
Realistic Virtual Humans from Smartphone Videos
Stephan Wenninger

Computer Graphics Group
TU Dortmund University

Jascha Achenbach
Computer Graphics Group

Bielefeld University

Andrea Bartl
HCI Group

Würzburg University

Marc Erich Latoschik
HCI Group

Würzburg University

Mario Botsch
Computer Graphics Group
TU Dortmund University

Figure 1: From monocular smartphone videos we generate realistic virtual humans that can readily be used in game engines.

ABSTRACT
This paper introduces an automated 3D-reconstruction method
for generating high-quality virtual humans from monocular smart-
phone cameras. The input of our approach are two video clips, one
capturing the whole body and the other providing detailed close-
ups of head and face. Optical flow analysis and sharpness estimation
select individual frames, from which two dense point clouds for the
body and head are computed using multi-view reconstruction. Au-
tomatically detected landmarks guide the fitting of a virtual human
body template to these point clouds, thereby reconstructing the
geometry. A graph-cut stitching approach reconstructs a detailed
texture. Our results are compared to existing low-cost monocular
approaches as well as to expensive multi-camera scan rigs. We
achieve visually convincing reconstructions that are almost on
par with complex camera rigs while surpassing similar low-cost
approaches. The generated high-quality avatars are ready to be
processed, animated, and rendered by standard XR simulation and
game engines such as Unreal or Unity.
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1 INTRODUCTION
Virtual humans provide promising applications in digital and in-
teractive media, from entertainment, e.g., movies and gaming, to
computer-mediated social interaction, or serious applications in
simulation or medical areas in Virtual, Augmented and Mixed Real-
ity (VR, AR, and MR; in short XR). An important aspect of several
of these use cases is the believability of virtual humans. This seems
obvious for synthetic actors used in movies, e.g., in Locker [22],
Rendez-vous in Montreal [45] or the late Star Wars saga [25]. How-
ever, it also was demonstrated to be important for the general
perception of virtual humans [60] either as virtual agents or avatars
(see for instance [11]).
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Believability of virtual humans encompasses three distinct levels
of modeling: (i) realistic appearance, (ii) realistic motion, and (iii) re-
alistic high-level behaviors [46]. While virtual agents are simulated
and controlled by algorithms or pre-recorded animations, avatars,
as digital alter-egos of users in virtual worlds, are interactively
controlled by the users. Hence (i), realistic appearance modeling, is
important for both, realistic virtual agents as well as for avatars. It
is central, though, for realistic avatars of one self [59] as well as of
others’ [41] given a direct avatar control scheme by a reliable, i.e.,
accurate and fast full-body motion tracking system [56] to cover
levels (ii) and (iii).

Several approaches for modeling realistic appearances of vir-
tual humans exist today, from hand-crafted optimizations to 3D-
reconstructions of real humans based on laser scanning, structured
light scanning, or multi-view stereo. Reconstructed shapes have
to be combined with high-quality textures as well as with suitable
skeletal rigs and blendshapes for animation or tracking [56]. The
results vary in terms of time, effort, and faithfulness of reproduc-
tion and depend on sensor accuracy, reconstruction principle, and
degree of automatism.

Recent approaches based on an automated template matching
(e.g., [2, 29]) achieve good reproduction results within 10–20 min-
utes. However, they depend on elaborated RGB camera rigs con-
sisting of multiple dozens to a hundred of interconnected and syn-
chronized camera devices, which results in complex and expensive
setups. This paper presents a fully automated pipeline for creating
highly detailed, animation-ready 3D avatars from a low-cost setup
employing only a smartphone camera. The faithfulness of our vir-
tual humans is largely comparable to reconstructions from more
elaborated setups, and they are compatible with standard game
and/or XR engines and frameworks. Since the overall complexity
of the sensor equipment as well as the overall costs are drastically
reduced, our approach opens up many more of the use cases of
virtual humans in digital and interactive media applications.

2 RELATEDWORK
As an alternative to reconstructing avatar models, one can record,
transmit, and render streams of depth images from RGBD cam-
eras, which creates believable reproductions of recorded users [43].
However, the quality of reproduction crucially depends on a suf-
ficient resolution in both the spatial, color, and temporal domain
of the employed RGBD cameras, which, as of today, still are signif-
icantly lower compared to dedicated high-quality sensors. Some
performance capture approaches fuse RGBD streams from one or
multiple sensors into a volumetric representation from which a
textured mesh is extracted [23, 32]. These methods are template-
free, i.e., they do not include a prior of human performances, and
thus allow realtime reconstruction of challenging scenes of people
interacting with objects. However, these approaches are restricted
to mere reproductions of human performances, whereas full 3D
virtual humans allow for more flexibility due to their separation of
static geometry and appearance from dynamic animation.

