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Figure 1. Starting from the surface of a human (left), we fit a three-layered model consisting of a skin,
muscle, and skeleton layer (middle), which enables physical simulations in a simple and intuitive way.
Interior structures, such as individual models of muscles and bones, can also be transferred using our
layered model (right).

ABSTRACT

3D morphable models are widely used to describe the variation of human body shapes. However,
these models typically focus on the surface of the human body, since the acquisition of the
volumetric interior would require prohibitive medical imaging. In this paper we present a novel
approach for creating a volumetric body template and for fitting this template to the surface scan
of a person in a just a few seconds. The body model is composed of three surface layers for
bones, muscles, and skin, which enclose the volumetric muscle and fat tissue in between them.
Our approach includes a data-driven method for estimating the amount of muscle mass and fat
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mass from a surface scan, which provides more accurate fits to the variety of human body shapes
compared to previous approaches. We also show how to efficiently embed fine-scale anatomical
details, such as high resolution skeleton and muscle models, into the layered fit of a person. Our
model can be used for physical simulation, statistical analysis, and anatomical visualization in
computer animation and medical applications, which we demonstrate on several examples.

Keywords: virtual humans, anatomical details, template fitting, character animation, shape deformation

1 INTRODUCTION
Virtual humans are present in our everyday lives. They can be found in movies, computer games, and
commercials. In addition, they are employed in a rapidly growing number of applications in virtual reality
(VR) and augmented reality (AR), even ranging to computational medicine. All these applications benefit
from realistic virtual representations of human .

If we look at a human, its appearance is mostly determined by everything we can directly see (skin, hair,
cloth, etc.). Hence, it is not surprising that research has focused on capturing, analyzing, and animating
surface models of humans. Consequently, there is a vast amount of surface-based capturing approaches,
suitable for almost every level of detail and budget: From complex multi-camera photogrammetry setups
that capture finest-scale wrinkles of the human face (Riviere et al., 2020) over approaches that compute
ready-to-animate models from simple smart-phone videos (Wenninger et al., 2020) to machine learning
approaches that reconstruct a virtual model from a single image (Weng et al., 2019). For the purpose of
creating convincing animations of and interactions with those models, large amounts of 3D captured data
have been collected to build sophisticated surface-based models (Loper et al., 2015; Anguelov et al., 2005;
Bogo et al., 2017). Those models compensate for the fact that humans are not empty hulls or homogeneous
solids by capturing and analyzing more and more data of that surface hull. Another way to approach this is
to model volumetric virtual humans by incorporating (discrete approximations of) their interior anatomical
structures. While surface-based models might be sufficient for many applications, for others (e.g., surgery
simulation) a volumetric model is an essential prerequisite.

While detailed volumetric models of the human body exist (Ackerman, 1998; Christ et al., 2009; Zygote,
2020), they can be very tedious to work with. Since they usually consist of hundreds of different bones
and muscles, merely creating a volumetric tetrahedral mesh for simulation purposes can be frustratingly
difficult. Moreover, those models represent average humans and transferring their volumetric structure and
anatomical details to a specific human model (e.g., a scanned person) is not straightforward. Although
there are a couple of approaches for transferring the interior anatomy from a volumetric template model
into a surface-based virtual human (Dicko et al., 2013; Kadleček et al., 2016), these methods either deform
bone structures in a non-plausible manner (Dicko et al., 2013) or require a complex numerical optimization
(Kadleček et al., 2016).

In this paper we present a robust and efficient method for transferring an interior anatomy template into a
surface mesh in just a couple of seconds. A key component is a simple decomposition of the human body
into three layers that are bounded by surfaces sharing the same triangulation: the skin surface defines the
outer shape of the human, the muscle surface envelopes its individual muscles, and the skeleton surface
wraps the subject’s skeleton (see Figure 1 middle). The muscle layer is hence enclosed in between the
skeleton and muscle surface, and the subcutaneous fat tissue by the muscle surface and skin surface. This
layered template model is derived from the Zygote body model (Zygote, 2020), which provides an accurate
representation of both the male and female anatomy. We propose simple and fast methods for fitting the
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layered template to surface scans of humans and for transferring the high-resolution anatomical details
(Zygote, 2020) into these fitted layers (see Figure 1 right). Our method is robust, efficient, and fully
automatic, which we demonstrate on about 1700 scans from the European CAESAR dataset (Robinette
et al., 2002).

Our approach enriches simple surface scans by plausible anatomical details, which are suitable for
educational visualizations and volumetric simulations. We note, however, that due to the lack of true
volumetric information, it is not a replacement of volumetric imaging techniques in a medical context. Our
main contributions are:

• A novel approach for creating a layered volumetric template defined by skin, muscle, and bone surfaces,
which all have the same triangulation, thereby making volumetric tessellation straightforward.

• A robust and efficient method for transferring the layered volumetric template model into a given
surface scan of a human in just a couple of seconds.

• A regressor that extracts the amount of muscle and fat mass of a subject from the skin surface only,
thereby making manual specification of muscle and fat distribution unnecessary.

• Our approach takes differences between male and female anatomy into account by deriving individual
volumetric templates and individual muscle/fat regressors for men and women.

2 RELATED WORK
Using a layered volumetric model of a virtual character has been shown beneficial compared to a surface-
only model in multiple previous works. Deul and Bender (2013) compute a simple layered model
representing a bone, muscle, and fat layer, which they use for a multi-layered skinning approach. Simplistic
layered models have also been used to extend the SMPL surface model (Loper et al., 2015) in order to
support elastic effects in skinning animations (Kim et al., 2017; Romero et al., 2020). Compared to these
works, our three layers yield an anatomically more accurate representation of the human body, while still
being simpler and more efficient than complex irregular tetrahedralizations. Saito et al. (2015) show that a
layer that envelopes muscles yields more convincing muscle growth simulations and reduces the number
of tetrahedral elements required in their computational model. They also show how to simulate different
variations of bone sizes, muscle mass and fat mass for a virtual character.

When it comes to the generation of realistic personalized anatomical structures from a given skin surface,
most previous works focus on the human head: Ichim et al. (2016) register a template skull model to a
surface-scan of the head in order to build a combined animation model using both physics-based and
blendshape-based face animation. Ichim et al. (2017) also incorporate facial muscles and a muscle activation
model to allow more advanced face animation effects. Gietzen et al. (2019) and Achenbach et al. (2018)
use volumetric CT head scans and surface-based head scans in order to learn a combined statistical model
of the head surface, the skull surface, and the enclosed soft tissue, which allows them to estimate the
head surface from the skull shape and vice versa. Regarding the other parts of the body, Zhu et al. (2015)
propose an anatomical model of the upper and lower limbs that can be fit to surface scans and is able to
reconstruct motions of the limbs.

To our knowledge, there are just two former approaches for generating an anatomical model of the
complete core human body (torso, arms, legs) from a given skin surface. In their pioneering work, Dicko
et al. (2013) transfer the anatomic details from a template model to various humanoid target models,
ranging from realistic body shapes to stylized non-human characters. They transfer the template’s anatomy
through a harmonic space warp and per-bone affine transformations, which, however, might distort muscles
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and bones in an implausible way. Different distributions of subcutaneous fat can be (and have to be) painted
manually into a special fat texture. The work of Kadleček et al. (2016) is most closely related to our
approach. They build an anatomically plausible volumetric model from a set of 3D scans of a person in
different poses. An inverse physics simulation is used to fit a volumetric anatomical template model to the
set of surface scans, where custom constraints prevent muscles and bones from deforming in an unnatural
manner. We discuss the main differences of our approach and Dicko et al. (2013) and Kadleček et al. (2016)
in Section 4.

