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ABSTRACT

Digital reconstruction of humans has various interesting use-cases.
Animated virtual humans, avatars and agents alike, are the central
entities in virtual embodied human-computer and human-human
encounters in social XR. Here, a faithful reconstruction of facial
expressions becomes paramount due to their prominent role in
non-verbal behavior and social interaction. Current XR-platforms,
like Unity 3D or the Unreal Engine, integrate recent smartphone
technologies to animate faces of virtual humans by facial mo-
tion capturing. Using the same technology, this article presents
an optimization-based approach to generate personalized blend-
shapes as animation targets for facial expressions. The proposed
method combines a position-based optimization with a seamless
partial deformation transfer, necessary for a faithful reconstruction.
Our method is fully automated and considerably outperforms exist-
ing solutions based on example-based facial rigging or deformation
transfer, and overall results in a much lower reconstruction error.
It also neatly integrates with recent smartphone-based reconstruc-
tion pipelines for mesh generation and automated rigging, further
paving the way to a widespread application of human-like and
personalized avatars and agents in various use-cases.
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1 INTRODUCTION

A faithful digital reconstruction of humans has various interest-
ing use-cases throughout the media industry and beyond. Virtual
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actors mimicking real actors are becoming increasingly common-
place since their debut in the 1987 CGI movie Rendez-vous in
Montreal, see, e.g., the late creations from the Star Wars franchise.
Similarly, the fidelity of interactive Virtual Humans (VHs) [33]
also significantly advanced, as demonstrated by commercial devel-
opments like Epic Games’ MetaHumans. Here, high-fidelity dig-
ital reconstructions of humans open up promising applications
in computer games as well as in Virtual, Augmented, and Mixed
Reality (VR, AR, MR: XR for short) [7]. These applications in-
clude human-computer interactions with computer-controlled VHs,
so-called virtual agents [11, 32, 37], as well as mediated human-
human encounters with user-controlled VHs, so-called avatars (see,
eg., [3, 21, 22, 29, 38]), in future social XRs.

Facial expressions are a central channel of non-verbal behavior.
Their prominent role in social interaction has been confirmed for
quite some time now [13, 40]. There is evidence that non-verbal be-
havior conveys the majority of information communicated [34, 42].
Facial expressions are specifically prime conveyors of “emotions,
attitudes, interpersonal roles, and severity of pathology” [13, p. 50].
Overall, facial expressions are an important modality of human-
human interaction. Therefore, synthesis and reconstruction of facial
expressions of VHs and their effects on observers have been inten-
sively researched [33], as was their role in non-verbal interaction
between avatars confirmed (see, e.g., [41, 42]).

Faithful digital reconstruction of humans for interactive applica-
tions faces unique challenges. Most approaches capture the outer
appearance using depth cameras [30] or photogrammetry [1, 15],
and then rig the resulting mesh for subsequent animation by defin-
ing a weighted assignment of mesh vertices to skeleton bones for
body animation and defining facial blendshapes for face animation.
Today, this rigging process can be automated to a large extend by
employing template models with predefined rigs: The skeletal rig
can be transferred by non-rigid registration of the template to the
target mesh [5], and the facial blendshapes are typically mapped
from template to target using deformation transfer [47].

