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A B S T R A C T

Offline facial retargeting, i.e., transferring facial expressions from a source to a target
character, is a common production task that still regularly leads to considerable algo-
rithmic challenges. This task can be roughly dissected into the transfer of sequential
facial animations and non-sequential blendshape personalization. Both problems are
typically solved by data-driven methods that require an extensive corpus of costly target
examples. Other than that, geometrically motivated approaches do not require intensive
data collection but cannot account for character-specific deformations and are known to
cause manifold visual artifacts.

We present AnaConDaR, a novel method for offline facial retargeting, as a hybrid
of data-driven and geometry-driven methods that incorporates anatomical constraints
through a physics-based simulation. As a result, our approach combines the advantages
of both paradigms while balancing out the respective disadvantages. In contrast to other
recent concepts, AnaConDaR achieves substantially individualized results even when
only a handful of target examples are available. At the same time, we do not make the
common assumption that for each target example a matching source expression must be
known. Instead, AnaConDaR establishes correspondences between the source and the
target character by a data-driven embedding of the target examples in the source domain.
We evaluate our offline facial retargeting algorithm visually, quantitatively, and in two
user studies.

© 2024 Elsevier B.V. All rights reserved.

1. Introduction

Creating high-fidelity facial expressions for human or hu-
manoid characters is one of the most challenging problems in
computer graphics applications. To that end, it is common prac-
tice to record a source actor with high-resolution motion capture
technology and subsequently transfer the scanned expressions
to the targeted character either frame-by-frame or via blend-
shapes [1]. A comprehensive corpus of research focuses on the
latter step, the so-called offline facial performance retargeting.
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While deep learning predominates in various facial animation
tasks, here, more traditional approaches retain distinct advan-
tages and are commonly used in production [2]. Particularly,
due to the still limited availability of high-resolution facial ex-
pression meshes for training, the risk of generalization gaps is
ubiquitous [3]. The reliance on implicit representations within
current neural telepresence applications [4, 5] underscores the
lack of suitable training data.

Two main streams of work can be identified within which
most of the current non-learning methodologies can be catego-
rized. On the one hand, there are data-driven methods that have
access to numerous exemplary facial expressions of the target
character and form new expressions by combining these [2, 6].
On the other hand, there are geometry-driven methods that try to
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transfer the geometric deformations of the source actor’s face to
the target character [7, 8, 9]. Both methodologies offer comple-
mentary advantages and disadvantages. For instance, data-driven
methods can consider anatomy-specific differences between the
source and the target, whereas geometry-driven methods force
deformations regardless of the structure of the respective heads.
In return, geometry-driven methods do not rely on elaborately
recorded or artistically sculpted examples of the target charac-
ter and are, therefore, usually more efficient than data-driven
methods.

Generally, there is a trade-off between the cost and complex-
ity of data acquisition and retargeting quality. When time and
effort are not a constraint, establishing extensive corresponding
linear blendshape (LBS) systems [1] between the source and
target character can be the most reasonable approach to facial
retargeting. As such situations rarely occur in reality, the cur-
rent state-of-the-art Anatomical Local Model (ALM) [2] has
been developed. ALM requires a significantly reduced amount
of blendshapes due to replacing plain LBS with more expres-
sive patchwise LBS (PLBS). However, the authors point out
that insufficiently comprehensive PLBS nonetheless result in
severe retargeting artifacts and recognize the limitation that non-
corresponding source and target blendshapes are not supported.
Similar shortcomings in LBS can partially be overcome by em-
ploying example-based facial rigging (EBFR) [6], which sup-
plements the data-driven retargeting with a geometry-driven
deformation transfer [7]. Unfortunately, there has not been an
adaption to ALM so far.

In this work, we improve on ALM and fill this very gap by
introducing AnaConDaR, an anatomically-constrained and data-
adaptive facial retargeting. Here, corresponding PLBS systems
are derived from the available target examples and used for an
initial retargeting in a data-driven manner. The parts that are
not explainable by PLBS are retargeted by a novel anatomical
deformation transfer (ADT). In a final step, both the PLBS and
ADT results are added together and a physics-based simulation
ensures anatomical plausibility, also with combined retargeting.
Moreover, this simulation enables artistic interventions on ma-
terial properties, can incorporate external forces, and preserves
expression-specific characteristics.

We evaluate AnaConDaR in two user studies and a quantita-
tive comparison. In one user study, we asked the participants to
benchmark the state-of-the-art peer group against AnaConDaR,
while the other focused on the necessity of individual algorith-
mic components. Quantitative comparisons of facial retargeting
algorithms are generally challenging, as the subjective nature
of perceiving facial expressions makes it difficult to establish
a definitive ground truth. Therefore, we quantitatively show-
case the advantages of AnaConDaR over ALM in a particularly
construed retargeting scenario.

The key novelties and contributions we present in this paper
can be summarized as follows:

• A novel hybrid approach for offline facial performance
retargeting that can leverage a small number of target ex-
amples.

• A new, fully volumetric deformation transfer for faces,
which respects anatomical and physical constraints. During

the deformation transfer, expression-specific characteristics
are retained.

• Two user studies, a quantitative analysis, and various visual
examples that evaluate and showcase AnaConDaR.

2. Related Work

2.1. Facial Retargeting in General

Besides offline performance targeting, there are several other
variants of facial retargeting, which are all related but can also
be clearly distinguished.

First, the 2D variant in which so-called deep fakes [10, 11,
12, 13, 14, 15, 16, 17, 18] swap faces directly in images almost
entirely independent of the underlying geometry [16, 19]. While
these works can generate outstanding results, they are hardly
artist-controllable, cannot integrate physics-based effects, and
lose mesh-based advantages like shading adjustments. Our ap-
proach offers all of the features mentioned above.

Second, online performance retargeting algorithms that ani-
mate characters in real time. Usually, such methods are either
of low quality [1, 20] or need time consuming training on ex-
tensive datasets [21, 22, 23, 24, 25, 26, 27]. Our approach can
handle high resolutions, is applicable without training, and only
requires a handful of expression examples.