Virtual human models can be reconstructed at a high degree of
realism by utilizing sensors that are optimized for spatial and color
resolution, such as multi-view stereo images, RGB video streams,
or laser scans. High temporal resolution for capturing dynamic

performances can then be delivered by dedicated motion tracking
solutions. Reconstructions of virtual humans have to recombine
geometric shape and accurate textures for high-quality appearance,
as well as skeletal rigs and facial blendshapes for animation or
tracking [56].

Today, such approaches usually exploit template models to guide
the reconstruction process, see, e.g., Egger et al. [26] and Zollhöfer
et al. [61] for face reconstructions. Similarly, human body models,
such as the SCAPEmodel [9], have been used as template models for
full body reconstruction (see, e.g., [52]). Latermodels like SMPL [44],
SMPL-H [55], or SMPL-X [49] provide additional features like linear
blend skinning, hand and finger movements, or facial expressions.

Highest quality avatar reconstructions are achieved using elab-
orated multi-camera rigs with high-quality image sensors, which
often consist of dozens to over a hundred DSLR cameras. Through
multi-view stereo these approaches accurately reconstruct both ge-
ometry and texture (see, e.g., [44, 53]). The virtual humans of Feng
et al. [29] and Achenbach et al. [2] are reconstructed from such
camera rigs (in 20 and 10minutes, respectively) and feature skeleton-
based body and hand animation as well as blendshape-based facial
expressions. However, their complex hardware setup restricts the
availability (and hence applicability) of their approaches.

Template-based human body models can also be generated from
consumer-level RGBD sensors (e.g., [13]), but the low spatial reso-
lution and limited image quality leads to rather low-quality recon-
structions. Malleson et al. [47] therefore use an RGBD sensor in
combination with a stereo RGB camera pair, but their avatars are
still of rather low quality, lack facial details, and reconstruct the
body in a stylized manner only. Lowering hardware requirements
to the extreme, several learning-based techniques reconstruct 3D
body models from a single RGB/RGBD input image or sequence of
video frames [14, 27, 38, 39, 48]. However, these methods optimize
parameters of a low-dimensional body model only, without consid-
ering fine-scale per-vertex displacements, which inherently limits
the accuracy of the shape reconstruction. Moreover, they all do not
consider texture reconstruction, which is crucial for realistic avatar
appearance. Alldieck et al. [8] reconstruct textured avatars from
a single image, by synthesizing normal/displacement maps from
a partial texture calculated through DensePose [31] and mapping
them onto the SMPL model. Limiting the input to a single image,
however, inevitably restricts the faithfulness of the reconstruction.

Alldieck et al. [5, 6] therefore reconstruct a textured and animat-
able avatar from a monocular RGB video that captures a subject
turning 360 degrees in A-pose. Their model is based on SMPL,
which is fitted to the subjects silhouettes, extracted by CNN-based
semantic segmentation, in a subset of the video frames. The shape is
further refined using shape-from-shading techniques and an albedo
texture is generated via a per-texel graph cut optimization with a
semantic prior [6]. In follow-up work, Alldieck et al. [7] estimate
the SMPL parameters from only 1–8 input images, based on a neural
network that incorporates semantic segmentation and estimated
2D landmarks. The texture is again generated via [6]. While their
approaches reconstruct full avatars from consumer-level input, we
show that our approach leads to higher accuracy and realism. Our
approach is inspired by Ichim et al. [36], who generate a quite ac-
curate personalized head model from a smartphone selfie video.
From this video they reconstruct a dense point cloud, to which
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they fit a parametric template model. We extend their ideas to the
challenging case of full-body avatars with detailed hands and faces.

Template-based performance capture methods employ an actor-
specific model for tracking the movements of a person. For instance,
Habermann et al. [33] generate this model by capturing an RGB
video of the actor in static pose, extracting around 70 frames, recon-
structing a textured mesh through photogrammetry, manually em-
bedding a skeleton, and computing rigging weights using Blender.
Our approach can act as a fully automatic alternative to their pre-
processing stage. Besides providing more geometric details and
animation controllers (fingers, facial expressions), it has the advan-
tage that all actor models share the connectivity of the template
mesh, allowing for statistical regularization.