While generic template rigs have been shown to work well for
body animation [31, 36], the template’s facial blendshapes in gen-
eral do not faithfully reconstruct a captured person’s unique facial
expressions. These differences are particularly problematic since
humans are capable of detecting even subtle changes and deviations
in human faces, which can potentially even lead to incongruent
social cues [23, 42]. A solution to this problem is provided by using
personalized blendshapes [10, 17, 20, 26], which are derived from a
training set of facial expression. However, existing approaches still
vary considerably in reconstruction accuracy (hence faithfulness),
level of automation, ease of use and applicability.
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Contribution: In this paper we leverage the capabilities of
recent smartphone technologies (in particular Apple’s ARKit) to
generate personalized blendshapes for a given avatar in a fully
automatic and easy-to-use manner. Our approach ideally comple-
ments recent smartphone-based avatar reconstructions (e.g., [51])
and perfectly matches the smartphone-based facial motion captur-
ing provided in Unity 3D and the Unreal engine. Using ARKit for
capturing example facial expressions, we extend the widely used
example-based facial rigging [26] to extract considerably more ac-
curate facial blendshapes from these example expressions, which
are then seamlessly implanted into a target avatar using a novel
formulation of deformation transfer [47]. Compared to previous
approaches, our extensions lead to considerably more accurate and
hence more faithful reconstructions, reducing the reconstruction
error for some cases down to 10%, while still being comparable in
terms of computational cost.

2 RELATED WORK

While many different approaches for face animation have been
proposed, such as skeleton and joint models [46] or physics-based
muscle models [49], linear blendshape models [25] are still the most
widely used technique — in particular in interactive XR applications.
The individual blendshapes (or morph targets) are typically based
on the facial action coding system (FACS) [14], giving them an
anatomical as well as semantical meaning. The FLAME model of
Li et al. [28] replaces the over-complete, linearly dependent FACS
blendshape basis by an orthogonal PCA basis. While this is in-
deed better suited for tracking and reconstruction, their basis lacks
semantic meaning and is therefore not suitable for several applica-
tions. To be as widely applicable as possible, our method employs
standard linear facial blendshapes.

Generating the required blendshapes by scanning an actor in all
these expressions is not possible in most situations. Hence the blend-
shapes of a generic face rig are typically transferred to the target
avatar, using for instance RBF warps [19, 35, 45], non-rigid regis-
tration [16], or variants of deformation transfer [39, 47, 48]. The
blendshapes generated this way match the anatomical dimensions
of the target avatar, but they typically do not faithfully reconstruct
the captured person’s unique facial expressions.

Higher-quality approaches therefore personalize blendshapes
by capturing an actor not only in the neutral pose, but also in a
couple of example expressions [8, 18, 26, 50]. The optimization in-
volved in the underlying example-based facial rigging process [26]
is ill-posed, since both the blendshape meshes of the actor and the
blendshape weights of the captured expressions are unknown. The
method therefore depends on good initial guesses of the blendshape
weights, which restricts the poses the actor can (or has to) perform.
Li et al. [26] proposed a subset of 15 facial expressions the actor
should perform. These expressions consist of more than one single
activated blendshape; they are instead a combination of several
activated blendshapes. Carrigan et al. [9] use an even smaller set
of facial expressions by packing more basic blendshapes into the
training expressions — making them harder to perform though.

In contrast, Ichim et al. [20] let the actor perform a sequence
of dynamic facial expressions and video-record this performance
using a smartphone. They detect facial feature points in each frame
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and non-rigidly deform their blendshapes to better fit these land-
marks. However, the user has to check and correct the detected
landmarks in about 25 of 1500 frames to account for errors of the
facial feature detector. We also use a smartphone to record a facial
performance of the actor, but leverage an iPhone’s video and depth
sensor and Apple’s ARKit to capture blendshape weights and 3D
geometry for each frame of this performance in a robust and fully
automatic manner. Since our capturing process is easy and intuitive,
we currently let the actor mimic all 52 ARKit blendshapes to get a
maximum of personalization.