Third, more general (neural) face models [28, 29, 30, 31, 32,
3] that capture both human identities and facial expressions in
latent spaces. Unfortunately, their generalization capabilities
usually do not meet the quality requirements of sophisticated
CGI productions [30, 32]. Moreover, many models can only
perform the facial retargeting task for low-resolution geome-
tries [29, 33, 28]. Starting from a reversed perspective, the
neural physics-based facial animation of Yang et al. [26] has
recently been extended into a more comprehensive face model
[3]. Nonetheless, this model is severely limited to only a handful
of identities and adding a novel identity requires five days of
retraining [26]. Further, they expect access to 30 seconds of
performance capture per identity while the captured expressions
must be semantically aligned. The likewise neural approach An-
imatomy [25] faces similar problems. Neither of the latter two
algorithms [3, 25] was evaluated concerning facial retargeting.

Finally, image-based face avatars primarily work on low-
resolution geometries [4, 5] and, hence, do not meet production
requirements, as well. Overall, we follow the recent assessment
of Chandran et al. [2] that deep learning for facial retargeting
still cannot fully compete with more traditional techniques.

2.2. Offline Facial Performance Retargeting

As the introduction notes, offline facial performance retar-
geting without learning can be divided mainly into data-driven
and geometry-driven methods. For data-driven methods, linear
blendshapes [1] are still the gold standard due to their sim-
plicity and computational speed. Since the nonlinear aspects
of facial expressions have a significant influence, a variety of
extensions [34, 35, 36] have been developed over the years.
Nonetheless, only minor improvements have been achieved, and
it remains common practice to model or scan a large number
of linear blendshapes to account for nonlinearity. In an effort
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to reduce costs, methods have been developed that generate ex-
tensive blendshape rigs from just a few exemplary expressions
[6, 33]. Often, however, these only exhibit weak personaliza-
tion. Recently, Chandran et al. [2] demonstrated how to gain
more expressiveness from expression samples using piecewise
linear blendshapes. To the best of our knowledge, none of the
aforementioned data-driven techniques deals with missing infor-
mation due to insufficient training data. The method we present
in this work addresses this problem by combining piecewise
linear blendshapes with a geometry-driven approach.

The most widely used geometry-driven facial retargeting ap-
proach is deformation transfer [7, 8, 9]. This approach extracts
deformation gradients from a source expression and applies
them to the neutral target face. Closely related is delta transfer,
which transfers deformations in the form of (scaled) per-vertex
displacements. However, neither deformation nor delta transfer
can prevent the retargeting of character-specific details. Fur-
ther, many known artifacts arise, such as loss of volume, self-
collisions, and incorrectly transmitted deformation amplitudes.
A body of related work is therefore concerned with explicitly
distinguishing expression-specific from character-specific details
[9, 37, 38]. For instance, Onizuka et al. [9] propose a locally
scaled deformation transfer to keep facial contours consistent,
Xu et al. [37] use an adapted deformation transfer for edges to
focus on lip and eye contours, and Bhat et al. [38] show how to
transfer lip contours to humanoid aliens. In contrast to previous
work, we design facial features that aim to retain not only con-
tours but also other facial proportions. Furthermore, we use a
fully volumetric approach to avoid artifacts like volume loss and
self-collisions.

3. Method

3.1. Problem Statement & Method Overview

The input to offline facial performance retargeting is a facial
animation of a source character captured as a set S ={Si}N

i=0 of
N+1 surface meshes with identical tessellation. The overall goal
is to curate a corresponding set of surface meshes T ={Ti}N

i=0
for a different target character, such that each expression Ti
exhibits the same characteristics as Si. These characteristics are
primarily rooted in human perception and, therefore, difficult to
capture through formal means.

To achieve this goal, we present AnaConDaR (Section 3.2),
a mainly data-driven approach to facial retargeting, which is
supplemented by a geometry-driven component (Section 3.3)
whenever the available data is not sufficiently expressive. More-
over, anatomical plausibility and expression characteristics are
ensured through a quasi-static physics-based simulation (Sec-
tion 3.4).

In the ensuing formal derivation of AnaConDaR, we follow
a top-down scheme in which we first explain the fundamental
functionality of our approach (Section 3.2). Afterward, individ-
ual constituents are explained in more detail (Sections 3.3, 3.4,
and 3.5). To ease the reading flow, Table 1 gives a summary
of the notation. We slightly abuse the notation by denoting a
surface mesh and the corresponding vector of stacked vertex
positions with the same symbol.

Notation Description

M Surface mesh and stacked vertex positions
S,T Source and retargeted animation
SE ,TE Source and target examples
S,T Neutral head surfaces

Si,Ti Source expression and AnaConDaR retargeting
SL

i ,T
L

i Reconstruction and retargeting of Si with LBS
SP

i ,T
P

i Reconstruction and retargeting of Si with PLBS
wL

i ,w
P
i Optimal LBS and PLBS reconstruction weights

ŜM
i , T̂ M

i Missing delta blendshapes
SM

i ,T M
i Missing blendshapes

S,M Template soft and muscle tissue tetrahedra meshes
HS,HT Source and target heads
Fi Facial characteristics

Table 1: An overview of the notation of AnaConDaR.

Fig. 1: The patch layout (80 patches) we use has been automatically determined
with METIS [39].