The discussed reconstruction methods differ significantly in the
faithfulness of their resulting models and in their costs, including
hardware requirements and the amount of manual intervention
needed. High-quality results with few manual intervention is of-
fered by complex multi-camera rigs, like the one used in Achenbach
et al. [2]. In contrast, the approaches of Alldieck et al. [5, 6, 7] require
a single affordable camera only, but the quality of their reconstruc-
tions is considerably lower than the one achieved by multi-camera
rigs. In this paper we describe a method that combines the advan-
tages of both approaches, generating high-quality fully animatable
virtual humans from video sequences captured by a consumer-level
monocular smartphone camera.

3 METHOD
Our avatar generation is inspired by the smartphone-based head
scanning of [36] and builds on our previous work on Fast Gener-
ation of Realistic Virtual Humans (abbreviated as FGVH ) [2]. We
combine and closely follow these two approaches, but extend them
in several important aspects in order to enable full-body avatar
reconstructions from simple monocular smartphone videos.

In FGVH [2] we scanned people using two custom-built single-
shot multi-camera rigs: a full-body scanner and a face scanner, con-
sisting of 40 and 8 DSLR cameras, respectively. Given the camera
images, a multi-view stereo reconstruction computes two high-
quality point clouds for body and face, to which a human body
template is fitted using nonrigid (or deformable) registration. Since
the holistic template model features a detailed skeleton for body
and hands as well as eyes, teeth, and facial blendshapes, the recon-
structed virtual humans are ready for animation in XR simulation
and game engines. The main drawback of FGVH is the extensive
hardware setup, an issue shared by several character reconstruc-
tion/tracking methods [29, 37, 44].

In order to make 3D-scanning and avatar generation available
to a wider range of people, we considerably lower the hardware
requirements and employ a consumer smartphone camera only. We
take two video clips of a person, the first one capturing the full
body, the second one capturing the head of the subject. From these
video clips we automatically select individual frames using optical
flow analysis and sharpness estimation (Section 3.1) and compute
two dense point clouds for the body and head using multi-view
stereo reconstruction (Section 3.2), thereby resembling the body
and face scan of FGVH. We then pose and deform a human body
template to closely fit the body and face point clouds (Section 3.4)

Figure 2: Camera locations for the full-body scan, consist-
ing of two orbits around the scanned subject (left), and head
scan, taking a close-up of the head/face region (right).

and guide this process by a couple of feature landmarks. In contrast
to FGVH, where landmarks in the point clouds are manually picked,
our landmark detection is fully automatic (Section 3.3). When recon-
structing the model’s texture from the input frames, we cannot rely
on standard multi-view reconstruction because of imperfections in
our input data. Instead, we employ a graph cut texture stitching
approach, which yields visually superior results (Section 3.5).

3.1 Input Data
Previous works on monocular reconstruction [6, 7] facilitate avatar
creation from low-cost setups by taking one video that captures
the full body of the person. However, we noticed (analogous to
FGVH) that a separate head scan greatly improves the quality and
detail of the avatar’s head region. One approach for acquiring a
close-up scan of the head would be to simply include it in the video
for the full-body scan. However, since we employ a multi-view-
stereo approach, we rely on the person holding as still as possible
during the capture process. Increasing the length of the video by
including a detailed scan of the head would imply more motion
of the scanning subject and stronger violate the multi-view-stereo
assumption.

Instead, we take two videos of the person, the first one capturing
the full body in A-pose from a slight distance and the second one
capturing the head in a close-up fashion. For the full-body video, the
smartphone camera is moved (by a second person) in two circular
paths around the scanned subject: The first camera path captures
the upper body (head, torso, arms), the second one the lower body
(hips, legs, feet). The head scan consists of one circular camera
motion around the subject’s head and additionally films the top of
the head and the region under the chin (Figure 2).

Our input videos are shot at 4 k resolution (3840×2160) and 30 Hz
frequency on a Google Pixel 3. Experiments with other smartphones
capable of capturing 4 k videos gave similar results. The full-body
video takes about 80 s and the head video about 30 s. The scanned
subjects cannot hold perfectly still for this long, but we found that
we could still employ a multi-view stereo approach and produce
point clouds of sufficient quality.

To this end we first select N frames of the input video, which are
then processed by the multi-view stereo reconstruction (Agisoft
Metashape [4] in our case) in order to compute the point clouds
for the subsequent template fitting pipeline. Using all frames of the
input video would rapidly exceed the capabilities of the photogram-
metry software. Our experiments revealed that extracting N = 75
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images from the full-body video and N = 50 images from the head
video is a good trade-off between computation time and resulting
point cloud quality.