Han et al. [18] evaluated two methods to extract personalized
blendshapes from expressions scans. They recorded expressions and
blendshape weights and fitted an autoencoder and a linear regres-
sion to obtain the blendshapes. However, while they achieve good
results with respect to the reconstruction error, they do not com-
pute semantically meaningful blendshapes, which disqualifies their
approach for many applications. Li et al. [26] and Seol et al. [44]
employ optimizations based on deformation gradients to extract
personalized blendshapes from a set of training examples. Li et al.
[26] fit the deformation gradients of the unknown blendshapes to
the deformation gradients of the example expressions, regularized
by (the deformation gradients of) the blendshapes of generic rig to
ensure semantically meaningful blendshapes. Blendshape weights
and blendshape meshes are solved for in an alternating optimiza-
tion, requiring careful initialization for convergence. Seol et al. [44]
first fit a mesh to the scanned expressions and then separate the
fitted expressions into the different blendshapes based on the vertex
displacements in the generic rig. In our experiments, their blend-
shape separation method leads to strongly damped blendshapes
though. Our approach leverages ARKit’s face tracking and there-
fore avoids the alternating optimization for blendshape weights
and blendshape meshes. As we show in Section 4, our fitting also
leads to considerably more accurate results compared to [26].

Several approaches further increase the reconstruction accu-
racy by using corrective blendshapes or corrective deformation
fields. The facial animation is then computed by the initial (generic)
blendshape set, but it is refined with additional shapes, which add
idiosyncrasies that cannot be represented by the initial blendshapes
[6, 12, 17, 20, 27]. Our work focusses on computing personalized
blendshapes without extra corrective shapes, to be compatible with
standard blendshape pipelines in XR engines, but corrective fields
could easily be added in future work. In contrast to many previous
works that use a face/head avatar only, we implant the resulting
personalized facial blendshapes into a full-body avatar using a
modification of deformation transfer [4, 47].

3 METHOD

In this section we present our approach for extracting personalized
blendshapes from a set of scanned facial expressions and how to
transfer these blendshapes to an existing avatar. Figure 1 shows
an overview of our pipeline. We begin by specifying the capturing
process and the resulting input data (Section 3.1). From this training
data we extract personalized blendshapes (Section 3.2), which are
then transferred to the full-body avatar using our seamless partial
deformation transfer (Section 3.3).
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Figure 1: Our pipeline from recording example expressions to the final avatar. Red boxes indicate user input.

3.1 Input Data

Our goal is to create personalized blendshapes for an existing full-
body avatar. While any method could be used to generate that
avatar, we employ the smartphone-based method of Wenninger
et al. [51]. As a consequence, the complete avatar generation and
personalization only requires a smartphone for capturing the per-
son, which is in stark contrast to recent approaches based on com-
plex photogrammetry rigs [1, 15] and makes the reconstruction of
personalized avatars more widely available.

We capture the training data for the blendshape personalization
using a custom application running on an iPhone 12 Pro (any recent
ARKit-capable i0S device could be used as well). This application
guides the user through the recording session, making the whole
capturing process easy and intuitive. All recording is performed by
the front-facing depth and color cameras, such that the user can
watch instructions and get feedback while recording.

The user first scans their own face in a neutral expression, and
is then asked to perform the facial expressions corresponding to
the m = 52 ARKit blendshapes. For each of these blendshapes, the
application shows a textual and pictorial explanation of the ex-
pression to be performed. The application continuously tracks the
user’s face using the ARKit framework and automatically captures
the facial expression when the requested expression is performed
to a sufficient extent. In particular, when capturing blendshape i
(for i € {1,...,m}), we observe the blendshape weight w;; cor-
responding to that blendshape and once this weight exceeds a
certain threshold and reaches a maximum over time (i.e., starts
decreasing), we record both the current set of blendshape weights
(Wit,...,wis2) as well as the current geometry S; of the ARKit
face mesh, where the latter consists of n = 1220 vertices and 2304
triangles. While we expect the blendshape weight w; ; to be domi-
nant when capturing blendshape i, other non-vanishing blendshape
weights w; j do not pose a problem for our reconstruction (see next

section), such that the user does not have to strictly perform the
requested expression in isolation (which is hardly possible).

With this automated recording procedure, the 52 requested facial
expressions can be scanned in approximately 2 minutes.

3.2 Blendshape Personalization

While ARKit provides us with blendshape weights (w; 1, ..., Wim)
and face meshes S; for each expression i € {1,..., m} of the m = 52
ARKit blendshapes, it does not give access to the internal person-
alized blendshapes of the user. We therefore have to extract the
personalized version of the ARKit blendshapes using a modification
of example-based facial rigging [26].

