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Abstract
The Laplace Beltrami operator is one of the essential tools in geometric processing. It allows us to solve numerous partial dif-
ferential equations on discrete surface meshes, which is a fundamental building block in many computer graphics applications.
Discrete Laplacians are typically limited to standard elements like triangles or quadrilaterals, which severely constrains the
tessellation of the mesh. But in recent years, several approaches were able to generalize the Laplace Beltrami and its closely
related gradient and divergence operators to more general meshes. This allows artists and engineers to work with a wider
range of elements which are sometimes required and beneficial in their field. This paper discusses the different constructions of
these three ubiquitous differential operators on arbitrary polygons and analyzes their individual advantages and properties in
common computer graphics applications.

1. Introdution

The discrete Laplace-Beltrami operator, or Laplacian for short, is
a ubiquitous tool in geometry processing. It allows us to solve nu-
merous partial differential equations on discrete surface and vol-
ume meshes, which is essential for various computer graphics ap-
plications, like mesh smoothing, mesh parameterization or fairing,
followed by many others. Especially under the assumption of a tri-
angulated surface is the discrete Laplacian based on the cotangent
formula [PP93,MDSB03,DMSB99,Dzi88] almost exclusively used
and nearly omnipresent in graphics and geometry processing.

However, due to the growing needs in modeling and engineering
applications, recent papers point out that the restriction to triangles
or tetrahedral meshes, while simple and convenient, is no longer
sufficient. Many users have to fall back to more general shapes to
be able to express geometric properties and features in their model.
Applications benefiting from a more flexible range of elements are
for example fracture modeling [TS08, Bis09, OSTLY12] or linear
elasticity problems [TS06]. Additionally, since micro-structures of
naturally occurring materials like bones can be described through
polygonal domains, generalized differential operators are useful
tools for the solid- and bio-mechanics community [TS06]. Further-
more, quad meshes are predominantly used by modeling artists.

In order to enable this flexibility, several papers within the graph-
ics community developed strategies to generalize the Laplace-
Beltrami operator to general polygon meshes. This entails several
challenges, for example, arbitrary polygons are not necessarily pla-
nar which leads to twisted surfaces in 3D. Coming from various
backgrounds and inspirations, all presented Laplacians deal with
these difficulties in their own way, but it is not necessarily clear in
which aspects the operators actually differ and what their various
nuances imply. This survey therefore intends to showcase occurring

similarities between the presented methods that may not be appar-
ent if considered individually. In order to achieve this, we sum-
marize existing state of the art approaches that extend the Laplace
operator to arbitrary polygon meshes and, if possible, to volumetric
polyhedral meshes.

In the smooth setting the Laplacian of a function f is defined as

∆ f = div∇ f . (1)

Given their close relation, comparing suitable generalizations for
discrete gradient and divergence is an almost equally essential af-
fair focused on in this survey. In general, the papers we are going
to discuss have all been inspired by different well known numer-
ical schemes commonly used for various discretization problems.
Namely the Finite Element Method (FEM), the Mimetic Finite
Difference Method (MFD) and the Finite Volume Method (FV).
Since all generalized Laplacians can be loosely sorted into one
of these schemes, we will briefly explain their core principles at
the beginning of each section and highlight the inspirational ele-
ments that influenced the respective papers. First, we will repeat
necessary definitions required for the operator’s construction, fol-
lowed by the more detailed explanations of the involved polygonal
operators and their different ideas, including possible volumetric
extensions. Afterwards, we will discuss the required properties a
discrete Laplacian should fulfill based on the work presented by
Wardetzky et al. [WMKG07] and will analyze the respective op-
erators in this context. Furthermore, the operators are evaluated in
a variety of quantitative comparisons that address reoccurring de-
bates within the original papers. The source code for the individual
operators and experiments can be found under the following link
https://github.com/mbotsch/polyLaplace to enable
researchers to experiment with the different discretizations. In the
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end, this survey paper intends to provide the reader with an intuition
to choose the optimal polygon Laplacian for their given situation.

2. Basic definitions

Consider a 2D polygon mesh M= (V,E ,F) embedded in 3D, with
vertices V , edges E and faces F . Each vertex vi ∈ V has an associ-
ated 3D position xi = (xi,yi,zi) and each face f consists of n f ver-
tices. We define an additional set of oriented halfedges H, where
for each inner edge e ∈ E exist two oppositely oriented halfedges,
while each boundary edge has only one. Likewise, a 3D polyhedral
mesh has the same structure with only one additional set consisting
of the volumetric cells C.

Furthermore, we define a discrete Laplace operator L ∈
R|V|×|V| as the product of the inverse of a so-called mass matrix
M ∈ R|V|×|V| and stiffness matrix L ∈ R|V|×|V|:

L= M−1L. (2)

L is generally referred to as the strong form of the Laplacian and L
is its integrated weak form. The exact conditions that are generally
imposed on these matrices will be discussed in the next section. As
for their construction, most of the upcoming methods focus on a
local approach that builds the required matrices per face or cell. We
therefore define:

• The matrix X ∈R|V|×3 encodes the vertex positions of the mesh
in its rows.

• X f = (x f
1 , . . . ,x

f
n f )

T is the n f × 3 matrix containing in its rows

the cyclically ordered vertex positions x f
i of the face f .

• E f = (e f
1 , . . . ,e

f
n f )

T is the n f × 3 matrix containing in its rows

the cyclically ordered edge vectors e f
i = x f

i+1 −x f
i of the face f .

• B f = (b f
1 , . . . ,b

f
n f )

T is the n f × 3 matrix containing in its rows

the barycenters b f
i = 1

2

(
x f

i+1 +x f
i

)
of each edge e f

i .

2.1. Properties of a Discrete General Laplace Operator

The smooth Laplace-Beltrami operator has a set of key structural
properties that each discretization must be able to fulfill. The corre-
lation between these smooth properties and discrete Laplace opera-
tors has been discussed intensively for triangle meshes by Wardet-
zky et al. [WMKG07] and for tetrahedral meshes by Alexa et al.
[AHKSH20]. However, these requirements equally hold for gen-
eral polygon and polyhedral meshes and are therefore important
criteria for the numerical quality of a discrete Laplacian. Unfor-
tunately, as pointed out by Wardetzky et al., most meshes do not
allow for Laplacians to satisfy all discrete properties simultane-
ously, which coins the second part of their paper “No free lunch”.
In this section, we will reintroduce the individual definitions pre-
sented by [WMKG07] in order to establish characteristics by which
the quality of each presented polygon Laplacian operator can be as-
sessed.

In the smooth setting, consider a single connected manifold Ω,
possibly with boundary, that is equipped with a Riemannian metric.
We define a function u : Ω→R and its discrete equivalent u∈R|V|,
whose entries are the function values of u sampled at the vertices of
the surface mesh M. The strong Laplacian L ∈ R|V|×|V| defined

on M is given through a chosen |V|× |V| matrix pair (M,L) con-
sisting of a sparse symmetric mass matrix M and the weak form of
the Laplacian given by the sparse matrix L.

Symmetry. Given two functions u and v that are sufficiently
smooth and vanish along the boundary of Ω, the smooth Laplacian
is selfadjoint with respect to the L2 inner product of these functions,
meaning

⟨∆u,v⟩= ⟨u,∆v⟩ (3)

with ⟨u,v⟩ =
´

Ω
uvdA. We therefore request the strong form L to

be a self adjoint operator with respect to the inner product induced
by the symmetric mass matrix M, meaning

(Lu)TMv = uTM(Lv) (4)

⇔ uTLTv = uTLv (5)

for any u and v.

Locality. The smooth Laplacian of a function u at a point p should
only depend on the values u(q) of other points q in an ε-ball around
p. This means that the discrete Laplacian should also operate lo-
cally in the 1-ring neighborhood of the respective vertex and should
not be affected by distant vertices in the mesh.

Linear Precision. In the smooth setting, given a linear function u
defined on Ω, the Laplacian of said function has to be zero in planar
regions of the manifold. The discrete equivalent is similar: Given
a planar mesh M and any linear function u, we require the strong
version of the Laplacian L to satisfy

(Lu)i = 0 (6)

for each inner vertex vi, where (·)i denotes the i-th entry or row
of the vector or matrix within the parenthesis. Alternatively, we
can omit the influence of the mass matrix and require the stiffness
matrix to satisfy

(LX)i = 0. (7)

Positive Semi-Definiteness and Null Space. In the smooth set-
ting, the Dirichlet energy of a function u defined on the manifold
Ω has to be greater than or equal zero. The discrete version of the
Dirichlet energy can be expressed with the help of the stiffness ma-
trix as

1
2

uTLu. (8)

Therefore, L has to be positive semi-definite in order for the en-
ergy to remain non-negative. Note that, depending on the definition,
the Laplacian could alternatively be required to be negative semi-
definite. A second aspect of this property addresses the kernel of the
Laplacian. The smooth Dirichlet energy vanishes for linear func-
tions and if we consider a closed mesh, linear functions become
constant. Therefore the kernel of L has to be one-dimensional as
well and can only contain constant functions. If the stiffness matrix
can be expressed as

(Lu)i = ∑
j

wi j(ui −u j), (9)

the discrete Laplacian automatically fulfills this prop-
erty [WMKG07].
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Maximum Principle. The smooth maximum principle requires
that harmonic functions (∆u= 0) have no local extremum at interior
points of the manifold Ω. For example, this property assures that
approximated solutions of diffusion problems flow from regions
with higher potential to regions with lower potential, instead of the
other way round. The discrete equivalent can be directly addressed
through the entries of the stiffness matrix by the so-called positive
weight property, which is a sufficient but not necessary condition
for the discrete maximum principle. It demands that for each ver-
tex vi the entries Li j have to be less than or equal zero if i ̸= j.
Furthermore, at least one entry per row has to be nonzero.

Convergence. The convergence property requires that approxi-
mate solutions involving the Laplace operator converge to the ex-
act solution of the PDE under progressive refinement of the mesh,
which was analyzed by Hildebrandt et al. [HPW06] and Wardet-
zky [War08]. This property will not be proven for the upcoming
operators, but analyzed empirically in the result section.

3. Cotangent Laplacian on Triangle Meshes

One property shared by almost all of the discussed polygon Lapla-
cians is that they reproduce the standard cotangent stiffness matrix
on triangle surface meshes. We will therefore shortly revisit its def-
inition based on the finite element discretization. Given a triangle
mesh M, let {ϕ1, . . . ,ϕ|V|} be the piecewise linear Lagrange basis
function defined on M, with

ϕi(x j) =

{
1 if i = j
0 otherwise.