Simply extracting every n-th video frame would not account for
any non-uniform camera movement by the person performing the
scan. To simplify the capturing process while ensuring a uniform
coverage of the scanned subject, we instead extract frames based
on a uniform inter-frame movement, which we estimate through
optical flow analysis using the implementation of Farnebäck [28] in
OpenCV [18]. This yields a dense 2D flow field f i representing the
movement between frames i and i + 1, from which we estimate the
amount of movement fi as the average length of the 2D flow vectors
in f i . We treat the resulting inter-frame movements fi as a noisy
1D signal and smooth it by convolution with a Gaussian kernel
(σ = 2) to compute filtered movement estimates f̃i . We then iterate
through the video and select a new frame once the accumulated
movement between it and the previously selected frame reaches
the threshold 1

N
∑
i f̃i . This defines a set of frames with uniform

movement in between them.
We noted, however, that frames selected by the above procedure

might be blurry either due to motion blur or the camera being in the
process of adjusting the focus. We eliminate this problem by finding
the sharpest frame in thek-neighborhoodNk of each selected frame
(k = 5 in our experiments). We estimate sharpness as the variance
of the Laplacian of the input image [50] and select the frame in
Nk (i) with the highest value. We finally change the orientation of
the selected frames according to the EXIF metadata of the video
and pass the selected frames {I1, . . . , IN } to the photogrammetry
reconstruction.

3.2 Point Cloud Generation
The photogrammetry software Agisoft Metashape [4] proceeds in
several steps: First, feature points are detected and matched in be-
tween individual input images. Based on these sparse (but reliable)
points, the intrinsic and extrinsic camera parameters are computed
for each input image. Finally, given the camera calibration, the
dense point cloud is computed.

For the last step, the software allows to restrict the computation
of the dense point cloud to an oriented bounding box. This will
speed up not only the photogrammetry algorithm, but also all
subsequent steps of our pipeline, because the resulting point cloud
consists of fewer points. In contrast to FGVH, we cannot rely on a
pre-calibrated camera setup and, thus, cannot rely on a constant
scanning volume of interest.

However, we know that the camera positions provided by the
extrinsic camera calibration enclose the scanned subject, hence we
can use them to estimate the bounding box. We first determine
an oriented box through PCA of the camera positions, where by
design of our camera trajectory (see Figure 2) the first two principal
directions e1 and e2 span the least-squares fitting plane through
the camera locations, and e3 corresponds to its normal, i.e., the
up-direction. From the camera box extent in directions e1 and e2
we can estimate the subject’s arm span and, since the arm span of
humans roughly corresponds to their height, also the height of the
bounding box. The bounding box of the head scan is determined in
a very similar manner.

Figure 3: Comparison of full-body (left column) and
face/head (right column) point clouds between FGVH (top
row) and our approach (bottom row). Our point clouds are
more noisy, less detailed, and more likely to have missing
data (e.g., in the arm region).

After specifying the two bounding boxes, Agisoft Metashape
computes dense point clouds from the selected input camera images,
leading to a point cloud PB for the full body scan (ca. 2.8 M points)
and a point cloud PH for the head scan (ca. 1.6 M points). Due to
the lower resolution of our smartphone camera and the inevitable
slight motion of the scanned subject during the capture process,
our point clouds are more noisy and more likely to have missing
data than the point clouds in FGVH (see Figure 3 for a comparison).

3.3 Landmark Detection
The template fitting procedure (Section 3.4) is boot-strapped and
guided by feature landmarks on the point clouds PB and PH . While
in FGVH landmarks in the reconstructed point clouds are manually
selected, we propose a fully automatic landmark detection.

In order to automatically detect these landmarks, we employ the
landmark estimation of OpenPose [21] to all input images, which
gives us for each image up to 135 landmarks (including confidence
values ci ): 25 full-body landmarks defining a 2D skeleton, 21 land-
marks per hand, and 68 facial landmarks. The detected landmarks
have to be filtered in order to deal with unreliable detections. We
address this issue by discarding all detections that belong to skele-
tons with less than 4 detected bones or which exhibit a maximum
confidence value lower than 0.5.
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Figure 4:Weuse 15 landmarks on the full-body scan for guid-
ing the template fitting process. The location of these land-
marks is visualized here on the template mesh.

For the full-body point cloud PB we only use a small subset of 15
landmarks (shown in Figure 4), since not all of the 135 landmarks
can be reliably back-projected from their 2D image location onto
the 3D point cloud (using the camera calibration data from the pho-
togrammetry reconstruction). However, this subset turned out to
be fully sufficient for guiding the full-body template fitting process.

Since each of the required 15 landmarks might have been de-
tected in several input images, we have to select the one that allows
for themost robust back-projection from 2D image coordinates onto
the 3D point cloud PB . We choose the most suitable image based
on the following heuristics: Hand and ear landmarks should be
back-projected from images orthogonal to the sagittal plane, while
heel, nose, mouth, and eye landmarks should be back-projected
from images orthogonal to the frontal plane of the human body.