The original method of Li et al. [26] fits the per-triangle defor-
mation gradients of the unknown blendshapes to the deformation
gradients of the scanned expressions in a first step, and then solves
a linear least-squares system to extract the vertex positions best-
matching the fitted deformation gradients [4, 47]. This two-step
procedure has the disadvantage that it does not directly penalize the
deviation of the reconstructed vertex positions from the scanned
expressions, it only indirectly encourages the vertex positions to
match the target expressions. In contrast, we directly optimize for
vertex positions that best-match the observed expressions S; in the
least-squares sense (see Equation (1) below), which — as we will
shown in Section 4.1 — leads to more accurate results.

Given the blendshape weights (w; 1, ..., w;m) and face meshes
S; for the recorded expressions i € {1,...,m}, as well as the neutral
face scan By, we have to compute the corresponding personal-
ized delta-blendshapes By, . . ., By,. Delta-blendshapes describe the
displacement from the neutral expression to a predefined facial
expression — the corresponding (non-delta-)blendshape [25]. In the
following, the term blendshape always refers to delta-blendshapes.
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Our model then produces a facial expression from blendshape
weights wy, ..., wp as

m
By +ZWJ'B]'.
Jj=1

Here, the matrix By € R™¥3 contains the n = 1220 vertex positions
of the neutral face and the matrices By, . . ., B,, € R™? contain the
n displacement vectors of the blendshapes, respectively.

We compute the blendshapes B; by penalizing the distance from
the observed training expressions S;, formulated as the cost function

2
m

m
Eqi(By,...,By) = Z By + Wi)ij—Si . (1)

i=1 Jj=1
Since the blendshape weights w; j were captured by ARKit and
hence are known, minimizing (1) only requires solving a sparse
linear least-squares system.

However, in order to produce semantically meaningful blend-
shapes the optimization has to be regularized. To this end, we
transfer the blendshapes of the (non-personalized) ARKit template
to the recorded neutral expression By using deformation transfer
[47], resulting in the generic blendshapes T1, ..., Tp,. Similar to
Saito [43], we add virtual triangles between upper and lower eye-
lids to ensure that the eyes are completely closed in the transferred
eye-blink blendshapes. Our regularization energy then penalizes
the deviation of the personalized blendshapes B; from the generic
blendshapes T:

Ereg = ) |ID; (B =T | @
=

Here, D; are diagonal (n X n) matrices containing per-vertex reg-
ularization weights. These weights ensure that vertices that do
not move in the template blendshape T; also do not move in the
personalized blendshape B;. They are computed as

maXg=1, .n || trj — tko H
[[ti; = tio

(Dj) ii = ’ ®)

where t; ; € R® is the position of the i-th vertex in the template
blendshape T;. This results in higher regularization weights for
vertices with smaller displacement magnitude in the ARKit template
blendshapes. We clamp the regularization weight (D;); ; to 10° if
H tij —tio || < € to avoid division by zero.

The personalized blendshapes are finally computed by minimiz-
ing the cost function

Eﬁt(Bl, e Bm) + Ereg(Bla cees Bm)

that combines the fitting term (1) and the regularization term (2),
which again only involves solving a least-squares linear system.
Li et al. [26] stated that an optimization based on vertex posi-
tions leads to visible artifacts if done naively. However, our results
demonstrate quantitatively and qualitatively that this is not the case
for our regularization. In fact, optimizing vertex positions leads
to more accurate results, as we show in Section 4. Without our
regularization though, we would get clearly noticeable artifacts.
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Figure 2: The personalized blendshape (left) and our approx-
imation with generic blendshapes (right)

3.3 Blendshape Transfer

Having computed the personalized ARKit blendshapes (grey face
masks in Figure 1), we now transfer them to the provided full-body
avatar using an extension of deformation transfer [47]. Note that our
personalized ARKit blendshapes B; only specify the deformation
within the face area. However, this is only a part of the deformation
due to face animation, since some blendshapes (e.g. jaw open) also
affect the area adjacent to the face (e.g. the neck area). Therefore,
we have to adjust the adjacent area accordingly.