3.2. Anatomically-Constrained Data-Adaptive Facial Retarget-
ing

3.2.1. Data-Driven Component
For the derivation of the data-driven component of AnaCon-

DaR, we initially assume to have access to a set of target ex-
amples TE with corresponding expressions SE ⊂ S. This as-
sumption will be lifted in Section 3.5. Further, we expect the
neutral head surfaces S and T of both characters to be known.
In such situations, a variety of blendshape concepts can be ap-
plied for data-driven facial retargeting. For example, plain linear
blendshapes (LBS) [1] first approximate each source expression
Si ∈ S by a linear combination

SL
i = S+ ∑

S j∈SE

wL
i j(S j −S) (1)

of the source examples SE . The optimal blending weights
wL

i =
(
. . . ,wL

i j, . . .
)

are the solution of the linear least squares
problem

wL
i =argmin

wi

∥∥∥∥∥S+ ∑
S j∈SE

wi j(S j −S)−Si

∥∥∥∥∥
2

+λreg ∥wi∥2 ,

(2)

where the first term draws the blended surface SL
i to the targeted

expression Si. Since this reconstruction is underconstrained,
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Fig. 2: An overview of AnaConDaR (Section 3.2). In the first step, the target examples TE are mapped into the source domain (Section 3.5). In the second step, the
embedded expressions SE are used to form a PLBS approximation SP

i of the targeted expression Si by optimizing the patchwise blending weights wP
i (Section 3.2.1).

In step three, the evaluation of the same patchwise weights in the target domain T P
i is supplemented with the adt result (Section 3.3) of the missing blendshape T M

i
(Section 3.2.2). Lastly, anacon ensures anatomical plausibility of the final AnaConDaR retargeting Ti (Section 3.4).

the second term adds the squared norm ∥wi∥2 of the blending
weights to regularize them to be close to zero. The factor λreg ∈
R controls the strength of the regularization. Subsequently, the
LBS retargeting

T L
i = T + ∑

Tj∈TE
wL

i j(Tj −T ) (3)

is obtained by simply applying the optimized weights wL
i to the

target examples TE .
Patchwise linear blendshapes (PLBS) outperform the classi-

cal LBS in efficiency and expressiveness [2, 40]. Our imple-
mentation partitions all vertices consistently into a set of small
(non-overlapping) patches (Figure 1) and performs the LBS retar-
geting defined in Equations (1–3) independently for each patch.
We refer to the resulting source approximation of PLBS as SP

i
and to the retargeted expression as T P

i .
The PLBS retargeting T P

i is the data-driven component of
AnaConDaR.

3.2.2. Geometry-Driven Component
Although variants of PLBS are the foundation of the current

state-of-the-art in facial retargeting [2], errors in the source
approximation

ŜM
i = Si −SP

i (4)

are inevitably retargeted, as well. Seen from a different perspec-
tive, ŜM

i is a missing delta blendshape for which no correspond-
ing blendshape T M

i = T̂ M
i +T is known. We approximate

T M
i = adt

(
SM

i ,S,T
)

(5)

with a novel (geometry-driven) deformation transfer adt (Sec-
tion 3.3), which transfers the deformations of the missing blend-
shape SM

i = ŜM
i +S from the source to the target character. As

opposed to the original deformation transfer [7], adt is physics-
based, volumetric, and anatomically-constrained. Moreover,
adt preserves expression-specific characteristics from SM

i in
T M

i .
The retargeted missing delta blendshape T̂ M

i = T M
i −T is the

geometry-driven component of AnaConDaR.

3.2.3. Assembling the Components
AnaConDaR processes the sum of both the actual patchwise

blendshapes T P
i (data-driven component) and the missing delta

blendshape T̂ M
i (geometry-driven component) with the physics-

based simulation anacon (Section 3.4) to form the final retarget-
ing

Ti = anacon
(
T P

i + T̂ M
i ,Si,S,T

)
. (6)

Conceptually, anacon is similar to adt and also enhances the
retargeting plausibility through anatomical constraints as well as
expression-specific characteristics. Additionally, visible patch
boundaries are eliminated, which can occur in the PLBS result
T P

i .
Summarized in words, AnaConDaR retargets as extensively

as possible through exemplary data but does not lose valuable
information due to source approximation errors, since these are
corrected with the geometry-driven component. The overview
of AnaConDaR described so far is also visualized in steps 2 and
3 of Figure 2.

Next, we will depict adt and anacon in more detail. As both
only differ slightly, we will explain them using the example of
adt (Section 3.3) and then discuss the differences to anacon
(Section 3.4). Finally, we will resolve the initial assumption
of corresponding source and target examples SE and TE (Sec-
tion 3.5).
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Fig. 3: The surfaces of all anatomical structures that are part of the volumetric
head template we use for AnaConDaR. From left to right, the surface of the soft
tissue, the surface of the muscle tissue, and the skull surface. The soft tissue
includes the neutral head surface, the muscle tissue is connected to the skull as
well as the soft tissue, and the skull is separated into jaw and cranium.

Algorithm 1 Anatomical Deformation Transfer

Input
SM

i The missing blendshape
S,T The neutral head surfaces

Function adt(SM
i ,S,T )

// Section 3.3.2 Template Fitting.
HS = fitHead(S,H) , HT = fitHead(T,H)

// Section 3.3.2 Inverse Simulation.
(∇S, ∇M, ∇B) = invSim(SM

i ,HS)

// Section 3.3.2 Facial Characteristics.
Fi = fc

(
SM

i ,S,T
)

// Section 3.3.2 Forward Simulation.
T M

i = fwdSim((∇S, ∇M, ∇B),Fi,HT )

// Return the retargeted missing blendshape.
return T M

i

3.3. Anatomical Deformation Transfer

3.3.1. Overview
Given the neutral head surfaces S and T of the source and

target character, adt executes four fundamental functions for
retargeting the missing blendshape SM

i to T M
i as outlined in

Algorithm 1. To facilitate the introduction of adt, we again
follow a top-down scheme and first give a brief overview of
every function in this section. The subsequent Section 3.3.2
provides the corresponding detailed descriptions, each of which
can be found in an identically named paragraph.

Template Fitting. As a first step, the function fitHead creates
volumetric head representations for the source and target char-
acter by fitting a template head H = (S,M,B) to the neutral
surfaces S and T . The template comprises a soft tissue tetra-
hedra mesh S, a muscle tissue tetrahedra mesh M, and a skull
surface mesh B. Please refer to Figure 3 for a visualization of the
corresponding surfaces and more details. The resulting heads

HS =(SS,MS,BS) = fitHead(S,H)

HT =(ST ,MT ,BT ) = fitHead(T,H)
(7)

consist of the fitted components.