Images orthogonal to the sagittal plane are found by examining
the shoulder landmarks. These exhibit a small lateral distance in
suitable images (see Figure 5). The distinction between the left and
right side of the sagittal plane is done based on the confidence
values for the left and right finger and ear landmarks.

For finding suitable images for the heel landmark projection,
we look for several characteristics: For one, the left and right heel
landmarks have to be located on the left and right side of the image,
respectively. However, OpenPose mislabels left and right legs in
some cases, so we additionally use the fact that in suitable images
the toe landmarks always have to be above the heel landmarks. In
images orthogonal to the frontal plane the heel landmarks should
also approximately be located at the same height in the input image.

Projecting the nose, mouth, and eye landmarks should ideally
be done from the most frontal image, which we find through a
combined measure of horizontal and vertical frontality. Horizontal
frontality is computed in terms of the symmetry of the landmarks
around the center line of the face, where a higher symmetry score
indicates higher frontality. Vertical frontality is computed as the
ratio between eye height and eye width. The bigger this ratio, the
more orthogonal the viewing vector is to the frontal plane of the
human body. From all images we assume the image with the highest
sum of these measures to be the most frontal image.

The landmarks in the selected images are then back-projected
onto the point cloud PB using the camera calibration provided by
the photogrammetry software. The same procedure is repeated for
the head scan: We find the most frontal image and project the 68
facial landmarks onto PH .

Figure 5: Result of the automatic landmark detection. We
heuristically find the best image for each landmark. Nose,
mouth, and eye landmarks are projected from frontal im-
ages (left), hand and ear landmarks from lateral images (cen-
ter) and heel landmarks from dorsal images (right).

The landmark detection of OpenPose in combination with our fil-
tering and back-projection yields—in a fully automatic manner—3D
landmark positions (15 for the full-body scan, 68 for the head scan),
which guide the subsequent template fitting procedure. Note that
the back-projection might fail in case of missing data in low-quality
point clouds; in this rare case we prompt the user to manually select
the corresponding 3D landmark (see Figure 13).

3.4 Template Fitting
Reconstructing a high-quality avatar mesh from medium-quality
scanner data is a challenging problem because of noise, outliers,
and holes in the input data. Like FGVH we exploit prior knowledge
(that we are scanning humans) by fitting a statistical human body
model to the scanner point cloud(s) by optimizing the template’s
position, orientation, scaling, PCA parameters, and fine-scale per-
vertex deformation. In this way the template mesh regularizes the
fitting procedure and fills up regions of missing data. Our template
fitting approach closely follows the nonrigid registration of FGVH,
but extends it at several places in order to deal with our lower-
quality data. Due to space constraints we can only briefly recap
FGVH and therefore mainly point out where our method differs.

We use the same template character from the Autodesk Character
Generator [10], which is fully rigged and capable of body, hand, and
face animations. The template mesh consists of n ≈ 21 k vertices
with positionsX = (x1, . . . , xn ). In order to incorporate a statistical
prior on human body shapes, we fit this template model to about
1700 human scans from the CAESAR database [54] and compute a
30-dimensional PCA subspace from the resulting data. This yields a
more expressive statistical model—and hence a more robust fitting
process—than FGVH, where a 10-dimensional PCA is computed
from about 200 scans from mixed sources [10, 15, 34], including
non-realistic ones [10].

Following FGVH we uniformly down-sample the two point
clouds to twice the vertex density of the template mesh in order to
speed up the fitting process, resulting in ca. 150 k points each for
the body scan and the head scan.

In the first step we coarsely fit the template model to the body
point cloud PB by optimizing the alignment, pose, and coarse shape
(in the 30-dim. PCA space) of the template model. To this end,
we minimize the squared distances between the 15 automatically
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detected landmarks L in the point cloud PB and their pre-selected
counterparts on the template model by alternatingly (i) computing
the optimal scaling, rotation, and translation [35], (ii) optimizing
joint angles through inverse kinematics [20], and (iii) optimizing
the PCA shape parameters (linear least squares problem). After
convergence, we further improve alignment, pose, and PCA shape
by, in addition to landmarks L, also minimizing squared distances
between points in PB and their closest points on the template mesh.

Let X̄ = (x̄1, . . . , x̄n ) be the vertices resulting from the coarse-
alignment phase. We then perform a fine-scale nonrigid registration
by minimizing the nonlinear objective function

Ebody(X) = λlmElm(X) + λcloseEclose(X) + λregEreg(X) ,

Elm(X) =
1

| L |

∑
l ∈L

 xl − pl
2
,

Eclose(X) =
1∑

c ∈C wc

∑
c ∈C

wc
 xc − pc

2
,

Ereg(X) =
1∑
e Ae

∑
e ∈E

Ae
∆ex(e) − Re∆e x̄(e)

2
.

