
Fast Projective Skinning
Martin Komaritzan

Computer Graphics Group
Bielefeld University

Mario Botsch
Computer Graphics Group

Bielefeld University

LBS DQS PS FPS

Figure 1: Geometric skinning approaches, like Linear Blend Skinning (LBS) or Dual Quaternion Skinning (DQS), suffer from
well-known collapsing or bulging artifacts in joint regions. The recent physics-based Projective Skinning (PS) avoids these
problems and resolves local collisions near joints. Our new Fast Projective Skinning (FPS) is one order of magnitude faster
than Projective Skinning, provides higher surface quality, and seamlessly handles global collisions.

ABSTRACT
We present a novel physics-based character skinning approach
that improves the recent Projective Skinning in terms of anima-
tion quality and computational performance. Our method provides
physically plausible animations, dynamic secondary motion effects,
and global collision handling in a real-time skinning simulation.
We achieve this through a custom-tailored GPU implementation of
the underlying projective dynamics simulation and a high-quality
upsampling from the simulation mesh to the high-resolution visu-
alization mesh based on quadratic moving least squares.

CCS CONCEPTS
• Computing methodologies → Physical simulation; Motion
processing; Collision detection.

KEYWORDS
character animation, projective dynamics, GPU computing
ACM Reference Format:
Martin Komaritzan and Mario Botsch. 2019. Fast Projective Skinning. In
Motion, Interaction and Games (MIG ’19), October 28–30, 2019, Newcastle
upon Tyne, United Kingdom. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3359566.3360073

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MIG ’19, October 28–30, 2019, Newcastle upon Tyne, United Kingdom
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6994-7/19/10. . . $15.00
https://doi.org/10.1145/3359566.3360073

1 INTRODUCTION
Virtual characters are ubiquitous in a wide range of graphics appli-
cations from real-time computer games to (offline) special effects in
movies. Enabled by recent advances in 3D-scanning and character
generation, realistic virtual avatars are also increasingly used in
virtual reality applications, where they allow the user to act and
interact in the virtual environment. In particular in this rapidly
growing field of research, the steadily improving fidelity of charac-
ter appearance increases the demand for more realistic character
animation—while retaining interactive frame rates.

Geometric skinning approaches, like thewell-known linear blend
skinning [Magnenat-Thalmann et al. 1988] and dual quaternion
skinning [Kavan et al. 2008], provide real-time performance, but
suffer from collapsing or bulging artifacts near joints (Figure 1).
Data-driven methods, like the SMPL model [Loper et al. 2015]
and its variants, learn corrective blendshapes from a potentially
large set of training examples. While they successfully avoid the
artifacts of geometric skinning approaches, these methods still
lack a proper handling of contact and (self-)collision. Sophisticated
physics-based skinning approaches, such as [Kadleček et al. 2016;
McAdams et al. 2011b], yield realistic dynamic tissue deformation
including collision detection and response, but their computational
performance is not sufficient for interactive applications.

Recent simulation frameworks, such as position-based dynam-
ics [Bender et al. 2017] or projective dynamics [Bouaziz et al. 2014],
make it possible to compute character animation through robust
real-time physics simulation, as demonstrated in our recent pro-
jective skinning [Komaritzan and Botsch 2018]. This technique
provides realistic deformation at interactive frame-rates and pre-
computed local collisions in joint regions, but lacks global collisions
(Figure 1). Similarly, the combination of data-driven skinning with

https://doi.org/10.1145/3359566.3360073
https://doi.org/10.1145/3359566.3360073
https://doi.org/10.1145/3359566.3360073

MIG ’19, October 28–30, 2019, Newcastle upon Tyne, United Kingdom Komaritzan and Botsch

a simulated physics layer of Kim et al. [2017] provides realistic
secondary motions, but lacks global collision handling.

We present a method for real-time physics-based skinning an-
imation that overcomes the above limitations. Building on and
extending the projective skinning method [Komaritzan and Botsch
2018], our approach simulates plausible dynamic tissue deforma-
tions, provides secondary motion effects like jiggling and wobbling,
and resolves arbitrary global self-collisions, while still being faster
by an order of magnitude than the original method. We achieve this
goal by deriving a GPU-implementation of projective skinning that
is able to dynamically add and remove collision constraints on de-
mand. This required us to switch from the established factorization-
based Cholesky solver to a custom-tailored GPU-based conjugate
gradients solver, using a special matrix representation support-
ing fast matrix-vector multiplications. Furthermore, we develop
an upsampling technique for transferring the deformation from
the lower-resolution simulation mesh to the high-resolution vi-
sualization mesh, which improves the upsampling of the original
projective dynamics in both surface quality and computational
performance.

Overall, the proposed Fast Projective Skinning is to our knowl-
edge the first real-time skinning method to provide physics-based
dynamic deformations and full global collision handling. To fos-
ter research in real-time physics-based character animation, we
make our source code freely available for research purposes at
https://github.com/mbotsch/FastProjectiveSkinning.

2 RELATEDWORK
In this section we focus on work related to our contributions on
collision-aware physics-based skinning and the underlying projec-
tive dynamics simulation. For details on general or physics-based
collision-agnostic skinning we refer to the course notes of Jacobson
et al. [2014] or the discussions in [Komaritzan and Botsch 2018].