In a first step we approximate the personalized ARKit blend-
shapes with the pre-existing non-personalized blendshapes of the
full-body avatar. To this end, we define a correspondence map M
between the avatar’s face and the ARKit face mesh. This is achieved
by fitting the avatar template to the ARKit template using non-rigid
registration [1] and selecting the closest point on the ARKit mesh
for each vertex of the avatar’s face. Since each full-body avatar
shares the topology of the full-body template model (from [51] in
our case), this mapping have to be computed only once.

To obtain the optimal blendshape weights for the approximation
we use an approach similar to Lewis and Anjyo [24]. First, we use
the iterative closest point algorithm (ICP) with scaling [52] to find
the optimal translation, rotation, and scaling to register the ARKit
face mesh to the avatar’s face. Second, we compute the weights of
the initial avatar blendshapes by minimizing the energy

2k
DR
i=1

where M is the pre-computed correspondence matrix that maps
vertices of the ARKit face meshes to the full-body avatar. B; de-
note the initial avatar’s blendshapes and w; are the (unknown)
blendshape weights. The second term penalizes large weights to
avoid extreme poses. Solving a linear least-squares system results
in the blendshape weights wy, . .., Wy for approximating the ARKit
blendshape B; using the initial avatar blendshapes By,...,By.
The resulting approximation, which can be considered an auto-
matic facial retargeting and is denoted by A, is already quite close
to the desired personalized blendshape B; (see Figure 2). Using

Eépprox(‘:‘/lﬁ CWE) =

k
Z wiB; — MB;
i=1
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Figure 3: Seamless partial deformation transfer of the Jaw-
Open blendshape: The first step transfers the deformation
of the face region only (left), the second step adjusts the
adjacent neck region (right).

the initial avatar’s blendshapes it provides the missing information
on how to deform the avatar’s face in the area not covered by the
ARKit face mask (e.g. the neck area under the chin). We therefore
use the approximation A as regularization when transferring the
personalized blendshape B; to the avatar.

This transfer proceeds in two steps (see Figure 3): First, we ap-
ply deformation transfer to only the avatar’s face using the pre-
computed correspondence mapping. Second, the vertices in the
face area are fixed, and the vertices in the adjacent area (vertices
that move in A but do not belong to the face area) are non-rigidly
deformed from A; [1]. This process seamlessly implants the per-
sonalized ARKit blendshapes to the target avatar.

The approximations A; also bring facial details not included in
the ARKit mesh (eye balls and teeth) to their desired position in the
Jjth personalized avatar blendshape. However, since the ARKit mesh
does not include eyeballs, the eyelid blendshapes might intersect
them. We eventually repair those artifacts by moving the eyelid
vertices to their closest point on the eyeball surface [2].

4 RESULTS

In the following, we present quantitative and qualitative com-
parisons between our blendshape personalization approach (Sec-
tion 3.2), example-based facial rigging (EBFR, Li et al. [26]), and
deformation transfer (DT, Sumner and Popovi¢ [47]). After that, we
show comparisons of our personalized blendshapes to automatic
facial retargeting and to manual facial retargeting. Automatic facial
retargeting refers to the optimization of Equation (4). The resulting
blendshape weights are the best fitting combinations of the avatar’s
initial blendshapes to approximate the personalized ARKit blend-
shapes. Manual facial retargeting refers to a manually optimized
mapping of the ARKit blendshape set to the avatar’s initial blend-
shape set. This mapping was hand-crafted by two PhD students in
Computer Graphics with sufficient expertise in facial blendshape
animation (although not being blendshape artists) and represents
our best (manual) effort for retargeting the ARKit blendshapes to
the initial avatar’s blendshapes.