(1)

The landmark term Elm penalizes the squared distance between the
15 automatically detected landmarks pl , l ∈ L, in the point cloud
and their corresponding vertices xl on the template mesh (Figure 4).
Similarly, the closeness term Eclose penalizes the squared distance
between corresponding closest points pc in the point cloud and
xc on the template, where C is the set of these closest point corre-
spondences. The closest points xc are located on the mesh surface
and represented via barycentric coordinates. Usingwc ∈ [0, 1] we
weight-down correspondences in hand and head regions, since the
former are typically unreliable and the latter will be replaced by
the head scan. The regularization term Ereg penalizes the geometric
distortion from the undeformed state X̄ to the deformed state X.
In particular, it measures, for each edge e ∈ E, the squared devia-
tion of deformed edge-Laplacian ∆ex(e) and rotated undeformed
Laplacians Re∆e x̄(e), weighted by edge areaAe (see [3] for details).
This nonlinear least-squares problem is solved using an alternat-
ing optimization for vertex positions and edge rotations (repeated
block-coordinate descent), where we set λclose to 1 and gradually
decrease λlm from 0.1 to 10−4 and λreg from 1 to 10−7.

Having deformed the template model to the full-body scan, we
further refine the geometry of the head region by fitting it to the
head scan PH . In order to align the template model to the head scan,
we find optimal scaling, rotation, and translation by minimizing
squared distances between the detected 68 facial landmarks and
their corresponding landmarks on the template model [35]. After-
wards, we further refine scaling, rotation, and translation through
ICP [12]. In contrast to FGVH and due to our more noisy point
clouds, we regularize the head fit by a 30-dimensional statistical
headmodel derived from the publicly available data of [1]. After this
coarse registration, we add fine-scale geometric detail by perform-
ing a nonrigid deformation that minimizes the objective function (1)
restricted to the head region. The regularization term Ereg is the
same as before. However, this time λreg is initially weighted by
1 and gradually decreased to 10−8. We again solve the nonlinear
least-squares problem using repeated block-coordinate descent.

After the fine-scale nonrigid registration, we adjust the skeletal
joint positions through mean value coordinates and put the model
into T-pose [2]. Finally, we add facial details (eyes and teeth) and
reconstruct blendshapes. Following FGVH we adjust the template’s
teeth and eyes by optimizing for scaling, rotation, and translation
based on the deformation of the mouth and eye region. To resolve
occasional penetrations of eyes and eyelids we non-rigidly deform
the eyelids to fit the transformed eye geometry. For reconstructing
blendshapes, we map all blendshapes from the template mesh to
the fitted model using deformation transfer [57].

3.5 Texture Generation
Given the camera images and the reconstructed avatar mesh, FGVH
computes textures for the full-body scan and the face scan using Ag-
isoft Metashape and blends them using Poisson Image Editing [51].
In our case, this approach leads to noticeable artifacts because of
inaccuracies in the geometry reconstruction caused by inevitable
motion during the capture process, as shown in Figure 8. We avoid
these problems by computing the texture image through a graph
cut optimization [17].

Using the fitted avatar mesh (Section 3.4) and the camera cali-
bration data of Agisoft Metashape (Section 3.2), we generate partial
textures by rendering the avatar mesh from each camera position.
The projection from 3D world coordinates to the respective cam-
era’s image plane is modeled as a standard pinhole camera with
Brown’s distortion model [19], whose parameters are provided by
Metashape’s intrinsic and extrinsic camera calibration.

This projection is used to generate a partial texture Ti from each
input image Ii in a two-pass rendering process implemented via
OpenGL. In the first pass, all mesh triangles are projected onto the
image plane of camera ci and the resulting depth buffer is stored
as Di . The second render pass generates the partial texture Ti by
rendering the mesh onto the uv-layout of the template character.
The fragment shader then (i) discards all fragments that do not
pass the depth test Di (i.e., that are not visible from camera ci ) and
(ii) computes the color value by accessing the camera image Ii at
the texture coordinate uj defined by projecting the interpolated
surface point pj onto the image plane of camera ci . We additionally
compute the angle α between the surface normal and the view-
ing ray and additionally discard all fragments where α exceeds a
threshold of 45◦ in order to rule out foreshortening effects. Color
information for the remaining fragments is then written to the
corresponding texture coordinate at Ti . This rendering procedure
results in a partial texture Ti and visibility map Vi (storing cos(α)
for each pixel) for every input image (see Figure 6).