(10)

The mass and stiffness matrices M,L ∈ R|V|×|V| of the Laplace
operator are then discretized as

Mi j =

ˆ
M

ϕi ·ϕ j =


|ti jk|+|t jih|

12 if j ∈N (i),

∑k∈N (i) Mik if j = i,
0 otherwise,

(11)

and

Li j =

ˆ
M

⟨∇ϕi,∇ϕ j⟩=


−wi j if j ∈N (i),

∑k∈N (i) wik if j = i,
0 otherwise,

(12)

with

wi j =
cotαi j + cotβi j

2
. (13)

Here ti jk and t jih denote the triangles adjacent to the edge ei j
between the vertices (vi,v j), with∣∣ti jk
∣∣ , ∣∣t jih

∣∣ describing their respective
areas (see inset). The angles αi j and βi j lie
in the opposite corners of the adjacent tri-
angles and N (i) denotes the set formed by
the vertex indices of the one-ring neighbor-
hood surrounding vi. Note that in general practice, the cotangent
values are not obtained by using the inverse trigonometric function
itself, but rather through the respective edge lengths and area value
of the involved triangle. Given a triangle ti jk with edge lengths

li j, lik and l jk respectively, we can compute the cotangent of the
corner angle θk at vertex vk through

cotθk =
l2

jk + l2
ik − l2

i j

4
∣∣ti jk
∣∣ . (14)

Therefore, the Laplacian itself can be constructed intrinsically, as
described in [Sha21]. Furthermore, emulating the smooth setting
with the Laplacian being defined as the divergence of the gra-
dient, one can express the gradient operator as a discrete matrix
G ∈ R3|F|×|V| consisting of local sub-matrices Gi ∈ R3×3 per
triangle fi = t jkl . Each column of Gi is associated with the gradi-
ent of one of the respective vertices. For example, the first column
referring to vertex v j, would be

Gi(:,1) =
(xl −xk)

⊥

2
∣∣t jkl

∣∣ . (15)

The global matrix G is then assembled by placing the respective
face gradients at the column entries of the individual vertices v j and
setting everything else to zero. This can further be used to discretize
the divergence as

D = GTM̂. (16)

The matrix M̂ ∈ R3|F|×3|F| is defined as a diagonal mass matrix
containing the area of the triangle i in the three consecutive diag-
onal entries associated with face i [BSPG06]. The product of D
and G gives us the stiffness matrix L, which is therefore consistent
with the continuous setting, but requires a concrete embedding of
the mesh in contrast to the intrinsic formulation of L itself [Sha21].

3.1. Properties

Symmetry. Considering the individual entries of the stiffness ma-
trix defined in Equation (12), the cotan operator is symmetric by
construction.

Positive Semi-Definiteness and Kernel Dimension. Since L can
be considered as the Gramian matrix of the gradients of the lin-
ear Lagrange basis functions, it is positive semi-definite by con-
struction. Furthermore, given that ∆ f (xi) of a function f at ver-
tex vi can be expressed through the well known cotan formula
[Mac49, PP93, DMSB99]

∆ f (xi) =
1
2 ∑

v j∈N (vi)

(cotαi j + cotβi j)( f (x j)− f (xi)), (17)

the operator satisfies the condition given in Equation (9) and there-
fore has a one dimensional kernel.

Locality. By construction, each row (L)i associated to vertex vi
has non-zero entries only in the columns associated to nodes in its
immediate one-ring neighborhood.

Linear Precision. The area gradient of a triangle ti jk with respect
to the vertex vi can be expressed as

∇A|xi =
cotθk

2
(xi −x j)+

cotθ j

2
(xi −xk), (18)

with θ j and θk denoting the angles at the respective vertices v j,vk
and A =

∣∣ti jk
∣∣ the area of the triangle ti jk. The cotan Laplace of the
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coordinate function xi at vertex vi can therefore be expressed as the
sum of positive area gradients of its adjacent triangles [DMSB99],
which, given that the triangles all lie within the same plane, be-
comes zero.

Maximum Principle. This property is in general not satisfied,
since the cotangent becomes negative for angles between 90 and
180 degrees, leading to negative entries Li j in the stiffness matrix
if the involved angles satisfy αi j +βi j > π.

Convergence. The convergence behavior of the cotan Laplace was
discussed by Hildebrand et al. [HPW06] and Wardetzky [War08].
They point out that pointwise convergence of progressively refined
meshes M to a smooth surface Ω is not sufficient to guarantee con-
vergence for the cotan Laplace. However, if the meshes converge in
Hausdorff distance and are normal graphs over Ω, then the Lapla-
cian converges to its smooth solution.

4. Mimetic Finite Differences

The Mimetic Finite Difference method (MFD) [LMS14] is an ap-
proximation strategy whose main goal is to define discrete differ-
ential operators that try to preserve, or mimic, certain critical math-
ematical and physical properties of the underlying PDE. Its core
principle lies in the definition of a so-called primary operator, typ-
ically gradient, divergence or curl, based on discrete vector and
tensor calculus and various forms of Stokes’ theorem. The other
operators are then derived by using discrete analogs of Green’s for-
mulas in order to retain a duality relationship to the primary term.
Several papers (e.g. [BLS05,BLSS07]) applied the MFD method to
derive mimetic discretizations on polygonal and polyhedral meshes
and stressed that one of the key components is the definition of
an accurate mimetic inner product. This matrix is a vital part in
some derivations of the discrete Laplacian. Although the MFD is
not directly focused on the construction of this operator, therefore
exceeding the scope of this survey, its theory influenced recent ap-
proaches in the graphics community that will be discussed in the
following sections. As a disclaimer, some of the upcoming deriva-
tions require rather in-depth knowledge and may seem fast paced
for readers that are not already familiar with these terms. However,
we still chose to include these detailed explanations in the hope that
they might provide some useful insights on the differences of the
respective mathematical backgrounds that influenced each of the
upcoming discrete polygonal Laplacians.

4.1. Mimetic Polygon Laplacian

Alexa and Wardetzky [AW11] rely on an algebraic approach to de-
fine their discrete Laplacian and extend the MFD-based inner prod-
uct stabilization [BLS05] to two-dimensional manifolds that even
allow for non-planar polygons. Given a polygon surface mesh M
embedded in 3D, the only restrictions are that it has to be oriented,
meaning that two adjacent faces have to be oppositely oriented on
the shared edge, and that the faces are simple, meaning that they are
not self-intersecting and have boundaries that form a closed loop.

4.1.1. Algebraic Framework

Let Γ
k, k ∈ {0,1}, be the linear function space of discrete k-forms

on M. A k-form can be thought of as a function that takes in k-
surfaces and assigns them their integrated value as output, with
a 0-surface being a node, a 1-surface an edge, a 2-surface a face
and so on. Alexa and Wardetzky derive their polygon Laplacian for
0-forms from the Laplace-de Rahm operator, which for a scalar-
valued function u is defined as

∆u = d∗du. (19)

In this context d : Γ
0 → Γ

1 is the exterior derivative and d∗ : Γ
1 →

Γ
0 the codifferential, which is defined as the adjoint of d with re-

spect to the square integrable inner product [Ros97]. They use the
so-called coboundary operator as a discrete version of the smooth
exterior derivative, with

(du)(hi j) = u( j)−u(i) (20)

and hi j being the oriented halfedge from vertex vi to v j. The def-
inition of a suitable adjoint operator d∗ requires inner products on
the k-form function spaces and is therefore, in contrast to the ex-
terior derivative, metric dependent. The inner products can be ex-
pressed as two symmetric positive definite matrices M ∈ R|V|×|V|

and M1 ∈ R|H|×|H|. Any choice of M and M1 gives us an expres-
sion for the discrete Laplacian

L= d∗d = M−1L (21)

with

L = dTM1d. (22)

The matrix version of the coboundary operator d ∈ R|H|×|V| is
often referred to as the difference operator. Its k-th row associated
with the k-th halfedge hi j ∈H can be expressed as

dkl =


−1 l = i,
1 l = j,
0 otherwise,

(23)

which is only non-zero for the entries dki and dk j associated with
the vertices connected by the halfedge.

4.1.2. Choice Of Inner Product Matrices

Although in theory any choice for the two inner product matrices
would be feasible, not all of them yield the same quality of results.
Alexa and Wardetzky therefore motivate their chosen construction
by fulfilling the desired criteria discussed in Section 2.1. The inner
product matrix for 0-forms assigns each vertex a certain mass. In
order to retain locality, the matrix M is given by

Mii = ∑
f∋vi

| f |
n f

, (24)

where | f | denotes the magnitude of the polygons’ vector area. As
already mentioned, we also consider non-planar polygons in R3

that do not necessarily define a surface. Therefore, | f | is defined
as the area of the largest orthogonal projection of the polygon onto
a plane and can be computed as the norm of the Darboux vector
a f ∈ R3 of the skew symmetric (3×3) matrix

A f = ET
f B f , (25)
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meaning

| f |=
∥∥a f
∥∥= ∥∥∥∥∥1

2 ∑
vi∈ f

xi ×xi+1

∥∥∥∥∥ . (26)

The cyclic vertex positions (xi,xi+1) depend on the orientation of
the face, which is encoded in the previously defined matrix X f . It
makes sense to look at the definition of the inner product for 1-
forms from a local perspective per face and then later assemble the
individual matrices into the global representation, since the process
can be repeated per element f ∈ F . The starting point for the con-
struction is the matrix M̃ f ∈ Rn f ×n f given by

M̃ f =
1
| f |B f BT

f , (27)

which was previously defined by Brezzi et al. [BLS05] and is mo-
tivated by the Laplacian’s connection to mean curvatures. How-
ever, while this choice of inner product matrix is generally positive
semi-definite, in order for the Laplacian itself to fulfill this property,
which is a desired criterion, the inner products have to be positive
definite. Alexa and Wardetzky therefore add a stabilization term to
extend Brezzi et al.’s definition to non-planar polygons and give rise
to a positive definite inner product. The necessity stems from the
fact that for general polygons with n f vertices the transposed mid-
point matrix B f will have either rank 2 (planar) or 3 (non-planar),
allowing for a kernel of dimension n f − rank(B f ). Therefore, in
order to fill up the kernel, Alexa and Wardetzky introduce the alter-
native inner product matrix

M f := M̃ f +C f̄ U f̄ CT
f̄ . (28)

Here, f̄ is the maximum orthogonal projection of the polygon f and
C f̄ ∈Rn f ×(n f −2) is a matrix whose columns span the kernel of ET

f̄ .
Combined with any choice of a symmetric positive definite matrix
U f̄ ∈ Rn f ×n f , the stabilization term will lead to a positive definite
inner product M f , as proven in Theorem 1 of the original paper.
That C f̄ only has to span the kernel of ET

f̄ is motivated by the linear
precision property. In order for (LX)i to vanish in a planar region
surrounding vertex vi, the stabilization term must also vanish. But
since E f = E f̄ for planar polygons, we get(

CT
f d f X f

)
i
=
(

CT
f E f

)
i
=
(

CT
f E f̄

)
i

!
= 0, (29)

which is equivalent to (
ET

f̄ C f

)
i

!
= 0. (30)

Here, d f refers to the local difference operator defined on the face
f . Since all other properties are already accounted for, it is suffi-
cient to require that C f spans the kernel of ET

f̄ . As for inner prod-
ucts in general, there are several choices for C f̄ and U f̄ that would
satisfy the conditions, giving rise to a whole family of suitable ma-
trices. However, Alexa and Wardetzky propose a special combina-
tion in order to achieve scale invariance as a property for the final
Laplacian, meaning that the stiffness matrix L remains unchanged
when the mesh is uniformly scaled. Using a parameter 0 < λ ∈ R,
they choose the matrix U f̄ as

U f̄ := λI f , (31)

with I f being the n f -dimensional identity matrix. They choose C f̄
such that its columns are orthonormal, and the final inner product
leads to a per-face Laplacian stiffness matrix

L f = dT
f M f d f (32)

that is not affected by scaling, is local and linearly precise. These
local matrices are then assembled into the global stiffness matrix L
by assigning each vertex vi the i-th row and column of L in which
the sum over their respective entries in the local matrices are col-
lected.

4.2. Geometric Polygon Laplacian

Alexa and Wardetzky’s focus lies solely on the definition of the
Laplace-Beltrami and did not further investigate other operators.
This was later addressed by de Goes et al. [dGBD20], who de-
fined a variety of discrete differential polygon operators that also
serve as a generalization of the MFD, but with a stabilization term
for the inner product matrix on 1-forms inspired by the virtual
element method (VEM) [BdVBM13]. The following chapter will
further elaborate on their approach. The main focus of de Goes et
al. [dGBD20] was a new linearly precise discretization of the gradi-
ent, which allows to define a consistent set of operators, including
their own interpretation of the Laplacian.

