inequality to be valid. The only challenge is determining the range

of the lifted function, in order to apply the inequality. In particular,

if we know that a function 𝑓 : Ω → [0, 2𝜋) jumps discontinuously

at most 𝑘 times up or 𝑘 times down along any segment within Ω em-

anating from x0, then we immediately have a lower bound of −2𝜋𝑘 .

Hence, if we can bound the number of signed intersections with the

target surface (i.e. the number of jumps up minus the number of

jumps down), we can obtain a lower bound 𝑐 on the lifted function,

and can still use Harnack tracing to find the first intersection.
Algorithm 2 gives a modified procedure suitable for angle-valued

functions. To make this algorithm applicable to a wider variety of

use cases, we allow the angle-valued function 𝑓 (x) to have period

2𝜋𝜔 for some constant 𝜔 , rather than always having period 2𝜋 .

This generality allows us to handle, e.g., the solid angle function in

Section 4.2 with period 4𝜋 . A small but important change relative to

Algorithm 1 is that we must bound the step size according to both

the closest level set values 𝑓+ and 𝑓− above and below the current

value 𝑓 (resp.), and must return a hit if we come sufficiently close to

either level set. Otherwise, the algorithm is the same.

3.3 Height Fields
Given a continuous harmonic function 𝑓 : R2 → R on the plane,

we can use Harnack tracing to intersect a ray with the height field

S := {(𝑥1, 𝑥2, 𝑥3) | 𝑓 (𝑥1, 𝑥2) = 𝑥3}.

Since S is the zero level set of 𝜙 (𝑥1, 𝑥2, 𝑥3) := 𝑓 (𝑥1, 𝑥2) − 𝑥3, which

is harmonic on R3
whenever 𝑓 is harmonic on R2

, we can find

intersections with S by calling Algorithm 1 on 𝜙 . We can also

compute intersections with height fields of angle-valued functions

by treating 𝜙 as an angle-valued function on R3
(Section 4.6).

ACM Trans. Graph., Vol. 43, No. 4, Article 99. Publication date: July 2024.

Ray Tracing Harmonic Functions • 99:5

Algorithm2TraceAngleValued(r0, v, 𝜔, 𝜙, 𝑓 (x), 𝑅(x), 𝑐 (x), 𝜀, 𝑡max)
Input: A ray origin r0 ∈ R3

, unit ray direction v ∈ R3
, an angular

frequency 𝜔 ∈ R>0 and phase shift 𝜙 ∈ R that determine

target level set values 𝑓 ∗ (𝑘) := 2𝑘𝜋𝜔 + 𝜙 for all 𝑘 ∈ Z,
harmonic function 𝑓 : R3 → R, a radius function 𝑅 : R3 →
R>0, lower bound function 𝑐 : R3 → R, stopping tolerance

𝜀 > 0, and maximum ray time 𝑡max > 0.

Output: The time 𝑡∗ of the first intersection with any level set 𝑓 ∗ (𝑘),
or −1 if no intersection occurs.

1: 𝑡 ← 0

2: do
3: r𝑡 ← r0 + 𝑡v ⊲current point along ray
4: ⊲Find the two level set values bracketing the current value of 𝑓
5: 𝑓0 ← (𝑓 (r𝑡) − 𝜙)/(2𝜋𝜔)
6: 𝑓− ← (2𝜋𝜔) ⌊𝑓0⌋ + 𝜙
7: 𝑓+ ← (2𝜋𝜔) ⌈𝑓0⌉ + 𝜙
8: ⊲Stop if close to either surface (§3.1.2)
9: if min(𝑓 (r𝑡) − 𝑓−, 𝑓+ − 𝑓 (r𝑡)) ≤ 𝜀∥∇𝑓 (r𝑡)∥ then
10: return 𝑡
11: 𝑅𝑡 ← 𝑅(r𝑡) ⊲radius of ball used to bound step size
12: 𝑐𝑡 ← 𝑐 (r𝑡) ⊲shift that makes 𝑓 positive on ball 𝐵𝑅𝑡 (r𝑡)
13: ⊲Compute a step size bound for each of the two closest level sets
14: 𝑎− ← (𝑓 (r𝑡) − 𝑐𝑡)/(𝑓− − 𝑐𝑡)
15: 𝑎+ ← (𝑓 (r𝑡) − 𝑐𝑡)/(𝑓+ − 𝑐𝑡)
16: 𝜌−← 1

2
𝑅𝑡

���𝑎− + 2 −
√︁
𝑎2− + 8𝑎−

���
17: 𝜌+ ← 1

2
𝑅𝑡

���𝑎+ + 2 −
√︁
𝑎2

+ + 8𝑎+
���

18: ⊲Take the smaller of the two steps
19: 𝜌 ← min(𝜌−, 𝜌+)
20: 𝑡 ← 𝑡 + 𝜌
21: while 𝑡 < 𝑡max

22: return −1 ⊲ray does not hit surface

4 EXAMPLES AND EVALUATION
Harmonic functions and their level sets play an important role across

geometric and visual computing—here we explore how Harnack

tracing can be applied to several example use cases. We start with

harmonic polynomials as a didactic example (Section 4.1), before

introducing a novel strategy for visualizing nonplanar polygons

(Section 4.2). We also consider surface reconstruction (Section 4.3),

mesh repair (Section 4.4), architectural design (Section 4.5), and

mathematical visualization (Section 4.6). As a final example, we

use Harnack tracing to visualize a function which is not harmonic

(Section 4.7), paving the way to potentially broader applications

(Section 4.7.1). We then conclude with a discussion of our implemen-

tation (Section 4.8), howmany iterations it takes to find intersections

(Section 4.9) and its convergence rate (Section 4.10).

4.1 Spherical Harmonics
As a simple example, which does not involve any discontinuities,

we start by visualizing spherical harmonics as level sets of harmonic

polynomials on R3
(Figure 7). Though often defined using Legendre

functions in polar coordinates, any spherical harmonic can also be

expressed as the restriction of a homogeneous harmonic polynomial

m=0

l=
1

l=
2

l=
3

l=
4

m=1 m=2 m=3 m=4

Fig. 7. Harmonic polynomials provide an elementary example of harmonic
functions. When restricted to the sphere, these polynomials describe the
spherical harmonics. Here we visualize each spherical harmonic by restricting
the level sets of the associated spherical polynomial to the unit ball.

𝑝 (𝑥1, 𝑥2, 𝑥3) to the unit sphere 𝑆2
:= {x ∈ R3 | ∥x∥ = 1}. Curves

where the level sets of 𝑝 meet the sphere trace out contours of the

spherical harmonic.

Explicitly, a polynomial 𝑝 : R3 → R is harmonic if it satisfies

Laplace’s equation (Equation 1). Take for instance the polynomial

𝑝 (𝑥1, 𝑥2, 𝑥3) := 𝑥2

1
𝑥2 − 𝑥2𝑥

2

3
, (8)

for which Δ𝑝 = 2𝑥2−2𝑥2 = 0. To visualize a level set of 𝑝 within the

unit ball we start Harnack tracing at the time 𝑡0 where our ray first

pierces the unit sphere 𝑆2
and set 𝑡max to the time where the ray

exits the sphere. At each point x within this sphere, we then need

a radius 𝑅 and value 𝑐 such that the shifted harmonic polynomial

𝑝 (x) := 𝑝 (x) − 𝑐 is positive over the ball 𝐵𝑅 (x). For the radius, one
might try the distance to the unit sphere 1 − ∥x∥, but this choice
yields an invalid value of 𝑅 = 0 on the unit sphere itself—making it

impossible to start Harnack tracing from a point on the unit sphere.

Instead, we let 𝑅 be the distance to a slightly larger sphere, of radius

ℎ > 1, yielding positive values of𝑅 at all points inside the unit sphere.

In this case, our function is particularly simple, and we can obtain

a good lower bound 𝑐 by analytically minimizing 𝑝 (𝑥) over the
ball 𝐵ℎ (0). For instance, for the polynomial in Equation 8 we have

𝑐 (ℎ) = −(2ℎ3)/(3
√

3). This scenario illustrates the need to balance

𝑐 and 𝑅: if we make ℎ much bigger, to increase the radii 𝑅 (and

hence our step sizes), the lower bound 𝑐 (ℎ) rapidly becomes more

negative—eliminating any advantage of a larger 𝑅. In our examples,

we therefore use a value ℎ = 1.25, only slightly larger than the unit

sphere. Concretely, this amounts to running Algorithm 1 with the

function 𝑓 (x) given by Equation 8, radius function 𝑅(x) := 1.25 −
∥x∥, and the constant bound 𝑐 (x) := −(2 · 1.25

3)/(3
√

3) ≈ −0.75.

Gradient evaluation. Polynomials are continuous and smooth, so

we evaluate their gradients via finite differences (Section 3.1.3.)

ACM Trans. Graph., Vol. 43, No. 4, Article 99. Publication date: July 2024.

99:6 • Gillespie, Yang, Botsch, and Crane

less planar

2π level set 3π level set

more planar

Fig. 8. We define the geometry of a nonplanar polygon to be a level set of
its solid angle function, which is harmonic. This definition provides well-
behaved geometry even when the boundary is highly nonplanar, and varies
smoothly as the boundary changes (top). By taking different level sets, one
can adjust the convexity/concavity of the interpolating geometry (bottom).

4.2 Nonplanar Polygons
A perennial question in computer graphics is how to interpret poly-

gons whose vertices do not sit in a common plane [Bunge et al.

2023]. The ability to ray trace harmonic functions provides an ele-

gant answer: we can visualize a nonplanar polygon as a level set of

a harmonic function naturally associated to the polygon, namely,

its (signed) solid angle [Binysh and Alexander 2018]. This definition,

illustrated in Figure 8, has many attractive properties relative to

existing nonplanar interpolation schemes. For quadrilaterals, for

instance, simple bilinear interpolation can yield severe foldover

(Figure 9). For more general nonplanar 𝑛-gons, one observes simi-

lar foldover with mean value coordinates [Floater 2003], harmonic

coordinates [Joshi et al. 2007], Catmull-Clark subdivision surfaces
1

[Catmull and Clark 1978], and the virtual vertex scheme of Bunge

et al. [2020] (Figure 10). Beyond these comparisons, using the signed

solid angle allows us to visualize far more general nonplanar poly-

gons that can have holes, or even knotted/linked boundaries (Fig-

ure 13). Classic minimal surfaces can also interpolate at this level of

generality, but must be computed using an explicit mesh [Pinkall

and Polthier 1993] or dense computational grid [Wang and Chern

2021]. An especially beautiful feature of the harmonic definition

is that, like Wang and Chern, we need not explicitly prescribe the

topology of our interpolating surface a priori (Figure 11).

4.2.1 Solid angle. Intuitively, solid angle is the size

of the “shadow” cast by a surface patch onto a unit

sphere around the evaluation point x by central pro-

jection. The signed solid angle takes relative orienta-

tion into account, changing sign if the normal of the

surface patch is reversed. Unlike physical shadows, it

also accounts for multiple covering: the area of each

overlapping piece adds to (or subtracts from) the total solid angle.

More precisely, consider a smooth surface patch Σ ⊂ R3
. The

signed solid angle of Σ at a point x is given by the integral

ΩΣ (x) :=

∫
Σ

n(p) · (p − x)
∥p − x∥3

𝑑p, (9)

1
with boundary preservation, as implemented in Blender [2023]

bilinear
interpolation

bilinear
interpolation

solid
angle
solid
angle

polygon
outline
polygon
outline

no
np

la
na

r
qu

ad
no

np
la

na
r

qu
ad

pl
an

ar
qu

ad
pl

an
ar

qu
ad

Fig. 9. A natural way to interpolate quadrilaterals is with a bilinear patch—
however, such patches can exhibit foldover, even for planar quads. Our
Harnack-based interpolation scheme exhibits no such foldover.

minimal
surface
minimal
surface

virtual
vertex
virtual
vertex

subdivision
surface

subdivision
surface

mean value
coordinates
mean value
coordinates

harmonic
coordinates
harmonic

coordinates
solid
angle
solid
angle

no
np

la
na

r
 p

ol
yg

on
no

np
la

na
r

 p
ol

yg
on

pl
an

ar
po

ly
go

n
pl

an
ar

po
ly

go
n

Fig. 10. Given the boundary of a polygon, how should one fill its interior?
Here we compare our harmonic definition with several standard schemes
(for mean value and harmonic coordinates, we interpolate vertex positions
over a regular 𝑛-gon). Apart from minimal surfaces—which require a fine
mesh to compute—our definition is the only one that avoids foldover.

m
in

im
al

 s
ur

fa
ce

so
lid

 a
ng

le

Fig. 11. For many curves, our nonplanar polygon definition looks quite
similar to a minimal surface. However, they differ in a key way: minimal
surfaces can jump discontinuously as the boundary curves vary (bottom),
whereas our harmonic level sets always vary continuously (top).

where n(p) is the unit normal to Σ at p. Remarkably, taking the

value of this integral modulo 4𝜋 yields a continuous function which

depends only on the boundary of the surface patch, independent

of its interior [Binysh and Alexander 2018, §1]. So, we can define

a canonical solid angle function Ω𝑃 (x) for a possibly-nonplanar

polygon 𝑃 by taking the solid angle of any surface Σ spanning 𝑃 .

Most importantly for our purposes, this solid angle function is

well-known to be a harmonic angle-valued function with period

4𝜋 [Binysh and Alexander 2018, §1]. More precisely, it is harmonic

away from the edges of 𝑃 itself, and exhibits singular behavior in

ACM Trans. Graph., Vol. 43, No. 4, Article 99. Publication date: July 2024.