Stitching the partial textures together could be done by simply
performing a “best view” selection, i.e., coloring each texel from the
partial texture where the corresponding surface patch was most
orthogonal to the viewing vector. However, because of the motion
during the scanning procedure, the reconstructed geometry is not
accurate enough, and thus the partial textures do not align perfectly.
Performing a best view selection would thus lead to noticeable
seams between surface patches.

Graph cut methods [17] have been used successfully to seam-
lessly stitch together images or textures. We take inspiration from
various works [6, 30, 42] and formulate our texture stitching as a
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Figure 6: Partial texture (left) and visibility map (right).

Figure 7: The patches induced by the best view selection
(left) and by our graph cut optimization (right). The latter
leads to larger patches and fewer seams.

combinatorial optimization: Each of the F faces of the mesh is to be
textured by one of the partial textures. This can be described by an
index set I = {l1, . . . , lF } with li ∈ {1, . . . ,N }, which labels each
face with a partial texture index. The graph cut optimization then
minimizes the error function

Etex(I) =
F∑
i=1

D(fi , li ) +
F∑

i , j=1
S
(
fi , fj , li , lj

)
,

D(fi , li ) =
1

| U(fi ) |

∑
u∈U(fi )

(
1 − Vli (u)

)
,

S(fi , fj , li , lj ) =
1��U(fi , fj )

�� ∑
u∈U(fi ,fj )

Tli (u) − Tlj (u)
 ,

(2)

with a data term D(fi , li ) and a smoothness term S(fi , fj , li , lj ).
The data term prefers to texture faces from input images where
the face normal is parallel to the viewing vector, summing up the
visibility map Vli for partial texture Tli over the setU(fi ) of texels
of face fi in uv-coordinates. The smoothness term ensures that
neighboring faces are textured from images that avoid visible seams,
by penalizing color differences on the texels of their shared edge
U(fi , fj ) = U(fi ) ∩ U(fj ) in uv-coordinates.

We treat the objective function (2) as a multi-label graph cut
optimization problem [16, 17, 40]. This defines a Markov Random
Field that we optimize with the implementation provided by Szeliski
et al. [58].We initialize the optimizationwith the best view selection,

Figure 8: Texture generation of Agisoft Metashape (left) and
our graph cut optimization (right), the latter yielding more
detail on the necklace and the letters on the shirt.

which is a good starting point since it is equal to the minimum of
the data term.

The resulting labeling I defines which patches of the final tex-
ture are colored from which partial texture. Figure 7 shows the
optimized labeling in comparison to the best view selection. Note
that bigger parts of the texture are now textured from the same
input image, which naturally reduces the amount of visible seams.
There are, however, still some luminosity differences at the patch
boundaries, which we eliminate by blending the patches using Pois-
son image editing [51]. Texture regions belonging to areas on the
model that were not seen (e.g., the crotch region) are automatically
filled by harmonic color interpolation.

This texture generation process is performed for both the full-
body scan and the head scan. The head texture is then injected into
the full-body texture using Poisson image editing in order to cope
with illumination differences between the two scans. Since hands
and eyes are typically not well scanned, their texture information is
taken from the template texture and adapted to the scanned subject
using histogram matching in CIELAB space [36].

As can be observed in Figure 8, the textures generated by our
graph cut approach have more detail and are sharper compared to
the textures generated by Agisoft Metashape.

4 RESULTS
Our avatar reconstruction takes about 20 minutes, measured on
a desktop PC with 12 × 3.6GHz Intel Xeon CPU and a Nvidia
GTX 1080 Ti GPU, and consists of the following steps: capturing
and transferring the videos (4 min), processing videos and generat-
ing point clouds (7 min), landmark detection and template fitting
(2 min), and texture generation and merging (7 min).

In the followingwe provide quantitative comparisonswith FGVH,
which due to its extensive setup acts as an (approximate) ground
truth, as well as qualitative comparisons to the monocular recon-
structions of Alldieck et al. [5, 7].
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Figure 9: Root-mean-square reprojection errors of FGVH and our method over 33 reconstructed avatars. The close-up on the
right shows the subject for which our method performs the worst compared to FGVH (Subject 2).

Figure 10:We evaluate the reprojection error in image space
by rendering (without lighting) the reconstructed avatars
from all input camera locations onto the input images.