4.2.1. Polygon Gradient

As in the previous section, the definition of the gradient will be ap-
plied locally per polygon f ∈F , but can be assembled into a global
gradient matrix acting on the complete mesh. Given a scalar func-
tion u defined on f , we want to find a matrix G f that simulates the
behavior of the gradient ∇u on the polygon. For planar elements,
this would normally be achieved by applying Stokes’ theorem to
∇u and deriving a matrix discretization through the weak form of
the resulting boundary integral. However, since the polygons of the
given mesh are not necessarily planar it is not clear how to define
the surface normal n(x) at the boundary points x. Therefore, the
standard approach cannot be used. De Goes et al. [dGBD20] cir-
cumvent this problem by evaluating the co-gradient operator

∇u⊥(x) := n(x)×∇u(x), (33)

on which applying Stoke’s theorem leads to
¨

f
∇u⊥(x)dA =

˛
∂ f

u(x)t(x)dx, (34)

with t(x) being the unit tangent vector at boundary point x. This
expression is independent of the surface of the polygon and only
requires the tangent vectors along the boundary, which are uniquely
defined. For example, if we consider the boundary integral in Equa-
tion (34) for linear functions u, the integrated co-gradient can be
evaluated exactly as a sum over the averaged function values along
the polygon edges, multiplied with the respective edge vector:

˛
∂ f

u(x)t(x)dx = ET
f Avg f u f . (35)
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Here Avg f ∈ Rn f ×n f is a matrix that yields the average of consec-
utive vector entries, defined as

(
Avg f

)
i j
=


1
2 for j = i
1
2 for j = (i+1) mod n f

0 otherwise.

(36)

Additionally, in order to describe the co-gradient as matrix-vector
multiplication, one can define the cross product as a map from a 3D
vector p = (p1, p2, p3)

T to a skew symmetric matrix [p] ∈ R3×3

with

[p] =

 0 −p3 p2
p3 0 −p1
−p2 p1 0

 , (37)

such that [p]q = p×q for q ∈ R3. If we consider u : R3 → R to be
a linear function, meaning u(x) = sTx+ r with s,x ∈R3 and r ∈R,
its co-gradient would yield n(x)× s, which can then be expressed
as [n(x)]s. This becomes useful if we consider¨

f
∇u⊥(x)dx =

˛
∂ f

(
sTx+ r

)
t(x)dx (38)

=ET
f Avg f

(
X f s+1 f r

)
(39)

=ET
f B f s, (40)

which equally gives

ET
f B f s =

(¨
f
[n(x)]dx

)
s, (41)

since the term ET
f Avg f 1 f = ET

f 1 f , which is the sum of edge vec-
tors and therefore zero. Equation (41) implies that the surface inte-
gral of the matrix [n(x)] is equal to the previously mentioned area
matrix A f (see Equation (25)) related to the largest orthogonal pro-
jection of the face f and independent of the polygons’ interpolated
surface. Therefore, replacing the normal term n(x) with the con-
stant face normal of the planar projection f̄ , given by

n f =
a f

| f | , (42)

the surface integral of the co-gradient can be changed to¨
f
[n f ]∇u(x)dx. (43)

Considering that the co-gradient ∇u⊥ can now be interpreted as
a local 90 degrees rotation of the gradient around the normal n f ,
one can apply a second rotation around the same normal to obtain
−∇u. This leads to de Goes et al.’s definition of the the gradient
matrix

G f =− 1
| f | [n f ]E

T
f Avg f (44)

per polygon f , which is proven to be linearly precise. As for the
stiffness matrix, the local gradient operators can be assembled into
a global gradient operator per mesh G ∈ R3|F|×|V|.

4.2.2. Flat, Sharp And Projection Operator

Based on their definition of the gradient operator, de Goes et al.
derive an alternative expression to Alexa’s and Wardetzky’s choice

for the inner product matrix on 1-forms. Involved in the process are
their discrete polygon extensions of the so-called sharp ♯ and flat ♭
operators, both discretized as

V♯
f :=

1
| f | [n f ]

(
BT

f − c f 1Tf
)
∈ R3×n f , (45)

and

V♭
f := E f

(
I−n f nT

f

)
∈ Rn f ×3 (46)

respectively, with c f being the face centroid and 1 f ∈ Rn f a vector
with only ones as entries. As pointed out in Lemma 2 of the original
paper, this expression for the sharp operator yields

G f u f = V♯
f d f u f , (47)

for any scalar function u f and is therefore able to reproduce a dis-
crete version of the smooth relation ∇u = (du)♯ between sharp and
gradient operator. In the continuous setting, given a vector space V
equipped with an inner product ⟨·, ·⟩ represented by a matrix K:

⟨x,y⟩= xTK y ∀ x,y ∈V, (48)

the flat operator ♭ is defined as

v♭(u) = ⟨v,u⟩= vTK u, (49)

mapping a vector v from the vector space V to a functional g(u) =
⟨v,u⟩ in its dual space V∗ [Lee97]. The flat and sharp operators
form an isomorphism and we know from the previous assumption
that for each linear functional g ∈ V∗ there exists a unique v ∈ V
such that g(u) = ⟨v,u⟩ for all u ∈V . Therefore, the sharp operator
♯ forms the inverse of ♭ and can be considered as g♯ = v. This is
commonly referred to as lowering or raising an index. In de Goes’
setting, the matrix V♭ maps a 3D vector to its tangential part and
then computes its counter-clockwise circulation along the edges of
the polygon, giving us a discrete 1-form. The sharp operator V♯ in-
versely maps the values of a discrete 1-form defined on the polygon
back to a single tangent vector per face. However, in contrast to the
continuous setting, the operators defined by de Goes et al. are not
the exact inverses of each other. The definition holds for any vector
v∈R3 that satisfies vTn f = 0, meaning it is tangent to the polygon.
If this vector is flattened to a 1-form and then inversely sharpened
back, it regains its original form. However, first applying the sharp-
ening operator and then lowering the resulting tangent vector back
to its 1-form does not have the same effect due to the rank defi-
ciency of V♯

f . It reduces the n f values of a discrete 1-form to only
a tangent vector on the polygon f [dGBD20] and therefore loses
information. Inspired by the virtual element method [BdVBM13],
they mitigate the effect by defining a so-called projection operator

P f := I f −V♭
f V♯

f ∈ Rn f ×n f (50)

that measures the error of V♭
f and V♯

f being inverse to each other.
Basically, by first sharpening a 1-form g to a tangent vector that is
then flattened back to a representative 1-form ĝ, the projection op-
erator eliminates the components of g that would result in a tangent
vector after applying V♭

f .
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4.2.3. Stiffness Matrix

Equipped with the previously defined operators, de Goes et al.
[dGBD20] define their local inner product matrices acting on 1-
forms as

M f := | f |V♯T
f V♯

f +λ PT
f P f , (51)

which can be assembled into the global inner product matrix M1
acting on the whole mesh. The matrix M f maps the involved 1-
forms to their respective tangential vectors with the help of the
sharpening operator V♯

f , resulting in their dot product. The poten-
tial rank deficiency is mitigated through the second correction term
regulated by a parameter λ > 0. As for Alexa and Wardetzky, this
regulation is necessary to guarantee that the inner product matrix is
strictly positive definite, which can then be used as before to define
the local discrete Laplace-Beltrami operator

L f = dT
f M f d f . (52)

4.3. Gradient and Divergence Operator

Since the Laplacian of function u is defined as the divergence of the
gradient of said function

∆u = div(∇u), (53)

its discretization should be able to simulate the same behavior.
This means that for each gradient matrix G f ∈ R3×n f defined
on a polygon f , there should exist a respective divergence matrix
D f ∈ Rn f ×3 with

L f = D f G f . (54)

Typically, this divergence operator is defined as the adjoint of the
gradient scaled with a mass matrix containing the faces areas. How-
ever, a possibility for both presented approaches [AW11,dGBD20]
to satisfy Equation (54) would be to follow the discrete exterior
calculus interpretation [DHLM05] of the operators. Here, the dif-
ference matrix d f can be seen as a gradient operator acting on 0-
forms and the divergence of a discrete 1-form on f is then defined
as

D f := dT
f M f , (55)

which gives the required equality. Note that this interpretation of
the gradient differs from de Goes’ geometric operator in Equa-
tion (44). In fact, given that their sharp operator satisfies V♯

f d f =
G f , we can interpret their L f as

| f |GT
f G f +λ d f PT

f P f d f , (56)

which means that their stiffness matrix is composed into the “tra-
ditional” interpretation of gradient and divergence, combined with
the scaled stabilization term. This is reflected in the second part of
their paper, where they define the divergence of face-based vector
fields as the trace of the covariant derivative. Given a vector u f
associated with a face f , its divergence actually simplifies to

D f u f = | f |GT
f u f , (57)

leading to two interpretations of the divergence operator, one acting
on 1-forms and the other on vector fields.

4.4. Differences between Inner Product Matrices

The previously presented Laplacians are closely related in their def-
initions of the inner product matrix for 1-forms. We will therefore
shortly highlight some of the similarities and differences of the re-
spective matrices. We already established that Alexa and Wardet-
zky’s matrix M̃ f follows Brezzi et al.’s construction. M̃ f is de-
pendent on the choice of origin if regarded individually, however,
combined with the difference matrix d f and its adjoint dT

f , this de-
pendency vanishes. De Goes et al.’s equivalent eliminates this de-
pendency immediately by regarding the midpoints relative to the
respective centroid of the face as C f ∈ Rn f ×3, with row entries
ci = bi −c f . However, given a planar face, combining the matrices
BT

f and CT
f with d f actually yields the same result, as visualized in

Figure 1. Without the respective stabilization terms, both methods
would lead to identical inner products since the remaining part of
de Goes et al.’s method, namely

−[n f ]
2 =

(
I−n f nT

f

)
, (58)

has no effect in this situation.Therefore, at least for planar poly-
gons, the biggest difference between the inner product matrices are
the stabilization terms.

Figure 1: Vectors involved in the inner product matrix for 1-forms
for both Alexa and Wardetzky [AW11] and de Goes et al. [dGBD20]
if computed on a planar polygon.

4.5. Key Outcomes

For the computer graphics community, the main achievement of the
two presented polygon Laplacians was to extend the MFD based
inner product stabilization from Brezzi et al. [BLS05] to possible
non-planar two manifolds embedded in 3D. While the individual
mathematical derivations of the operators differ, they both intro-
duce additional weighted stabilization terms in order to guarantee
the crucial requirement of strict positive definiteness of the inner
product matrices, even if they are confronted with possible non-
planar polygons.

5. Finite Element Discretizations

The finite element method (FEM) is often used to approximate the
solution u to a given PDE on a simplicial mesh with the help of
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a finite set of basis functions. The exact number depends on both
the shape of the element and the order of the basis itself. In the
linear case, we typically associate an individual shape function ϕi
with the vertex xi, also commonly referred to as node. Now, instead
of solving the PDE directly, the objective changes to finding suit-
able coefficients ui, i = 1, . . . , |V|, that approximate the unknown
solution u of the PDE with

u(x) =
|V|

∑
i=1

uiϕi(x). (59)

For example, a common problem solved with the finite element
method is the Poisson equation −∆u = f for a known function f .
Given a surface mesh, the discretized PDE leads to a linear system
Lu = f with a Laplace matrix L that is defined as the integrated dot
product of the gradients of the basis functions:

Li j =

ˆ
M

⟨∇ϕi,∇ϕ j⟩. (60)

While a variety of different bases can be used to solve this system,
for triangle meshes, we focus on linear nodal shape functions that
are defined piecewise per face and satisfy the Lagrange interpola-
tion property already mentioned in Equation (10):

ϕi(x j) =

{
1 if i = j,
0 otherwise.