Ray Tracing Harmonic Functions • 99:7

triangulationtriangulation

so
lid

 a
ng

le
fo

rm
ul

a
so

lid
 a

ng
le

fo
rm

ul
a

quaternionquaternion angle sumangle sum

Biot-SavartBiot-Savart finite di�erencesfinite di�erencesalgebraic rearrangementalgebraic rearrangement

gr
ad

ie
nt

fo
rm

ul
a

gr
ad

ie
nt

fo
rm

ul
a

Fig. 12. Not all expressions for the solid angle or its derivative provide
accurate results in floating point. Top: the solid angle formulas based on
triangulation and quaternions work well, but the expression based on angle
sums suffers from numerical instability. Bottom: The Biot-Savart law and its
rearrangement by Adiels et al. [2022] both yield accurate normals, but finite
differences give incorrect results due to jumps in the angle-valued function.

the vicinity of these edges—where the angle quickly goes through a

full period of 4𝜋 . Since the solid angle takes every possible value as

we go around any point of the boundary curve, every level set of the

solid angle function will provide a surface spanning the curve. In

the special case where 𝑃 is planar, the 2𝜋 level set yields the planar

region bounded by the curve. Hence, even in the nonplanar case,

we use the 2𝜋 level set to define the surface bounded by 𝑃 .

4.2.2 Numerics. There are many expressions for the signed solid

angle of a polygon, which are all equivalent (modulo 4𝜋) in exact

arithmetic. In floating point, however, not all expressions work

equally well when ray tracing (Figure 12). We considered three

expressions for solid angle: (i) direct calculation via a triangulation,

(ii) the quaternionic scheme of Chern and Ishida [2023, Cor. 3.4.1],

and (iii) the angle sum formula of Legendre [1817, §505], as well as

three expressions for its gradient: (i) a direct expression via the Biot-

Savart formula, (ii) a rearrangement of this expression suggested by

Adiels et al. [2022, Eq. 10], and (iii) a finite difference approximation.

Our preferred expressions, described below, are the triangulation

method for solid angle and the Biot-Savart formula for its gradient.

Details on the other formulations can be found in the supplement.

Function evaluation. We denote the vertices of the polygon 𝑃 by

p1, . . . , p𝑘 ∈ R3
. To evaluate its solid angle, we triangulate 𝑃 and

sum the solid angles of each triangle. For symmetry, we triangulate

𝑃 by connecting each vertex to a point z ∈ R3
at the average of the

vertex positions. To evaluate the solid angle of a triangle, we use the

formula of van Oosterom and Strackee [1983]. In particular, letting

a := p𝑖 − x, b := p𝑖+1 − x, c := z − x,

and letting 𝑎, 𝑏, 𝑐 be the magnitudes of a, b, c, resp., the signed solid

angle of triangle p𝑖p𝑖+1z is given by

Ωtri (x) := 2 atan2

(
a · (b× c), 𝑎𝑏𝑐 + (a ·b)𝑐 + (b · c)𝑎 + (a · c)𝑏

)
. (10)

It is important to use the two-argument arc tangent function atan2(𝑦, 𝑥),
yielding values in the range [−𝜋, 𝜋), rather than the range [−𝜋/2, 𝜋/2]

Fig. 13. Our nonplanar polygon definition automatically applies to difficult
cases like polygons with holes (left), or knotted boundaries (right).

of the ordinary arc tangent function. For efficiency, one can also

reduce the number of atan2 evaluations by applying the identity

atan2(𝑎, 𝑏) + atan2(𝑐, 𝑑) ≡ atan2(𝑎𝑑 + 𝑏𝑐, 𝑏𝑑 − 𝑎𝑐) (mod 2𝜋) .

Gradient evaluation. We evaluate the gradient of solid angle as

∇Ω𝑃 (x) =
𝑘∑︁
𝑖=1

(g𝑖 − g𝑖+1) ·
(

g𝑖
∥g𝑖 ∥

− g𝑖+1
∥g𝑖+1∥

)
g𝑖 × g𝑖+1
∥g𝑖 × g𝑖+1∥2

, (11)

where g𝑖 := p𝑖 − x. This formula can be derived by integrating

the Biot-Savart formula along each line segment in the polygon’s

boundary (see e.g. Equation 8 of Adiels et al. [2022]).

Function bounds and bounding boxes. When usingHarnack tracing

on level sets of Ω𝑃 (x), we take 𝑅(x) to be the distance from x to the

polygonal curve 𝑃 and set 𝑐 (x) = −4𝜋 . In Appendix C, we show that

this bound is valid when the curve is connected, intersection-free

and lies on the boundary of a convex domain. Although it is not

guaranteed to apply to all polygons, we have not found an example

where Harnack tracing using this bound fails, even for polygons

with holes or knotted boundaries like those depicted in Figure 13.

In order to incorporate Harnack tracing into an existing renderer,

it is also helpful to have bounds on the spatial extent of the target

level set. In Appendix B, we show that under the same assumptions

on 𝑃 , the 2𝜋 level set of Ω𝑃 (x) is contained within the convex hull

of 𝑃 , and hence within any bounding box of 𝑃 .

4.2.3 Polygons with complex topology. Some boundary representa-

tions used in computer-aided design (CAD) allow polygons to have

holes. To define nonplanar polygons with holes, we can simply add

the solid angles of all boundary components (assuming consistent

orientation) to define a single harmonic function for a polygon with

holes—Figure 13, left shows some examples. Moreover, while poly-

gons arising from meshes are almost universally homotopic to the

unknot, nothing about our formulation prevents us from rendering

curves that are knotted, or collections of curves that are linked. As

illustrated in Figure 13, right, the solid angle level sets associated

to knotted polygons still form smooth surfaces bounded by the

polygon, yielding so-called “Seifert surfaces.” Unlike existing meth-

ods, which first build topologically-valid Seifert surfaces and then

smooth them [van Wijk and Cohen 2006], we can directly visualize

smooth interpolating surfaces, sidestepping the usual numerical

challenges associated with mesh-based optimization.

ACM Trans. Graph., Vol. 43, No. 4, Article 99. Publication date: July 2024.

99:8 • Gillespie, Yang, Botsch, and Crane

input curves

mesh-based
minimal surface
[de Goes et al 2011]

solid angle
(per-pixel Harnack traced)

naïve
triangulation

Fig. 14. Given a sparse “exoskeleton” approximating a surface (top left) we
can directly ray trace an interpolating surface (top right). The resulting
image is both higher-quality than the simple triangulation used by most
mesh viewers (bottom left), and much simpler to compute than optimizing a
mesh-based minimal surface, as originally proposed by de Goes et al. [2011].

Fig. 15. Given an oriented point cloud (left), we can directly visualize an
interpolating surface (right). This procedure effectively shows the result
of running the Poisson surface reconstruction algorithm of Kazhdan et al.
[2006], without requiring any volumetric meshing or linear solves.

4.2.4 Exoskeletons. An extreme case of nonplanar polygons, we

consider the “exoskeleton” curve networks computed by de Goes

et al. [2011] as concise descriptions of a surface. As depicted in

Figure 14, we can treat the exoskeleton as a nonplanar polygonmesh

of high degree and Harnack trace the resulting surface, avoiding the

minimal surface computation originally proposed by de Goes et al.

4.3 Point Clouds (Poisson Reconstruction)
We can directly visualize a surface interpolating a given point cloud

without generating an explicit surface representation (Figure 15).

Effectively, we draw the surface that would be generated by the

Poisson surface reconstruction algorithm of Kazhdan et al. [2006] (in

the limit as the kernel size goes to zero).

Suppose we are given a collection of points p1, . . . , p𝑘 ∈ R3
along

with normal vectors n1, . . . , n𝑘 ∈ R3
, and their associated areas

𝑎1, . . . , 𝑎𝑘 ∈ R>0 (e.g., acquired via scanning or estimated à la Barill
et al. [2018, §3.1]). As discussed by Barill et al. [2018, §2.1], one can

reconstruct surfaces from these points by considering level sets of

the dipole potential

𝑓 (x) :=

𝑘∑︁
𝑖=1

𝑎𝑖
(p𝑖 − x) · n𝑖
∥p𝑖 − x∥3

, (12)

broken meshbroken mesh repaired meshrepaired mesh

Fig. 16. Given a surface mesh with imperfections such as holes (left), we can
directly visualize the repaired surface defined via the generalized winding
number (right), reproducing the example from Jacobson et al. [2013, Figure 1].

which is a harmonic function with singularities at the points p𝑖 . We

can then ray trace level sets of this potential using Harnack tracing.

gradient
termination

artifacts

gradient
termination

artifacts

Here we must be careful due to the singular nature

of the dipole potential. For one thing, our gradient

termination condition yields artifacts near points p𝑖 ,
since here 𝑓 is not well-approximated by a linear

function (see inset). Instead, we terminate rays if

either (i) the value of 𝑓 is within a small tolerance

𝜀 > 0 of zero, or (ii) the ray is closer than a small

distance 𝑑 > 0 of any point p𝑖 . Also, to ensure that

𝑓 (x) remains bounded on the ball 𝐵𝑅 (x), we take the radius 𝑅(x)
to be a fraction 𝛼 ∈ (0, 1) of the distance to the closest point:

𝑅(x) := 𝛼 min

𝑖
∥p𝑖 − x∥. (13)

In our examples we found 𝛼 = 1/4 helped minimize the number of

steps. By considering the numerator and denominator of each term

in 𝑓 (x) separately, we can then obtain a bound on its value over

any ball 𝐵𝑅 (x) that does not contain any of the points p𝑖 :

𝑐 (x) :=

𝑘∑︁
𝑖=1

𝑎𝑖
(
(p𝑖 − x) · n𝑖 − 𝑅(x)

)(
∥p𝑖 − x∥ + sign

(
(p𝑖 − x) · n𝑖 − 𝑅(x)

)
𝑅(x)

)
3
. (14)

A more detailed derivation can be found in Appendix D. Using the

definitions of 𝑓 , 𝑅, and 𝑐 from this section, we now have everything

needed to execute Algorithm 1.

Gradient evaluation. To shade the surface, we use the following

closed-form expression for the gradient of 𝑓 (x):

∇𝑓 (x) =
𝑘∑︁
𝑖=1

𝑎𝑖

(
3

(p𝑖 − x) · n𝑖
∥p𝑖 − x∥5

(p𝑖 − x) −
1

∥p𝑖 − x∥3
n𝑖

)
. (15)

If a ray terminates due to hitting one of the points p𝑖 , we take the
corresponding normal n𝑖 as the surface normal.

4.4 Mesh Repair (Generalized Winding Number)
We can also directly visualize a surface that “fills in” and/or fixes

defects in a polygon mesh with cracks and self-intersections. Effec-

tively, we directly visualize the results of the generalized winding
number scheme of Jacobson et al. [2013], again without explicitly

meshing the surface (Figure 16). This is possible because the gener-

alized winding number defined by Jacobson et al. is precisely the

signed solid angle of the mesh faces, so the techniques of Section 4.2

can be applied without requiring any changes.

ACM Trans. Graph., Vol. 43, No. 4, Article 99. Publication date: July 2024.

Ray Tracing Harmonic Functions • 99:9

Fig. 17. Here we use Harnack tracing to directly visualize a special class
of grid shells used in architecture, reproducing examples from Adiels et al.
[2022] figures 11, 12, and 22 (resp.). To do so, we extend our algorithm to
handle circular holes in addition to polygons.

4.5 Architectural Grid Shells
Adiels et al. [2022] make a beautiful observation connecting level

sets of the solid angle function for a curve (à la Section 4.2) to

shell structures for architectural geometry—namely, if the boundary

curve is planar, then these surfaces will automatically have principal

curvature networks aligned to the boundary curve (needed for pan-

elization) and will exhibit an approximately constant span-to-height

ratio (making them structurally viable as grid shells). The fact that

surfaces with such nice geometric and structural properties arise

from a simple function like solid angle is quite remarkable: ordi-

narily one must perform explicit meshing and optimization to get

surfaces suitable for architecture. However, Adiels et al. still do not

take full advantage of this elegant representation when exploring

the design space, since they must still build a mesh for visualization

purposes. (In particular, they sample random points and use New-

ton’s method to push them onto a given level set.) We can instead

visualize these surfaces directly via Harnack tracing (Figure 17).

To do so, we generalize the algorithm for nonplanar polygons

to also compute the solid angles of circles. Using the notation of

Figure 18, the signed solid angle subtended by a circle is given by

Ω(x) =


2𝜋 − 2𝐿

𝑅max

𝐾 (𝑘2) + 2𝐿
𝑅max

𝑟0−𝑟𝑚
𝑟0+𝑟𝑚 Π(𝛼2, 𝑘2) 𝑟0 < 𝑟𝑚

𝜋 − 2𝐿
𝑅max

𝐾 (𝑘2) 𝑟0 = 𝑟𝑚

− 2𝐿
𝑅max

𝐾 (𝑘2) + 2𝐿
𝑅max

𝑟0−𝑟𝑚
𝑟0+𝑟𝑚 Π(𝛼2, 𝑘2) 𝑟0 > 𝑟𝑚,

(16)

Fig. 18. Quantities used
to evaluate Ω (x) . Here
𝑅1 =

√︁
𝐿2 + (𝑟0 − 𝑟𝑚)2 and

𝑅max =
√︁
𝐿2 + (𝑟0 + 𝑟𝑚)2.

where 𝛼2
:= (4𝑟0𝑟𝑚)/(𝑟0 + 𝑟𝑚)2 and

𝑘2
:= 1 − 𝑅2

1
/𝑅2

max
(see Paxton [1959] or

Rothe [1969] for derivations). 𝐾 (𝑚) and
Π(𝛼2,𝑚) are complete elliptic integrals

of the first and third kinds, which can

be evaluated using standard numerical

packages [Galassi et al. 2009]. The rest of

the algorithm remains the same as Sec-

tion 4.2; in particular, we take 𝑅(x) to be

the distance to the curve and 𝑐 (x) = −4𝜋 .