Inverse Simulation. After fitting the template, the inverse
physics-based simulation

(∇S, ∇M, ∇B) = invSim(SM
i ,HS) (8)

identifies volumetric changes of the source head HS to form the
targeted missing blendshape SM

i while respecting bio-mechanical
and physical properties. Here, ∇S and ∇M are stacked per
tetrahedron 3×3 deformation gradients that capture changes in
soft and muscle tissue SS and MS, respectively. For the jaw and
cranium parts of BS, rigid movements are individually captured
by ∇B.

Facial Characteristics. Alongside the volumetric changes, the
function fc identifies expression-specific facial characteristics

Fi = fc
(
SM

i ,S,T
)

(9)

in the missing blendshape SM
i and adapts them to the target

character. These characteristics are our answer to the following
thought experiment:

“If you are given a picture of an expression to mimic
and a mirror to look at yourself, what do you use as
guidance?”

We assume that human perception is guided by relative changes
of face openings and facial contours which can be influenced
through muscle activation. More specifically, we assume that
the eyes in the missing and the retargeted blendshape should
open and close by almost the same relative proportions while the
skin around the eye sockets is assumed to move in a consistent
manner. Furthermore, we expect the lips to form similar contours
in both, since these can be manipulated by humans with a great
degree of control.

Forward Simulation. Finally, the forward physics-based simula-
tion fwdSim generates the retargeted missing blendshape

T M
i = fwdSim((∇S, ∇M, ∇B),Fi,HT ) (10)

by applying the previously calculated volumetric changes
(∇S, ∇M, ∇B) and facial characteristics Fi to the target head
HT .

3.3.2. Constituents
In the remainder of this section the four adt functions
fitHead, invSim, fc, and fwdSim are precisely described.

Template Fitting. The template fitting fitHead, which fits the
volumetric head template H =(S,M,B) to the neutral source
and target head surfaces S and T , performs two steps.

1. The skull B is placed by a dense linear model trained on
the computed tomography dataset of Achenbach et al. [41].
This model maps from the vertex positions of the head
surface to the vertex positions of the skull surface.

2. Soft and muscle tissue S,M are positioned by a radial ba-
sis function (RBF) space warp [42] calculated from the
template to the targeted head and skull surfaces. By the
construction of RBFs, the vertices of S and M are warped
to a similar semantic position as in the template.
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Fig. 4: The supplementary meshes that are used to determine the position of the
jaw and cranium bones, as well as the expression-specific characteristics.

Inverse Simulation. The inverse simulation invSim, which
aligns the source head HS =(SS,MS,BS) with the targeted blend-
shape SM

i , is composed of two steps.
1. Both skull parts of BS, cranium and jaw, are each directly

positioned by independent rigid transformations ∇B that
are calculated between respective subsets of S and SM

i . The
subsets are visualized in Figure 4 Cranium and Jaw.

2. Soft tissue and muscle tissue are deformed by minimizing
the following energies that reflect anatomical properties.
The energy for soft tissue is defined as

ES(SS) = ∑
t∈SS

(
min

R∈SO(3)
∥∇(t,SS)−R∥2

F

+(det(∇(t,SS))−1)2
)
,

(11)

which for each soft tissue tetrahedron t penalizes changes
in volume and strain. Here, R ∈ SO(3) denotes the optimal
rotation, ∇(t,SS) ∈R3×3 the deformation gradient of t, and
∥·∥F the Frobenius norm.
For the muscle tetrahedra, only a volume-preservation term

EM(MS) = ∑
t∈MS

(det(∇(t,MS))−1)2 (12)

is applied to allow for muscle contractions.
Finally, the source head surface S ⊂ SS is drawn to the
targeted missing blendshape SM

i via

Etar
(
SS,SM

i
)
=
∥∥S−SM

i
∥∥2

. (13)

In total, we minimize the weighted energy

Einv
(
SS,MS,SM

i
)
= wSES(SS)+wMEM(MS) (14)

+wtarEtar
(
SS,SM

i
)

with respect to the vertex positions of the soft and muscle
tissue meshes SS,MS in the projective dynamics frame-
work [43]. The values of all weights can be found in Ta-
ble 3.

Paired with the rigid transformations of the skull ∇B, the defor-
mations caused by the simulation are passed on to the forward
simulation fwdSim in the form of stacked per tetrahedron defor-
mation gradients ∇S (soft tissue), ∇M (muscle tissue).

Facial Characteristics. In correspondence to the facial charac-
teristics described above, fc is composed of three methods

fc=(fceo,fces,fclc) (15)

which specify objectives for the eye opening (fceo), the eye sock-
ets (fces), and the lip contour (fclc) in the forward simulation
fwdSim.

To capture the eye characteristics with fceo and fces, we add
supplementary triangles between the upper and lower eyelids
(Eyelid) and between the upper and lower boundaries of the
eye sockets (Eye Socket) as visualized in Figure 4. Hereafter,
we refer to these triangles as EO and ES, respectively. Since
the eye characteristics are intended to transfer relative move-
ments, we define them such that the scaling of the surface area
of the previously added triangles is identical in both the targeted
and the retargeted blendshape. More formally, the characteris-
tic Feo = fceo

(
SM

i ,S,T
)

is a vector which contains the surface
area of each EO triangle in T , scaled by the ratio of the cor-
responding triangle areas in the targeted SM

i and the neutral S.
Fes = fces

(
SM

i ,S,T
)

is defined accordingly.
We define the characteristic of the lip contour Flc on a set of

vertices LC as visualized in Figure 4 Lips. Here, we intend to
transfer the vertex positions of the contour from the targeted
SM

i to the retargeted blendshape T M
i as similar as possible. To

that end, we first apply the original deformation transfer dt [7]
to determine the coarse shape and position of the targeted lip
contour in the retargeting result. Afterward, we correct dt by
finding an optimal similarity mapping. Formally, we define

Flc = fclc
(
SM

i ,S,T
)
= sR

(
SM

i
)LC

+ t, (16)

where s ∈R (scaling), R ∈ SO(3) (rotation), t ∈R3 (translation)
represent the optimal similarity mapping regarding

min
s,R,t

∥∥∥dt(SM
i ,S,T

)LC − sR
(
SM

i
)LC − t

∥∥∥2
(17)

and (·)LC selects the vertices of the lip contour.