Estimating the body composition from surface measures or 3D surface scans (like we do in Section 3.3)
has been tackled before. There are numerous formulas for computing body fat percentage (BF), or body
composition in general, from certain circumferences, skinfold thicknesses, age, gender, height, weight,
and density measurements. Prominent examples are the skinfold equations, or the Siri- and Brozek
formulas (Jackson and Pollock, 1985; Siri, 1956; Brožek et al., 1963). These formulas, however, either rely
on anthropometric measurements that have to be taken by skilled personnel or on measuring the precise
body density via expensive devices, such as BOD PODs (Fields et al., 2002). Ng et al. (2016) compute BF
based on a 3D body scan of the subject, but their formula is tailored towards body scans and measurements
taken with the Fit3D Scanner (Fit3D, 2021). Even with the help of the authors we could not successfully
apply their formulas to scans taken with different systems, since we could always find examples resulting
in obviously wrong (or even negative) BF. Recently, Maalin et al. (2020) showed that modelling body
composition through body fat alone is an inferior measure for defining the shape of a person compared to
a combined model of fat mass and muscle mass. We therefore adapt their data to estimate fat mass and
muscle mass from surface scans alone (Section 3.3). Incorporating these estimations into the volumetric
fitting process allows us to determine how much of the soft tissue layer is described by muscle tissue more
plausibly than Kadleček et al. (2016).

3 METHOD
Our approach consists of three main contributions: First, the generation of the volumetric three-layer
template, described in Section 3.2, where we derive the skin, muscle, and skeleton layers from the male and
female Zygote model (Zygote, 2020). Second, an efficient method for fitting this layered model (including
all contained anatomical details) (in)to a given human surface scan (Section 3.4). Third, the estimation of
a person’s body composition, i.e., how much of the person’s soft tissue is described by muscles and fat
(Section 3.3). By adapting the BeyondBMI dataset (Maalin et al., 2020) to our template, we derive this
information from the surface scan alone and use it to inform the volumetric template fitting. Figure 2 shows
an overview of the whole process, starting from the different input data sets, the template model and the
muscle/fat regressor, to the final personalized anatomical fit.

3.1 Data Preparation
In our approach we make use of several publicly or commercially available datasets for model generation,

model learning, and evaluation:

• Zygote: The Zygote model (Zygote, 2020) provides high-resolution models for the male and female
anatomy. We use their skin, muscle, and skeleton models for building our layered template.

• BeyondBMI: Maalin et al. (2020) scanned about 400 people and additionally measured their fat
mass (FM), muscle mass (MM), and body mass index (BMI) using a medical-grade eight-electrode
bioelectrical impedance analysis. They provide annotated (synthetic) scans of 100 men and 100 women,
each computed by averaging shape and annotations of two randomly chosen subjects. From this data
we learn a regressor that estimates fat and muscle mass from the skin surface.
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Figure 2. Overview of our volumetric template fitting approach. From the Zygote model (Zygote, 2020),
we build layered volumetric templates for the male and female anatomy. By adapting the BeyondBMI
dataset (Maalin et al., 2020) we learn a model for estimating fat and muscle mass from a surface model.
Given a person’s surface scan, we then estimate its fat/muscle mass and use this information to fit the
volumetric template (in)to the surface scan, which yields the personalized anatomical model.

• Hasler: The dataset of Hasler et al. (2009) contains scans of 114 subjects in 35 different poses, captured
by a 3D laser scanner. The scans are annotated with fat and muscle mass percentage as measured by a
consumer-grade impedance spectroscopy body fat scale. We use this dataset to evaluate the regressor
learned from the BeyondBMI data.

• CAESAR: The European subset of the CAESAR scan database (Robinette et al., 2002) consists of 3D
scans (with about 70 selected landmarks) equipped with annotations (e.g., weight, height, BMI) of
about 1700 subjects in a standing pose. We use this data to evaluate our overall fitting procedure.

All these data sources use different model representations, i.e., either different mesh tessellations or even
just point clouds. In a preprocessing step we therefore re-topologize the skin surfaces of these datasets
to a common triangulation by fitting a surface template using the non-rigid surface-based registration of
Achenbach et al. (2017).

This approach is based on an animation-ready, fully rigged, statistical template model. Its mesh
tessellation (about 21k vertices), animation skeleton, and skinning weights come from the Autodesk
Character Generator (Autodesk, 2014). It uses a 10-dimensional PCA model representing the human body
shape variation and we will call it the surface template in the following. In a preprocessing step we fit the
surface template to all input surface scans to achieve a common triangulation and thereby establish dense
correspondence. This fitting process is guided by a set of landmarks, which are either specified manually or
provided by the dataset. A nonlinear optimization then determines alignment (scaling, rotation, translation),
body shape (PCA parameters), and pose (inverse kinematics on joint angles) in order to minimize squared
distances of user-selected landmarks and automatically determined closest point correspondences in a
non-rigid ICP manner (Bouaziz et al., 2014b). Once the model parameters are optimized, a fine-scale
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a) b) c)

Figure 3. Our layered template for both male (top) and female (bottom): the skin surface (a), the skeleton
surface enveloping the skeleton (b), and the muscle surface enveloping both muscles and skeleton (c). For
(b) and (c) the left half shows the enveloping surface, the right half the enveloped anatomical details.

out-of-model deformation improves the matching accuracy and results in the final template fit. For more
details we refer to (Achenbach et al., 2017).

3.2 Generating the Volumetric Template
We use the male and female Zygote body model (Zygote, 2020) as a starting point for our volumetric

model. Our volumetric template is defined by the skeleton surface B (for bones), the muscle surfaceM,
and the skin surface S. The skeleton is enveloped by the skeleton surface, the muscle layer is enclosed
between the skeleton surface and the muscle surface, and the (subcutaneous) fat layer is enclosed by the
muscle surface and the skin surface. The soft-tissue layer is the union of the fat and muscle layers. In our
layered model we exclude the head, hands, and toes. These regions will be identical to the skin surface in
all layers. See Figure 3 for a visualization of the layered template.

The three surfaces B, M, and S will be constructed to share the same triangulation, providing a
straightforward one-to-one correspondence between the ith vertices on each surface, which we denote by
xBi , xMi , and xSi , respectively. Each two corresponding triangles (xSi ,x

S
j ,x

S
k ) on S and (xMi ,xMj ,xMk )

onM span a volumetric element of the fat layer. Similarly, the volumetric elements of the muscle layer are
spanned by pairs of triangles (xMi ,xMj ,xMk ) onM and (xBi ,x

B
j ,x

B
k ) on B. We call these elements, built

from six vertices of two triangles, prisms, and will either use them directly in a simulation or (trivially)
split them into three tetrahedra each, resulting in a simple conforming volumetric tessellation.

The following two sections describe how to generate the skeleton surface B (Section 3.2.1) and the
muscle surfaceM (Section 3.2.2). The skin surface S is generated by fitting the surface-based template of
Achenbach et al. (2017) to the skin of the anatomical model (Zygote, 2020), as described in Section 3.1.
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3.2.1 The Skeleton Surface
The skeleton surface B should enclose all the bones of the detailed skeleton model, as shown in Figure 3,

center. We achieve this by shrink-wrapping the skin surface S onto the skeletal bones. To avoid problems
caused by gaps between bones (e.g. rib-cage, tibia/fibula), we first generate a skeleton wrapW , a watertight
genus-0 surface that encapsulates the bones, and then shrink-wrap the skin surface toW instead. The wrap
surfaceW can easily be generated by a few iterations of shrink-wrapping, remeshing, and smoothing of a
bounding sphere in a 3D modeling software like Blender or Maya. This results in a smooth, watertight, and
two-manifold surfaceW that excludes regions like the interior of the rib-cage and small holes like in the
pelvis or between ulna and radius.

We generate the skeleton surface B by starting from the skin surface S, i.e., setting X = S, and then
minimizing a nonlinear least squares energy that is composed of a fitting term, which attracts the surface
X to the bone wrap W , and a regularization term, which prevents X from deforming in a physically
implausible manner from its initial state X̄ = S:

B = arg min
X

wfitEfit(X ,W) + wregEreg

(
X , X̄

)
. (1)

The regularization is formulated as a discrete bending energy that penalizes the change of mean curvature,
measured as the change of length of the Laplacian:

Ereg

(
X , X̄

)
=
∑
xi∈X

Ai ‖∆xi −Ri∆x̄i‖2 , (2)

where xi and x̄i denote the vertex positions of the deformed surfaceX and the initial surface X̄ , respectively.
The matrix Ri ∈ SO(3) denotes the optimal rotation aligning the vertex Laplacians ∆xi and ∆x̄i, which
are discretized using the cotangent weights and the Voronoi areas Ai (Botsch et al., 2010).