(61)

Furthermore, we want them to satisfy additional properties within
each element of the mesh in order to guarantee convergence under
refinement [Hug12]:

1. They have to be C1 continuous within the element and C0 across
its boundaries.

2. The basis has to satisfy constant precision, which means they
have to form a partition of unity

n f

∑
i=1

ϕi(x) = 1. (62)

3. They have to fulfill the linear reproduction property
n f

∑
i=1

ϕi(x)xi = x (63)

on planar polyons.

A standard set of basis functions meeting all these requirements
would be the piecewise linear hat functions on triangle meshes,
also known as barycentric coordinates. For general polygons,
there exist a variety of generalized barycentric coordinates (GBC)
[Flo03,JSW05,JMD∗07,HS08,Bis14], which are based on the idea
to express any point within the polygon as weighted sum over its
boundary nodes. This defines local shape functions that can be used
in the finite element analysis. Extensive surveys [Flo15,CG16] have
already discussed the benefits and properties of these shape func-
tions, which were also incorporated in polyhedral finite element
methods [MRS14] for volume meshes. Since this report is more fo-
cused on the explicit construction of a Laplacian operator, we will
not discuss shape functions based on GBC in the same depth, but
rather explain one representative case, named the harmonic coordi-
nates. While other methods like the maximum entropy coordinates
[HS08] are very present in the FEM analysis on polytopes, we still

chose the harmonic shape functions due to their numerous natural
mathematical properties that makes them so well suited for FEM.
This includes smoothness, non-negativity, the mean-value property
and minimization of the Dirichlet energy [MKB∗08, CG16]. They
can also be analyzed on arbitrary convex and non-convex polygons
and polyhedra [WBG07, Bis14], and in fact, the only real draw-
backs of these shape functions are them not having a closed form,
and therefore requiring costly numerical integration, and that they
are only defined on planar elements.

5.1. Harmonic Coordinates

In this section, we will review both the construction of polygonal
and polyhedral finite element shape functions based on the work
of Joshi et al. [JMD∗07] and Martin et al. [MKB∗08]. The proper-
ties of the harmonic coordinates will be, as for the other methods,
elaborated in Section 7.

5.1.1. Harmonic Shape Functions on Planar Polygon Meshes

Given a mesh M consisting of arbitrary planar polygons F , shape
functions ϕ

f
i : f → R, defined on a polygon f ∈ F , are called har-

monic if they satisfy ∆ϕ
f
i = 0. In this case, they can be uniquely

determined by specifying their function values bi along the edges
of the polygon as Dirichlet boundary conditions:

∆ϕ
f
i (x) = 0 for x ∈ f

ϕ
f
i (x) = bi(x) for x ∈ ∂ f .

(64)

In the linear case, the required Lagrange interpolation property and
C0 continuity can be guaranteed by linearly interpolating the nodal
values of ϕ

f
i along the boundary of the face. However, for polygons

it is not possible to find a closed form for these shape functions and
they have to be approximated numerically. This is why Martin et
al. propose a scheme based on the method of fundamental solutions
(MFS) [FK98] to determine the harmonic shape functions, although
other methods are equally applicable. The core principle of MFS is
to use an analytic fundamental solution ψ of the respective PDE,
in our case the Laplace equation (64), and approximate the sought
solution through a linear combination of ψ centered at different
source points {k1, . . . ,kn} of the ambient Euclidean space. In our
case, the fundamental solution to the 2D Laplace equation would
be the radial basis function

ψ(∥x∥) = log(∥x∥), (65)

which is well defined in R2 except for one singularity at the origin.
Translating this function to the previously chosen source points, we
can approximate shape functions φ

f
i with

φ
f
i (x) =

n

∑
j=1

wi jψ
(∥∥x−k j

∥∥) , (66)

which are then harmonic by construction.

The ψ j(x) := ψ(
∥∥x−k j

∥∥) are also often referred to as kernels
and have to be placed outside of the face’s domain (see Figure 2),
since their singularities lie at the centers k j. Martin et al. suggest a
number of 3–5 kernels per edge distributed by a uniform sampling.
However, in the current state, shape functions φ

f
i approximated via
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Figure 2: Harmonic shape functions associated with the 6 nodes of a planar L-shaped polygon. The larger dots with the slight offset are
the sampled center points ki and the small dots on the boundary denote the collocation points c j needed to ensure the Dirichlet boundary
constraints. The figure was taken from [MKB∗08].

Equation (66) would not be able to exactly reproduce linear func-
tions, violating the linear precision property. Therefore, Martin et
al. add a linear polynomial

ϕ
f
i (x) =

n

∑
j=1

wi jψ(||x−k j||)+ sTi x+ ri (67)

to guarantee that the function space spanned by the shape functions
contains all linear functions. Linear polynomials are always har-
monic, so ϕ

f
i still satisfies Equation (64). In order to approximate

the Dirichlet boundary constraints, we select m = 3n uniformly
sampled collocation points ci along the edges ekl of the polygon
to minimize the discretized boundary integral over the L2 errorˆ

∂ f

∣∣∣ϕ f
i (x)−bi(x))

∣∣∣2 ≈ 1
m

m

∑
j=1

∣∣∣ϕ f
i (c j)−bi(c j))

∣∣∣2 . (68)

This can be solved with the help of the following linear system


ψ11 · · · ψ1n cT1 1

...
...

...
...

ψm1 . . . ψmm cTm 1




wi1
...

win
si
ri

=

bi(c1)
...

bi(cm)

 , (69)

where ψi j = ψ(||ci − k j||) and bi(c j) contains the function value
of the respective basis function at this point. Since the system is
overdetermined (m> n+3), it has to be solved for the least-squares
solution. The authors recommend to use a QR factorization or the
SVD pseudo inverse [GVL96].

5.1.2. Harmonic Shape Functions on Polyhedral Meshes

From now on, additionally to the surface case, each of the in-
troduced methods will have a volumetric extension to polyhedral
meshes. As already mentioned, polyhedra allow for a variety of
simulation applications, like fracture modeling [Bis09], to be more
flexible in their range of elements. However, boundary polygons
in 3D are not necessarily planar and the increased connectivity be-
tween vertices lead to denser and more costly operators. Laplacians
for volumetric meshes come therefore with their own individual set
of challenges that have to be addressed.

The computation of a harmonic basis function for polyhedral
meshes follows a similar approach as the previous section. The core
principle to obtain a k-dimensional harmonic function is to impose
(k − 1)-dimensional harmonic coordinates as Dirichlet boundary

conditions and proceed recursively. Therefore, given a polyhedron
c with nc vertices, we first approximate 2D shape functions for each
of the polyhedron’s faces with the system described in the previous
section. Note that this requires the boundary faces of the polyhe-
dron to be planar. These will give us the new boundary constraints
bc

i for the respective 3D shape function ϕ
c
i : c → R associated to

vertex vi, with kernels and collocation points uniformly sampled
over the face of the polygonal cell c. The only remaining change to
the linear system in Equation (69) is that the chosen fundamental
solution for the 3D Laplace equation changes to

ψ
c(∥x∥) = 1

∥x∥ , (70)

otherwise all steps remain the same.

5.1.3. Stiffness and Mass matrix

Equipped with the shape functions described in the previous sec-
tion, we are now able to express sought solutions of a PDE with the
FEM interpolation scheme as described in Equation (59). The dis-
cretizations of both stiffness and mass matrix needed for the Lapla-
cian can be obtained through

(L f )i j =

ˆ
f
⟨∇ϕ

f
i ,∇ϕ

f
j ⟩dx. (71)

and

(M f )i j =

ˆ
f
ϕ

f
i ·ϕ

f
j dx. (72)

Note that this process requires numerical integration, since the gra-
dients of the harmonic shape functions are not constant.

5.2. Linear Virtual Refinement Method

Given the problems one has to deal with while working on gen-
eral polygons, a rather pragmatic solution would be to simply re-
fine the mesh into triangles. However, this can potentially break in-
tended symmetry structures of the original tessellation and increase
the dimension of linear systems if new vertices have to be added.
The method presented by Bunge et al. [BHKB20] took inspiration
from the simplicity of the triangle refinement, but proposed an in-
between approach that avoids the downsides of an explicit refine-
ment of the mesh.
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Figure 3: Spanned triangle fan on the virtual mesh after inserting
the vertex v f . The figure was taken from [BHKB20].

Given a polygon mesh M, they introduce virtual vertices v f
inside of each (not necessarily planar) polygon f . These are ex-
pressed as affine combinations of the original faces’ vertex posi-
tions

x f = ∑
vi∈ f

wi xi, with ∑
vi∈ f

wi = 1. (73)

The additional vertices allow Bunge et al. to construct a virtual tri-
angle mesh M△ by dividing each face into a triangle fan as shown
in Figure 3. On this mesh, standard approaches like the cotan Lapla-
cian can be easily computed. However, in order to define operators
working on the original mesh, Bunge et al. redistribute the values
at the virtual vertices back to their associated polygon nodes. This
is achieved by combining the affine weights w f = (w0, . . . ,wn f −1)
of each face into a local prolongation matrix

P f
i j =

{
w j for i = 0
δi j otherwise,

(74)

which can be assembled into a global matrix P ∈ R(|V|+|F|)×|V|

Pi j =


1 if i = j and i ≤ |V|
wk j if i = |V|+ k and v j ∈ fk
0 otherwise,

(75)

acting on the whole mesh. Using this matrix leads to a very easy
refinement and coarsening process that allows Bunge et al. to de-
fine a polygon Laplacian, gradient and divergence operator on the
original mesh: Given the global prolongation matrix P, they con-
struct the cotangent mass and stiffness matrices M△ and L△ on the
virtual triangle mesh M△ (see Equation (11) and Equation (12))
and define the matrices for the original polygon mesh as

L = PTL△P (76)

and

M = PTM△P. (77)

As for the Laplacian, they compute the gradient and divergence
operators G△ and D△ on M△ by using the simplicial definitions in
Equation (15) and (16) to express the polygon operators as

G = G△P (78)

and

D = PTD△ = PTGT
△M̂△. (79)

Combining both polygon gradient and divergence leads once again
to the stiffness matrix L and is therefore consistent with the pre-
vious discretization. The remaining question addressed by Bunge
et al. [BHKB20] is the placement of the virtual vertex. Given that
positions outside of the (planar) polygon’s boundary would lead to
flipped triangles with bad numerical properties, they suggest the
virtual vertex to be the unique minimizer of the sum of squared tri-
angle areas of the refined face. This is motivated by the fact that for
a planar star-shaped polygon the point is guaranteed to lie within
the polygon, leading to virtual triangles with positive areas. Find-
ing the vertex position can be directly expressed as minimization
problem over the weight vector w f = (w1, . . . ,wn f )

T ∈ Rn f with

w f =argmin
w

n f

∑
i=1

area

(
xi,xi+1,

n f

∑
j=1

w j x j

)2

(80)

such that
n f

∑
j=1

w j = 1. (81)

However, for faces with valence higher than 3 this system is under-
constrained and several sets of weights are able to represent the
point. The authors therefore add the constraint that the weight vec-
tor should have minimal L2 norm, which leads to a unique solution
that encourages a more uniform distribution among the weights.