Gradient evaluation. Smythe [1989, §7.10] gives a formula for ∇Ω:

∇Ω(x) = − 2𝐿
𝑟0𝑅max

(
−𝐾 (𝑘2) + 𝑟 2

𝑚+𝑟 2

0
+𝐿2

𝑅2

1

𝐸 (𝑘2)
)
𝑟

− 2

𝑅max

(
𝐾 (𝑘2) + 𝑟 2

𝑚−𝑟 2

0
−𝐿2

𝑅2

1

𝐸 (𝑘2)
)
𝑧,

(17)

where 𝐸 (𝑚) denotes a complete elliptic integral of the second kind.

Fig. 19. Riemann surfaces are central objects of study in complex analysis.
We can use Harnack tracing to render the surfaces associated to several
standard complex functions, showing both the intersection with the unit
ball (top), and a full camera view of the surface (bottom).

In practice, elliptic integrals can be expensive to compute, but can

still be cheaper than applying the polygonal solid angle formula to

12-sided polygon12-sided polygon circlecircle

a finely-meshed boundary curve.We

find that using Equation 16 for the

solid angle of a circle is about as ex-

pensive as evaluating the solid angle

of a 12-sided polygon, while providing a smoother boundary curve

(inset). If we use a 50-sided polygon, evaluating the polygon’s solid

angle takes twice as long as evaluating Equation 16.

4.6 Riemann Surfaces
Riemann surfaces associated to complex-differentiable functions like

log(𝑧) play a key role in complex analysis. Much of their interesting

behavior occurs at singular points, which pose problems for standard

techniques (e.g., requiring extremely high resolution for marching

cubes), but are accurately resolved by Harnack tracing (Figure 19).

Concretely, the imaginary part of a complex-differentiable func-

tion 𝑓 (𝑧) is a real-valued harmonic function on R2
. We can visualize

the Riemann surface associated to 𝑓 as the height field of Im 𝑓 . If

𝑓 is multivalued, then Im 𝑓 is a multivalued harmonic function.

For instance, Im[log(𝑧)] is defined modulo shifts by 2𝜋 , making it

angle-valued. So we can visualize the Riemann surface of log(𝑧)
by running TraceAngleValued (Algorithm 2) on the angle-valued

function 𝜙 (𝑥0, 𝑥1, 𝑥2) := Im[log(𝑥0 + 𝑥1𝑖)] − 𝑥2. For functions like√
𝑧, with a sign ambiguity rather than a shift, we modify lines 5–7 of

Algorithm 2 to find the level set values bracketing the current value

of 𝜙 (𝑥0, 𝑥1, 𝑥2) := Im [𝑓 (𝑥0 + 𝑥1𝑖)] − 𝑥2 by enumerating the possi-

ble values of 𝑓 (𝑧). To render Figure 19 using Algorithm 2, we set

𝑅(x) to the distance from x to the closest singularity and 𝑐 (x) = −4.

Gradient evaluation. The gradient of𝜙 may be expressed using the

complex derivative of 𝑓 : ∇𝜙 =
(
Im

[
𝜕
𝜕𝑧 𝑓

]
, Re

[
𝜕
𝜕𝑧 𝑓

]
,−1

)
. When

the value of
𝜕
𝜕𝑧 𝑓 depends on the branch of the function, e.g. for

𝑓 (𝑧) =
√
𝑧, we search through all possible values of 𝑓 (𝑧) to identify

which branch our intersection lies on before evaluating
𝜕
𝜕𝑧 𝑓 .

ACM Trans. Graph., Vol. 43, No. 4, Article 99. Publication date: July 2024.

99:10 • Gillespie, Yang, Botsch, and Crane

Fig. 20. The gyroid surface, commonly used in 3D manufacturing (left,
reproduced from Diegel [2021]), is neither a signed distance function nor
a harmonic function. However, it can easily be extended to a harmonic
function in 4D. By ray tracing a “3D slice” of this function, we can directly
visualize it via Harnack tracing (right).

4.7 Beyond Harmonic Functions
A characteristic property of harmonic functions is that they exhibit

no local minima or maxima—which would seem to be a significant

limitation on the kinds of surfaces that can be visualized. However,

one can apply Harnack tracing to harmonic functions in any higher

dimension R𝑛 , and visualize a “slice” to obtain surfaces that cannot

be realized as level sets of harmonic functions in 3D. An illustrative

example is the ordinary sphere, which can be described by the𝑤 = 0

slice of the 4D function 𝑓 (𝑥,𝑦, 𝑧,𝑤) = 𝑥2 + 𝑦2 + 𝑧2 − 3𝑤2 − 1. In

general, one can try extending any implicit function 𝑓 (𝑥,𝑦, 𝑧) to
a function

¯𝑓 (𝑥,𝑦, 𝑧,𝑤) such that (i)
¯𝑓 is harmonic in R4

, and (ii)

¯𝑓 (𝑥,𝑦, 𝑧, 0) = 𝑓 (𝑥,𝑦, 𝑧), i.e., the restriction of
¯𝑓 to the 3D subspace

𝑤 = 0 yields the original function (and hence the desired surface).

For instance, as shown in the inset, we

can visualize “hyperspherical” harmonics: 4D

harmonic polynomials restricted to the 3-

sphere and mapped intoR3
via stereographic

projection (see Appendix E.2 for details). A

more interesting, non-polynomial example

is the gyroid, described by the zero level set of the function

𝑓
gyroid

(𝑥,𝑦, 𝑧) = sin(𝑥) cos(𝑦) + sin(𝑦) cos(𝑧) + sin(𝑧) cos(𝑥) . (18)

The gyroid is widely used in 3D manufacturing due to, e.g., its
thermal and space-filling properties (Figure 20, left). The function
¯𝑓 (𝑥,𝑦, 𝑧,𝑤) := 𝑒

√
2𝑤 𝑓

gyroid
(𝑥,𝑦, 𝑧) provides a harmonic extension

to R4
—allowing us to Harnack trace the gyroid (Figure 20, right).

4.7.1 Arbitrary Implicit Functions. The gyroid example also sug-

gests a strategy for Harnack tracing arbitrary implicit surfaces

𝑓 (𝑥,𝑦, 𝑧) = 0, via frequency decomposition. The key observation

is that Equation 18 is an example of a Laplacian eigenfunction, i.e.,
a function 𝜙 such that Δ𝜙 = 𝜆𝜙 for some eigenvalue 𝜆 ∈ R≤0. In

particular, one can check that Δ𝑓
gyroid

= −2𝑓
gyroid

. More generally,

for any such eigenfunction we have a harmonic extension

¯𝜙 (𝑥,𝑦, 𝑧,𝑤) := 𝑒

√
−𝜆𝑤𝜙 (𝑥,𝑦, 𝑧), (19)

whose Laplacian vanishes since

ΔR4
¯𝜙 =

(
ΔR4𝑒

√
−𝜆𝑤

)
𝜙 +

(
∇R4𝑒

√
−𝜆𝑤

)
·
(
∇R4𝜙

)
+ 𝑒
√
−𝜆𝑤

(
ΔR4𝜙

)
= −𝜆𝑒

√
−𝜆𝑤𝜙 + 0 + 𝑒

√
−𝜆𝑤𝜆𝜙 = 0.

Hence, we could approximate any periodic implicit function 𝑓 :

[0, 2𝜋]3 → R by a sum of Laplacian eigenfunctions, via the trun-

cated Fourier transform

ˆ𝑓 (x) :=

𝑁∑︁
𝑘=0

⟨⟨𝑓 , 𝜙𝑘 ⟩⟩𝜙𝑘 (x),

where ⟨⟨·, ·⟩⟩ denotes the 𝐿2
inner product, and 𝜙𝑘 is the 𝑘th Lapla-

cian eigenfunction. We can then harmonically extend
ˆ𝑓 (x) to R4

by

replacing each basis function 𝜙𝑘 with the corresponding function

¯𝜙𝑘 , à la Equation 19. Figure 21 shows the
1

2
level set of the function

𝑓 (𝑥,𝑦, 𝑧) = sin(6𝑥) sin(6𝑦) sin(6𝑧) + sin(2𝑥) sin(2𝑦) sin(2𝑧),
which is neither harmonic nor a Laplacian eigenfunction.

Harnack tracingHarnack tracing reference solutionreference solution

Fig. 21. Harnack tracing is not limited
to saddle-like surfaces—in principle
it can visualize any implicit function,
via spectral expansion. Here: a sum of
Laplacian eigenfunctions.

One can easily obtain a con-

servative bound 𝑐 on such a sum

by bounding each term individ-

ually and summing the bounds

(see Appendix E for details). Find-

ing a tight bound is more chal-

lenging since different terms in

the sum can interfere construc-

tively or destructively depending

on their phase. The same prob-

lem arises when trying to find a

tight Lipschitz bound on a sum of Fourier bases: for instance, even

the simple functions sin(𝑥)+sin(2𝑥) and sin(𝑥)+sin(2𝑥 +𝜋/2) have
different Lipschitz constants (3 and ∼2.7, resp.), despite having iden-

tical Lipschitz bounds for the individual terms. We hence consider

this construction primarily to highlight the theoretical generality of

Harnack tracing, and leave questions of efficiency to future work.

4.8 Implementation and Performance
We implemented our algorithm in two frameworks: as GLSL pro-

grams implemented via ShaderToy [Quilez and Jeremias 2013], to

gauge efficiency, and as a geometric primitive in Blender [2023], to
ensure that Harnack tracing interoperates as expected with richer

rendering features (shadows, reflections, other geometry, etc.). In
both environments, our algorithm runs fast enough for real-time

interaction, with frame rates depending on geometric complexity—

but often in excess of 60 fps (see accompanying video). Our GLSL

implementations are available in the supplemental material, and

our Blender implementation can be found at https://github.com/

MarkGillespie/harnack-blender.

Figures 9, 15, 19, 20, 25, and 26 were rendered via GPU shaders.

All shaders ran at real time rates on an older GPU (GeForce RTX

3090) at a resolution of 1890 × 1062. Point cloud reconstruction

(Figure 15) ran slowest, around 20–30 fps, primarily because we

used naïve𝑂 (𝑛) evaluation of all dipoles, rather than the𝑂 (log(𝑛))
hierarchical evaluation advocated by Barill et al. [2018]. Figures 1, 7,

8, 10, 11, 12, 13, 14, 16, 17, and 27 were rendered in Blender’s CPU

path tracer, on an Apple M2 Max (8 performance cores, 32GB RAM).

ACM Trans. Graph., Vol. 43, No. 4, Article 99. Publication date: July 2024.

https://github.com/MarkGillespie/harnack-blender
https://github.com/MarkGillespie/harnack-blender

Ray Tracing Harmonic Functions • 99:11

iterations
iterations

1

2000

gradient terminationgradient termination function value terminationfunction value termination

Fig. 22. Here we visualize the number of iterations required to intersect each
camera ray with the surface shown in Figure 10. Just as with sphere tracing,
Harnack tracing requires the greatest number of steps to find intersections
near the shape silhouette, where the camera ray approaches at a glancing
angle. We find that the gradient-based termination condition discussed in
Section 3.1.2 cuts down on the number of iterations required compared to a
naïve termination condition based solely on the function value.

We achieved real-time feedback in Blender’s interactive preview

(see supplemental video). Final renders took longer: the nonpla-

nar polygons in Figure 8 took around a minute each to render at

1400 × 1000 resolution, and Figure 1 took five minutes at the same

resolution. Architectural surfaces in Figure 17 took 4.5 hours to

render, due to the cost of evaluating several elliptic integrals per

step. In general, the longest execution times in both CPU and GPU

implementations were dominated by evaluating expensive harmonic

functions—rather than the logic of Harnack tracing itself. Section 6

discusses acceleration strategies which could cut costs dramatically.

4.9 Tracing Iterations
Figure 22 shows the number of iterations required to intersect each

camera ray with a nonplanar polygon via Harnack tracing. Intersec-

tions near the silhouette require the most iterations to compute, as

the ray approaches the surface at a glancing angle. If one terminates

rays based on function value alone (Figure 22, right), then points

near the polygon boundary require a huge number of iterations since

the function’s value changes so rapidly in those regions. Using the

gradient-based termination condition (Section 3.1.2) dramatically

reduces the number of iterations required in those regions, although

it may or may not be faster in execution time due to the added

cost of evaluating the gradient at each step. In our experiments, we

found that the gradient termination condition generally helped in

the GLSL implementation, often providing a 10–20% speedup by

decreasing the maximum number of iterations required, but often

made overall execution times slightly longer in Blender.

4.10 Convergence
We compared the convergence rate of our Harnack scheme with

the widely-used sphere tracing algorithm (Section 5.2.2), measuring

the number of iterations required to converge near the level set.

Since the solid angle function Ω𝑃 (x) is not Lipschitz, we could

not run sphere tracing directly on Ω𝑃 (x). Instead, we meshed the

target level set, and used closest point queries (via FCPW [Sawhney

2021]) to run sphere tracing on the resulting mesh. Figure 23 shows

convergence plots, both in terms of the error in function value (i.e.
|𝑓 (r(𝑡)) − 𝑓 ∗ |), and in terms of absolute distance to the intersection

(i.e. |𝑡 − 𝑡∗ |) at each iteration. Note that this test represents the ideal

case for sphere tracing, where the Lipschitz constant is 𝐶 = 1 (cf.

101 103100 102

iterations

10−4

10−3

10−2

10−1

100

101 103100 102

iterations

Sphere tracing

H
arnack tracing

Sphere tracing

H
arnack tracing

er
ro

r
(r

el
at

iv
e

to
 in

it
ia

l e
rr

or
)

Convergence Rate
(function value)

Convergence Rate
(distance to intersection)

1

1

linear

convergence rate
1

1

linear

convergence rate

Fig. 23. To compare the convergence rates of Harnack tracing and sphere
tracing, we measured the cost of sphere tracing a mesh of the 2𝜋 level set
of solid angle for a sample curve (top right), as well as the cost of Harnack
tracing the level set. The plots show the rate at which the function value
𝑓 (r(𝑡)) approaches the target value 𝑓 ∗ (left), as well as the rate at which
the time 𝑡 approaches the optimal time 𝑡∗ (right). In practice, both methods
converge faster than the linear rate guaranteed in Appendix A, although
sphere tracing requires many fewer iterations overall. Center lines show
mean error per iteration; shaded regions show 99% confidence intervals.