Forward Simulation. The forward simulation fwdSim, which
applies the previously identified deformations (∇S, ∇M, ∇B)
and expression-specific facial characteristics Fi to the target head
HT =(ST ,MT ,BT ), consists of three steps.

1. As for invSim, the skull BT is directly positioned by ap-
plying the rigid transformations ∇B. However, to align the
range of motions, we scale the translational components
by BB(T )

BB(S) , where BB calculates diameters of the respective
bounding boxes.

2. The weighted energy

Efwd(ST ,MT ,∇S,∇M,Fi) =

w∇SE∇S(ST ,∇S)+w∇ME∇M(MT ,∇M)

+wFEF(S,Fi)

(18)
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is minimized, which applies the deformation gradients
∇S,∇M to the respective tissue while adhering to the fa-
cial characteristics Fi. All energies in Equation (18) act
similar to Equation (13) and are formally defined in the Ap-
pendix. Again, we rely on projective dynamics for solving
the minimization problem.

3. Finally, we resolve self-collisions between lips similar to
Komaritzan et al. [44]. Here, each collided lower lip point
and the closest upper lip point in vertical direction on the
head surface are resolved to the average position of both.
The average position is enforced in an additional run of the
second step.

After both optimizations, the retargeted missing blendshape
T M

i ⊂ ST can be extracted.

3.4. Anatomical Plausibility

Based on the functions of adt, we can now implement
anacon, the final physics-based simulation of AnaConDaR
(Equation (6)). By setting

Ti = anacon
(
T P

i + T̂ M
i ,Si,S,T

)
= fwdSim

(
invSim

(
T P

i + T̂ M
i ,HT

)
,Fi,HT

)
,

(19)

the anatomical constraints involved in invSim (Section 3.3.2
Inverse Simulation) improve the anatomical plausibility of the
combined retargeting T P

i + T̂ M
i while preventing visible patch

boundaries. Moreover, expression-specific facial characteristics
Fi = fc(Si,S,T ) (Section 3.3.2 Facial Characteristics) derived
from the targeted expression Si are also reflected in the final
AnaConDaR result Ti.

3.5. Target Example Embedding

Although all components are now specified, AnaConDaR
is still unable to handle situations where the target examples
TE lack corresponding expressions in the source animation S,
a common limitation of other data-driven facial retargeting
approaches [1, 2]. We remove this initial assumption (Sec-
tion 3.2.1) by embedding the target examples in the source
domain.

To that end, we first retarget TE with adt to create an initial
embedding

SadtE =
{
adt(Tj,T,S)

}
Tj∈TE

. (20)

As adt is geometry-driven, SadtE might still exhibit character-
specific details of the target character. In a second step, we
therefore exploit the observation that, in most cases, the source
animation S is extensive and expressive in linear combinations.

More precisely, we reconstruct each Sadti ∈ SadtE by solving
linear least squares problems as in Equations (1–3). This time,
however, all source expressions S j ∈ S act as blendshapes. The

resulting optimal blending weights wadti =
(
...,wadti j , ...

)
are

then used to form the data-driven embedding

SE =

{
S+ ∑

S j∈S
wadti j (S j −S)

}
Sadti ∈SadtE

. (21)

By construction, SE is fully embedded in the source domain and
no longer includes details of the target character. The embedding
process is also illustrated in step 1 of Figure 2, which completes
the visual overview of AnaConDaR.

4. Experiments

Before visually demonstrating AnaConDaR’s capabilities for
offline facial performance retargeting in Section 4.2, we discuss
implementation details and runtimes in Section 4.1. Thereafter,
in Section 4.3, a user study investigates the human perception
of AnaConDaR in comparison to the most relevant peers. In
Section 4.4, a quantitative analysis demonstrates the advantages
of AnaConDaR over the state-of-the-art ALM [2] algorithm.
However, we also elaborate on why quantitative evaluations
only have limited meaningfulness for facial retargeting. Sec-
tion 4.5 focuses on an extensive ablation study, while Section 4.6
showcases selected AnaConDaR features in more detail.

4.1. Implementation & Runtimes

We implement all projective dynamics simulations with the
CPU-based ShapeOp framework [45] and exploit parallelism
wherever applicable. Table 2 gives the dimensions of all template
components, and Table 3 states the weights of all experiments.
All runtimes were determined on an AMD Ryzen Threadripper
PRO 3995WX processor.

Overall, once the simulations are initialized (≈ 9s), Ana-
ConDaR can be run at either approximately 10fps (with-
out collision resolving) or 0.3fps (with collision resolving).
There are many GPU-based solvers available (e.g., http://
suitesparse.com) that can optimize the runtime in general.
Collision resolution could also be accelerated, as most of the
time spent on collision resolution is due to the refactorisation of
the projective dynamics solver. In Wang et al. [46], for instance,
an efficient alternative is proposed. However, as our focus has
been on methodological improvements, not on inference speed,
we leave computationally more efficient implementations as
future work.

4.2. Qualitative Evaluation

Figure 5 and Figure 6 display representative retargeting results
of AnaConDaR. All shown 3D models are part of the commer-
cial 3Dscanstore.com database and have been acquired with a
high-resolution optical multi-view scanner. We manually estab-
lished a common topology using faceform.com. The retargeted
expressions are either facial movements like cheek puffer and
mouth stretch or emotions like sad, happy, and surprise.