5.2.1. Finite Element Shape Functions

Drawing the connecting to traditional FEM methods, the previously
defined prolongation weights allow Bunge et al. to define a set of
local shape functions {ϕ

f
1 , . . . ,ϕ

f
n f } associated with the vertices of

the polygon f : If ϕ
△
i are the (n f +1) Lagrange basis functions (see

Section 3) defined on the refined polygon, one can construct coarse
shape functions ϕ

f
i associated with the polygon nodes as

ϕ
f
i = ϕ

△
i +wiϕ

△
f , i = 1, . . . ,n f . (82)

Here, ϕ
△
f refers to the Lagrange basis function associated with the

virtual vertex v f and wi is the respective entry in the affine weight
vector w f previously used for the prolongation matrix entries. Inte-
grating these shape functions over the polygon mesh as described in
Section 5.1.3 would lead to the same discretized stiffness and mass
matrices as defined in Equation (76) and Equation (77). Given their
construction, Bunge et al.’s shape functions are linear within each
virtual triangle and can be integrated analytically, in contrast to the
harmonic shape functions, which require more expensive numerical
integration.

5.2.2. Similarities to DEC

Interestingly, combining the prolongation matrix P with the stan-
dard Lagrange basis functions {ϕ

△
1 , . . .ϕ

△
|V△|} defined on the re-

fined triangle mesh allows us to reinterpret the construction of the
stiffness matrix L in Equation (76) as

L = dT
E ⋆1 dE , (83)

which follows the same structure as the operators presented in Sec-
tion 4. Here ⋆1 denotes a polygon equivalent of the so-called Hodge
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star operator acting on 1-forms, and the matrix dE ∈R|E|×|V| is the
discrete differential operator

(dE )kl =


−1 l = i
1 l = j
0 otherwise

(84)

taking 0-forms to 1-forms acting on edges (in contrast to the previ-
ously used coboundary operator d that projects to halfedges). As in
Equation (23), the indexing addresses the k-th row of the operator,
this time associated with the k-th edge ei j ∈ E . Bunge et al. define a
suitable polygon Hodge star by first constructing the respective ba-
sis functions for 1-forms: Since the coarse polygon basis functions
{ϕ1, . . .ϕ|V|} are associated with the vertices of the mesh M, they
form a set of 0-forms and can be expressed as

ϕ j =
|V△|

∑
i=1

Pi jϕ
△
i . (85)

By construction, these bases form a partition of unity. Therefore,
we are able to use them to define a set of polygon Whitney bases
[Whi57, AFW06] for 1-forms, with

ϕi j = ϕi ·dEϕ j −ϕ j ·dEϕi = ∑
k,l

PkiPl jϕ
△
kl , k < l, (86)

being a 1-form associated to the polygon edge ei j ∈ E . In order
to define a prolongation operator that maps 1-forms from polygon
edges to edges on the refined triangle mesh, Bunge et al. define a
second prolongation matrix P1 ∈ R|E△|×|E| as

P1
(i j)(kl) = PikP jl , (87)

with (i j) indicating the row associated to the edge e△i j ∈ E△ on the
refined mesh and (kl) the index of the respective coarse polygon
edge ekl ∈ E . This matrix can be combined with the discrete Hodge
star ⋆1

△ on the refined triangle mesh, giving us

M1 = ⋆1 =
(

P1
)T

⋆1
△ P1 (88)

and

L = dT
E
(

P1
)T

⋆1
△ P1dE . (89)

The question is if this inner product matrix M1 satisfies the same
desiderata as for example the matrices presented by Alexa and
Wardetzky and de Goes et al. [AW11, dGBD20], which remains
to be investigated.

5.2.3. Laplacian on Volume Meshes

The previously described method can be intuitively extended to ar-
bitrary polyhedral meshes, but instead of virtual triangles, the mesh
M will be refined into virtual tetrahedra. The first steps are anal-
ogous to the surface case, meaning that all faces f ∈ F of a given
polyhedron c ∈ C are refined into triangles with virtual vertices
placed at the point that minimizes the sum of squared triangle ar-
eas (see Equation (80)). To span the virtual tetrahedra, Bunge et
al. [BBA21] introduce an additional vertex xc inside of each cell,
which is, similar to the surface case, the affine combination of the
original cells’ vertex positions

xc = ∑
vi∈c

wi xi, with ∑
vi∈c

wi = 1. (90)

The position of xc is defined as the minimizer of the sum of squared
tetrahedron volumes

∑
ti jk∈∂c

vol
(
xi,x j,xk,xc

)2
, (91)

with ti jk being the refined triangles along the cell’s boundary. As
for surfaces, this minimization problem can be expressed with re-
spect to a set of affine weights wc ∈Rnc and assembled into a local
prolongation matrix Pc. The only real difference of this approach
is that the global prolongation P is now divided into a two-step
process, with the “surface” prolongation matrix PF inserting the
virtual face points for all f ∈F and PC the cell points for all c ∈ C,
respectively, giving us

P = PCPF . (92)

The polyhedral stiffness and mass matrix are then obtained as in
(76) and (77), with the slight change that the refined matrices are
the volumetric discretizations of the cotan formula [AHKSH20,
Cra19].

5.3. Key Outcomes

One of the main benefits of the presented FEM methods, in con-
trast to the operators described in the Mimetic Polygon Laplacian
section, is that they both can be applied to surface as well as vol-
ume meshes. However, the harmonic shape functions are restricted
to planar polygons and boundary faces, while the linear virtual re-
finement method is able to deal with non-planar elements. Still, the
extension to volume meshes leads to a larger flexibility for the com-
puter graphics community and its range of applications. Further-
more, besides being able to construct all the operators we already
described, having explicit shape functions allows us to interpolate
any given function within the polytopes if we know its values at the
vertex positions. In relation to the MFD operators, since the virtual
refinement method allows for a reinterpretation of the Laplacian in
the same inner product structure, future analysis could further in-
vestigate the relation between FEM and MFD approaches and their
different qualities.

6. Finite Volume Discretizations

The finite volume method (FV) was originally introduced by Dus-
inberre [Dus55, Dus61] for the heat equation and can be used on
all differential equations that can be expressed through the diver-
gence operator. It follows the idea that the integral of a differential
over a small volume can be expressed as a surface integral of the
fluxes over the boundary of the same cell [Rap17]. As the MFD,
finite volume discretizations can be considered mimetic since they
try to enforce balance equations for mass, momentum, and energy
on each cell [LMS14], conservation properties that make them well
suited for fluid mechanic problems. However, the basic derivation
of the 2D Laplace operator with FV assumes a Delaunay triangle
mesh, more specifically orthogonal dual and primal edges, in order
to prevent negative coefficients. To avoid this restriction, Bunge et
al. [BBA21] used a special polygonal variant of the FV, called Dis-
crete Duality Finite Volume (DDFV) [Her00, Her09, DO05, CH11]
and combined this technique with their previously described virtual
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triangle refinement to define a gradient, divergence and Laplacian
operator for polygonal and polyhedral meshes.

6.1. Discrete Duality Finite Volume

Figure 4: A 2D DDFV diamond cell spanned between the primal
edge x1,x2 and the virtual dual vertices xl ,xr. The vectors ei j⊥ are
orthogonal to the diamond edges and involved construction of the
gradient operator. The figure was taken from [BBA21].

We will shortly revisit the definition of a 2D gradient operator
constructed with the DDFV approach. Given a planar polygonal
surface mesh M, we consider a second set of vertices, called dual
vertices V∗, associated with the barycenter of each face f ∈ F .
For each edge e ∈ E , they are able to span a so-called diamond
cell D, consisting of the vertex pair v1,v2 connected by e and the
dual vertices vl ,vr associated to the faces adjacent to the edge (see
Figure 4). The diamond cell always forms a rectangular shape with
edge vectors ei j = x j −xi in R2 assigned to the edge tuples (i, j) ∈
D. On these diamonds, the DDFV method uses Stokes’ theorem in
order to define a local gradient for a function u in the following way¨

D
∇u(x)dx =

ˆ
∂D

u(x)n(x)dx (93)

= ∑
(i, j)∈∂D

e⊥i j∥∥ei j
∥∥ ˆ 1

0

∥∥ei j
∥∥((1− t)ui + tu j

)
dt (94)

= ∑
(i, j)∈∂D

e⊥i j
ui +u j

2
. (95)

Here ui denotes the function values associated to the vertex vi and
n(x) ∈ R2 is an outward pointing normal vector at point x along
the boundary of the diamond. Therefore, the gradient operator can
be solely expressed through the four outward rotated edge vectors
of the respective diamond. One of the many benefits of the DDFV
method is the discrete duality property between its discrete gradient
and divergence operators, also known as Green’s “integration-by-
parts” formulas [ABHK12, LMS14]. This property is an essential
part of the finite volume setting.

6.2. Diamond Laplace for Surface Meshes

Bunge et al. [BBA21] adapt the previously defined DDFV gradi-
ent operator in two ways to extend it to polygon surface meshes
embedded in 3D:

• First, they reduce the systems’ dimension by expressing the val-
ues at the dual vertices as affine combinations of the original
primal vertices with the help of the previously introduced face
prolongation matrix P (see Equation (75)). As in Section 5.2,
the position of the dual vertices is the minimizer of the sum of
squared triangle areas of the refined face.

• Second, they define an intrinsic gradient operator associated
with the (not necessarily planar) diamond cells, allowing them
to directly apply the formula defined in Equation (95).

Given a diamond cell D with vertices (v1,v2,vl ,vr) embedded in
R3, the first objective is to isometrically unfold the planar trian-
gles along their shared edge into a plane. The new 2D coordi-
nates can then be used to construct the diamonds gradient operator
GD ∈R2×4. For each column i associated with a vertex it is defined
as

GD(:, i) =
1

2 |D| ∑
(i, j)∈∂D

ẽ⊥i j , (96)

where |D| denotes the diamond’s area and ẽ⊥i j ∈R2 orthogonal vec-
tors to the intrinsic 2D diamond edges. These local gradient matri-
ces are then assembled into a global operator G⋄ ∈R2|E|×(|V|+|F|)

defined on the refined triangle mesh M△. Combined with the sur-
face prolongation matrix P (see Equation (75)), we obtain a gradi-
ent operator for the original polygon mesh through

G = G⋄P. (97)

This operator maps function values ui associated with the primal
vertices vi ∈ V to intrinsic gradient vectors ∇u|D ∈ R2 associated
to the diamond cells spanned on the virtual triangle mesh M△.
Following the DDFV discretization of the divergence, Bunge et al.
[BBA21] define their diamond divercence operator as

D = PTGT
⋄ M̂⋄ (98)

where M̂⋄ ∈ R2|E|×2|E| is a diagonal matrix containing the dia-
mond Di’s area |Di| in its diagonal entries with indices 2i and 2i+1.
The final stiffness matrix is then directly derived from its definition
as the divergence of the gradient and given by

L = DG = PTGT
⋄ M̂⋄G⋄P, (99)

mapping from vertices to vertices. The diamond version of the mass
matrix required for the strong formulation L of the Laplacian is
defined as

M = PTM⋄P. (100)

It is derived from the standard DDFV diagonal mass matrix M⋄ ∈
R(|V|+|F|)×(|V|+|F|) that distributes the diamond areas to the pri-
mal and dual vertices:

(M⋄)ii =


∑D∋vi

|D|
4 if vi ∈ V

∑D∋vi

|D|
4 if vi ∈ V∗

0 otherwise.