Figure 26). Empirically, both methods appear to converge faster than

the linear rate guaranteed in Appendix A, though sphere tracing

still requires significantly fewer iterations than Harnack tracing.

5 RELATED WORK AND COMPARISONS
To our knowledge, there is no prior work that specifically con-

siders ray tracing algorithms for harmonic functions (apart from

general-purpose techniques like ray marching or root finding). In

general, implicit surface visualization has been studied for centuries

in mathematics [Wallis 1659]; and used for decades in computer

graphics [Goldstein and Nagel 1971] (see [Knoll 2007] for a survey).

Here there are several basic classes of techniques:

• Explicit Conversion. The implicit surface is converted to an

explicit mesh via an isosurface extraction method such as march-
ing cubes [Lorensen and Cline 1987]; this mesh is then rasterized.

While rasterization is fast, isosurface extraction is compute- and

memory-intensive, making it ill-suited to dynamic geometry or

per-pixel accurate rendering. Standard isosurfacing algorithms

are also not well-adapted to the angle-valued, singular nature of

our harmonic functions, as examined in Section 5.1.

• Intermediate Representation. The implicit surface is converted

to an intermediate representation such as a volume density, which

is still visualized via ray tracing [Hadwiger et al. 2005]. As noted

by Knoll [2007], this approach requires a very sharp transfer func-

tion to render hard surfaces, which can incur aliasing. Moreover,

though it may reduce bandwidth in certain settings (e.g., visualiz-
ing dense point clouds), Harnack tracing will be far more cache

friendly for the kinds of compact surface descriptions considered

in Section 4 (which in many cases can fit entirely into registers).

• Ray Tracing. By far the most common technique for rendering

smooth implicit surfaces—which we also adopt—is to compute

ACM Trans. Graph., Vol. 43, No. 4, Article 99. Publication date: July 2024.

99:12 • Gillespie, Yang, Botsch, and Crane

Mathematica
(140 seconds)

Marching
Cubes

Fig. 24. Simply running marching cubes “out of the box” on many of
our example problems yields surfaces with unsightly artifacts, especially
around the jump discontinuities present when 𝑓 is an angle-valued function
(bottom left). More sophisticated adaptive methods, like Mathematica’s
ContourPlot3D, suffer from similar artifacts and also struggle near the sin-
gularities at the vertices of the polygon (top left). One can attempt to filter
out the extraneous faces by, e.g. evaluating 𝑓 at the barycenter of each face,
but doing so still leaves behind a noisy surface near singularities (right).

ray intersections (Section 5.2). A basic strategy is uniform ray
marching, which is asymptotically slower than Harnack tracing,

and yields significant visual artifacts (Section 5.2.1). A more so-

phisticated class of strategies are sphere tracing algorithms, which
use bounds on the gradient, or more general Lipschitz bounds, to
take large but conservative steps. The fundamental problem here

is that, in general, harmonic functions are simply not Lipschitz

(Section 5.2.2). Since ray tracing restricts the implicit function

to an ordinary 1D function, one can also identify intersections

via generic root finding algorithms such as Newton’s method or

bisection search. For harmonic functions, however, these methods

are not guaranteed to find the closest root (Section 5.3).

• Interval Analysis. To obtain stronger guarantees, one can apply

interval analysis techniques—either along a ray [Knoll et al. 2009;

Sharp and Jacobson 2022], or over a voxelization of space [Keeter

2020]. These methods provide conservative bounds on implicit

function values, but can sometimes be too conservative (and hence
costly). Existing interval analysis techniques also do not apply to

angle-valued functions, producing incorrect results for many of

the surfaces we consider (Figure 27, bottom right).

Overall, despite the vast literature on implicit surface visualiza-

tion, the types of functions we consider (namely, singular angle-

valued harmonic functions) pose challenges of efficiency and/or

robustness for essentially all prior classes of algorithms, which treat

them as literal discontinuous functions. Harnack tracing instead

views these functions correctly as a continuation of a global har-

monic function (Section 3.2), yielding better-behaved results: e.g.
higher-quality results for equal compute time. Of course, one could

try to extend any of the strategies above to the general harmonic

case—an interesting question we leave to future work.

5.1 Explicit Conversion

edgeedge edgeedge0

missed intersection

false intersectionExplicit meshing approximates a level

set of a function 𝑓 by evaluating 𝑓

at the nodes of a fixed [Lorensen and

Cline 1987; Ju et al. 2002] or dynamic

65 fps

H
ar

na
ck

 tr
ac

in
g

H
ar

na
ck

 tr
ac

in
g

30 fps η=0.05ε=0.001 3.5 fps η=0.0024 fps η=0.005

ra
y

m
ar

ch
in

g
ra

y
m

ar
ch

in
g

Fig. 25. Ray marching with a fixed step size 𝜂 is a simple way of ray tracing
implicit surfaces. However, using large step sizes leads to severe artifacts, as
the algorithm can easily “tunnel” through the surface, while small values of
𝜂 quickly become prohibitively expensive. (Images rendered at 1423 × 800.)

[Shen et al. 2023] background grid; the basic idea is to place mesh

vertices where edges cross the level set of 𝑓 . However, if 𝑓 is angle-

valued this strategy can fail—in the inset, e.g., simply comparing

function values at edge endpoints yields both false negatives and

false positives. Moreover, suchmethods struggle to resolve geometry

near singularities—even with adaptive refinement (Figure 24).

[Piker 2021]
(o�line)
[Piker 2021]
(o�line)

ours
(real time)

ours
(real time)

To date, there appears to be

no established isosurfacing method

for angle-valued functions—Piker

[2021] demonstrates an unpub-

lished, undocumentedmethodwhich

works well for our problem, but

does not achieve real time frame rates as we do with Harnack trac-

ing. Such methods are especially impractical for achieving per-pixel

accuracy. In general, our experience has been that ray tracing is

necessary for fast, high-quality visualization of harmonic functions.

5.2 Ray Tracing
For an implicit surfaceS defined by a function 𝑓 (x) (à la Equation 2),
and a ray r(𝑡) (Equation 3), ray tracing algorithms seek times 𝑡 > 0

at which the composite function 𝑓 (r(𝑡)) equals a target value 𝑓 ∗,
or equivalently, roots (i.e., zeros) of the function

𝜙 (𝑡) = 𝑓 (r(𝑡)) − 𝑓 ∗ . (20)

In general, it is hard to guarantee that ray tracing finds the small-

est such 𝑡 value, without making special assumptions about 𝑓 . In

fact, there are only a few classes of surfaces that provide a first-hit

guarantee. A reasonably comprehensive list includes planar poly-

gons [Appel 1968], quadrics [Goldstein and Nagel 1971], (piecewise)

algebraic surfaces [Hanrahan 1983] such as tori [Roth 1982], meta-

balls [Tatsumi et al. 1990], algebraic swept surfaces [van Wijk 1985],

superquadrics [Barr 1981; Edwards 1982], Lipschitz functions [Kalra

and Barr 1989; Hart 1996] (including signed distance functions [Hart

et al. 1989]), some subdivision surfaces [Kobbelt et al. 1998], and CSG

hierarchies built from any of these primitives [Goldstein and Nagel

1971]. Other implicit functions, defined e.g. by point sets [Adamson

and Alexa 2003] or neural fields [Takikawa et al. 2023], may need to

be ray traced via general-purpose root finding techniques—which

may sometimes fail to find any intersection, much less the first hit.

For further discussion, see surveys by Hanrahan [1989] and Hart

[1993a], as well as more recent overviews in Galin et al. [2020, §2]

and Aydinlilar and Zanni [2021, §2].

ACM Trans. Graph., Vol. 43, No. 4, Article 99. Publication date: July 2024.

Ray Tracing Harmonic Functions • 99:13

65 fps

H
ar

na
ck

 tr
ac

in
g

H
ar

na
ck

 tr
ac

in
g

 “
sp

he
re

 tr
ac

in
g”

 “
sp

he
re

 tr
ac

in
g”

120 fps 60 fps 35 fpsL=10 L=50 L=100ε=0.001

Fig. 26. Though many of our harmonic functions are not Lipschitz, we can
run sphere tracing using any purported Lipschitz bound 𝐿. However, when
working with functions like the solid angle where no valid Lipschitz bound
exists, this technique yields artifacts near singularities, even for high values
of 𝐿 where the performance also degrades. (Images rendered at 1423 × 800.)

5.2.1 Ray Marching. Ray marching with a fixed step size is perhaps

the simplest way to ray trace an implicit surface, but suffers from

fundamental flaws. First, as the stopping tolerance 𝜀 → 0 ray march-

ing is asymptotically slower than methods based on conservative

bounds: ray marching takes 𝑂 (1/𝜀) steps, whereas Harnack tracing

takes only 𝑂 (log(1/𝜀)) steps (Appendix A). Second, for large step
sizes ray marching can easily “tunnel” through the level set, leaving

gaps in the surface. And in practice, we find no satisfactory trade

off: ray marching either produces unacceptable artifacts, or runs

orders of magnitude slower than Harnack tracing (Figure 25).

5.2.2 Sphere Tracing.

“Sphere tracing likes distance, and avoids nothing.”
—John C. Hart [1993]

As described in Section 1, sphere tracing is a strategy for effi-

ciently ray tracing functions with a known Lipschitz bound. It was

first developed by Hart et al., who describe how to visualize quater-

nionic and linear fractals, algebraic surfaces, CSG composites with

hard or soft blends, and spatial deformations [Hart et al. 1989; Hart

and DeFanti 1991; Hart 1993b, 1996]. Quilez [2008] significantly

expanded this list, and popularized SDF-based sphere tracing by

demonstrating its ability to render complex scenes. Crane [2005]

describes the first GPU implementation, and recent work explores

differentiable versions suitable for machine learning [Liu et al. 2020;

Jiang et al. 2020; Bangaru et al. 2022; Vicini et al. 2022]. Seyb et al.

[2019] develop an efficient strategy for sphere tracing large defor-

mations, and Galin et al. [2020] describe a strategy for computing

local Lipschitz bounds along a ray, for certain classes of composite

shapes—unfortunately, this class does not include harmonic level

sets. There has also been recent work on accelerating sphere trac-

ing [Keinert et al. 2014; Bálint and Valasek 2018]. We use one of

these strategies (over-stepping) to accelerate Harnack tracing in

Section 3.1.4; others (such as multiresolution rendering) could likely

yield further accelerations. Likewise, one could easily adopt the cone
tracing strategy of Hart [1993b, §4.3] for anti-aliasing.

Unfortunately, although harmonic functions are extremely reg-

ular, they are not globally Lipschitz—which is why the Harnack

inequality takes the form that it does, i.e., going to infinity at the

boundary of a finite ball. Moreover, many of the particular harmonic

Harnack
tracing

Harnack
tracing

Newton’s
method

Newton’s
method

bisection
search

bisection
search

interval
analysis
interval
analysis

Fig. 27. General-purpose root finding techniques may fail to identify the
closest point of intersection, yielding incorrect occlusions or even gaps in
the surface if they converge to intersections outside of the visible area. Such
problems are especially severe on the angle-valued functions used in many
of our examples, where bisection search and interval analysis erroneously
interpret jump discontinuities as roots. These spurious intersections form
opaque backgrounds in the renders, occluding parts of the polygon which
should be visible behind the jump discontinuity (bottom, right).

functions that we are interested in, such as the solid angle associated

with a polygon, may have no local Lipschitz bound evenwithin small

neighborhoods—e.g., the solid angle can change arbitrarily fast near

a curve (Section 4.2). Hence, existing sphere tracing/Lipschitz meth-

ods cannot directly provide intersection guarantees for harmonic

functions. Nonetheless, we can still attempt to apply traditional

sphere tracing by taking a large value 𝐿 as a purported Lipschitz

bound. As shown in Figure 26, however, we end upwith either severe

artifacts when 𝐿 is small, or pay a large cost when 𝐿 is large—and

still do not completely eliminate artifacts around the curve.

Figure 26 also shows that in this test case, Harnack tracing has a

similar computational cost to sphere tracing with a Lipschitz con-

stant of 𝐿 = 50, which is significantly more expensive than running

sphere tracing for lower values of 𝐿. So if one has a function with a

small known Lipschitz bound, then sphere tracing will probably be

more efficient; the real strength of Harnack tracing is that it can be

applied to functions for which Lipschitz bounds do not exist, like

solid angle. But of course, the dominant computational cost in both

Harnack tracing and sphere tracing is generally in evaluating the

function 𝑓 , rather than evaluating the step size, so one could always

compute step sizes using both sphere tracing and Harnack tracing

and take the larger of the two, since both are guaranteed to be safe.

5.3 Root Finding
Ray tracing can also be viewed as a root finding problem for the

function 𝜙 (𝑡) (Equation 20). In special situations like Section 4.1,

where 𝑓 (x) is a polynomial, one can apply polynomial root finding

methods (like Sturm sequences) to compute all roots of 𝜙 (𝑡), and
take the smallest one. More commonly, however, one must turn

to general-purpose root-finding methods. For instance, Newton’s
method iteratively finds the root of a local linear approximation;

bisection search iteratively splits an interval that straddles a root,

and similarly, interval analysis tracks the upper and lower bounds

of an interval, which is recursively split until it has width no greater

than a tolerance 𝜀 around a root, or is guaranteed not to contain

one. Even if these methods guarantee some root is found, they can

ACM Trans. Graph., Vol. 43, No. 4, Article 99. Publication date: July 2024.