The fitting term penalizes the squared distance of vertices xi ∈ X from their target positions ti ∈ W:

Efit(X ,W) =
∑
xi∈X

wiAi ‖xi − ti‖2 . (3)

The target positions ti are points (not necessarily vertices) on the skeleton wrap W of either one of
three types: closest point correspondences, fixed correspondences, or collision targets. The weight wi

is determined solely by the type of target position ti (0.1 for closest point correspondences, 1 for fixed
correspondences, 100 for collision targets). We define just one target ti for each vertex xi. The default is a
closest point correspondence per vertex, which can be overridden by a fixed correspondence, and both of
them will be overridden by the collision target in case of a detected collision. Below we explain the three
target types.

Closest point correspondences are updated in each iteration of the minimization to the closest position on
W to the vertex xi ∈ X , i.e., ti = arg miny∈W ‖xi − y‖.

Near complicated regions, like the armpit or the rib-cage, the skin has to stretch considerably to deform
toward the skeleton wrap. As a consequence, corresponding triangles (xSi ,x

S
j ,x

S
k ) on the skin surface

S and (xBi ,x
B
j ,x

B
k ) on the eventual skeleton surface B will not be approximately on top of each other,

but instead be tangentially shifted. These two triangles span a volumetric element that we call a prism.
Misaligned triangles will lead to heavily sheared prisms, which can cause artifacts in physical simulations.
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Figure 4. Standard nonrigid registration from skin to skeleton (left) results in a bad tangential alignment
of corresponding triangles, causing sheared prisms, which we visualize by color-coding the alignment error
(4). Using fixed correspondences reduces this error (center). Also shifting closest point correspondences
with bad alignment reduces the error even further (right).

We define a per-vertex score penalizing misalignment of
corresponding vertices xSi ∈ S and xWi ∈ W w.r.t. their common
averaged normal nSi + nWi :

Ealign

(
xSi ,x

W
i

)
=

∣∣∣∣∣
(
nSi + nWi

)
·
(
xSi − xWi

)∥∥nSi + nWi
∥∥ · ∥∥xSi − xWi

∥∥ − 1

∣∣∣∣∣ . (4)

A 2D example of this is shown on the right, where the closest
correspondence of xSi is xWi . The position that maximizes the minimal
angle at both vertices is x∗, where the connecting line (dotted red)
aligns with the average normal.

Fixed correspondences are responsible for reducing these tangential shifts and thereby improving the
prism shapes. We determine them for some vertices at the beginning of the fit as explained in the following
and keep them fixed throughout the optimization. Since the alignment error increases faster if the distance
between skin surface and skeleton wrap is small, we specify fixed correspondences for vertices on S that
have a distance less than 3 cm toW . For each such vertex we randomly sample points in the geodesic
neighborhood of xWi and select the one that minimizes (4) as fixed alignment constraint, where we generate
normal vectors of sample points using barycentric Phong interpolation. To avoid interference of spatially
close fixed correspondences, we add them in order of increasing distance to the skeleton, but only if their
distance to all previously selected points is larger than 5 cm. In that way, we get a well distributed set of
fixed correspondences, favoring those with a small skin-to-skeleton distance. Figure 4, center, shows that
this already reduces the alignment error by a large amount.

Closest point correspondences can also drag vertices to locations with high alignment error. In each
iteration of the nonrigid ICP, we compute Ealign

(
xSi ,xi

)
for each vertex on S and its counterpart on the

current state of X . If this error exceeds a limit of 0.01, which corresponds to an angle deviation of 8◦

from the optimal angle, we sample the one-ring neighborhood of vertex xi on X and set xi to the sample
with minimal alignment error and update its closest point correspondence onW . This strategy reduces the
alignment error even further, as shown in Figure 4, right.

In the process of moving the surface X towardW , these two meshes might intersect each other, violating
our goal that in the converged state the surface X (i.e., B, due to (1)) should fully encloseW . We therefore
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detect these collisions during the optimization and resolve them through collision targets. We use the
exact continuous collision detection of Brochu et al. (2012) to detect collisions. In case of a collision, we
back-track the triangles’ linear path from the current X to the initial S to find the non-colliding state closest
to X . This state defines collision targets ti for colliding vertices xi, which override the other types of target
positions. In case of multiple collision targets ti for the same vertex xi, we determine all non-colliding
states separately and choose the one that is closest to the initial skin surface S . Minimizing (1) leads to the
final skeleton surface B (Figure 3b). See Appendix 1 for more details about the optimization strategy.

3.2.2 The Muscle Surface
We generate the muscle surface M by minimizing the same energy as in Equation (1), but using a

different method for finding the correspondences ti in Equation (3), which exploits that we already
established correspondence between skin surface S and skeleton surface B. We do not employ closest point
correspondences, but instead set for each vertex xi a fixed correspondence ti to the first intersection of
the line from skin vertex xSi to skeleton vertex xBi with the high-resolution muscle model (Zygote, 2020).
If there is no intersection (e.g., at the knee), we set ti = xBi and assign a lower weight wi. When the
minimization converges and we decrease wreg, we project the vertices of the current muscle surface xMi
to their corresponding skin-to-skeleton line from xSi to xBi . Due to the collision handling, the resulting
muscle surfaceM will enclose the high-resolution muscle model. To ensure that our volumetric elements
always have a non-zero volume, even in regions where there is no muscle between skin and bone, we
ensure a minimal offset of 1 mm from to the skeleton mesh. The resulting muscle surfaceM is visualized
in Figure 3c. Note that the muscle layer does not exclusively contain muscles: Especially in the abdominal
region, a large amount of the muscle layer is filled by organs. We therefore define a muscle thickness map
that for each vertex i stores the accumulated length of the segments of the line (xSi , xBi ) that are covered by
muscles. This map will be used later in Section 3.4.3.

3.3 Estimating Fat Mass and Muscle Mass
Having generated the volumetric layered template, we want to be able to fit it to a given surface scan of a

person. To regularize this under-determined problem, we first have to estimate how much of the person’s
soft tissue is explained by fat mass (FM) and muscle mass (MM), respectively. This is a challenging
problem since we want to capture a single surface scan of the person only and therefore cannot rely on
information provided by additional hardware, such as a DXA scanner or a body fat scale. Kadleček et al.
(2016) handle this problem by describing the person’s shape primarily through muscles, i.e., by growing
muscles as much as possible and defining the remaining soft tissue volume as fat. This strategy results in
adipose persons having considerably more muscle mass than leaner people. Although there is a certain
correlation between total body mass (and also BMI) and muscle mass – because the higher weight has a
training effect especially on the muscles of the lower limbs (Tomlinson et al., 2016) – this general trend is
not sufficient to define the body composition of people.

Maalin et al. (2020) measured both FM and MM using a medical-grade eight-electrode bio-electrical
impedance analysis and acquired a 3D surface scan. From this data, they built a model that can vary the
shape of a person based on specified muscle or fat variation, similar to Piryankova et al. (2014). Our model
should perform the inverse operation, i.e., estimate FM and MM from a given surface scan. We train our
model on their BeyondBMI dataset (Section 3.1), which consists of scans of 100 men and 100 women
captured in an approximate A-pose (see Figure 5), each annotated with FM, MM, and BMI.