4.1 Face Mask Personalization

In order to evaluate the accuracy of the different sets of personal-
ized ARKit blendshapes, we asked our subjects to record not only
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Figure 4: Root-mean-square reconstruction error of deforma-
tion transfer (blue), example-based facial rigging (orange),
and our method (green) for Subject 1.
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Figure 5: Maximum reconstruction error of deformation
transfer (blue), example-based facial rigging (orange), and
our method (green) for Subject 1.

the 52 training face expressions (see Section 3.1), but also 20-30 ad-
ditional test expressions, for which we record the ARKit face mesh
T; and the corresponding blendshape weights w, ..., wp,. Using
these weights and the blendshapes By, ..., B, to be evaluated, we
compute the root mean square error (RMSE) over the n vertices
w.rt. T; as

2

1 m

; B0+;w]'Bj—Ti . (5)
Our implementation of EBFR only performs the blendshape opti-
mization step from Li et al. [26], since we already know the correct
blendshape weights from ARKit. Figure 4 compares the RMSE (5) of
different sets of personalized blendshapes produced with DT (blue),
EBFR (orange), and our approach (green) for Subject 1. In almost
all cases (except expression 19) our method yields the lowest errors.
When averaging the RMEs over all expressions and all subjects the
RMSE of our method is 58% of the RMSE of EBFR and 45% of the
RMSE of DT (see supplementary material).

We also evaluate and compare the maximum error computed
over all n vertices, since this measure allows to compare the worst
parts of the reconstructed expressions. If only a particular region of
the face moves in a test expression, the RMSE would be artificially
reduced due to averaging over mostly unchanged vertex positions.
Figure 5 shows the maximum reconstruction errors of the different
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Figure 6: Color-coded reconstruction errors. From left to
right: ground truth, our method, example-based facial rig-
ging, deformation transfer. (Blue = 0Omm, Red > 5mm)

approaches for Subject 1. It can be seen that DT gives the worst
results in all cases. Both EBFR and our method show significant im-
provements, with our method consistently yielding the lowest error
of all three methods. Averaging the maximum error per expression
over all test expressions and all subjects, our method reduces the
maximum reconstruction error of EBFR and DT down to 50% and
38%, respectively. The color-coding of reconstruction errors in Fig-
ure 6 visualizes how the three reconstruction methods differ and
shows that our reconstructions are the most accurate. Results for
other test subjects are shown in the supplementary material.

4.2 Avatar Blendshape Personalization

The previous section evaluated different approaches for personaliz-
ing the ARKit face mask blendshapes. In this section we evaluate
the final avatars produced by implanting the personalized ARKit
blendshapes through our seamless partial deformation transfer.
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Method ‘ Subject 1 Subject 2 Subject 3  Subject 4 H Avg.

EBFR | 1.585s 1.594s 1.602s 1594s || 1.594s

Ours | 0500s 0499 0499  0.497s || 0.499s
Table 1: Computation times of example-based facial rigging
(EBFR) and our method, including setting up and solving all
required linear systems.

Figure 7 compares the approximations A; (computed through
automatic facial retargeting using the initial avatar blendshapes)
to our final avatars with personalized blendshapes. While the ap-
proximation A give reasonable results, the expressions are more
accurately reproduced by our personalized blendshapes. This is
most noticeable in the mouth region, where the retargeted version
does not move the mouth corners far enough or cannot properly
reproduce the lip shape of the target expression.

The automatic regargeting is computed by minimzing the approx-
imation error (4) w.r.t. the blendshape weights. Upon inspection the
resulting (optimal) weights exhibit many non-zero weights, with
several weights even exceeding the range [0, 1]. This explains why
a manual retargeting is rather unlikely to reproduce the optimal
results. Still the manual mapping is the default method for connect-
ing face rigs and face tracking in game engines (see, e.g., the Unity
Live Capture Plugin or the Faceware Live Client for Unity).