Figure 5 displays results obtained from a TE composed of
only 5 target examples, whereas for the results from Figure 6, an
extensive set of 30 examples has been available. For each retar-
geting result, a different TE has been randomly drawn. Please
refer to the attached video for a demonstration of the temporal
consistency of AnaConDaR.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 5: AnaConDaR in comparison to the state-of-the-art peer group EBFR [6], ALM [2], DT [9], LBS [1], and to our ADT. Furthermore, the source reconstruction
after applying anatomical constraints (i.e., anacon w/o facial characteristics) is shown for a reasonable comparison. Plotted on the reconstruction is the PLBS
reconstruction error (in centimeters). The difference between ADT and AnaConDaR is plotted on the ADT expression. All results have been achieved with five
randomly drawn examples of the target character. Especially in this setting, with only a few target examples, AnaConDaR leads to considerable improvements.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 6: The same experiment as in Figure 5, however, 30 examples of the target character have been available. In principle, reconstruction errors decrease with more
target examples, reducing the influence of the missing blendshape. Nevertheless, considerable benefits of AnaConDaR can also be recognized in this setting, as even
with more examples, a complete reconstruction is not guaranteed. Moreover, other advantages, such as the fully volumetric simulation or the preservation of facial
features, weigh in.
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4.2.1. Peer Group
We compare AnaConDaR to Example-Based Facial Rig-

ging [6] (EBFR), Anatomical Local Models [2] (ALM), De-
formation Transfer [9] (DT), Linear Blendshapes [1] (LBS), and
our own Anatomical Deformation Transfer (ADT).1 Generally,
ALM and LBS require expressions in the source animation S
that correspond to the target examples TE . Therefore, we follow
the suggestion by the authors of ALM to use EBFR as prepro-
cessing if this requirement is not fulfilled.

4.2.2. Discussion
The subsequent discussion of the presented outcomes follows

along the structural varieties of all compared algorithms. For
easier traceability of our analysis, Figure 7 provides a visual
overview.

• The DT implementation we investigate [9] is the most re-
cent adaption to faces. Here, locally adapted delta transfers
for predefined landmarks are additionally incorporated. Pre-
vious findings [2] already indicated minimal distinctions
between delta transfer and DT. Our results consistently
demonstrate that also this DT variant transfers character-
specific details and not only deformations related to the
targeted expressions.

• EBFR seeks a target animation T such that a linear com-
bination of T \ TE can approximate the target examples
TE . Since this is a strongly underdetermined optimization
problem, the DT results are used for regularization. As a
consequence, depending on the solver, either only a few
expressions of T contribute to the explanation of each ex-
ample in TE or all contribute only a small fraction to the
explanation. In any case, this leads to only minor person-
alization beyond DT, especially when only 5 examples are
available.

• The state-of-the-art ALM approach [2] is closely related to
LBS [1]. After establishing a corresponding set of source
examples SE to the target examples TE with EBFR, both
form the target animation T by blending TE . The blending
weights are found by rebuilding the source animation S
with SE . ALM mainly differs from LBS in that the blending
is conducted on small patches and not on complete meshes
(please refer to Section 3.2.1 for more details).
In our experiments, LBS suffers from a strong bias which
prevents an adequate reconstruction of source expressions,
leading to the retargeting of different expressions. Put dif-
ferently, the poor results primarily stem from the missing
blendshape as described in Section 3.2.2. The PLBS of
ALM significantly mitigate this issue, especially when hav-
ing access to 30 target examples TE . Nonetheless, notable
reconstruction errors remain.

• Our AnaConDaR approach exhibits a high degree of per-
sonalization even with only a few examples from the target
character and can still achieve more appealing results than

1We compare to our own implementations of the peer group.

EBFR

ALM / LBS Ours

DT

SimulationExpressions
(A)DT (P)LBS

ADT

DTDT

Fig. 7: A structural overview of AnaConDaR and other state-of-the-art facial
retargeting approaches. Below each algorithm name, the variables under direct
optimization are stated. Source and target expressions correspond only if de-
picted in the same row.

ALM, LBS, EBFR, DT, or ADT if the number of examples
is high.
In contrast to DT, the data-driven AnaConDaR compo-
nent abstains from transferring character-specific details
wherever feasible. Unlike ALM and LBS, additionally re-
targeting the missing blendshape ensures that AnaConDaR
does not lose information due to informational gaps of the
exemplary target data. Lastly, different from EBFR, in our
approach the target examples TE explain each expression
to be transferred in S, and not all expressions to be trans-
ferred explain the target examples. This strategy effectively
avoids the explanation problem associated with EBFR, as
discussed before.
In summary, AnaConDaR achieves convincing visual re-
sults by compensating the conceptual weaknesses of other
algorithms while adopting their respective advantages.

4.3. User Study
In a user study, we presented the following task.

“Please rank the images according to how natural the
transfer of the expression seems to you from best to
worst.”
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Fig. 8: A user study among university members and computer graphics students
from two universities supports that AnaConDaR is perceived as a more natural
facial retargeting. The combined results (top) as well as the results per number
of target examples (bottom) are shown.

The study involves 15 randomly selected retargeting instances,
with five each produced using 5, 15, and 30 examples of the
target character. Participants ranked the results of AnaConDaR,
DT, EBFR, and ALM, respectively. The design of the study is
aligned with Chandran et al. [2], an illustration can be found
in Appendix B. To ensure independent documentation, we used
survio.com for the technical implementation.

The outcome shown in Figure 8 summarizes 33 responses by
university members and computer graphics students from two
universities who were not familiar with facial retargeting algo-
rithms. We performed Wilcoxon Signed-Rank tests to inspect
if the tendency of the AnaConDaR mean rank in comparison to
the other peers is significant. We can confirm this hypothesis for
all peers on a significance level of 0.05.