By applying the surface fitting described in Section 3.1 to the BeyondBMI dataset, we make their scans
compatible to our template and un-pose their scans to a common T-pose, thereby making any subsequent
statistical analysis pose-invariant. After re-excluding the head, hands, and feet of our surface template, we
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Figure 5. Examples for the BeyondBMI dataset provided by Maalin et al. (2020) consisting of scans of
100 men and 100 women, annotated with fat mass, muscle mass, and BMI. The scans lack geometric data
for head, hands, and feet and are captured in approximate A-pose (with noticeable variation in pose).

are left with N = 100 meshes per sex that consist of V = 7665 vertices xi. We denote the jth training
mesh by a 3V -dimensional vector of stacked vertex coordinates

Xj =

((
xj1

)T
, . . . ,

(
xj
V

)T)T

∈ R3V

and perform PCA on the data matrix X = (X1, . . . ,XN ) ∈ R3V×N . Let P ∈ R3V×k be the basis of the
subspace spanned by the first k principal components and µ the mean of the training data. Since the data is
now pose-normalized, the dimensionality reduction can focus solely on differences in human body shape.
As a result, our model only needs k = 12 PCA components to explain 99.5 % of the data variance, while
the original BeyondBMI dataset needs k = 24 components to cover the same percentage due to noticeable
variations in pose during the scanning process (see Figure 5). We then perform linear regression to estimate
FM and MM from PCA weights, as proposed by Hasler et al. (2009).

For a first evaluation of this model, we perform a leave-one-out test on the BeyondBMI dataset, i.e.,
excluding each scan once, building the regressors as described above from the remaining N − 1 scans,
and measuring the mean absolute error of the predictions. We again use k = 12 PCA components, as this
covers almost all the variance present in the dataset and gives the linear regression enough degrees of
freedom. The leave-one-out evaluation yields a mean absolute error (MAE) of MAEFM = 1.20 kg (±0.93)
and MAEMM = 1.01 kg (±0.79) for the female dataset, where the fat mass lies in the range 6.27–
34.71 kg and the muscle mass in the range 21.59–31.63 kg. The linear regression shows an average R2

score of 0.84, confirming that there is indeed a linear relationship between PCA coordinates and the
FM/MM measurements. Performing the leave-one-out test on the male dataset shows similar values:
MAEFM = 1.37 kg (±1.00) and MAEMM = 1.46 kg (±1.11), fat mass in the range 3.91–27.83 kg, muscle
mass in the range 31.51–51.20 kg, and an average R2 score of 0.88.

We compared the linear model to a support vector regression (using scikit-learn (Pedregosa et al.,
2011) with default parameters and RBF kernels), but in contrast to Hasler et al. (2009) we found that
for the BeyondBMI dataset this approach performs considerably worse: MAEFM = 2.98 kg (±2.85) and
MAEMM = 1.24 kg (±1.02) with an average R2 score of 0.64 for the female dataset, and MAEFM =
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2.63 kg (±2.60) and MAEMM = 2.48 kg (±1.82) with an average R2 score of 0.58 for the male dataset.
We therefore keep the simpler and better-performing linear regression model.

Whenever we fit the volumetric model to a given body scan, as explained in the next section, we first use
the proposed linear regressors to estimate the person’s fat mass and muscle mass and use this information
to generate the muscle and fat layers in Section 3.4.3.

3.4 Fitting the Volumetric Template to Surface Scans
Given a surface scan, we transfer the template anatomy into it through the following steps: First, we

fit our surface template to the scan, which establishes one-to-one correspondence with the volumetric
template and puts the scan into the same T-pose as the template (Section 3.1). After this pre-processing, we
deform the volumetric template to match the scanned subject. To this end, we adjust global scaling and
per-bone local scaling, such that body height and limb lengths of template and scan match (Section 3.4.1).
This is followed by a quasi-static deformation of the volumetric template that considers the skin surface S
as hard constraint and yields the skeleton surface B through energy minimization (Section 3.4.2). Given
the skin surface S, the bone surface B, and the estimated fat mass and muscle mass from Section 3.3, the
muscle surfaceM is determined (Section 3.4.3). Having transferred all three layer surfaces to the scan we
finally warp the detailed anatomical model to the target (Section 3.4.4).

3.4.1 Global and Local Scaling
Fitting the surface template to the scanner data puts the latter into the same alignment (rotation, translation)

and the same pose as the volumetric template. The next step is to correct the mismatch in scale by adjusting
body height and limb lengths of the volumetric template.

This scaling does influence all three of the template’s surfaces. Since the shape of the skeleton surface
B will be constrained to the result after scaling, we have to scale in a way that keeps bone lengths and
bone diameters within a plausible range. The length of prominent bones, like the upper arm or the upper
leg (humerus and femur), can be well approximated by measures on the surface of the model. But finding
the correct bone diameters is impossible without measurements of the subject’s interior. In particular for
corpulent or adipose subjects, the subcutaneous fat layer dominates the appearance of the skin surface,
preventing us from precisely determining the bone diameters from the surface scan. It has been shown that
there is a moderate correlation of bone length and bone diameter (Aydin Kabakci et al., 2017; Ziylan and
Murshid, 2002) and (obviously) a strong correlation of body height and bone length (Dayal et al., 2008).
We therefore perform a global isotropic scaling depending on body height (affecting bone lengths and
diameters) as well as local anisotropic scaling depending on limb lengths (affecting bone lengths only).

The global scaling is determined from the height difference of scan and template and is applied to all
vertices of the template model. It therefore scales all bone lengths and bone diameters uniformly. Directly
scaling with the height ratio of scan and template, however, can result in bones too thin or too thick for
extreme target heights. Thus, we damp the height ratio r = hscan/htemplate by r ← 0.5(r − 1) + 1, which
means that a person that is 20% taller than the template will have 10% thicker bones than the template.
This heuristic results in visually plausible bone diameters for all our scanned subjects.

After the global scaling, the local scaling further adjusts the limb lengths of the template to match those
of the scan. The (fully rigged) surface-based template has been fit to both the scan (Section 3.1) and the
template (Section 3.2). This fit provides a simple skeleton graph (used for skinning animation) for both
models. We use the length mismatch of the respective skeleton graph segments to determine the required
scaling for upper and lower arms, upper and lower legs, feet, and torso. We scale these limbs in their
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Figure 6. Scaling the template (opaque) to match the scan (semi-transparent): The pre-processing aligns
the scan with the template and puts it into the same pose (left). Body height and limb lengths of the template
are then adjusted by a global uniform scaling (center), followed by local scaling for limbs and spine (right).

corresponding bone directions (or the spine direction for the torso) using the bone stretching of Kadleček
et al. (2016). As mentioned before, this changes the limb lengths but not the bone diameters.

This two-step scaling process is visualized in Figure 6. As a result, the scaled template matches the scan
with respect to alignment, pose, body height, and limb lengths. Its layer surfaces, which we denote by S̄,
M̄, and B̄, provide a good initialization for the optimization-based fitting described in the following.

3.4.2 Skeleton Fitting
Given the coarse registration of the previous step, we now fit the skin surface S and skeleton surface B by

minimizing a quasi-static deformation energy. Since the template’s skin surface S should match the (skin)
surface of the scan and since both meshes have the same triangulation, we can simply copy the skin vertex
positions from the scan to the template and consider them as hard Dirichlet constraints. It therefore remains
to determine the vertex positions of the skeleton surface B, such that the soft tissue enclosed between skin
surface S and skeleton surface B (fat + muscles, which we call flesh) deforms in a physically plausible
manner. This is achieved by minimizing a quasi-static energy consisting of three terms:

E(B) = wregEreg

(
B, B̄

)
+ wfleshEflesh(B,S) + wcollEcoll(B,S) . (5)

The first term is responsible for keeping the skeleton surface (approximately) rigid and uses the same
formulation as Equation (2), with B̄ and B denoting the skeleton surface before and after the deformation,
respectively. We employ a soft constraint with high weight wreg instead of deforming bones in a strictly
rigid manner (Kadleček et al., 2016), since we noticed that for very thin subjects the skeleton surface might
otherwise protrude the skin surface and therefore a certain amount of bone deformation is required. We also
do not penalize deviation from rigid or affine transformations as Dicko et al. (2013) since this penalizes
smooth shape deformation in the same way as locally flipped triangles, which we observed to cause artifacts
in the skeleton surface. The discrete bending energy of Equation (2), with a suitably high regularization
weight wreg, allows for moderate smooth deformations and gave better results in our experiment.