99:14 • Gillespie, Yang, Botsch, and Crane

in general fail to find the first hit (i.e., the smallest positive root 𝑡),

leading to occlusion artifacts or gaps in the surface.

bisection
search

interval
analysis

Moreover, for angle-valued functions,

one may detect discontinuities in 𝑓 (x),
rather than true geometric intersections.

For interval-based methods, one can try to

“patch” this issue by, e.g., checking whether

the value of 𝜙 (𝑡) at the center of the interval
is within 𝜀 of zero, but this sort of modifi-

cation voids any guarantees—causing new

artifacts (see inset). For level sets of simple

functions, like the globally continuous gyroid in Figure 27 (top right),
interval analysis can reliably compute the first intersection. But for

the broader class of surfaces handled by Harnack tracing, significant

artifacts were visible in all root finding methods we tried (Figure 27).

5.4 Walk on Spheres
Finally, our method has some potentially fruitful connections to

the walk on spheres (WoS) method [Muller 1956], recently used in

graphics to solve partial differential equations (PDEs) in a variety of

settings [Sawhney and Crane 2020; Sawhney et al. 2022, 2023; Miller

et al. 2023; Bakbouk and Peers 2023; Yılmazer et al. 2022; Rioux-

Lavoie et al. 2022; Sugimoto et al. 2023; Miller et al. 2024]. First, WoS

can solve PDEs on any domain where one can determine conserva-

tive empty spheres—hence, the strategies we develop to evaluate

Harnack bounds in Section 4 extend WoS to a richer set of geome-

tries. Conversely, WoS can be used to obtain pointwise evaluations

of harmonic functions on arbitrary geometric domains, providing

an even larger set of functions that can be visualized via Harnack

tracing. However, despite the close connection to spheres and har-

monic functions, WoS is not an alternative to Harnack tracing—they
are different algorithms, with fundamentally different purposes

(evaluating a harmonic function, versus visualizing its level sets).

6 LIMITATIONS AND FUTURE WORK
As noted in Section 4.10, Harnack tracing is less efficient than sphere

tracing—though it at least exhibits the same asymptotic rate of con-
vergence. As hinted at in Section 5, there are many opportunities

to close the gap. For instance, a common acceleration for sphere

tracing, which we did not implement, is to set the stopping toler-

ance adaptively according to the pixel size and distance from the

camera. Another useful trick is to use low-resolution cone tracing

to provide safe initialization to ray trace a higher-resolution image

[Bálint and Valasek 2018]. More fundamentally, one could try to

derive tighter bounds by additionally incorporating, e.g., the ray
direction or gradient information. Specific applications can also be

significantly accelerated: e.g., one could visualize Poisson recon-

structed surfaces dramatically faster by applying Barnes Hut/fast

multipole methods, à la Barill et al. [2018]—exponentially reducing

the cost of evaluating the harmonic function at each step.

The present work considers the Harnack inequality for harmonic

functions, but Harnack inequalities are a much more general object

studied in elliptic PDE theory—hinting that there may also be effi-

cient ray tracing algorithms for a much broader class of surfaces

[Kassmann 2007]. Similarly, just as the SDF condition ∥∇𝜙 ∥ = 1 can

be relaxed to the Lipschitz condition ∥∇𝜙 ∥ ≤ 1, enabling a broader

class of objects to be ray traced via classic sphere tracing, it may

be possible to transition from strictly harmonic functions Δ𝑢 = 0

to subharmonic functions Δ𝑢 ≤ 0 to expand the class of surfaces

where Harnack tracing can be applied. In general, our feeling is that

the Harnack approach holds significant potential for expanding the

class of surfaces that can be efficiently and reliably ray traced.

Finally, our exploration of this topic was motivated in part by

recent interest in SDFs as a neural surface representation [Xie et al.

2022]. Sphere tracing has experienced a renaissance as one of the

basic strategies for visualizing neural SDFs [Takikawa et al. 2021, §2].

However, vision and learning continue to seek alternative surface

representations, in part due to challenges with enforcing the signed

distance property. To ensure that a function 𝑓 is an SDF, one must

apply nonconvex, nondifferentiable loss functions to enforce the

eikonal condition ∥∇𝑓 ∥=1 [Gropp et al. 2020]. Moreover, it is well-

known that this conditionmay still fail to provide the signed distance

property [Xie et al. 2022], which is more difficult to enforce directly

[Marschner et al. 2023]. In contrast, ensuring that 𝑓 is harmonic

amounts to a simple linear condition Δ𝑓 = 0; it also corresponds to

a convex Dirichlet energy
∫
∥∇𝑓 ∥2, suggesting it may be easier to

optimize. However, optimizing “neural harmonic surfaces” would

require a differentiable version of Harnack tracing—which we leave

to future work (and may play well with recent angle-valued neural

representations [Palmer et al. 2022]).

ACKNOWLEDGMENTS
Thanks to Nicole Feng for help with Biot-Savart-based expressions

for our surface normals, to Albert Chern for helpful discussion of the

Biot-Savart law and random projections of curves, and to Andrea

Tagliasacchi and Google Brain for supporting this work. Figure 2 is

based on an illustration by the last author [Crane 2012]. This work

was funded by an NSF CAREER Award (IIS 1943123), NSF Award

IIS 2212290, a Packard Fellowship and a gift from Google Brain.

REFERENCES
Anders Adamson and Marc Alexa. 2003. Approximating and intersecting surfaces from

points. In Symposium on Geometry Processing. 230–239. https://doi.org/10.5555/

882370.882401

Emil Adiels, Mats Ander, and Chris JK Williams. 2022. The architectural application of

shells whose boundaries subtend a constant solid angle. arXiv preprint (2022), 21.
https://arxiv.org/pdf/2212.05913.pdf

Arthur Appel. 1968. Some techniques for shading machine renderings of solids. In

Proceedings of the April 30–May 2, 1968, Spring Joint Computer Conference. ACM,

37–45. https://doi.org/10.1145/1468075.1468082

Sheldon Axler, Paul Bourdon, and Ramey Wade. 2013. Harmonic Function Theory (2nd

ed.). Graduate Texts in Mathematics, Vol. 137. Springer. https://doi.org/10.1007/978-

1-4757-8137-3

Melike Aydinlilar and Cedric Zanni. 2021. Fast Ray Tracing of Scale-Invariant Integral

Surfaces. Computer Graphics Forum 40, 6, 117–134. https://doi.org/10.1111/cgf.14208

Ghada Bakbouk and Pieter Peers. 2023. Mean Value Caching for Walk on Spheres. In

Eurographics Symposium on Rendering. The Eurographics Association, 10. https:

//doi.org/10.2312/sr.20231120

Csaba Bálint and Gábor Valasek. 2018. Accelerating Sphere Tracing. In Eurographics
(Short Papers). 29–32. https://doi.org/10.2312/egs.20181037

Sai Praveen Bangaru, Michaël Gharbi, Fujun Luan, Tzu-Mao Li, Kalyan Sunkavalli, Milos

Hasan, Sai Bi, Zexiang Xu, Gilbert Bernstein, and Fredo Durand. 2022. Differentiable

Rendering of Neural SDFs through Reparameterization. In SIGGRAPH Asia 2022
Conference Papers. 1–9. https://doi.org/10.1145/3550469.3555397

Gavin Barill, Neil G. Dickson, Ryan Schmidt, David I. W. Levin, and Alec Jacobson. 2018.

Fast Winding Numbers for Soups and Clouds. ACM Transactions on Graphics (TOG)
37, 4, Article 43 (July 2018), 12 pages. https://doi.org/10.1145/3197517.3201337

ACM Trans. Graph., Vol. 43, No. 4, Article 99. Publication date: July 2024.

https://doi.org/10.5555/882370.882401
https://doi.org/10.5555/882370.882401
https://arxiv.org/pdf/2212.05913.pdf
https://doi.org/10.1145/1468075.1468082
https://www.axler.net/HFT.html
https://doi.org/10.1007/978-1-4757-8137-3
https://doi.org/10.1007/978-1-4757-8137-3
https://doi.org/10.1111/cgf.14208
https://doi.org/10.2312/sr.20231120
https://doi.org/10.2312/sr.20231120
https://doi.org/10.2312/egs.20181037
https://doi.org/10.1145/3550469.3555397
https://doi.org/10.1145/3197517.3201337

Ray Tracing Harmonic Functions • 99:15

AlanH. Barr. 1981. Superquadrics and angle-preserving transformations. IEEE Computer
Graphics and Applications 1, 1 (1981), 11–23. https://doi.org/10.1109/MCG.1981.

1673799

Jack Binysh and Gareth P Alexander. 2018. Maxwell’s theory of solid angle and the

construction of knotted fields. Journal of Physics A: Mathematical and Theoretical
51, 38 (2018), 21. https://doi.org/10.1088/1751-8121/aad8c6

Astrid Bunge, Marc Alexa, and Mario Botsch. 2023. Discrete Laplacians for General

Polygonal and Polyhedral Meshes. In SIGGRAPH Asia 2023 Courses. 1–49. https:

//doi.org/10.1145/3610538.3614620

Astrid Bunge, Philipp Herholz, Misha Kazhdan, and Mario Botsch. 2020. Polygon

Laplacian made simple. Computer Graphics Forum 39, 2 (2020), 303–313. https:

//doi.org/10.1111/cgf.13931

Edwin E. Catmull and James H. Clark. 1978. Recursively generated B-spline surfaces

on arbitrary topological meshes. Computer-Aided Design 10, 6 (1978), 350–355.

https://doi.org/10.1016/0010-4485(78)90110-0

Albert Chern and Sadashige Ishida. 2023. Area formula for spherical polygons via

prequantization. arXiv preprint (2023), 12. https://arxiv.org/pdf/2303.14555.pdf

Keenan Crane. 2005. Ray Tracing Quaternion Julia Sets on the GPU. https://www.cs.

cmu.edu/~kmcrane/Projects/QuaternionJulia/.

Keenan Crane. 2012. Graph of Harnack’s inequality. https://commons.wikimedia.org/

w/index.php?title=File:Graph_of_Harnack%27s_inequality.png&oldid=600951383

[Online; accessed 27-March-2024].

Olaf Diegel. 2021. Design for Additive Manufacturing: A workflow for a metal AM

heat exchanger using nTopology. Metal AM 7, 2 (2021), 185–189.

Bruce E Edwards. 1982. Implementation of a ray-tracing algorithm for rendering su-
perquadric solids. Rensselaer Polytechnic Institute, Troy, NY.

Michael S. Floater. 2003. Mean Value Cordinates. Computer Aided Geometric Design 20,

1 (2003), 19–27. https://doi.org/10.1016/S0167-8396(03)00002-5

Blender Foundation and Community. 2023. Blender 4.0. http://www.blender.org

Mark Galassi, Jim Davies, James Theiler, Brian Gough, Gerard Jungman, Patrick Alken,

Michael Booth, and Fabrice Rossi. 2009. GNU Scientific Library Reference Manual
(3rd ed.). Network Theory Ltd.

Eric Galin, Eric Guérin, Axel Paris, and Adrien Peytavie. 2020. Segment tracing using

local Lipschitz bounds. Computer Graphics Forum 39, 2 (2020), 545–554. https:

//doi.org/10.1111/cgf.13951

Fernando de Goes, Siome Goldenstein, Mathieu Desbrun, and Luiz Velho. 2011. Ex-

oskeleton: Curve Network Abstraction for 3D Shapes. Computers & Graphics 35, 1
(Feb. 2011), 112–121. https://doi.org/10.1016/j.cag.2010.11.012

Robert A. Goldstein and Roger Nagel. 1971. 3-D Visual simulation. Simulation 16, 1

(1971), 25–31. https://doi.org/10.1177/003754977101600104

Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and Yaron Lipman. 2020. Implicit

Geometric Regularization for Learning Shapes. In Proceedings of the 37th Interna-
tional Conference on Machine Learning (Proceedings of Machine Learning Research),
Vol. 119. PMLR, 3789–3799. https://proceedings.mlr.press/v119/gropp20a.html

Markus Hadwiger, Christian Sigg, Henning Scharsach, Khatja Bühler, and Markus

Gross. 2005. Real-time ray-casting and advanced shading of discrete isosurfaces.

Computer Graphics Forum 24, 3 (2005), 303–312. https://doi.org/10.1111/j.1467-

8659.2005.00855.x

Pat Hanrahan. 1983. Ray Tracing Algebraic Surfaces. SIGGRAPH Computer Graphics
17, 3 (July 1983), 83–90. https://doi.org/10.1145/964967.801136

Pat Hanrahan. 1989. A Survey of Ray-Surface Intersection Algorithms. In An Introduc-
tion to Ray Tracing, Andrew S. Glassner (Ed.). Academic Press, 79–119.

Axel Harnack. 1887. Die Grundlagen der Theorie des logarithmischen Potentiales und der
eindeutigen Potentialfunktion in der Ebene. VG Teubner.

John C. Hart. 1993a. Ray Tracing Implicit Surfaces. In Modeling, Visualizing, and
Animating Implicit Surfaces (Siggraph 1993 Courses).

John C Hart. 1993b. Sphere tracing: Simple robust antialiased rendering of distance-

based implicit surfaces. In SIGGRAPH, Vol. 93. 1–11.
John C Hart. 1996. Sphere tracing: A geometric method for the antialiased ray tracing

of implicit surfaces. The Visual Computer 12, 10 (1996), 527–545. https://doi.org/10.