The user study emphasizes that AnaConDaR is perceived as
a more natural facial retargeting. Nonetheless, perception vari-
ations are evident from the ranking variances shown in Figure
8. Probably by construction, the data-infused EBFR outper-
forms the solely geometry-based DT. Interestingly, EBFR also
outperforms ALM, while ALM exhibits the highest variance.
This was to be expected to some extent, as ALM is the only
method lacking a geometry-based component and its retargeting
quality, therefore, heavily depends on the number of target exam-
ples. The latter observation is further supported by the separated
representation of the user study in Figure 8.

4.4. Quantitative Evaluation

In previous work, quantitative evaluations have only been
conducted in cherry-picked individual cases but not in empiri-
cally comprehensive investigations [2, 6]. This is mostly due
to ambiguities in facial expressions (see Figure 9 and Wu et al.
[40] for examples) as well as varying human perception. Our

Fig. 9: An example of the diverse ways in which individuals interpret the same
expression (here, Surprise). For more examples please refer to Wu et al. [40].

Fig. 10: A quantitative comparison of AnaConDaR against ALM [2] based
on synthesized ground truth (Section 4.4). The results are grouped by the
number of available target examples and reported in terms of the L2 error (mm).
AnaConDar outperforms ALM in each scenario.

user study (Section 4.3) underscores the latter issue. Although
the perceived qualities of individual retargeting methods differ
significantly, the variances are not negligible. Sometimes cyclic
errors, i.e., mapping from the source to the target and back, are
considered as a suitable evaluation protocol. Nonetheless, they
only validate how well geometric transformations are preserved
in the cycle. By construction, deformation transfer [7] would
be unsurpassed in this evaluation, while the flaws of geometry-
driven approaches are well known.

To nonetheless quantitatively compare AnaConDaR to ALM,
we first synthesize an appropriate dataset. More precisely, we
use EBFR [6] to create personalized ARKit 2 blendshape rigs for
each identity of the 3Dscanstore.com database. Subsequently,
we create the same 250 random facial expressions for all iden-
tities through linear blending of the ARKit rigs with blending
weights recorded in dyadic conversations [47]. In the result-
ing dataset, corresponding facial expressions exhibit reduced
ambiguities and, hence, can rather be regarded as ground truth.

Therefore, we conduct the following experiment on this
dataset. To begin with, five source expressions S as well as
either 5, 15, or 30 target examples TE are randomly drawn for
all source-target identity combinations. Afterward, we run Ana-

2https://developer.apple.com/augmented-reality/arkit/
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Mesh S B S M
# Vertices 29826 14572 61875
# Faces / Tetrahedra 59648 28727 126612 107437

Table 2: The dimensions of all template components in our experiments.

w∇S w∇M wF wS wM wtar λreg
1.0 1.0 10.0 1.0 1.0 100.0 0.01

Table 3: The weights of the physics-based simulations and the PLBS reconstruc-
tion.

ConDaR and ALM for each source expression and measure the
average of the vertex-wise L2 differences to the ground truth
in mm. The findings of this experiment, reported in Figure 10,
indicate that AnaConDaR outperforms ALM, especially when
only a few target examples are available. A moderate improve-
ment can still be recognized when many target examples are
available. This quantitative evaluation ignores human perception
but is nonetheless consistent with the previously discussed user
study (Section 4.3).

4.5. Ablation Study
We examine the main components of AnaConDaR in another

user study, which is summarised in Figure 11 and visualised in
Figure 12. Particularly, we compare the regular AnaConDaR to
AnaConDaR without expression-specific facial characteristics,
without the missing blendshape, and with the standard deforma-
tion transfer dt [7] instead of our adt. The design of the user
study is mostly as described in Section 4.3. However, no similar
example has been provided to the 29 participants. Please refer
to Appendix B for an exemplary question from this study.

Deformation Transfer. The most noticeable visual differences
arise in the setting in which dt is used rather than adt. Here, the
artifacts caused by PLBS patch boundaries are transferred by dt,
and the strain constraint in anacon does not provide a sufficient
countermeasure. An increased strain weight wS could potentially
compensate for this but would also remove high-frequency de-
tails. Since adt, unlike dt, also applies anatomical constraints,
similar artifacts do not occur in the regular AnaConDaR results.
The user study supports this visual observation as the dt variant
is ranked last.

Instead of an amplified strain, another option would be to
eliminate the patch boundaries directly in the source estima-
tion SP

i before calculating the missing blendshape SM
i . For this,

there are at least two obvious solutions. The first solution is to
set up anatomical models as described in ALM [40, 2]. How-
ever, this adds considerable unnecessary complexity, mainly
due to additional optimization steps. Since these models only
use data-driven anatomical surface constraints, they also cannot
be used as an alternative to anacon. Particularly, they are not
applicable to unseen expressions, cannot enforce facial char-
acteristics, and cannot resolve collisions. The second solution
is to apply anacon to the source estimation SP

i . Essentially,
this means applying the same physics-based simulations as in
adt to a different input. Nevertheless, we decided to favor adt

Fig. 11: A user study among university members and computer graphics students
from two universities proves the benefits of each AnaConDaR component.

for theoretical reasons. Particularly, as adt applies anatomical
constraints and expression-specific facial characteristics during
the retargeting and not before. Neither of the two variants was
visually superior in our experiments.

Facial Characteristics & Missing Blendshape. The AnaCon-
DaR modifications without facial characteristics and missing
blendshape demonstrate that both components are essential, al-
though their importance varies depending on the retargeting sce-
nario. For instance, in the first row of Figure 12, the expression-
specific facial characteristics are especially important, whereas
in the second row, the missing blendshape has a strong impact.
Again, the user study confirms this visual observation, in which
AnaConDaR is ranked ahead of both modifications.

The influence of the facial characteristics and the missing
blendshape can also be observed in Figure 13, in which each
retargeting is performed once with 5 and once with 30 target
examples. Although the relevance of both components is most
evident when only a few target examples are available, the ef-
fects of both are still not negligible, even when there are many
available target examples.

4.6. Collisions and Artistic Control

In this paragraph, we will briefly highlight two features that
become feasible through the physics-based simulations involved
in AnaConDaR.