The second term prevents strong deformations of the prism elements p ∈ P , spanned by corresponding
triangles (xSi ,x

S
j ,x

S
k ) on the skin surface and (xBi ,x

B
j ,x

B
k ) on the skeleton surface. While we penalize

deformation of the top/bottom triangles, we allow changes of prism heights, i.e., anisotropic scaling in
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the direction from surface to bone, since otherwise the fat layer cannot grow to bridge the gap from the
skeleton surface to the skin surface. This behavior is modelled by the anisotropic strain limiting energy

Eflesh(B,S) =
1

2

∑
p∈P

∥∥∥Fp −RpBpS̃pB
T
p

∥∥∥2

F
, (6)

where Fp ∈ R3×3 is the deformation gradient of the element p, i.e., the linear part of the best affine
transformation that maps the un-deformed prism p̄ to the deformed prim p in the least squares sense. If
Dp ∈ R3×5 denotes the edge direction matrix of the prism p and D̄p the respective matrix of p̄, then
Fp = arg minF‖Dp−FD̄p‖2F . Polar decomposition (Shoemake and Duff, 1992) Fp = RpSp decomposes
Fp into a rotation Rp and scale/shear Sp. Bp is a rotation matrix that aligns the z-axis with the surface
normal of the prism’s corresponding skin triangle, i.e., the direction in which we allow stretching. The
matrix S̃p represents the anisotropic scaling diag(1, 1, α), where α ∈ [αmin, αmax] allows to tune the
amount of stretching in normal direction that should be allowed. We use αmin = 0.2 and αmax = 5.0
to allow stretching and compression of the element by a factor of five before the energy of this element
increases.

Third, we detect all collisions C, defined as vertices of the skeleton surface B that are outside of the skin
surface S . For these colliding vertices we add a collision penalty term

Ecoll(B,S) =
1

2

∑
xi∈C

wi ‖xi − πS(xi)‖2 , (7)

where πS(xi) is the projection of the colliding vertex xi to a position 2 mm beneath the closest triangle on
the skin surface S . The weight wi is defined per vertex, is set to 1 the first time a vertex is colliding, and is
increased by 1 each time the minimization was not able to resolve the collision. The iterative minimization
of (5) as well as the computation of the individual elements of (6) is further detailed in Appendix 1.

3.4.3 Muscle Fitting
Having determined the skin surface S and skeleton surface B, we now fit the muscle surface M in

between S and B, such that the ratio of fat mass (FM) and muscle mass (MM) resembles the values
estimated by our regressors (Section 3.3). We proceed in three steps: First, we transfer the template’s
muscle distribution to the fitted skin and skeleton surfaces, which we call average muscle layer in the
following. Second, we grow and shrink the muscles as much as anatomically and physically plausible,
yielding the minimum and maximum muscle layers. Third, we find a linear interpolation between these two
extremes that matches the predicted fat mass and muscle mass as good as possible.

The average muscle surface is transferred from the scaled template M̄ (Section 3.4.1, Figure 6) by
minimizing an energy consisting of two objectives:

E(M) = wregEreg

(
M,M̄

)
+ wlineEline(M,B,S) . (8)

The first term tries to preserve the shape of the scaled template’s muscle surface M̄ and is modelled using
the regularization energy of Equation (2). The second term preserves the template’s property that each
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Figure 7. Left: When computing the maximum muscle surface, we move muscle vertices toward the skin
by an amount proportional to their muscle potential, which for each vertex is the length of the dotted line
intersected with the muscle. The vertex with the black dotted line defines the maximum allowed stretch in
this example. Right: An example of our minimum and maximum muscle layers for the same target. These
two surfaces define the lower and upper limit for the muscle mass and vice versa for the fat mass.

muscle vertex xMi resides on the line segment from its corresponding skeleton vertex xBi to its skin vertex
xSi , by penalizing the squared distance from that line:

Eline(M,B,S) =
1

2

∑
xi∈M

∥∥∥xi − π
(
xi,x

B
i ,x

S
i

)∥∥∥2
, (9)

where π
(
xi,x

B
i ,x

S
i

)
is the projection of xi onto the line (1 − α)xBi + αxSi , α ∈ [0, 1]. Minimizing (8)

leads to flat abdominal muscles like in the template model, which is unrealistic for corpulent or adipose
subjects, because the majority of body fat resides in two different fat tissues: the subcutaneous fat, which
resides between skin and muscle surface, and the visceral fat, which accumulates in the abdominal cavity,
i.e., under the muscle layer. Since the bulging of the abdomen due to visceral fat causes a bulging of the
belly, we inversely want the abdominal muscles inM to slightly bulge out in case of a belly bulge in the
skin surface S. The latter is a combined effect of visceral and subcutaneous fat in the abdominal region.
We model this effect by adjusting Eline for each vertex xi in the abdominal region. Instead of using the full
interval α ∈ [0, 1], we adjust the lower boundary to αmin = ‖x̄Mi − x̄Bi ‖/‖x̄Si − x̄Bi ‖, i.e., the parameter α
where for the (scaled) template the muscle surface intersects the line. The iterative minimization of (8) is
further detailed in Appendix 1.

Having transferred the average muscle surface, we next grow/shrink muscles as much as possible in order
to define the maximum/minimum muscle surfaces. Since certain muscle groups might be better developed
than others, we perform the muscle growth/shrinkage separately for the major muscle groups, namely upper
legs (including buttocks), lower legs, upper arms, lower arms, chest, abdominal muscles, shoulders, and
back. Muscles are built from fibres and grow perpendicular to the fibre direction. In all cases relevant for us,
the fibres are approximately perpendicular to the direction fromM to S , thus muscle growth/shrinkage will
move vertices xMi along the line from xBi to xSi . The amount of vertex movement along these directions
is proportional to the muscle thickness map of the template (computed in Section 3.2.2). We determine
how much we can grow a muscle before it collides with the skin surface in the thicker parts of the muscle
(instead of close to its endpoints where it connects to the bone). Figure 7 shows an example, where the
leftmost muscle vertex is already close to the skin and would prevent any growth if we took endpoint
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regions into account. For each muscle group, we also define an upper limit for muscle growth that prevents
the muscles from increasing further even if the skin distance is large (e.g., for adipose subjects). For
determining the minimal muscle surface, we repeat the process in the opposite direction (towards the
skeleton surface). To prevent distortions of the muscle surface, we do not set the new vertex positions
directly, but instead use them as target positions ti (using Equation (3)) and regularize with Equation (8).
Figure 7 (right) shows an example of minimum/maximum muscle surfaces computed by this procedure.

We determine the final muscle surfaceM by linear interpolation between the minimum and maximum
muscle surfaces, such that the resulting fat mass FM and muscle mass MM match the values predicted by
the regressors (denoted by FM∗ and MM∗) as good as possible. To this end we have to compute FM and
MM from an interpolated muscle surfaceM. We can compute the volume VFL of the fat layer (between S
andM) and the volume VML of the muscle layer (betweenM and B) and convert these to masses mFL and
mML by multiplying with the (approximate) fat and muscle densities ρF = 0.9 kg/l and ρM = 1.1 kg/l,
respectively.