1007/s003710050084

John C Hart and Thomas A DeFanti. 1991. Efficient antialiased rendering of 3-D linear

fractals. In Proceedings of the 18th annual conference on Computer graphics and
interactive techniques. 91–100. https://doi.org/10.1145/122718.122728

John C. Hart, Daniel J. Sandin, and Louis H. Kauffman. 1989. Ray tracing deterministic

3-D fractals. SIGGRAPH Computer Graphics 23, 3 (July 1989), 289–296. https:

//doi.org/10.1145/74334.74363

Alec Jacobson, Ladislav Kavan, and Olga Sorkine-Hornung. 2013. Robust inside-outside

segmentation using generalized winding numbers. ACM Transactions on Graphics
(TOG) 32, 4 (July 2013), 1–12. https://doi.org/10.1145/2461912.2461916

Yue Jiang, Dantong Ji, Zhizhong Han, and Matthias Zwicker. 2020. SDFDiff: Differen-

tiable rendering of signed distance fields for 3d shape optimization. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
1251–1261.

Pushkar Joshi, Mark Meyer, Tony DeRose, Brian Green, and Tom Sanocki. 2007. Har-

monic Coordinates for Character Articulation. ACM Transactions on Graphics (TOG)

26, 3 (July 2007). https://doi.org/10.1145/1276377.1276466

Tao Ju, Frank Losasso, Scott Schaefer, and Joe Warren. 2002. Dual contouring of

Hermite data. ACM Transactions on Graphics (TOG) 21, 3 (July 2002), 339–346.

https://doi.org/10.1145/566654.566586

Devendra Kalra and Alan H. Barr. 1989. Guaranteed Ray Intersections with Implicit

Surfaces. SIGGRAPH Computer Graphics 23, 3 (July 1989), 297–306. https://doi.org/

10.1145/74334.74364

Moritz Kassmann. 2007. Harnack Inequalities: an Introduction. Boundary Value Problems
2007 (2007), 1–21. https://doi.org/10.1155/2007/81415

Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. 2006. Poisson Surface Recon-

struction. In Symposium on Geometry Processing. Eurographics Association, 61–70.
https://doi.org/10.2312/SGP/SGP06/061-070

Matthew J. Keeter. 2020. Massively parallel rendering of complex closed-form implicit

surfaces. ACM Transactions on Graphics (TOG) 39, 4, Article 141 (Aug. 2020), 10 pages.
https://doi.org/10.1145/3386569.3392429

Benjamin Keinert, Henry Schäfer, Johann Korndörfer, Urs Ganse, and Marc Stamminger.

2014. Enhanced Sphere Tracing. In Smart Tools and Apps for Graphics. The Euro-
graphics Association. https://doi.org/10.2312/stag.20141233

Alois Knoll. 2007. A survey of implicit surface rendering methods, and a proposal for a

common sampling framework. In Proceedings of the 2nd IRTG Workshop (GI Lecture
Notes in Informatics).

Aaron Knoll, Younis Hijazi, Andrew Kensler, Mathias Schott, Charles Hansen, and Hans

Hagen. 2009. Fast ray tracing of arbitrary implicit surfaces with interval and affine

arithmetic. Computer Graphics Forum 28, 1 (2009), 26–40. https://doi.org/10.1111/j.

1467-8659.2008.01189.x

Leif P Kobbelt, Katja Daubert, and Hans-Peter Seidel. 1998. Ray tracing of subdivision

surfaces. In Eurographics Workshop on Rendering Techniques. Springer, 69–80. https:

//doi.org/10.1007/978-3-7091-6453-2_7

John M. Lee. 2018. Introduction to Riemannian Manifolds (2nd ed.). Graduate Texts in

Mathematics, Vol. 176. Springer. https://doi.org/10.1007/978-3-319-91755-9

Adrien Marie Legendre. 1817. Éléments de géometrie (11th ed.). translated as: Elements
of Geometry (1819). Cambridge University Press.

Shaohui Liu, Yinda Zhang, Songyou Peng, Boxin Shi, Marc Pollefeys, and Zhaopeng

Cui. 2020. Dist: Rendering deep implicit signed distance function with differentiable

sphere tracing. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). 2019–2028. https://doi.org/10.1109/CVPR42600.2020.

00209

William E. Lorensen and Harvey E. Cline. 1987. Marching Cubes: A High Resolution 3D

Surface Construction Algorithm. SIGGRAPH Computer Graphics 21, 4 (Aug. 1987),
163–169. https://doi.org/10.1145/37402.37422

ZoëMarschner, Silvia Sellán, Hsueh-Ti Derek Liu, and Alec Jacobson. 2023. Constructive

Solid Geometry on Neural Signed Distance Fields. In SIGGRAPHAsia 2023 Conference
Papers. ACM, Article 121, 12 pages. https://doi.org/10.1145/3610548.3618170

Bailey Miller, Rohan Sawhney, Keenan Crane, and Ioannis Gkioulekas. 2023. Boundary

Value Caching for Walk on Spheres. ACM Transactions on Graphics (TOG) 42, 4 (July
2023). https://doi.org/10.1145/3592400

Bailey Miller, Rohan Sawhney, Keenan Crane, and Ioannis Gkioulekas. 2024. Walkin’

Robin: Walk on Stars with Robin Boundary Conditions. ACM Transactions on
Graphics (TOG) 43, 41 (2024).

Mervin E. Muller. 1956. Some Continuous Monte Carlo Methods for the Dirichlet

Problem. Annals of Mathematical Statistics 27, 3 (1956), 569–589. https://doi.org/10.

1214/aoms/1177728169

Adriaan van Oosterom and Jan Strackee. 1983. The solid angle of a plane triangle.

IEEE Transactions on Biomedical Engineering BME-30, 2 (1983), 125–126. https:

//doi.org/10.1109/TBME.1983.325207

Alexandrina Orzan, Adrien Bousseau, Holger Winnemöller, Pascal Barla, Joëlle Thollot,

and David Salesin. 2008. Diffusion curves: a vector representation for smooth-

shaded images. ACM Transactions on Graphics (TOG) 27, 3 (Aug. 2008), 1–8. https:

//doi.org/10.1145/1360612.1360691

David Palmer, Dmitriy Smirnov, Stephanie Wang, Albert Chern, and Justin Solomon.

2022. DeepCurrents: Learning Implicit Representations of Shapes with Boundaries.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 18644–18654. https://doi.org/10.1109/CVPR52688.2022.01811

Frank Paxton. 1959. Solid angle calculation for a circular disk. Review of Scientific
Instruments 30, 4 (1959), 254–258. https://doi.org/10.1063/1.1716590

Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2023. Physically based rendering: From
theory to implementation (4th ed.). Morgan Kaufmann. https://www.pbrt.org/

Daniel Piker. 2021. Some examples of periodic isosurfacing. https://twitter.com/

KangarooPhysics/status/1457802855994191877.

Ulrich Pinkall and Konrad Polthier. 1993. Computing discrete minimal surfaces and

their conjugates. Experimental mathematics 2, 1 (1993), 15–36. https://doi.org/10.

1080/10586458.1993.10504266

Inigo Quilez. 2008. Raymarching Signed Distance Fields. https://iquilezles.org/articles/

raymarchingdf/. Accessed: 2023-06-20.

Inigo Quilez. 2015. Normals for an SDF. https://iquilezles.org/articles/normalsSDF/.

Accessed: 2023-06-20.

ACM Trans. Graph., Vol. 43, No. 4, Article 99. Publication date: July 2024.

https://doi.org/10.1109/MCG.1981.1673799
https://doi.org/10.1109/MCG.1981.1673799
https://doi.org/10.1088/1751-8121/aad8c6
https://doi.org/10.1145/3610538.3614620
https://doi.org/10.1145/3610538.3614620
https://doi.org/10.1111/cgf.13931
https://doi.org/10.1111/cgf.13931
https://doi.org/10.1016/0010-4485(78)90110-0
https://arxiv.org/pdf/2303.14555.pdf
https://www.cs.cmu.edu/~kmcrane/Projects/QuaternionJulia/
https://www.cs.cmu.edu/~kmcrane/Projects/QuaternionJulia/
https://commons.wikimedia.org/w/index.php?title=File:Graph_of_Harnack%27s_inequality.png&oldid=600951383
https://commons.wikimedia.org/w/index.php?title=File:Graph_of_Harnack%27s_inequality.png&oldid=600951383
https://www.metal-am.com/articles/design-for-additive-manufacturing-a-workflow-for-a-metal-am-heat-exchanger-using-ntopology/
https://www.metal-am.com/articles/design-for-additive-manufacturing-a-workflow-for-a-metal-am-heat-exchanger-using-ntopology/
https://doi.org/10.1016/S0167-8396(03)00002-5
http://www.blender.org
https://doi.org/10.1111/cgf.13951
https://doi.org/10.1111/cgf.13951
https://doi.org/10.1016/j.cag.2010.11.012
https://doi.org/10.1177/003754977101600104
https://proceedings.mlr.press/v119/gropp20a.html
https://doi.org/10.1111/j.1467-8659.2005.00855.x
https://doi.org/10.1111/j.1467-8659.2005.00855.x
https://doi.org/10.1145/964967.801136
https://archive.org/details/introductiontora0000unse_l1j8/page/78/mode/2up
https://archive.org/details/diegrundlagender00harnuoft/page/61
https://archive.org/details/diegrundlagender00harnuoft/page/61
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=3b002b6bfc892d92125b472df12afe5be96908ac
https://doi.org/10.1007/s003710050084
https://doi.org/10.1007/s003710050084
https://doi.org/10.1145/122718.122728
https://doi.org/10.1145/74334.74363
https://doi.org/10.1145/74334.74363
https://doi.org/10.1145/2461912.2461916
https://doi.org/10.1145/1276377.1276466
https://doi.org/10.1145/566654.566586
https://doi.org/10.1145/74334.74364
https://doi.org/10.1145/74334.74364
https://doi.org/10.1155/2007/81415
https://doi.org/10.2312/SGP/SGP06/061-070
https://doi.org/10.1145/3386569.3392429
https://doi.org/10.2312/stag.20141233
https://www.sci.utah.edu/~knolla/impsurvey.pdf
https://www.sci.utah.edu/~knolla/impsurvey.pdf
https://doi.org/10.1111/j.1467-8659.2008.01189.x
https://doi.org/10.1111/j.1467-8659.2008.01189.x
https://doi.org/10.1007/978-3-7091-6453-2_7
https://doi.org/10.1007/978-3-7091-6453-2_7
https://doi.org/10.1007/978-3-319-91755-9
https://archive.org/details/elementsgeometr00farrgoog/page/n201/mode/2up
https://archive.org/details/elementsgeometr00farrgoog/page/n201/mode/2up
https://doi.org/10.1109/CVPR42600.2020.00209
https://doi.org/10.1109/CVPR42600.2020.00209
https://doi.org/10.1145/37402.37422
https://doi.org/10.1145/3610548.3618170
https://doi.org/10.1145/3592400
https://doi.org/10.1214/aoms/1177728169
https://doi.org/10.1214/aoms/1177728169
https://doi.org/10.1109/TBME.1983.325207
https://doi.org/10.1109/TBME.1983.325207
https://doi.org/10.1145/1360612.1360691
https://doi.org/10.1145/1360612.1360691
https://arxiv.org/pdf/2111.09383.pdf
https://doi.org/10.1109/CVPR52688.2022.01811
https://doi.org/10.1063/1.1716590
https://www.pbrt.org/
https://twitter.com/KangarooPhysics/status/1457802855994191877
https://twitter.com/KangarooPhysics/status/1457802855994191877
https://projecteuclid.org/journals/experimental-mathematics/volume-2/issue-1/Computing-discrete-minimal-surfaces-and-their-conjugates/em/1062620735.full
https://projecteuclid.org/journals/experimental-mathematics/volume-2/issue-1/Computing-discrete-minimal-surfaces-and-their-conjugates/em/1062620735.full
https://doi.org/10.1080/10586458.1993.10504266
https://doi.org/10.1080/10586458.1993.10504266
https://iquilezles.org/articles/raymarchingdf/
https://iquilezles.org/articles/raymarchingdf/
https://iquilezles.org/articles/normalsSDF/

99:16 • Gillespie, Yang, Botsch, and Crane

Inigo Quilez and Pol Jeremias. 2013. ShaderToy. https://www.shadertoy.com/. Accessed:

2024-01-21.

Damien Rioux-Lavoie, Ryusuke Sugimoto, Tümay Özdemir, Naoharu H. Shimada,

Christopher Batty, Derek Nowrouzezahrai, and Toshiya Hachisuka. 2022. A Monte

Carlo Method for Fluid Simulation. ACM Transactions on Graphics (TOG) 41, 6,
Article 240 (Nov. 2022), 16 pages. https://doi.org/10.1145/3550454.3555450

Scott D. Roth. 1982. Ray casting for modeling solids. Computer Graphics and Image
Processing 18, 2 (1982), 109–144. https://doi.org/10.1016/0146-664X(82)90169-1

Robert E. Rothe. 1969. The solid angle at a point subtended by a circle. Journal of the
Franklin Inst. 287, 6 (1969), 515–521. https://doi.org/10.1016/0016-0032(69)90061-1

Rohan Sawhney. 2021. FCPW: Fastest Closest Points in the West. https://github.com/

rohan-sawhney/fcpw

Rohan Sawhney and Keenan Crane. 2020. Monte Carlo Geometry Processing: A Grid-

Free Approach to PDE-Based Methods on Volumetric Domains. ACM Transactions
on Graphics (TOG) 39, 4 (Aug. 2020). https://doi.org/10.1145/3386569.3392374

Rohan Sawhney, Bailey Miller, Ioannis Gkioulekas, and Keenan Crane. 2023. Walk

on Stars: A Grid-Free Monte Carlo Method for PDEs with Neumann Boundary

Conditions. ACM Transactions on Graphics (TOG) 42, 4 (2023). https://doi.org/10.