First, Figure 14 displays our approach to resolving lip colli-
sions. Not only do the upper and lower lip get disentangled, but
the final volumetric simulation anacon of AnaConDaR (Sec-
tion 3.4) propagates the displacements through the soft tissue.

Second, Figure 15 shows an example of artistic intervention
into anacon. To that end, we manually modify vertices of the
lip contour and add corresponding soft Dirichlet constraints to
the forward component fwdSim. For streamlining the process,
we move only a few control points and govern the remaining lip
contour points through an RBF space warp [42].

This example only serves as one illustration of applicable artis-
tic interventions. For instance, material properties, the weight
of a character, or external forces, like varying gravity directions
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Fig. 12: A visual ablation study that illustrates the individual components of AnaConDaR. In particular, the effects of enforcing expression-specific facial characteristics,
adding the missing blendshape, and using ADT over DT become apparent. Additionally, the PLBS result and the missing blendshape are depicted. Please note, that
we show the PLBS results after applying anatomical constraints (i.e., anacon w/o facial characteristics) for a reasonable comparison.

Fig. 13: AnaConDaR retargetings with 5 and 30 available target examples. For each instance, the PLBS component (after imposing anatomical constraints) and the
missing blendshape are shown.
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Fig. 14: An example of our method for resolving collisions. The lips get
disentangled and the arising forces propagate through the soft tissue.

Fig. 15: An example of an artistic intervention into anacon. The targeted
contour (red) is realized and the surrounding tissue is moved appropriately.

[47], can also be manipulated. Furthermore, artistic interven-
tions into the patchwise blending weights of PLBS are inherited
from ALM. For a more detailed description, please refer to [2].

5. Limitations

We assume that no global rigid motion occurs in facial expres-
sions. Effective methods to achieve this prerequisite are avail-
able [48]. Moreover, AnaConDaR requires a shared mesh/patch
topology of all source and target expressions. If this is not the
case, a mapping can be found with unsupervised approaches
[49, 50] or manually, for instance, using faceform.com. Con-
cerning the physics-based simulations, we focus on the projec-
tive dynamics simulator [43] and do not add dynamic effects
to obtain temporal independence. We chose projective dynam-
ics because of its simplicity and sufficient efficiency, but other
simulators can be used as drop-in replacements. Finally, we
only handle self-collisions of the lips, while lip-teeth and eyelid
collisions might also occur.

6. Conclusion

In this work, we introduced AnaConDaR, a method that inte-
grates data-driven and geometry-driven facial retargeting algo-
rithms. More precisely, the geometry-driven approach bridges
informational gaps resulting from insufficiently expressive tar-
get examples within the data-driven approach. As a result, we

enhance the current state-of-the-art ALM [2] to attain superior
retargeting outcomes, particularly in situations where only a
minimal number of target examples is available.

Due to the usage of patchwise linear blendshapes and the
volumetric head representation, the user can readily guide and
tailor AnaConDaR. The presented visually convincing qualita-
tive examples of our approach are supported by two user studies
and a quantitative analysis.

Promising future directions for improving AnaConDaR are
to employ even more anatomically precise physics-based sim-
ulations and fully volumetric blendshapes [51]. Also, a more
in-depth user study that queries rationales may facilitate targeted
improvements. Finally, an accelerated GPU implementation
of AnaConDaR could potentially achieve real-time operating
speeds.
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Appendix A. Energies

In the following, we formally state the individual energies of
the forward simulation simFwd (Equation (18)).

Appendix A.1. Facial Characteristics
The energy for the facial characteristics

EF(ST ,Fi) = Eeo(ST ,Feo)+Ees(ST ,Fes)+Elc(ST ,Flc) (A.1)

is composed of terms for the eye openings, the eye sockets, and
the lip contour.

The energy for eye openings

Eeo(ST ,Feo) = ∑
f∈EO

(A(ST , f )−aeo( f ))2 (A.2)

penalizes for each triangular face f ∈ EO deviations in the sur-
face area A(ST , f ) from the corresponding targeted surface area
aeo( f ) ∈ Feo.

The energy for the eye sockets

Ees(ST ,Fes) = ∑
f∈ES

(A( f )−aes( f ))2 (A.3)

penalizes for each triangular face f ∈ ES deviations in the sur-
face area A(ST , f ) from the corresponding targeted surface area
aes( f ) ∈ Fes.

The energy for the lip contours

Elc(ST ,Flc) =
∥∥∥(ST )

LC −Flc

∥∥∥2
(A.4)

draws the vertices (ST )
LC ∈ ST to the corresponding vertices Flc.
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Appendix A.2. Tissue Deformations
The energy for the soft tissue

E∇S(ST ,∇S) = ∑
t∈ST

∥∇(t,ST )−DG∇S(t)∥2
F (A.5)

penalizes for each tetrahedron t ∈ ST deviations from the defor-
mation gradient ∇(t,S) to the corresponding targeted deforma-
tion gradient DG∇S(t) ∈ ∇S.

The energy for the muscle tissue

E∇M(MT ,∇M) = ∑
t∈MT

∥∇(t,MT )−DG∇M(t)∥2
F (A.6)

penalizes for each tetrahedron t ∈MT deviations from the defor-
mation gradient ∇(t,M) to the corresponding targeted deforma-
tion gradient DG∇M(t) ∈ ∇MT .

Appendix B. User Studies

Fig. B.16: An instance of the user study, wherein 33 participants ranked the peer
group of AnaConDaR. Consistent with the user study conducted by Chandran
et al. [2], a real target example supported the participants in ranking. In this
illustration, A-D are the results of EBFR, DT, AnaConDaR, and ALM. Generally,
the results were placed in a random order.

Fig. B.17: An instance of the user study, wherein 29 participants ranked indi-
vidual components of AnaConDaR. In this illustration, A-D are the results of
AnaConDaR without the missing blendshape, AnaConDaR, AnaConDaR with
DT, and AnaConDaR without facial features. Generally, the components were
placed in a random order.