(101)

6.3. Diamond Laplace for Volume Meshes

As in Section 5.2.3, Bunge et al. [BBA21] define a Laplacian op-
erator for general polyhedra by refining the given mesh M into
a virtual tetrahedral mesh M△. However, as for the surface case,
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Figure 5: A minimal diamond associated with the primal edge
x1,x2 on the face f with virtual face vertex x f . The virtual cell
vertices xl and xr of the adjacent polyhedra form the respective
tips of the diamond. The figure was taken from [BBA21].

they once again interpret the added virtual cell vertices as the re-
quired dual vertices V∗ in order to divide the mesh into volumetric
diamond cells D. Since the refinement divides the original mesh
into virtual tetrahedra, they can consider any combination of cells
c△ ∈ C△ as a region Ω bounded by a triangulated surface with n△c
vertices. Therefore, Bunge et al. [BBA21] can once again discretize
the gradient of a function u over Ω with the help of Stokes’ theo-
rem:˚

Ω

∇u(x)dx =

¨
∂Ω

u(x)n(x)dx (102)

= ∑
ti jk∈∂Ω

ai jk∥∥ai jk
∥∥ ˆ 1

0

ˆ t

0

∥∥ai jk
∥∥((1− s− t)ui + su j + tuk

)
dsdt

(103)

= ∑
ti jk∈∂Ω

ai jk
ui +u j +uk

3
, (104)

where

ai jk =
1
2
(x j −xi)× (xk −xi) (105)

denotes the outward pointing face normal of the boundary trian-
gle ti jk whose magnitude equals

∣∣ti jk
∣∣. Therefore, the column-wise

matrix representation of ∇u over Ω can be written as

GΩ(:, i) =
1

3 |Ω| ∑
ti jk∈∂Ω

ai jk ∈ R3×n△c , (106)

which is consistent with the 2D discretization (see Equation (96)).
The only remaining question is how to define suitable volumetric
diamond cells. Here, Bunge et al. define a so called minimal di-
amond consisting of two adjacent virtual tetrahedra. The tips are
formed by the virtual cell vertices vl and vr of the adjacent polyhe-
dra and its base triangle (x f ,xi,x j) is defined by a shared edge ei j
and its connection to the virtual face vertex v f of the shared face
f (see Figure 5). This seems unintuitive on the first glance, since
the larger region spanned by all edges of f connected to vl and v f
equally forms an integrable region independent of the faces surface.
However, the authors point out that this choice for the diamond cell
could lead to spurious modes, which describes a Laplacian with
a kernel that contains more than constant functions and can cause
severe numerical artifacts. Spurious modes are a known limitation
to some DDFV methods like [Her09], as discussed by [ABH13].

The focus on the null space of a discrete operator and avoiding nu-
merically polluting modes is also a very important aspect of the
MFD method [LMS14] and, as previously discussed, motivate the
stabilization terms of the inner products introduced in the works
of [AW11] and [dGBD20] explained in Section 4.1.2 and Sec-
tion 4.2.2. Using Equation (106), Bunge et al. define a local gra-
dient GD ∈ R3×5 per minimal diamond cell D that can be assem-
bled into a global gradient matrix G⋄ defined on the refined mesh.
Combined with the volume prolongation matrix P defined in Equa-
tion (92) we get a polyhedral gradient operator

G = G⋄P, (107)

its compatible divergence operator

D = PTG⋄M̂⋄, (108)

with M̂⋄ being a diagonal matrix containing the diamond volumes,
and finally the generalized stiffness matrix

L = DG. (109)

The mass matrix M is obtained as in the surface case:

M = PTM⋄P, (110)

but with M⋄ now distributing the volumes of the minimal diamonds
among the involved vertices and being defined as

(M⋄)ii =


∑D∋vi

|D|
6 if vi ∈ V

∑D∋vi

|D|
6 if vi ∈ V△\(V ∪V∗)

∑D∋vi

|D|
4 if vi ∈ V∗

0 otherwise.

(111)

6.4. Key Outcomes

As for the FEM methods, the diamond Laplacian can be applied
to both surface and volume meshes with possible non-planar faces.
In contrast to the previous operators, the influence of the DDFV
background causes its focus to lie more on the construction of
a plausible gradient and divergence operator, which can both be
constructed intrinsically. The diamond structure combined with the
prolongation steps leads to a larger local neighborhood, which can
yield more accurate results (see Section 8), but also causes denser
and therefore more costly system matrices.

7. Properties of the Polygon Laplacians

In this section, we analyze each of the previously introduced poly-
gon and polyhedral Laplacians based on the properties established
by Wardetzky et al. [WMKG07] (see Section 2.1). Since all meth-
ods fail to satisfy the maximum principle, but are otherwise able
to retain the remaining properties, we will structure the upcoming
section accordingly. Therefore, this section will focus more on no-
table differences within the derivations and proofs of the individual
properties instead of differences between the actual operators them-
selves.
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7.1. Symmetry

Each of the presented Laplace operators fulfills symmetry by con-
struction. As the products of individual symmetric or diagonal ma-
trices, the respective inner product matrices M f introduced in both
[AW11] and [dGBD20] are symmetric as well. Therefore, given
that the local stiffness matrix is defined as dT

f M f d f , it and the glob-
ally assembled weak form fulfill this property.

Since the FEM stiffness matrix is defined as the integrated dot
product of the shape functions’ gradients, the property follows nat-
urally for the operators introduced by [MKB∗08] and [BHKB20].

In case of the diamond Laplacian, it follows from the definition
of the weak form as

L = DG = PTGT
⋄ M̂⋄G⋄P (112)

and M̂⋄ being a diagonal matrix.

7.2. Locality

All methods, with the exception of [BBA21], define their involved
matrices or shape functions locally per polygon or polyhedron. This
implies that their respective influence is restricted to the boundary
of the individual elements. Therefore, the stencil of the Laplacian
associated with a single vertex vi involves all face/cell vertices of
the polygons/polyhedrons where vi itself is a part of, which leads
to a local neighborhood. However, the diamond Laplacian has a
larger stencil than the other operators. Since the diamond struc-
ture connects adjacent cells on the refined mesh and the prolonga-
tion process distributes values at virtual vertices back to all original
face/cell nodes, its neighborhood for a vertex vi consists of the same
vertices as the other methods, and additionally those that are part of
a cell/face sharing a face/edge with the primitives surrounding vi.

7.3. Linear Precision.

In contrast to the previous two properties, linear precision does not
automatically follow from each operators construction and must be
proven individually.

Alexa and Wardetzky. For the Laplacian introduced by Alexa and
Wardetzky, similarly to the cotan Laplacian, the proof is based on
the area gradient of the polygon with respect to its vertices. Con-
sider the vertex vi to lie in a planar neighborhood. Starting with
Equation (7), we have to focus on two terms in order to show linear
precision for Alexa and Wardetzky’s operator:

L̃ f X f = dT
f M̃ f d f X f , (113)

where

L̃ f := dT
f M̃ f d f (114)

with M̃ f being the inner product matrix defined by Brezzi et al.
[BLS05] (see Equation (27)), and

dT
f C f̄ U f̄ CT

f̄ d f X f . (115)

As shown in Equation (29), the latter term vanishes for planar
polygons, leaving us with the remaining part L̃ f X f . As shown in

Lemma 3 in the original paper, the i-th row of this matrix is equiv-
alent to the polygon’s area gradient at vertex vi:

∇xi | f |= (L̃ f X f )i. (116)

Therefore, the expression (LX)i is equal to the sum over the area
gradients of the adjacent faces with respect to the vertex vi. Given
that the neighborhood is planar, this sum becomes zero since mov-
ing the vertex in any direction in the plane would leave the area
unchanged.

De Goes et al. For de Goes et al.’s Laplacian [dGBD20], we pro-
ceed in the same fashion as for Alexa and Wardetzky and consider
the individual terms of the inner product matrix, starting with the
projection:

P f d f X f = P f E f . (117)

As mentioned by the authors, P f actually eliminates all discrete
1-forms in the image of

V♭
f = E f

(
I−n f nT

f

)
. (118)

Therefore, the projection term vanishes if applied to E f . As de-
scribed in Section 4.4, since the vertex vi is surrounded by planar
polygons, the remaining inner product term is equal to L̃ f X f for
each individual face f , allowing for the same area gradient inter-
pretation.

Harmonic Coordinates. In the finite element theory, a common
practice is to ensure that shape functions pass the so-called patch
test, which verifies if they are able to fulfill the linear precision
property we defined in Equation (63). A variant of the requirements
the shape functions have to meet in order to pass the patch test are
the exact same as our definition of the linear precision property
for Laplacians [ZTZ13]. Therefore, given that the harmonic shape
functions are linear precise, Martin et al.’s Laplacian satisfies this
property as well. In fact, as discussed by the authors in the original
paper, the linear polynomial introduced in Equation (67) is crucial
to guarantee exact linear precision, and therefore this property, in-
dependent of the number of chosen kernels.

Linear Virtual Refinement Method. For volume meshes, the lin-
ear precision property is satisfied if for all linear functions u sam-
pled on the mesh, the Laplacian Lu is exact at the interior vertices
of the mesh [AHKSH20]. As for surfaces, an equivalent expression
can be formulated as

(LX)i = 0, (119)

which has to be satisfied for all interior vertices vi. For surface
meshes, given that the elements surrounding the interior vertex vi
are planar, the refined triangles of these primitives are planar as
well, since the position of the virtual vertex is an affine combina-
tion of the existing face vertices. The cotangent Laplacian has lin-
ear precision, so any linear function u sampled at the vertices and
prolonged to the refined mesh u△ = Pu satisfies

(L△u△)i = 0 (120)

for the interior vertex vi and all virtual vertices of its surrounding
faces. These are exactly the values on the refined mesh that account
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for the value of the polygon Laplacian at vi, since each value asso-
ciated to the virtual vertices is redistributed to the original nodes of
the mesh by applying PT to L△u△. Them all being zero gives us
(Lu)i = 0. Given that the cotan Laplacian for volume meshes also
satisfies linear precision, the same arguments apply for polyhedral
meshes.

Diamond Laplacian. Knowing that the DDFV Lapla-
cian GT

⋄ M̂⋄G⋄ satisfies linear precision on the refined
mesh [DO05, Her09, CLB∗09], applying the full-rank prolon-
gation matrices preserves this property.

7.4. Positive Semi-Definiteness and Null Space

For Martin et al.’s and Bunge et al.’s operators [BHKB20,
MKB∗08], given that their Laplacians follow the standard FEM
approach, the respective stiffness matrices fulfill both properties by
construction and do not require individual proofs.

In case of Alexa and Wardetzky [AW11] and de Goes et al.
[dGBD20], the strict positive definiteness of their respective in-
ner product matrices M1 is a fundamental building block in their
derivation process, which leads to a kernel that contains only the
zero vector. Furthermore, given its construction, the kernel of the
coboundary operator d contains only constant functions. Combin-
ing these two matrices into dTM1d therefore yields a positive semi-
definite stiffness matrix with a one-dimensional kernel consisting
of constant functions.

For the diamond Laplacian, the diagonal matrix M̂⋄ is symmetric
positive definite for both surface and volume meshes. The prolon-
gation matrix P has full rank and therefore the constructed stiffness
matrix is also positive semi-definite. However, the dimension of
the null space requires further explanation. While it is obvious that
constant functions, given its definition, lie in the kernel of the gra-
dient, it remains to be shown that they are the only ones that do. As
mentioned by Bunge et al. [BBA21], both the gradient of a minimal
diamond and a 2D diamond cell can be interpreted as the gradient
of an affine function fitted to the function values of the edge mid-
points of the respective cell. The gradient will therefore vanish if
all function values associated to the midpoints are identical. How-
ever, this can only be satisfied if the function values at the dual and
primal vertices of the respective diamond are identical as well. Fur-
thermore, since the diamonds share the function values with their
adjacent cells along the common boundary element, this require-
ment propagates through the complete mesh, leaving only room for
constant functions.