The resulting masses require some corrections though: First, we have to add the visceral fat (VAT),
which is not part of our fat layer but resides in the abdominal cavity. We estimate the VAT mass mVAT by
computing the difference of the cavity volumes of the scaled template and of the final fit, thereby assuming
a negligible amount of VAT in the template. Second, we subtract the skin mass mskin from the fat layer
mass. We assume an average skin thickness of 2 mm, multiply this by the skin’s surface area and the
density ρF. Third, our fat layer includes the complete reproductive apparatus in the crotch region. This
volume is even larger due to the underwear that was worn during scanning and incorrectly increases the fat
layer mass by mcrotch. Our corrected fat mass is then

FM = mFL +mVAT −mskin −mcrotch. (10)

We correct the muscle mass by subtracting the mass mabd of the abdominal cavity, which is incorrectly
included in the muscle layer. The remaining muscle mass is always too small even when using the
maximum muscle surface, due to all muscles not considered in the muscle layer, such as heart, face, and
hand muscles or the diaphragm. It is known that the lean body mass roughly scales with the squared body
height (Heymsfield et al., 2011), which is the basis of the well known body and muscle mass indices. We
analogously assume the missing muscle mass to be proportional to the squared height h of the subject, i.e.,
mh = kh2, with a constant k to be determined later. The corrected muscle mass is therefore

MM = mML −mabd +mh. (11)

There are other terms like the fat of head, hands, and toes, which could be added, or the volume of blood
vessels and tendons, which could be subtracted. We assume those terms to be negligible.

Since the total volume of the soft tissue layer VST = VML + VFL is constant, the muscle layer mass
mML is coupled to the fat layer mass mFL via mML = (VST − VFL)ρM. We want to compute the fat layer
mass such that the resulting FM and MM minimize the least squares error to the values predicted by the
regressor: E = (FM− FM∗)2

+ (MM−MM∗)2. Inserting (10) and (11) into E, rewriting mML in terms
of mFL, and setting the derivative dE/dmFL = 0 yields the optimal fat layer mass

mFL =
FM∗ −mVAT +mskin +mcrotch + ρ (VST ρM −mabd +mh −MM∗)

1 + ρ2
, (12)

Frontiers 15



Komaritzan et al. Inside Humans

 0

 10

 20

 30

 40

 50

M
a
ss

 i
n
 k

g

Female Subjects

Fat Mass Range

Target Fat Mass

Muscle Mass Range

Target Muscle Mass

Male Subjects

Figure 8. True muscle and fat masses for the female and male subjects of the BeyondBMI dataset, plotted
on top of the possible ranges defined by our minimum and maximum muscle surfaces. Note that our
minimal fat mass is coupled to the maximal muscle mass and vice versa.

with the density ratio ρ = ρM/ρF.

The minimum/maximum muscle surface yields a maximum/minimum fat layer mass. The optimized fat
layer mass is clamped to meet this range, thereby defining the final fat layer mass. We then choose the
linear interpolant between the minimum and maximum muscle surface that matches this fat mass, which
we find through bisection search.

We did this for the scans of 100 men and 100 women from the BeyondBMI dataset (Maalin et al.,
2020), where we know the true values for FM and MM from measurements, and optimized the value
of k for this dataset, yielding kmale = 1.5 and kfemale = 1.0. This is plausible since women in general
have a lower muscle mass. For instance, the average muscle mass of the male subjects in the dataset is
indeed 50% higher than the average MM for the female subjects. The mean absolute errors (MAE) for the
BeyondBMI dataset are MAEMM = 0.37 kg (±0.31), MAEFM = 0.46 kg (±0.38) for the female subjects
and MAEMM = 0.46 kg (±0.39), MAEFM = 0.57 kg (±0.48) for the male subjects. Figure 8 shows how
well our model can adjust to the target values of muscle and fat mass. All values are inside or at least close
to the predicted possible range of minima and maxima. Moreover, in most cases the muscle/fat mass values
for the same person split the two ranges at about an inverse point (e.g., close to maximum muscle and close
to minimum fat), which leads to the low errors stated above.

3.4.4 Transferring Original Anatomical Data
After fitting the skin surface S to the scan and transferring the skeleton surface B and the muscle surface
M into the scan, the final step is to transform the high-resolution anatomical details (Zygote’s bone and
muscle models in our case) from the volumetric template to the scanned subject. We implement this in
an efficient and robust manner as a mesh-independent space warp d : R3 → R3 that maps the original
template’s skin surface Ŝ , muscle surface M̂, and skeleton surface B̂ (all marked with a hat) to the scanned
subject’s layer surfaces S ,M, and B, respectively. All geometry that is embedded in between these surfaces
will smoothly be warped from template to scan.

Dicko et al. (2013) also employ a space warp for their anatomy transfer, which they discretized by
interpolating values dijk on a regular 3D grid constructed around the object. Their space warp is computed
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by interpolating the skin deformation Ŝ 7→ S on the boundary and being harmonic in the interior (i.e.,
∆d = 0), which requires the solution of a large sparse Poisson system for the coefficients dijk.

We follow the same idea, but use a space warp based on triharmonic radial basis functions (RBFs) (Botsch
and Kobbelt, 2005), which have been shown to yield higher quality deformations with lower geometric
distortion than many other warps (including FEM-based harmonic warps) (Sieger et al., 2013). The RBF
warp is defined as a sum of n RBF kernels and a linear polynomial:

d(x) =
n∑

j=1

wjϕj(x) + aTx + b, (13)

where wj ∈ R3 is the coefficient of the jth radial basis function ϕj(x) = ϕ(‖x− cj‖), which is centered
at cj ∈ R3. As kernel function we use ϕ(r) = r3, leading to highly smooth triharmonic warps (∆3d = 0).
The term aTx + b is a linear polynomial ensuring linear precision of the warp.

In order to warp the high-resolution bone model from the template to the scan, we setup the RBF warp to
reproduce the deformation B̂ 7→ B. To this end, we select 5000 vertices x̂i ∈ B̂ from the template’s skeleton
surface by farthest point sampling. The corresponding vertices on the scan’s skeleton surface are denoted
by xi ∈ B. At these vertices x̂i the deformation function d(x̂i) should interpolate the displacements
di = xi − x̂i. These constraints lead to a dense, symmetric, but indefinite (n+ 4)× (n+ 4) linear system,
which we solve for the coefficients w1, . . . ,wn, a, b using the LU factorization of Eigen (Guennebaud
et al., 2018); see (Sieger et al., 2013) for details. The resulting RBF warp d then transforms each vertex x
of the high-resolution bone model as x← x+d(x). Note that this process can trivially be parallelized over
all model vertices, which we implement using OpenMP. For warping the high-resolution muscle model we
follow the same procedure, but collect 7000 constraints from the vertices x̂i ∈ S ∪M of the skeleton and
muscle surfaces, since these enclose the muscle layer.

4 RESULTS AND APPLICATIONS
Generating a personalized anatomical model for a given surface scan of a person consists of the following
steps: First, the surface template is registered to the scanner data (triangle mesh or point cloud) as described
in Section 3.1 and Achenbach et al. (2017). After manually selecting 10–20 landmarks, this process
takes about 50 sec. Fitting the surface template establishes dense correspondence with the surface of
the volumetric template and puts the scan into the same T-pose as the volumetric template. Fitting the
volumetric template by transferring the three layer surfaces (Sections 3.4.1, 3.4.2, 3.4.3) takes about 15 sec.
Transferring the high-resolution anatomical models of bones and muscles (145k vertices) takes about
4.5 sec for solving the linear system (which is an offline pre-processing) and 0.5 sec for transforming the
vertices (Section 3.4.4). Timings were measured on a desktop workstation, equipped with an Intel Core i9
10850K CPU and a Nvidia RTX 3070 GPU.

Dicko et al. (2013) and Kadleček et al. (2016) are the two approaches most closely related to ours. Dicko
et al. (2013) also use a space warp for transferring anatomical details, but since they only use the skin
surface as constraint, the interior geometry can be strongly distorted. To prevent this, they restrict bones
to affine transformations, which, however, might still contain unnatural shearing modes and implausible
scaling. Our space warp yields a higher smoothness due to the use of C∞ RBF kernels instead of C0

trilinear interpolation and reduces unnatural distortion of bones and muscles by using three layer surfaces
as constraints instead of the skin surface only and by optimizing these layers w.r.t. anatomical distortion.
In Figure 9 we compare the result of warping the anatomical structures using a harmonic basis and 7000
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Figure 9. Result of transferring the anatomy by using just the skin layer and a harmonic basis (left). Here,
both muscles and bones deform too much to fit overweight targets. We use the additional muscle and
skeleton layer and a triharmonic basis (right) to prevent unnatural deformations.

centers from only the skin surface to our three-layered, triharmonic warp result. The former does show
drastic and unrealistic deformations of both muscles and bones while our approach solves those issues.
Note that additionally restricting the bones to affine transformations like Dicko et al. (2013) would still
produce unnaturally thick bones (e.g. the upper leg bone) and muscles.