1145/3592398

Rohan Sawhney, Dario Seyb, Wojciech Jarosz, and Keenan Crane. 2022. Grid-Free

Monte Carlo for PDEs with Spatially Varying Coefficients. ACM Transactions on
Graphics (TOG) 41, 4 (July 2022). https://doi.org/10.1145/3528223.3530134

Dario Seyb, Alec Jacobson, Derek Nowrouzezahrai, and Wojciech Jarosz. 2019. Non-

linear sphere tracing for rendering deformed signed distance fields. ACM Transac-
tions on Graphics (TOG) 38, 6, Article 229 (Nov. 2019), 12 pages. https://doi.org/10.

1145/3355089.3356502

Nicholas Sharp and Alec Jacobson. 2022. Spelunking the Deep: Guaranteed Queries

on General Neural Implicit Surfaces via Range Analysis. ACM Transactions on
Graphics (TOG) 41, 4, Article 107 (July 2022), 16 pages. https://doi.org/10.1145/

3528223.3530155

Tianchang Shen, Jacob Munkberg, Jon Hasselgren, Kangxue Yin, ZianWang, Wenzheng

Chen, Zan Gojcic, Sanja Fidler, Nicholas Sharp, and Jun Gao. 2023. Flexible isosurface

extraction for gradient-based mesh optimization. ACM Transactions on Graphics
(TOG) 42, 4 (July 2023), 1–16. https://doi.org/10.1145/3592430

William R. Smythe. 1989. Static and Dynamic Electricity (3rd ed.). Taylor & Francis.

revised printing.

Ryusuke Sugimoto, Terry Chen, Yiti Jiang, Christopher Batty, and Toshiya Hachisuka.

2023. A Practical Walk-on-Boundary Method for Boundary Value Problems. ACM
Transactions on Graphics (TOG) 42, 4, Article 81 (July 2023), 16 pages. https:

//doi.org/10.1145/3592109

Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten Kreis, Charles Loop, Derek

Nowrouzezahrai, Alec Jacobson, Morgan McGuire, and Sanja Fidler. 2021. Neural

geometric level of detail: Real-time rendering with implicit 3D shapes. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
11358–11367. https://doi.org/10.1109/CVPR46437.2021.01120

Towaki Takikawa, Shunsuke Saito, James Tompkin, Vincent Sitzmann, Srinath Sridhar,

Or Litany, and Alex Yu. 2023. Neural Fields for Visual Computing. InACM SIGGRAPH
2023 Courses.

Haruyuki Tatsumi, Eiji Takaoki, Koichi Omura, and Hisao Fujita. 1990. A new method

for three-dimensional reconstruction from serial sections by computer graphics

using “meta-balls”: Reconstruction of “hepatoskeletal system” formed by Ito cells

in the cod liver. Computers and Biomedical Research 23, 1 (1990), 37–45. https:

//doi.org/10.1016/0010-4809(90)90005-W

Delio Vicini, Sébastien Speierer, and Wenzel Jakob. 2022. Differentiable Signed Distance

Function Rendering. ACM Transactions on Graphics (TOG) 41, 4 (July 2022), 1–18.

https://doi.org/10.1145/3528223.3530139

John Wallis. 1659. Tractatus de Sectionibus Conicis.
Stephanie Wang and Albert Chern. 2021. Computing minimal surfaces with differential

forms. ACM Transactions on Graphics (TOG) 40, 4 (July 2021), 1–14. https://doi.org/

10.1145/3450626.3459781

Jarke J. van Wijk. 1985. Ray tracing objects defined by sweeping a sphere. Computers
& Graphics 9, 3 (1985), 283–290. https://doi.org/10.1016/0097-8493(85)90055-X

Jarke J. van Wijk and Arjeh M. Cohen. 2006. Visualization of Seifert Surfaces. IEEE
IEEE Transactions on Visualization and Computer Graphics 12, 4 (2006), 485–496.

https://doi.org/10.1109/TVCG.2006.83

Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shiqin Yan, Numair Khan,

Federico Tombari, James Tompkin, Vincent Sitzmann, and Srinath Sridhar. 2022.

Neural fields in visual computing and beyond. Computer Graphics Forum 41, 2 (2022),

641–676. https://doi.org/10.1111/cgf.14505

Ekrem Fatih Yılmazer, Delio Vicini, and Wenzel Jakob. 2022. Solving Inverse PDE

Problems using Grid-Free Monte Carlo Estimators. arXiv preprint (2022). https:

//arxiv.org/pdf/2208.02114.pdf

A CONVERGENCE ANALYSIS
In Theorem A.1, we show that Harnack tracing converges linearly—

the same convergence rate offered by sphere tracing. Explicitly, this

means that as the stopping tolerance 𝜀 → 0, Harnack tracing will

require𝑂 (log(1/𝜀)) steps to find a time 𝑡 such that |𝑓 (r(𝑡))− 𝑓 ∗ | < 𝜀.
It is perhaps not obvious, a priori, that Harnack tracing must

converge to an intersection with the target level set S := 𝑓 −1 (𝑓 ∗).
One might worry about a pathological choice of ball radii 𝑅 and

lower bounds 𝑐 leading to an ever decreasing sequence of steps and

“getting stuck” at some point in space away far from S. Indeed, in
Section 4.1, we saw that if the ball radius 𝑅 becomes zero in some

region of the domain, then Harnack tracing will be unable to step

past that region. But Theorem A.1 shows that this is the only issue:

so long as the radii 𝑅 are nonzero, then any point at which Harnack

tracing “gets stuck” must belong to the level set S.

Theorem A.1. Suppose the radius 𝑅(x) and shift 𝑐 (x) are compat-
ible, in the sense that 𝑓 (x) − 𝑐 (x0) > 0 on the ball 𝐵𝑅 (x0) (x0) for all
x0, and that 𝑅(x) > 0. Then Harnack tracing converges linearly to the
first intersection of r(𝑡) with S, so long as an intersection exists.

Proof. We divide the proof into two lemmas: Lemma A.2 es-

tablishes convergence to the first intersection, while Lemma A.3

establishes the convergence rate. □

Lemma A.2. Under the assumptions of Theorem A.1, Harnack trac-
ing converges to the first intersection of r(𝑡) with the surface S.

Proof. Suppose that the algorithm converges to some time 𝑡∗.
Since the step size 𝜌 depends continuously on 𝑓 , 𝑅, and 𝑐 , which in

turn depend continuously on position, the step size at position r(𝑡∗)
must be zero. Since 𝑅 is nonzero, Line 13 of Algorithm 1 implies that

we must have 𝑎 = 0, which by Line 12 implies that 𝑓 (r(𝑡∗)) = 𝑓 ∗.
Hence, Harnack tracing converges to an intersection of ray r(𝑡)
with the desired level set (or at least its closure). Harnack tracing

can never step past S, since the Harnack inequality guarantees that

𝑓 (r(𝑡)) stays above/below 𝑓 ∗ during each step, so this must be the

first intersection between r(𝑡) and S. □

Lemma A.3. Under the assumptions of Theorem A.1, Harnack trac-
ing converges linearly.

Proof. Suppose that Harnack tracing converges to some time

𝑡∗. We fix a small neighborhood 𝑈 of r(𝑡∗) and define constants

𝑐𝑈 := infx∈𝑈 𝑐 (x) and 𝑅𝑈 := infx∈𝑈 𝑅(x). Since our step size in-

creases monotonically with 𝑐 and 𝑅, we can bound the convergence

rate by assuming that 𝑐 and 𝑅 take on the constant values 𝑐𝑈 and 𝑅𝑈
within the neighborhood 𝑈 . Furthermore, by making 𝑈 sufficiently

small we may assume that 𝑓 (x) is a linear function, and we can

absorb the shift 𝑐𝑈 into its constant term, leaving us with a positive

function 𝑓 (x) and a positive level set value 𝑓 ∗ > 0. By shrinking 𝑈

again if necessary we can also ensure that |𝑓 (x) − 𝑓 ∗ | ≤ 1

2
𝑓 ∗ on𝑈 .

Hence, without loss of generality we may consider a linear func-

tion 𝑓 (x) = 𝛼𝑥2 + 𝛽 with constant ball radius 𝑅𝑈 . At each iteration,

our error is given by |𝛼𝑥2 + 𝛽 − 𝑓 ∗ |, and we take a step of size

𝜌 := 1

2
𝑅𝑈

�����𝛼𝑥2+𝛽
𝑓 ∗ + 2 −

√︂(
𝛼𝑥2+𝛽
𝑓 ∗

)
2

+ 8
𝛼𝑥2+𝛽
𝑓 ∗

����� .
ACM Trans. Graph., Vol. 43, No. 4, Article 99. Publication date: July 2024.

https://www.shadertoy.com/
https://doi.org/10.1145/3550454.3555450
https://doi.org/10.1016/0146-664X(82)90169-1
https://doi.org/10.1016/0016-0032(69)90061-1
https://github.com/rohan-sawhney/fcpw
https://github.com/rohan-sawhney/fcpw
https://doi.org/10.1145/3386569.3392374
https://doi.org/10.1145/3592398
https://doi.org/10.1145/3592398
https://doi.org/10.1145/3528223.3530134
https://doi.org/10.1145/3355089.3356502
https://doi.org/10.1145/3355089.3356502
https://doi.org/10.1145/3528223.3530155
https://doi.org/10.1145/3528223.3530155
https://doi.org/10.1145/3592430
https://doi.org/10.1145/3592109
https://doi.org/10.1145/3592109
https://doi.org/10.1109/CVPR46437.2021.01120
https://doi.org/10.1016/0010-4809(90)90005-W
https://doi.org/10.1016/0010-4809(90)90005-W
https://doi.org/10.1145/3528223.3530139
https://doi.org/10.1145/3450626.3459781
https://doi.org/10.1145/3450626.3459781
https://doi.org/10.1016/0097-8493(85)90055-X
https://doi.org/10.1109/TVCG.2006.83
https://doi.org/10.1111/cgf.14505
https://arxiv.org/pdf/2208.02114.pdf
https://arxiv.org/pdf/2208.02114.pdf

Ray Tracing Harmonic Functions • 99:17

A short calculation shows that whenever |𝛼𝑥2 + 𝛽 − 𝑓 ∗ | ≤ 1

2
𝑓 ∗, this

step size is at least
1

4𝑓 ∗ 𝑅𝑈 |𝛼𝑥2 + 𝛽 − 𝑓 ∗ |. Hence, at each step along

the ray r(𝑡) = r0 + 𝑡v the error |𝑓 (x) − 𝑓 ∗ | decreases by at least

a constant factor of 1 − 𝛼𝑅𝑈 𝑣2

4𝑓 ∗ < 1, and therefore the sequence

converges linearly to a point r(𝑡∗) satisfying 𝑓 (r(𝑡∗)) = 𝑓 ∗. □

Angle-valued functions. A similar analysis can be applied when

𝑓 (x) is an angle-valued function. The only difference is that the

radius function 𝑅 must be defined so that the balls 𝐵𝑅 (x) (x) never
contain any singularities of 𝑓 when x does not lie on a singularity

of 𝑓 , and that 𝑅(x) must be zero when x does lie on a singularity.

The proof of Lemma A.2 remains essentially unchanged—the only

difference is that Harnack tracing may also converge to a singular

point (where 𝑅(x) = 0). Lemma A.3 applies unchanged whenever

Harnack tracing converges to a non-singular point x, since the angle-
valued function 𝑓 may always be lifted to a continuous function in

a neighborhood of x. The rate at which rays converge to singular

points is harder to establish, but we note that rays intersect S at

non-singular points with probablility 1.

B SPATIAL EXTENT OF SOLID ANGLE LEVEL SETS
As in Section 4.2, let 𝑃 denote a space polygon, i.e. a piecewise-linear
curve with vertices p1, . . . , p𝑘 ∈ R3

, and let Ω𝑃 (x) denote the signed
solid angle function associated to 𝑃 .

Theorem B.1. Suppose that 𝑃 is a connected curve which contains
no self-intersections and lies on the boundary 𝜕𝐶 of a convex set 𝐶 .
Then the 2𝜋 level set of Ω𝑃 (x) lies within 𝐶 .

Proof. It suffices to prove Theorem B.1 in the special case where

the set 𝐶 is the convex hull 𝐻 of 𝑃 . Let Σ denote the 2𝜋 level set of

Ω𝑃 (x). Note that if 𝑃 is planar, then its 2𝜋 level set and its convex

hull 𝐻 are both equal to the planar polygon filling in 𝑃 , so Σ is

automatically contained in 𝐻 . From now on, we may thus assume

that 𝑃 is nonplanar, and hence has a 3-dimensional convex hull.

To begin, we observe that Σ must be connected. Its boundary, 𝑃 ,

is connected, so the only way for Σ to have multiple components

would be to contain other components with no boundary. But any

boundary-free level set of a harmonic function must stretch off to

infinity, and limx→∞ Ω𝑃 (x) = 0, so no such components can exist.

Next, we will show that Σ does not intersect the boundary 𝜕𝐻 ,

meaning that the level set must be entirely contained in 𝐻 or lie

entirely outside of 𝐻 . Let x be a point on 𝜕𝐻 , but not on the curve 𝑃

itself. Since 𝑃 is an intersection-free curve on the topological sphere

𝜕𝐻 , the Jordan curve theorem tells us that 𝑃 divides 𝜕𝐻 into two

different components. We will call the component of 𝜕𝐻 containing

x the “outside” of 𝑃 , and the component not containing x the “inside”
of 𝑃 . Since x lies on the boundary of the convex hull of 𝑃 , all points

of 𝑃 must be located to one side of a plane at x. Hence, if we project
𝑃 onto a sphere centered at x, then all points inside of 𝑃 land in

the same hemisphere. Furthermore, this projection is almost always

injective
2
, so the inside of 𝑃 is mapped to a simple region within

this hemisphere. Since 𝑃 is nonplanar, it must contain at least one

point strictly inside the hemisphere, so the inside of 𝑃 cannot cover

the whole hemisphere. Hence the unsigned area of the inside of 𝑃 ,

2
in the sense that the set of lines through x which intersect 𝜕𝐻 at more than one other

point has measure zero on the sphere

which is equal to |Ω𝑃 (x) |, must be strictly less than 2𝜋 (the area of

a hemisphere). So Σ cannot contain any points on 𝜕𝐻 .