7.5. Maximum Principle

As previously mentioned, all of the presented Laplacians are not
able to fulfill the maximum principle for general meshes. In case of
the Diamond Laplacian, failing to satisfy the maximum principle is
a known limitation of the DDFV scheme [QSGBC18], which can
not be rectified by applying the prolongation matrices. All other
methods reproduce the cotan Laplacian on triangle meshes, which
is also not able to retain this property as discussed in Section 3.

Figure 6: Effect of the number of chosen kernel and collocation
points on the convergence behavior of the harmonic shape func-
tions on the Voronoi plane (left) and hexagon sphere (right). The
shown L2 errors refer to the Poisson systems solved for Franke’s
test function on planar grids and for the sphercial harmonic func-
tion Y 3

2 on unit spheres respectively.

8. Evaluation

In this section, we compare the performance of the presented
Laplace operators in a number of different computer graphics ap-
plications for both surface and volume meshes. We are interested
in the influence of the respective parameters λ described by Alexa
and Wardetzky [AW11] and de Goes et al. [dGBD20] and how they
affect the quality of the inner product matrix. Therefore, we ana-
lyze a selection of values besides the recommended choices of the
authors. Concerning the placement of the virtual vertices, we fol-
low the recommendations of Bunge et al. [BHKB20, BBA21] and
use the squared triangle area and squared tetrahedra volume mini-
mizer, respectively. For the harmonic shape functions [MKB∗08],
we noticed that the number of chosen kernels and control points
strongly affects the results on our chosen test meshes. We analyzed
different numbers of kernels with m = 4n collocation points in-
stead of the recommended ratio of m = 3n from the original pa-
per, since it yielded slightly more accurate results in our setting.
Based on this evaluation, we increased the number of edge ker-
nel/collocation points for surface meshes to 20/90 with a constant
offset of ξ = 1e−3 and used the recommended 3/9 points per edge
and 10/30 per face with an offset of ξ = 1e−2 for the volumet-
ric tessellations. The choice was also influenced by the numerical
costs involved in using more samples, explaining the lower sam-
ple sizes for volume meshes. The triangles and tetrahedra used for
the numerical integration are the same as the virtual elements used
for the virtual refinement method. Given that the integration of the
shape functions is not exact, using a more elaborate tessellation
technique could further improve the results.

8.1. Poisson Equation

We analyze the convergence behavior of the different Laplacians
by solving the Poisson equation −∆u = f with Dirichlet boundary
conditions on various progressively refined tessellations of the unit
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Figure 7: L2 error in log-log scale of the Poisson system solved for Franke’s test function on planar grids with triangles (left), quads (center
left), Voronoi cells (center right), and concave faces (right). Since all methods, with the exception of the Diamond Laplace, are equivalent to
the cotangent Laplacian on triangle meshes, the lines overlap in the leftmost plot.

Figure 8: L2 error in log-log scale of the Poisson system solved for Franke’s test function on unit cubes tessellated with hexahedra (left),
pyramids (center left), truncated cells (center right), and Voronoi cells (right).

square and cube. We chose the 2D and 3D Franke test functions
[Fra79] for the right hand side f and solve the discrete system

Lu = Mb, (121)

with b ∈ R|V| containing the values of the analytic Laplacian ∆ f
of the respective test function sampled at the vertices. The solution
u is then compared to the analytic values of f . The exact formulas
of the Franke test functions are

f2D(x,y) =
3
4

e−
(9x−2)2+(9y−2)2

4 +
3
4

e−
(9x+1)2

49 − 9y+1
10

+
1
2

e−
(9x−7)2+(9y−3)2

4 − 1
5

e−(9x−4)2−(9y−7)2
(122)

and

f3D(x,y,z) =
3
4

e−
(9x−2)2+(9y−2)2+(9z−2)2

4 +
3
4

e−
(9x+1)2

49 − 9y+1
10 − 9z+1

10

+
1
2

e−
(9x−7)2+(9y−3)2+(9z−5)2

4

−1
5

e−(9x−4)2−(9y−7)2−(9z−5)2
.

(123)

Figure 7 displays the L2 error rates of the solved Franke Pois-
son system on different surface meshes. Each Laplacian is able to
reproduce the expected quadratic convergence rate on all tessella-
tions. Regarding the accuracy, both operators presented by Alexa

© 2023 The Author(s)
Computer Graphics Forum © 2023 The Eurographics Association and John Wiley & Sons Ltd.



A. Bunge, M. Botsch / A Survey on Discrete Laplacians for General Polygonal Meshes

and Wardetzky [AW11] and de Goes et al. [dGBD20] are able to
produce high quality results for λ = 1 on quad and Voronoi meshes,
while de Goes et al. with parameter λ = 0.5 yields the lowest er-
rors on concave faces, closely followed by the operator presented
by Bunge et al. [BHKB20]. The Diamond Laplacian is also able
to consistently produce low error rates and, being the only oper-
ator that is not reduced to the cotangent Laplacian for triangles,
yields the best results for the triangle grid. Figure 8 shows the er-
ror rates for the volumetric case. As before, the Diamond Lapla-
cian is the most accurate, while both methods from Bunge et al.
[BHKB20] and Martin et al. [MKB∗08] yield qualitatively similar
results. However, the harmonic shape functions are very expensive
due to the solving process involved in their construction, especially
for volume meshes, while the method from Bunge et al. [BHKB20]
is the fastest (see Section 8.5).

8.2. Spherical Harmonics

The eigenfunctions of the Laplacian on the unit sphere S2 are
called the spherical harmonics Y m

l : S2 → R with eigenvalues
−l(l + 1). Using the fact that Y m

l are eigenfunctions, we can solve
for u ∈ R|V|:

u = M−1Lym
l (124)

⇔ Mu = Lym
l (125)

and rescale the solution with the respective eigenvalue. The entries
of ym

l ∈ R|V| denote the function values of Y m
l sampled at the ver-

tices. We can measure the error of u being an eigenfunction to the
presented Laplace operators by evaluating∥∥∥∥ym

l +
1

l(l +1)
u
∥∥∥∥2

M
(126)

for a selected frequency with non-zero eigenvalue. The L2 norm is
computed with respect to the inner product induced by the mass
matrix M.

Figure 9 displays the deviation of the solution from the analytic
function values of

Y 3
2 (x,y,z) =

1
4

√
105
π

(x2 − y2)z (127)

with eigenvalue −12. The method presented by Bunge et al.
[BHKB20] is able to yield some of the lowest error rates especially
for hexagons, while the harmonic shape functions yield very good
results on the concave tessellation, which are only surpassed by the
Diamond Laplacian. As for the operators presented by Alexa and
Wardetzky and de Goes et al., choosing lower λ for the stabiliza-
tion term leads to the most accurate results, with λ = 0.5 being
one of the most consistent options. The effect of chosen sample
points on the harmonic shape functions and their possible numer-
ical artefacts can be observed in Figure 6. We analyzed different
kernel/collocation point samples for both the Franke as well as the
spherical harmonics Poisson solve and observed the expected be-
havior of lower kernel numbers influencing both error and conver-
gence rate.

8.3. Eigenvalues and Eigenmodes

Given that the spherical harmonics have an analytic expression for
their eigenvalues, we can solve the generalized eigenvalue problem

Lu = λ̃Mu (128)

for the eigenvalues λ̃ of the discrete Laplacians and compare them
to the analytic values.

Similarly, given the volumetric unit 3-ball B3, the eigenfunctions
u and eigenvalues λ of the Laplacian can be obtained with the help
of the Helmholtz equation:

∆u =−λu in B3 (129)

s.t. u = 0 on ∂B3. (130)

The discrete solution can be expressed by the spherical Bessel func-
tions, which allows us to solve the same generalized eigenvalue
problem as in Equation (128) with the stiffness and mass matrix
obtained on a polyhedral tessellation of B3.

Figure 10 shows the first eigenvalues of each polygon Laplacian
obtained on different spherical meshes. A value of λ = 1 leads to
very accurate results for both Alexa and Wardetzky’s and de Goes
et al.’s operators. Using smaller values for the parameter leads to
larger eigenvalues, while higher λ yield results that are lower than
the correct solution. The other methods lead to relatively similar
deviations with eigenvalues that display the expected “stair-like”
appearance, but are too large in the higher frequencies. The highest
and lowest values for λ start to loose the stair-like pattern for the
eigenvalues. Figure 11 shows the results for the eigenvalues on the
unit ball, where the Diamond Laplacian has the most accurate re-
sults, but all methods display the desired constant eigenvalues for
the respective frequencies, with only slight deviations.

8.4. Geodesics in Heat

In order to assess the quality of the divergence and gradient oper-
ators discussed in this survey, we evaluate them in the context of
the geodesics in heat method presented by Crane et al. [CWW13].
Given the i-th unit vector ei ∈ R|V|, we can obtain the geodesic
distances from a vertex vi to all other vertices in the mesh in three
steps: First we solve the heat flow with a fixed small time-step ε for
the vector u ∈ R|V|:

(I− εL)u = ei

⇔ (M− εL)u = Mei.
(131)

Then we compute the normalized gradients of the solution vector
through

g j =
(Gu) j∥∥(Gu) j

∥∥ . (132)

In the last step, we solve the Poisson equation

Lv = Dg (133)

for the geodesic distances v ∈R|V| and relocate the solution by the
offset of the value associated with vertex vi to zero. Note that, de-
pending on the employed Laplacian, the number and dimension of
the gradient vectors vary. For example, the methods introduced by
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Figure 9: L2 error in log-log scale for the Poisson solve of the spherical harmonic function Y 3
2 with eigenvalue −12 on different tessellations

of the unit sphere consisting of triangles (left), quads (center left), hexagons (center right) and concave faces (right). All methods, except the
Diamond Laplace, are equivalent to the cotangent Laplacian on triangles. This leads to the overlapping lines on the triangle sphere.

Figure 10: The smallest 48 non-zero eigenvalues of the Laplacian on different unit spheres with quads (left), hexagons (center) and concave
faces (right). The individual top plots shows the computed eigenvalues and the lower ones the relative deviation from the ground truth.
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Figure 11: The smallest 34 non-zero eigenvalues of the Laplacian
on two unit balls consisting of hexhedra (left) and truncated cells
(right). The individual top plots shows the computed eigenvalues
and the lower ones the relative deviation from the ground truth.

Alexa and Wardetzky and de Goes et al. [AW11, dGBD20] obtain
three-dimensional gradient vectors per polygon face, while Bunge
et al. [BHKB20] associate their gradient vectors with the virtual
triangles, so one per halfedge of the original mesh. On the other
hand, the Diamond gradient operator [BBA21] leads to intrinsic
two-dimensional gradients that are associated with the virtual dia-
mond cells and therefore with the edges of the original mesh. Addi-
tionally, the normalization step in Equation (132) differs depending
on the chosen method. While all methods with a geometrically mo-
tivated gradient can normalize the vectors with their respective Eu-
clidean length, the method by Alexa and Wardetzky [AW11] needs
an alternative approach. As pointed out by Crane et al. [CWW13],
interpreting the coboundary operator d as gradient leads to discrete
1-forms associated with the halfedges, which cannot be directly
normalized. However, since M1 (see Equation (28)) gives us an in-
ner product matrix for 1-forms, they propose to use

∥∇u∥ f =

√
uT

f L f u f

| f | (134)

as normalization term by assuming that ∇u is constant over each
face and therefore

uT
f L f u f =

ˆ
f
∥∇u∥2 dA = ∥∇u∥2 | f | . (135)

The time step ε involved in the first step of the heat method (131)
is a debated subject. As pointed out by Crane et al. [CWW13], the
discrete setting does not follow the expected rule that smaller time
steps necessarily lead to more accurate results. However, too large
time steps lead to a smoothed approximation of the distances. We
therefore compare the behavior of the two most common choices:

• The squared mean edge length of the mesh, as proposed by Crane
et al. [CWW13] and used in Bunge et al. [BHKB20].