Compared to Kadleček et al. (2016), we require a single input scan only, since we infer (initial guesses
for) joint positions and limb lengths from the full-body PCA of Achenbach et al. (2017). Putting the scan
into T-pose prevents us from having to solve bone geometry and joint angles simultaneously, which makes
our approach much faster than theirs (15 sec vs. 30 min). Moreover, our layered model yields a conforming
volumetric tessellation with constant and homogeneous per-layer materials, which more effectively prevents
bones from penetrating skin or muscles. In their approach the rib cage often intersects the muscle layer for
thin subjects as mentioned by Kadleček et al. (2016) in the limitations and shown in Figure 12 (bottom
row) of their work. Furthermore, we automatically derive the muscle/fat body composition from the surface
scan, which yields more plausible results than growing muscles as much as possible (Kadleček et al., 2016),
since the latter leads to more corpulent people always having more muscles. Our model extracts the amount
of muscle and fat using data of real humans and can therefore adopt to the variety of human shapes (low
FM and high MM, high FM and low MM, and everything in between). Finally, we support both male
and female subjects by employing individual anatomical templates and muscle/fat regressors for men and
women.

4.1 Evaluation on Hasler Dataset
In order to further evaluate the generalization abilities of the linear FM/MM models (Section 3.3) to other

data sources, we estimate FM and MM for a subset of registered scans from the Hasler dataset (Hasler
et al., 2009) and measure the prediction error. We selected scans of 10 men and 10 women, making sure to
cover the extremes of the weight, height, fat, and muscle percentage distribution present in the data.

For the female sample, the predictions show a mean absolute error of MAEFM = 0.65 kg (±0.44) and
MAEMM = 4.39 kg (±1.71). For the male sample, the model shows a similar error for the MM prediction,
but performs worse at predicting FM: MAEFM = 3.32 kg (±1.98) and MAEMM = 4.14 kg (±2.74).
Compared to the leave-one-out tests on the BeyondBMI data, the average error increases noticeably, which
can partly be explained by differences in the measurement procedure between the two datasets: While
Hasler et al. (2009) used a consumer-grade body fat scale, Maalin et al. (2020) used a medical-grade scale,
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Figure 10. Some examples for various male body shape types. For each input surface the transferred
muscles and skeleton are shown in front and side view.
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Figure 11. Some examples for various female body shape types. For each input surface the transferred
muscles and skeleton are shown in front and side view.
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which should lead to more accurate measurements. Nevertheless, these results show that our regressor
generalizes well to other data sources, providing a simple and sufficiently accurate method for estimating
FM and MM from body scans.

Given the FM and MM values of a target from our regressor, we choose the optimal muscle surface
between the minimal and maximal muscle surface as explained in Section 3.4.3. Comparing the final
FM and MM of the volumetric model to the ground truth measurements of the Hasler dataset we get
end-to-end errors of MAEFM = 0.70 kg (±0.52), MAEMM = 4.19 kg (±1.39) (female) and MAEFM =
3.49 kg (±2.02), MAEMM = 3.81 kg (±2.56) (male). This evaluation shows that the additional error
induced by fitting the muscle layer is very low.

4.2 Evaluation on CAESAR Dataset
In order to demonstrate the flexibility and robustness of our method, we evaluate it by generating

anatomical models for all scans of the European Caesar data set (Robinette et al., 2002), consisting of 919
scans of women and 777 scan of men, with height range 131–218 cm for men and from 144–195 cm for
women (we restricted to scans with complete annotation and taken in standing pose). A few examples for
men and women can be seen in Figure 10 and Figure 11.

For the about 1700 CAESAR scans, our muscle and fat mass regressors yield just one slightly negative
value for the fat mass of the thinnest male (body weight 48 kg, height 1.72 m, BMI 16.14 kg/m2). For
all other subjects, we get values ranging from 3.5–38.9 % body fat (mean 20.3 %) for male subjects
and 8–45.3 % (mean 28.9 %) for female subjects. The range of predicted muscle masses is 24.9–57.8 kg
(men) and 20.1–37.7 kg (women). When determining the optimal interpolation between the minimum
and maximum muscle layer (Section 3.4.3) we meet the estimated target values up to mean errors
MAEFM = 1.08 kg (±0.9) (male), MAEFM = 1.41 kg (±1.35) (female) and MAEMM = 0.88 kg (±0.74)
(male), MAEMM = 1.15 kg (±1.11) (female). Note that even the scan with predicted negative FM can
be reconstructed robustly. In this case the muscle surface will be the maximum muscle surface, which in
general is a suitable estimate for very skinny subjects.

The CAESAR dataset does not include ground truth data for fat and muscle mass of the scanned
individuals. Thus, in order to further evaluate the plausibility of our estimated body composition, we
compare it to known body fat percentiles. Percentiles are used as guidelines in medicine and provide
statistical reference values one can compare individual measurements to. For instance, a 10th percentile of
20.8% body fat means that 10% of the examined population have a body fat percentage less than 20.8%.
Assuming that the European CAESAR dataset is a representative sample of the population, the percentiles
we get from our reconstructions of the CAESAR scans should match the percentiles of the European
population. We compared the values produced by our fat and muscle mass regressors (Section 3.3) to Kyle
et al. (2001), who measured body fat using 4-electrode bio-electrical impedance analysis from 2735 male
and 2490 female western European adults. Our body fat percentiles on the CAESAR dataset are very well
in agreement with their results, as shown in the following table:

Percentile 5th 10th 25th 50th 75th 90th 95th

Male
Our estimate 10.2 12.3 16.0 20.3 24.6 28.1 30.7

Kyle et al. (2001) 10.9 12.6 15.7 19.2 23.5 27.0 29.2

Female
Our estimate 18.6 21.1 24.7 28.5 33.7 37.4 39.3

Kyle et al. (2001) 18.5 20.8 23.8 28.1 32.6 37.5 40.5
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a) b) c)

Figure 12. Our layered anatomical model can be animated using an extension of Fast Projective Skinning
(FPS), as shown in (a). When the character performs a jump to the left (b), our realistic skeleton correctly
restricts the dynamic jiggling to the belly region (b-left), while the original FPS deforms the complete
torso (b-right). For a static twist of the torso (c), the rib-cage of our layered model keeps the chest region
rather rigid and concentrates the deformation to the belly (c-left). Without a proper anatomical model, the
deformation of FPS is distributed over the complete torso (c-right).

4.3 Physics-Based Character Animation
One application of our model is simulation-based character animation (Deul and Bender, 2013;

Komaritzan and Botsch, 2018, 2019), where the transferred volumetric layers can improve the anatomical
plausibility. We demonstrate the potential by extending the Fast Projective Skinning (FPS) of Komaritzan
and Botsch (2019). FPS already uses a simplified volumetric skeleton built from spheres and cylinders,
a skeleton surface wrapping this simple skeleton, and one layer of volumetric prism elements spanned
between skin and skeleton surface. Whenever the skeleton is posed, the vertices of the skeleton surface are
moved, and a projective dynamics simulation of the soft tissue layer updates the skin surface.

We replace their synthetic skeleton by our more realistic version and split their soft tissue layer into our
separate muscle and fat layers. This enables us to use different stiffness values for the fat and muscle layers
(the latter being three times larger). Moreover, our skeleton features a realistic rib-cage, whereas FPS only
uses a simplified spine in the torso region. As a result, our extended version of FPS yields more realistic
results in particular in the torso and belly region, as shown in Figure 12.