It remains to show that Σ is contained within 𝐻 rather than lying

outside of 𝐻 . To do so, we note that the same projection argument

also shows that the zero level set of Ω𝑃 (x) cannot intersect 𝜕𝐻 .
Thus, the zero level set must lie outside of 𝐻 , as limx→∞ Ω𝑃 (x) = 0.

Since the zero level set and 2𝜋 level sets approach 𝑃 from opposite

sides
3
, the 2𝜋 level set must lie inside of 𝐻 . □

C BOUNDING SOLID ANGLE
In this appendix, we show that under mild assumptions on the

polygon 𝑃 , we can use a lower bound of 𝑐 (x) = −4𝜋 to Harnack

trace level sets of the solid angle function Ω𝑃 (x). Recall that we can
obtain a valid lower bound from a bound on the number of signed

intersections that a line segment can have with the 2𝜋 level set of

Ω𝑃 (x) (Section 3.2). Theorem C.1 gives such a bound when 𝑃 is a

connected, intersection-free curve on the boundary of a convex set.

Theorem C.1. Suppose that 𝑃 is a connected curve which contains
no self-intersections and lies on the boundary 𝜕𝐶 of a convex set 𝐶 .
Then the number of signed intersections between a generic line segment
𝐿 and the 2𝜋 level set of Ω𝑃 (x) is at most 1.

Proof. Let Σ be the 2𝜋 level set of Ω𝑃 (x). If 𝑃 is planar, then Σ is

also planar and thus intersects a generic line segment at most once.

Now, suppose that 𝑃 is nonplanar. First, note that it suffices to

consider only line segments contained within 𝐶: by Theorem B.1,

Σ ⊂ 𝐶 , so intersections between Σ and 𝐿 cannot occur outside of 𝐶 .

Since Σ is a connected surface embedded in the topological ball 𝐶 ,

with boundary contained in 𝜕𝐶 , it must divide𝐶 into two pieces. The

number of signed intersections between 𝐿 and Σ is 0 if the endpoints

of 𝐿 lie in the same region and ±1 if the endpoints lie in different

regions. Since these are the only possibilities, there can only be −1,

0, or 1 signed intersections between 𝐿 and Σ, as desired. □

D BOUNDING THE DIPOLE POTENTIAL
In this appendix, we walk through the derivation of a lower bound

on the dipole potential, a harmonic function which arises in surface

reconstruction (Equation 12). While it is often difficult to find the

optimal lower bound on a harmonic function, finding a valid bound

is often not too hard. The techniques used here—such as combining

separate bounds on the individual terms in a sum or product—are

broadly applicable, and provide a starting bound which be improved

with more careful analysis if necessary. For convenience, we begin

by reproducing the definition of the dipole potential:

𝑓 (x) :=

𝑘∑︁
𝑖=1

𝑎𝑖
(p𝑖 − x) · n𝑖
∥p𝑖 − x∥3

. (21)

We will show that if we fix a point x ∈ R3
and radius 𝑅 ∈ R,

where 𝑅 < ∥p𝑖 − x∥ for all 𝑖 , then for any point y ∈ 𝐵𝑅 (x) we have

𝑓 (y) ≥
𝑘∑︁
𝑖=1

𝑎𝑖
(
(p𝑖 − x) · n𝑖 − 𝑅

)(
∥p𝑖 − x∥ + sign

(
(p𝑖 − x) · n𝑖 − 𝑅

)
𝑅
)
3
. (22)

3
the Biot-Savart formula for ∇Ω𝑃 (x) shows that, near the curve, Ω𝑃 (x) changes at a
constant rate as you rotate around 𝑃

ACM Trans. Graph., Vol. 43, No. 4, Article 99. Publication date: July 2024.

99:18 • Gillespie, Yang, Botsch, and Crane

We proceed by considering each term of the sum separately. Since

the areas 𝑎𝑖 are positive, we compute lower bounds on the fractions

𝑓𝑖 (y) :=
(p𝑖 − y) · n𝑖
∥p𝑖 − y∥3

. (23)

First, we bound the numerator. Geometrically, (p𝑖 −y) ·n𝑖 measures

the signed distance from y to a plane defined by p𝑖 and n𝑖 . Since
∥y − x∥ ≤ 𝑅, its value can change by at most 𝑅, and hence

(p𝑖 − y) · n𝑖 ≥ (p𝑖 − x) · n𝑖 − 𝑅. (24)

Next, we bound the denominator. Since ∥y − x∥ ≤ 𝑅, the triangle
inequality implies that

∥p𝑖 − x∥ − 𝑅 ≤ ∥p𝑖 − y∥ ≤ ∥p𝑖 − x∥ + 𝑅. (25)

Finally, we combine the two to bound 𝑓𝑖 . Our denominator bounds

are positive, since 𝑅 < ∥p𝑖 − x∥, but the numerator may be positive

or negative. If the lower bound on the numator is positive, we lower

bound 𝑓𝑖 by dividing our numerator bound by the upper bound

on the denominator. On the other hand, if the numerator bound is

negative, we should divide our lower bound on the numerator by

the lower bound on the denominator. So we conclude that

𝑓𝑖 (y) ≥


(p𝑖−x) ·n𝑖−𝑅
(∥p𝑖−x∥+𝑅)3

if (p𝑖 − x) · n𝑖 − 𝑅 ≥ 0

(p𝑖−x) ·n𝑖−𝑅
(∥p𝑖−x∥−𝑅)3

if (p𝑖 − x) · n𝑖 − 𝑅 < 0

(26)

The only difference between the cases is the sign of the 𝑅 term in the

denominator, so we can write the bound concisely as Equation 22.

E HARNACK TRACING IN FOUR DIMENSIONS
To run Harnack tracing in four dimensions, we take steps of size

𝜌R4 := 𝑅

���𝑢
3

− 𝑎
𝑢
− 1

��� , where 𝑢 :=

(
3

√︁
3𝑎3 + 81𝑎2 + 27𝑎

)
1/3
,

and 𝑎 := 𝑓 (x0)/𝑓 ∗ .
(27)

To derive this step size, we start from the Harnack inequality in 4D:

(𝑅 − 𝜌)𝑅2

(𝑅 + 𝜌)3
𝑓 (x0) ≤ 𝑓 (x) ≤

(𝑅 + 𝜌)𝑅2

(𝑅 − 𝜌)3
𝑓 (x0) .

As before, we can ensure that 𝑓 (x) remains greater than a lower

bound 𝑓− , by picking a step 𝜌 such that

(𝑅 − 𝜌)𝑅2

(𝑅 + 𝜌)3
𝑓 (x0) ≥ 𝑓−,

or equivalently, letting 𝑎− := 𝑓 (x0)/𝑓− and 𝜌 := 𝜌/𝑅:
𝜌3 + 3𝜌2 + (𝑎− + 3)𝜌 + (1 − 𝑎−) ≤ 0.

This polynomial has a single real root (since its discriminant−4𝑎2

− (27+
𝑎−) is negative) and the root is given by

𝜌
lower

=
𝑢

3

− 𝑎−
𝑢
− 1, where 𝑢 =

(
3

√︃
3𝑎3− + 81𝑎2− + 27𝑎−

)
1/3
.

Hence, any step size below 𝑅 𝜌
lower

must be safe. Similarly 𝑓 (x)
remains less 𝑓+, so long as our step size is at most

𝜌upper = −
𝑢

3

+ 𝑎+
𝑢
+ 1, where 𝑢 =

(
3

√︃
3𝑎3

+ + 81𝑎2

+ + 27𝑎+

)
1/3
,

and 𝑎+ := 𝑓 (x0)/𝑓+. In either case, Equation 27 provides the largest

step whose safety we can guarantee using the Harnack inequality.

E.1 Bounding Harmonic Extensions
In Figure 21, we use Harnack tracing to visualize the

1

2
level set of

𝑓 (𝑥,𝑦, 𝑧) = sin(6𝑥) sin(6𝑦) sin(6𝑧) + sin(2𝑥) sin(2𝑦) sin(2𝑧),
which is a sum of Laplacian eigenfunctions with eigenvalues −108

and −12 resp. We construct a harmonic extension à la Section 4.7.1:

¯𝑓 (𝑥,𝑦, 𝑧,𝑤) = 𝑒
√

108𝑤
sin(6𝑥) sin(6𝑦) sin(6𝑧)

+ 𝑒
√

12𝑤
sin(2𝑥) sin(2𝑦) sin(2𝑧) .

We found a very loose bound sufficed to run Harnack tracing at 120

frames per second. In particular, we use

𝑐 (x) = −𝑒6

√
3𝑅 (x) − 𝑒2

√
3𝑅 (x) ,

with a constant radius function 𝑅(x) = .15 for simplicity. As in

Appendix D, we derive this formula by bounding each term in the

sum separately and summing the bounds. For any 𝑓 =
∑
𝑖 𝑎𝑖𝜙𝑖

where 𝜙𝑖 are Laplacian eigenfunctions bounded between −1 and 1

with eigenvalues 𝜆𝑖 , we have a bound of 𝑐 = −∑𝑖 𝑒
𝑅
√
−𝜆𝑖

.

E.2 Stereographic Projection
In Section 4.7 we run 4D Harnack tracing on the 3-sphere 𝑆3 ⊂ R4

,

mapped onto R3
via stereographic projection 𝜑 : R3 → R4

. Here

𝜑 (x) :=
(
2𝑥1, 2𝑥2, 2𝑥3, ∥x∥2 − 1

)
/
(
1 + ∥x∥2

)
. We account for the

distortion induced by 𝜑 by taking steps of size

𝜌stereo := 1

2
𝜌R4

(
∥x∥2 −min(x · v, 0)2 + 1

)
, (28)

where 𝜌R4 is the step size determined by Equation 27.

Concretely, suppose that we have a ray r(𝑡) in R3
and a harmonic

function 𝑓 (x) defined on R4
, with target level set 𝑓 ∗. We compute

the first time 𝑡 such that 𝑓 (𝜑 (r(𝑡))) = 𝑓 ∗. To start, we pick a radius

function 𝑅(x) and a compatible lower bound 𝑐 (x) defined on all

of R4
. Then at any time 𝑡 , we evaluate 𝑅(𝜑 (r(𝑡))), 𝑐 (𝜑 (r(𝑡))), and

𝑓 (𝜑 (r(𝑡))). After shifting 𝑓 and 𝑓 ∗ by 𝑐 , we find a step size 𝜌R4 in

R4
using Equation 27. We then substitute 𝜌R4 , r(𝑡) and v into Equa-

tion 28 to find a step size 𝜌stereo which is safe in R3
, and increment

𝑡 by 𝜌stereo. As usual, we repeat until 𝑓 is sufficiently close to 𝑓 ∗.
The inset figure in Section 4.7 shows the level sets of

𝑓 (𝑥,𝑦, 𝑧,𝑤) = 𝑥3𝑦 + 𝑥𝑦3 − 3𝑥𝑦𝑤2 − 3𝑥𝑦𝑧2,

using radius function 𝑅(x) = 1.25 − ∥𝑥 ∥R4 and bound 𝑐 (x) = −1.5.

Derivation. To derive Equation 28, we recall that 𝜑 is conformal,

scaling the region around p ∈ R3
by a factor of

1

2
(∥p∥2 + 1) (see e.g.

Lee [2018, Prop. 3.5]). Hence, given a curve Γ inR3
, its image𝜑 (Γ) on

𝑆3
has length

∫
Γ

2

∥p∥2+1 𝑑p, which is at most 2|Γ |/(minp∈Γ ∥p∥2 + 1).
So to ensure that 𝜑 (Γ) stays within a ball of radius 𝜌R4 in R4

, it

suffices to ensure that |Γ | ≤ 𝜌R4 (minp∈Γ ∥p∥2 + 1)/2.
Now, suppose that we are taking a step fromposition x in direction

v. If v points away from the origin (i.e. v · x > 0), then the minimum

value of ∥p∥2 along our step is ∥x∥2, so we can take a step of size

𝜎 := 𝜌R4 (∥x∥2 + 1)/2. Otherwise, the minimum value of ∥p∥2 is—

at the very least—bounded by the minimum value of ∥p∥2 over

the entire ray x + 𝑡v, which is ∥x∥2 − (x · v)2. Hence, the step in

Equation 28 never takes us beyond the safe radius 𝜌R4 in R4
.

Received January 2024

ACM Trans. Graph., Vol. 43, No. 4, Article 99. Publication date: July 2024.

	Abstract
	1 Introduction
	1.1 Outline

	2 The Harnack Inequality
	2.1 Largest Step Size

	3 Algorithm
	3.1 Harnack Tracing
	3.2 Angle-Valued Functions
	3.3 Height Fields

	4 Examples and Evaluation
	4.1 Spherical Harmonics
	4.2 Nonplanar Polygons
	4.3 Point Clouds (Poisson Reconstruction)
	4.4 Mesh Repair (Generalized Winding Number)
	4.5 Architectural Grid Shells
	4.6 Riemann Surfaces
	4.7 Beyond Harmonic Functions
	4.8 Implementation and Performance
	4.9 Tracing Iterations
	4.10 Convergence

	5 Related Work and Comparisons
	5.1 Explicit Conversion
	5.2 Ray Tracing
	5.3 Root Finding
	5.4 Walk on Spheres

	6 Limitations and Future Work
	Acknowledgments
	References
	A Convergence Analysis
	B Spatial Extent of Solid Angle Level Sets
	C Bounding Solid Angle
	D Bounding the Dipole Potential
	E Harnack Tracing in Four Dimensions
	E.1 Bounding Harmonic Extensions
	E.2 Stereographic Projection