In order to quantitatively compare our low-cost reconstruction
with the multi-camera reconstruction of FGVH, we scanned and
reconstructed 34 people with their method and ours. We had to dis-
card the scan of one person, where the point cloud reconstruction
failed due to dark clothing. For the remaining 33 scans we compare
the reprojection error, which we compute by rendering for each
input image the textured avatar from the corresponding camera
location (see Figure 10) and computing the root-mean-square error
(RMSE) over all rendered pixels in the CIELAB color space. Averag-
ing the RMSE over all input images yields the reprojection error for
one avatar reconstruction, which effectively measures reconstruc-
tion accuracy in both geometry and texture. Figure 9 shows the
reprojection errors for all scanned subjects. Not surprisingly, the
expensive camera rig of FGVH yields lower errors thanks to more
accurate point clouds (cf. Figure 3). Although their RMSE (µ = 24.2,
σ = 2.15) is 20% lower than ours (µ = 30.3, σ = 4.77), our hardware
costs (about 600 EUR) are only 1% of theirs (about 60 kEUR). We
note that Agisoft’s texture generation leads to a slightly lower RMSE
(µ = 29.6, σ = 4.47), but our graph cut optimization yields percep-
tually superior results (Figure 8). As a purely geometric measure,
the two-sided Hausdorff distance [24] between our reconstructions
and the (approximate) ground truth given by FGVH is 7.1 mm on
average, confirming that our avatars are quite accurate despite the
low hardware requirements.

Figure 11: Our avatars feature eyes, teeth, and facial blend-
shapes, and can thus be animated out-of-the-box, e.g.,
through real-time facial motion capturing.

We qualitatively compare our method to the monocular avatar
generation approaches of Alldieck and colleagues. The first method
[5] reconstructs avatars from a video of a person turning around
360◦ in A-pose (taking around 2 h). The second method [7] requires
only eight images of this 360◦ movement and generates the tex-
ture using the stitching technique of [6] (taking around 5 min). The
input videos/images were taken using the same Google Pixel 3 to
provide comparable input data. We used the original implementa-
tions provided by the authors, but doubled the default number of
pose and shape estimation steps in Alldieck et al. [7] to achieve
better results, as suggested to us by the authors. Figure 12 com-
pares avatars reconstructed with Alldieck et al. [5], Alldieck et al.
[7], FGVH, and our method, showing that our results are superior
to Alldieck et al. and comparable to FGVH. Note that the avatars
reconstructed by Alldieck et al. [5, 7] lack articulated hands, eyes,
teeth, and facial blendshapes.

Our reconstructed avatars provide these facial animation con-
trollers, as demonstrated in Figure 11 and the accompanying video.
More results and comparisons, including dynamic skeletal and facial
animations, can be found in the accompanying video.

Our method still has several limitations, as shown in Figure 13.
First, the photogrammetry software cannot deal with very dark
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Figure 12: Avatars of the same two persons reconstructed
from different methods. From top to bottom row: [5], [7],
our method and the expensive multi-camera setup of [2].
Note that our reconstruction improves on previous low-cost
avatar generation pipelines in both geometry and texture.

Figure 13: Limitations of our method. Dark clothing (left)
and movement during the capture process (center) is chal-
lenging for the multi-view stereo reconstruction. This leads
to errors in geometry and texture. The landmark back-
projection fails for point clouds with missing data (right).

clothing. Second, the point cloud quality degrades for body parts ex-
hibiting noticeable movement during the capturing process. This is
especially true for the arms, leading to a lower accuracy in geometry
and texture reconstruction. Third, while the automatic 2D land-
mark detection worked robustly in all cases, the back-projection
to the 3D failed for four subjects due to missing data in the point
cloud. In these cases, the user was asked to manually select the
landmarks. Finally, glasses, hair, and accessories are challenging
for all photogrammetric approaches, including ours.

5 CONCLUSION
In this paper we presented a fully automated pipeline for generating
high-quality virtual humans from monocular videos taken with a
consumer smartphone, taking just about 20 minutes in total. Com-
parisons with both hardware-intensive and low-cost approaches
show our virtual humans to be almost on par with the former
while surpassing the latter. Our avatars are ready to be used in XR
applications, as they allow skeletal and facial animation and are
compatible with standard engines used in this field. This opens up
the ability for the research community to work on high-quality
avatars without extensive hardware setups.

For future work, we want to make our approach more robust to
movements by segmenting the extracted video frames either into
foreground/background or into semantic parts (e.g., torso, arms,
legs, and head), which could potentially improve the quality of the
multi-view stereo reconstruction. Furthermore, we plan to exploit
the capabilities of smartphone APIs to build a designated appli-
cation for controlling the capture process and gaining access to
the intrinsic camera calibration. Another interesting direction is to
scan challenging areas like the arms separately, i.e., to divide the
capture process into more than two videos.
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