• The squared length of the longest face diagonal, as suggested by
de Goes et al. [dGBD20, dGDMD16].

Figure 12 and 13 show the deviation of the obtained geodesic
distances to the Euclidean distance in the plane and the great-

Figure 12: L2 error in log-log scale of the Geodesics in heat
method on planar grids with quads (top), concave polygons (cen-
ter) and Voronoi faces (bottom). For each progressively refined
mesh the selected vertex was the one with the least norm to the
center of the plane.

circle distance on the unit sphere. Using the mean edge length
as time step leads to larger error fluctuations for the methods in-
troduced by Alexa and Wardetzky and de Goes et al., especially
for progressively larger λ, while the Laplacians by Bunge et al.
[BHKB20, BBA21] remain relatively unaffected. Using the max-
imum face diagonal stabilizes these deviations, but negatively af-
fects the accuracy for several of the presented methods on some of
the test meshes. In general, both the Diamond Laplace and de Goes
et al.’s method for λ = 0.1 have the lowest error rates, independent
of the chosen time step. Additionally, the definition of a geometric
gradient operator greatly improves the accuracy of de Goes et al.’s
method in comparison to the algebraic coboundary operator used
for Alexa and Wardetzky’s Laplacian. However, choosing larger
values for λ affects both methods negatively. Still, given that λ con-
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Figure 13: L2 error in log-log scale of the Geodesics in heat
method on unit spheres with quad (top), hexagon (center) and con-
cave faces (bottom).

trols the influence of the stabilization term for both methods, it can
not be chosen to be indefinitely close to zero, since this would lead
to Laplacians with too large kernels and therefore spurious modes.

8.5. Timings and Sparsity

In this section, we compare different statistics involved in the solv-
ing process of a Poisson problem for both 2D and 3D meshes.
Table 1 lists the respective timings to construct the stiffness ma-
trix (build), the number of its non-zero entries (nnz), and the time
it takes to solve the system (solve) with Eigen’s SimplicialLLT
solver [GJ∗10]. The timings were measured on a standard worksta-
tion with a six-core Intel Xeon 3.6 GHz CPU. As discussed in the
locality property section, all Laplacians, with the exception of the
Diamond Laplace, have the same sparsity pattern for their matri-
ces, leading to roughly the same solving times. However, while the

implementation of the respective methods has not been extensively
optimized for efficiency, it is very apparent that the construction
time of the harmonic shape functions by Martin et al. [MKB∗08]
exceeds the other operators by a tremendous amount. Especially
for volume meshes, the time it takes to build the involved matrices
makes the method not competitive, since the final results are on par
with Bunge et al.’s [BHKB20] operator and do not justify the large
costs.

8.6. Mesh quality

An interesting sub-case of polygonal meshes are those with non-
planar polygons. They are in general more challenging than planar
faces due to their twisted surfaces, but still occur frequently in both
surface and volume computer graphic models. So far, we have only
considered meshes with planar polygons in order to establish an
intuition of the general effectiveness of each operator. However, in
order to evaluate this more challenging setting of non-planar faces,
we still have to retain a mesh with a known analytic solution to the
given problem. We therefore added noise in tangential direction to
the vertex positions of the previously mentioned hexagon spheres
and projected them back onto the unit sphere. While this results in
non-planar faces, note that the added noise also leads less balanced
hexagonal shapes. Equipped with these new test meshes, we repeat
the spherical harmonics convergence test (see Figure 14). In gen-
eral, each of the evaluated operators displays a higher error rate and
slower convergence for the non-planar sphere, with the Laplacians
presented by Bunge et al. [BHKB20, BBA21] leading to the small-
est errors. In contrast to the planar case, choosing a lower hyperpa-
rameter λ for the operators of Alexa and Wardetzky [AW11] and de
Goes et al. [dGBD20] leads to better results. Similar tendencies can
be observed if we add progressively stronger noise to the faces of a
single mesh, as depicted in Figure 15. All operators display higher
errors for increasingly twisted faces, but in this setting, choosing
the same hyperparameter λ = 0.5 as in the planar case leads to the
lowest rates for the works presented by Alexa and Wardetzky and
de Goes et al.. However, with increasing non-planarity the error
converges to similar values as for λ = 0.1, which apperars to be
more stable. As in the other test, the operators presented by Bunge
et al. lead to the lowest errors. The harmonic shape functions pre-
sented by Martin et al. [MKB∗08] were not included in these eval-
uations, since their definition only holds for planar polygons.
Another aspect in which the underlying tessellation may directly

affect the quality of the operators is the shape of the faces itself.
For example, Delaunay triangles lead to more favorable results and
properties for the Laplacian than meshes consisting of less ideal
triangulations [HKA15]. A possible way to quantify the stability of
the operator with respect to the given tessellation is to analyze its
condition number κ. It is defined as the ratio

κ =
λmax

λmin
(136)

of the Laplacians largest and smallest non-zero eigenvalues λmax
and λmin. Note that the actual smallest eigenvalue would be zero,
since the Laplacian has a one-dimensional kernel. The condition
number gives us a notion about the numerical quality of the stiff-
ness and mass matrices and the operators potential to quickly con-
verge to the correct solution of a given problem [KFS13]. We there-
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Table 1: Different statistics involved in the solution process of a Poisson problem with the presented polygon Laplacians.

Mesh |V| [MKB∗08] [AW11] [dGBD20] [BHKB20] [BBA21]

build nnz solve build nnz solve build nnz solve build nnz solve build nnz solve
Quads 2D 26k 92s 231k 8ms 44ms 231k 8ms 47ms 231k 8ms 10ms 231k 8ms 43ms 537k 21ms
Voronoi 2D 51k 78s 616k 25ms 94ms 616k 25ms 76ms 616k 25ms 29ms 616k 25ms 224ms 1723k 74ms
Hexahedra 3D 4913 465s 117k 3ms — — — — — — 190ms 117k 3ms 250ms 333k 6ms
Voronoi 3D 5183 482s 324k 5ms — — — — — — 140ms 324k 5ms 280ms 1497k 11ms

Figure 14: L2 error in log-log scale for the Poisson solve of the
spherical harmonic function Y 3

2 with eigenvalue −12 on planar
and non-planar hexagons. The non-planar elements affect both the
convergence rate and accuracy of all methods. The harmonic shape
functions are not included in this experiment, since their definition
only holds for planar polygons.

Figure 15: L2 error in log-log scale for the Poisson solve of
the spherical harmonic function Y 3

2 on progressively non-planar
hexagons. We added different magnitudes of tangential noise to the
initial faces and projected the vertices back onto the unit sphere. In
order to measure the “non-planarity” of the polygons, the x-axis
depicts the mean distance of the face vertices to a fitted plane.

Figure 16: Condition numbers (Equation (136)) of the different
Laplace operators on an initially uniform quad plane. One edge
within the grid is progressively shortened, resulting in four faces
to become more and more distorted with each iteration. The dimin-
ishing quality of the polygons lead to higher condition numbers for
most of the operators.

fore evaluate the effect of decreasing polygon quality on the differ-
ent Laplacians by continuously collapsing a single edge of the pre-
viously considered quad plane, while measuring its effect on their
respective condition numbers. The results can be seen in Figure 16.
In general, all of the presented operators are not really affected by
the first rounds of edge distortion. However, with the edge length
converging closer to zero, the condition numbers of the Laplacians
presented by Bunge et al. [BHKB20, BBA21] begin to rise signifi-
cantly due to the diminishing triangle quality of the virtual refine-
ments. The numerical stability of the operators presented by Martin
et al. [MKB∗08] and de Goes et al. [dGBD20] also decreases, but
with a lower magnitude. In contrast, the Laplacian presented by
Alexa and Wardetzky [AW11] is not affected by the diminishing
edge length and only slightly increases for the smallest hyperpa-
rameter λ = 0.1. However, both operators presented by Alexa and
Wardetzky and de Goes et al. follow the pattern that a higher λ

leads to generally larger condition numbers.

9. Summary and Recommendation

In light of the above, we want to summarize the presented results
and give the reader a recommendation in which situation which
operator should be used.
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Given their overall performance, the Laplacians presented by
Alexa and Wardetzky and de Goes et al. lead to very favorable
numerical results if the user is willing to adjust the stabilization
parameter λ. Furthermore, de Goes et al. provide a list of other op-
erators that go hand in hand with the matrices introduced in this
paper and lead to a larger variety of problems that can be handled
with their method.

If the reader is looking for a method that works both on surface
and volume meshes and leads to accurate results without any ad-
justing, the Diamond Laplacian would be their method of choice.
However, given its denser matrix pattern, this approach leads to
longer solving times.

If this is a problem, a computationally more efficient but slightly
less accurate choice would be the operator presented by Bunge
et al. [BHKB20]. It works on both surface and volume meshes
and, given that many applications already work with the cotangent
Laplacian, can be easily integrated since the only missing piece is
the prolongation matrix.

The harmonic shape functions are not competitive in comparison
to the other methods due to their costly construction process. How-
ever, they are able to reproduce P1 and Q1 elements on triangles
and quads, are C0 continuous to P1/Q1 at the boundaries of poly-
gons and polyhedra, and can therefore be seamlessly mixed with
these standard elements.

10. Conclusion and Outlook

In this survey we attempted to give a comprehensive description
of the recent progress made within the graphics community to
construct general polygonal and polyhedral Laplace operators. By
highlighting the numerical schemes used for the respective Lapla-
cians, we provide context for the individual discretization strategies
and motivate the problems involved in their generalization process.
Furthermore, we analyzed the properties of each individual Lapla-
cian and investigated similarities and parallels between the pre-
sented methods. As a second aspect of the survey, we introduced
a variety of discrete gradient and divergence operators and explain
the relationship to their associated Laplacian. Finally, we provide
a list of quantitative comparisons between the presented operators
that highlight their individual strengths and weaknesses, while si-
multaneously addressing reoccurring debates within the original
papers. The source code for these tests and the construction of the
individual operators will be made publicly available.

We hope that this survey helps to motivate the usage of more gen-
eral tessellations within the graphics community, given that the nec-
essary tools for many applications are already there. In fact, there
exist a vast variety of methods that can be used on general polygon
and polyhedral meshes that exceeded the scope of this paper. For
example, higher order shape functions play an important role in the
finite element theory if higher accuracy and faster convergence of a
system’s solution is needed. Several methods for generalized higher
order shape functions [RGB11, SDG∗19, BHSH∗22] or the volu-
metric VEM extension by Beirao et al. [BdVDR17] extend these
benefits to general polygon and polyhedral meshes. Furthermore,
besides the Laplacian, there exist a variety of other discrete differ-
ential operators that could be useful to the graphics community, as

touched upon by de Goes et al. [dGBD20] and [LMS14] in their
survey on the MFD method.
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