Figure 8 compares how well different approaches can reproduce
some test expressions that have been tracking through ARKit. The
manual retargeting using the initial avatar blendshapes yields the
worst results, with clearly visible deviations in the mouth region.
Automatic retargeting produces more accurate expressions, but the
most accurate results are obtained with the personalized blend-
shapes. In the top row the automatic retargeting does not move
the mouth corners far enough to the side, visualized through the
blue cross and the green line. In the bottom row the manual and
automatic retargeting do not properly close the mouth and eyes,
respectively, while the personalized blendshapes do. Comparisons
on the full test sequences can be seen in the accompanying video.

4.3 Computation Time

Our automatic, app-guided recording of training expressions takes
about 2 minutes. Afterwards, all computations of our pipeline take
approximately 35 seconds per avatar. The ARKit face masks consist
of 1,220 vertices and 2,304 triangles, the avatar meshes consist of
21k vertices and 42k triangles.

Table 1 shows the computation times for EBFR and our method,
measured on a desktop PC with a 10-core 3.6 GHz CPU and a Nvidia
RTX 3070 GPU. These timings include setting up the linear sys-
tems and solving them through sparse Cholesky factorizations. For
EBFR it also includes converting the local frames back to the new
blendshape basis, and for our method it includes the computation
of the regularization blendshapes using deformation transfer. On
average, our method is about 3x faster than EBFR. This is mainly
due to the fact that EBFR performs the optimization per triangle,
and hence has to solve 2,304 linear least squares problems.
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Figure 7: Comparison of the personalized ARKit blendshapes (middle) to an approximation using automatic retargeting using
the initial avatar blendshapes (left) and to our final personalized blendshapes (right), where the latter yield more accurate

results.

5 DISCUSSION

As described in Section 4.1, personalized blendshapes produce more
accurate reconstructions of facial expressions than generic blend-
shapes transferred from a template rig. Our improved approach
further reduces the maximum reconstruction error compared to
deformation transfer and example-based facial rigging. Considering
Figure 6, the mouth corners of Subject 1 (top row) are closer to the
ground truth for our method, while both DT and EBFR lead to a
stronger grin expression. Even these slight differences can be prob-
lematic, since they might lead to incongruent social cues [42] or
create unnatural-appearing facial expressions that do not correctly
convey a tracked person’s actual look and feelings (Figure 8).

Our approach also has some limitations. Both the blendshape
approximation and the seamless partial deformation transfer rely
on correspondence mappings, which have to be computed in a
preprocess once per template model. Moreover, our seamless partial
deformation transfer relies on reasonable initial blendshapes of the
avatar, which is used to estimate how the adjacent area of the face
(e.g. the neck) deforms during facial expressions. As a consequence,
our method cannot be applied to avatars without blendshapes.

6 CONCLUSION

Faithful digital reconstruction of humans has various interesting
use-cases. It may become even more prominent in future social XR
encounters. Here, an accurate reconstruction of facial expressions
is a necessity due to the prominent role of facial expressions in
non-verbal behavior and social interaction. This article presented
an optimization-based approach to generating personalized blend-
shapes necessary for a faithful reconstruction of facial expressions
and their animation. The proposed method combines a position-
based optimization with a seamless partial deformation transfer.
It outperforms existing solutions and overall results in a much
lower reconstruction error. It also neatly integrates with recent
smartphone-based reconstruction pipelines for mesh generation
and automated rigging, further paving the way to a widespread
application of personalized avatars and agents in various use-cases.

In the future, we would like to use the iPhone’s front-facing
depth sensor to capture more accurate geometry during expression
scanning. Furthermore, we would like to investigate the effect that
our improved personalized blendshapes have on the perceptibility
of expression semantics.
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Figure 8: Comparison of the original tracked facial expression with the animated avatars. From left to right: captured image,
manual retargeting, automatic retargeting, personalized blendshapes
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