4.4 Simulation of Fat Growth
Our anatomical model can also be used to simulate an increase of body fat, where its volumetric nature

provides advantages over existing surface-based methods.

In their computational bodybuilding approach, Saito et al. (2015) also propose a method for growing fat.
They, however, employ a purely surface-based approach that conceptually mimics blowing up a rubber
balloon. This is modelled by a pressure potential that drives skin vertices outwards in normal direction,
regularized by a co-rotated triangle strain energy. The user can (and should) specify a scalar field that
defines where and how strong the skin surface should be “blown up”, which is used to modulate the
per-vertex pressure forces. Despite the regularization we sometimes noticed artifacts at the boundary of the
fat growing region and therefore add another regularization through Equation (2). This approach allows the
user to tune the amount of subcutaneous fat, but unless a carefully designed growth field is specified, the
fat growth looks rather uniform and balloon-like (see Figures 10, 11 in Saito et al. (2015)).

Every person has an individual fat distribution and gaining weight typically intensifies these initial fat
depots. We model this behavior by scaling up the local prism volumes of our fat layer. Each fat prism can
be split into three tetrahedra, which define volumetric elements tj ∈ T with initial volumes V̄j . A simple
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Figure 13. Given a reconstructed model (left), the pressure-based fat growth of Saito et al. (2015) leads to
a more uniform increases in fat volume (center), while our volume-based fat growth increases the initial fat
distribution.

Figure 14. Examples of our fat growth simulation, with input models shown in the top row and their
weight-gained version in the bottom row.
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Figure 15. Examples of “fat transfer”. The two subjects (top/bottom) on the left have a very low amount
of body fat. Therefore, scaling their fat volumes is not suitable for fat growth. Instead, we copy the fat
distributions of other subjects (shown as small insets) and transfer them to the skinny targets.

uniform scaling s · V̄j achieves the desired effect that fat increases more in fat-intense regions. The growth
simulation is implemented by minimizing the energy

Egrow(S) = wvolEvol(S) + wregEreg

(
S, S̄

)
+ wrestErest

(
S, S̄

)
(14)

with the Laplacian regularization of Equation (2), the displacement regularization

Erest

(
S, S̄

)
=
∑
xi∈S

Ai ‖xi − x̄i‖2 (15)

and the volume fitting term
Evol(S) =

∑
tj∈T

V̄j
(
vol(tj)− s · V̄j

)2
, (16)

where S̄ and S denote the skin surface before/after the fat growth and s is the global fat scaling factor.
Saito et al. (2015) argued that anisotropically scaling fat tetrahedra in one direction does not produce
plausible results. However, isotropically scaling the volume leaves the minimization more freedom and
yields convincing results. Figure 13 compares the pressure-based and volumetric fat growth simulations.
Figure 14 shows some more examples produced by combining both methods.

Our volume-based fat growth has another advantage: If we want to grow fat on a very skinny person,
the initial (negligible) fat distribution does not provide enough information on where to grow fat, such
that both approaches would do a poor job. But since we can easily fit the volumetric template to several
subjects, we can “copy” the distribution of fat prism volumes from another person and “paste” it onto
the skinny target, which simply replaces the target volumes in (16). This enables to fat transfer between
different subjects, which is shown in Figure 15.
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5 CONCLUSION
We created a simple layered volumetric template of the human anatomy and presented an approach for
fitting it to surface scans of men and women of various body shapes and sizes. Our method generates
plausible muscle and fat layers by estimating realistic muscle and fat masses from the surface scan alone.
In addition to the layered template, we also showed how to transfer internal anatomical structures, such
as bones and muscles, using a high-quality space warp. Compared to previous work, our method is fully
automatic and considerably faster, enabling the simple generation of personalized anatomical models from
surface body scans. Besides educational visualization, we demonstrated the potential of our model for
physics-based character animation and anatomically plausible fat growth simulation.

Our approach has some limitations: First, we do not generate individual layers for head, hands and toes,
where in particular the head would require special treatment. Combining our layered body model with
the multi-linear head model of Achenbach et al. (2018) is therefore a promising direction for future work.
Second, our regressors for fat and muscle mass could be further optimized by training on more body scans
with known body composition. Given more and more accurate training data, as for instance provided by
DXA scans, we could extend the fat/muscle estimations to individual body parts. Third, we do not model
tendons and veins. Those would have to be included in all layers and could be transferred in the same way
as high-resolution muscle and bone models. Fourth, the fact that the three layers of our model share the
same topology/connectivity can also be considered a limitation, since we cannot use different, adaptive
mesh resolutions in different layers. A promising direction for future work is the use of our anatomical
model for generating synthetic training data for statistical analysis and machine learning applications,
where the simple structure of our layered model can be beneficial.
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Ichim, A.-E., Kadleček, P., Kavan, L., and Pauly, M. (2017). Phace: Physics-based face modeling and

animation. ACM Transactions on Graphics 36, 153:1–153:14
Ichim, A.-E., Kavan, L., Nimier-David, M., and Pauly, M. (2016). Building and animating user-specific

volumetric face rigs. In Symposium on Computer Animation. 107–117
Jackson, A. S. and Pollock, M. L. (1985). Practical assessment of body composition. The Physician and

Sportsmedicine 13, 76–90
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1 APPENDIX: IMPLEMENTATION DETAILS
For minimization of the energies (1), (5), and (8), we use the projective framework of (Bouaziz et al., 2012,
2014a), implemented through an adapted local/global solver from the ShapeOp library (Deuss et al., 2015).
It has the advantages of being unconditionally stable, easy-to-use and flexible enough to handle a wide
range of energies. Here we give the weights for the different energy terms and give implementation details.

We fit the skin surface S to the skeleton wrapW by minimizing (1), restated here:

B = arg min
X

wfitEfit(X ,W) + wregEreg

(
X , X̄

)
.

We first initialize X with S and set wreg = wfit = 1. When the minimization converges, we update the
initial Laplacians ∆x̄i in (2) to the Laplacians ∆xi of the current solution X and decrease wreg by a factor
of 0.1. This is repeated until wreg reaches 10−7. In order to speed up the fitting process, we first remove
high frequency details of the skin surface (e.g., nipples and navels) by Laplacian smoothing (Botsch et al.,
2010) before computing the initial Laplacians ∆x̄i. Since we exclude head, hands, and toes from the
layered template, those regions are fixed throughout the whole process.

For fitting the skeleton surface of the template to a surface scan, we minimize Equation (5)

E(B) = wregEreg

(
B, B̄

)
+ wfleshEflesh(B,S) + wcollEcoll(B,S) ,

where Eflesh penalizes deformations of individual prisms but allows some stretching in the direction from
skeleton to skin. In order to use this energy in the projective framework, we have to determine the amount
of stretching α for each prism in S̃p = diag(1, 1, α). Given the polar decomposition Fp = RpSp of a
prism’s deformation gradient, the stretching is given by α =

(
BT

pSpBp

)
3,3

. This is clamped to the range
[αmin, αmax]. We use αmin = 0.2 and αmax = 5.0 to allow stretching and compression of the element by a
factor of five before the energy of this element increases. We set the weights wreg = 0.1, wflesh = 0.01,
and wcoll = 50. The minimization is iterated until convergence, meaning that for a fixed set of iterations
the decrease of the energy falls below some threshold. In the converged state, we detect collisions and start
the minimization again until convergence. This is repeated until no collisions are found in a converged
solution. For all of our subjects, the minimization always converged within less than 20 iterations.

In order to fit the templates muscle surface to the target, we perform the minimization of (8)

E(M) = wregEreg

(
M,M̄

)
+ wlineEline(M,B,S) .

We initializeM with M̄ and set wreg = 0.01, wline = 1.0. When the minimization converges, we update
the Laplacians in Ereg to those of the current solution and decrease wreg by a factor of 0.5. This is iterated
until the maximal distance of a vertex to its bone-to-skin line (see (9)) is less than 0.2 mm. Lastly, we
project each vertex onto its corresponding bone-to-skin line to get a perfect alignment.
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