Collision-Aware Skinning Methods
Collision response in character skinning is a challenging task since
collision detection of deformable objects is expensive and there is
also a high rate of contact collisions that do not separate once they
are solved and hence require special treatment. Vaillant et al. [2014]
introduced Implicit Skinning that represents different body parts
as implicit functions, providing fast collision detection/response by
an iso-surface projection. Though the resulting skin deformation
looks convincing, the method is too slow for real-time applications.
While the collision handling works for small local collisions, it is an
unnatural approximation for global collisions. The Steklov-Poincare
Skinning of Gao et al. [2014] can handle collisions, but is also too
slow and does not provide dynamic secondary motion effects.

Physics simulations have also been used to simulate realisic skin
behavior, but this comes at the cost of high computation times.
For instance, Kavan and colleagues [Kadleček et al. 2016; Saito
et al. 2015] simulate a biomechanical model of the human body.
McAdams et al. [McAdams et al. 2011b] propose a multigrid skin-
ning simulation that supports contact and collisions. Both give
impressive results, but are far too expensive for real-time scenarios.
Capell et al. [2005] achieved interactive frame-rates by using a very
coarse simulation mesh. Kim et al. [2017] add a simulated FEM

layer on top of a data-driven skinning animation, which allows for
dynamic motion effects and physics-based interaction. Collision
handling could be added to their method, but at the price of sacrifyc-
ing real-time performance. Casas and Otaduy [2018] learn nonlinear
soft-tissue dynamics from training data, resulting in highly efficient
animations, but do not handle collisions. Holden et al. [2019] show
that collision handling can be learned by a neural network, but
so far they do not handle self collisions. Position-Based Dynam-
ics (PBD) solvers [Bender et al. 2017; Macklin et al. 2016; Müller
et al. 2005] have been widely used to simulate all kinds of physical
systems, since they are fast, easy to use, and unconditionally sta-
ble. Deul et al. [2013] uses PBD and shape matching to simulate a
layered character model achieving convincing results and support-
ing collision handling. But they depend on high quality skinning
weights to create their volumetric mesh and their simulation of a
full character is too slow for real-time skinning.

There are, to our knowledge, just two approaches that support
both collision handling and real-time performance while skinning
an articulated virtual character. Pan et al. [2017] extends the PBD
skinning of Rumman et al. [2015] by handling local collisions. They
initialize the character by the result of linear blend skinning and
use PBD constraints to enhance the result. Their method requires
high-quality skinning weights as well as a local smoothing step in
the vicinity of joints, resulting in a loss of detail in those regions. Ko-
maritzan and Botsch [2018] use Projective Dynamics (PD) [Bouaziz
et al. 2014] for their Projective Skinning, which is independent of
skinning weights and requires just a triangle mesh and a skeleton
as input. While the skeleton-driven motion of a full character can
be computed in real-time, collisions are restricted to pre-computed
local collision pairs in joints regions. We extend this method to
handle full global collisions.

Accelerating Projective Dynamics
There have been different approaches to speed up projective dynam-
ics solvers. Wang [2015] uses a Chebyshev semi-iterative approach
that leads to faster convergence in case of large deformations. How-
ever, for numerical robustness their method is not used in the first
ten iterations of the PD solver. Since our character simulations are
highly constrained by the skeleton, ten iterations are sufficient to
converge, such that their approach is not applicable. Fratarcangeli et
al. [2016] use a graph-coloring algorithm to parallelize their Gauss-
Seidel solver for the PD linear system. But even with an optimal
graph coloring, at least all matrix rows corresponding to the one-
ring neighborhood of a vertex have to be processed sequentially,
such that the GPU’s potential cannot be fully utilized for medium-
sized systems (like in our case). Peng et al. [2018] employ Anderson
acceleration to optimize the convergence of PD simulations. Al-
though this can lead to a drastic reduction of solver iterations in
static simulations, the effect is less apparent in dynamic simulations
(such as Projective Skinning), where less iterations are required.

Brandt et al. [2018] use model reduction to simulate highly de-
tailed models in real time, achieving a massive speed-up compared
to a simulation of the original high-resolution mesh. Their approach
can be considered complementary to our acceleration and could
be used to further speed-up Projective Skinning. Li et al. [2019]
accelerate PD-simulations of rigid and soft body parts, but their

https://github.com/mbotsch/FastProjectiveSkinning

Fast Projective Skinning MIG ’19, October 28–30, 2019, Newcastle upon Tyne, United Kingdom

method does not apply to skinning applications, where bone trans-
formations are given as input instead of being simulated.

Upsampling
Most real-time physics-based animations perform the actual simu-
lation on a coarse simulation mesh, and transfer the deformation to
the high-resolution visualization mesh. Müller et al. embed the visu-
alization mesh into a coarse tetrahedral mesh [2004] or hexahedral
mesh [2004] for simulation. However, the piecewise (tri-)linear in-
terpolation to transform the visualization vertices can lead to visual
artifacts. Projective Skinning [Komaritzan and Botsch 2018] repre-
sent the visualization mesh as a normal displacement [Botsch and
Sorkine 2008] of the simulation mesh, where the piecewise linear
nature of the latter can again lead to artifacts, for instance in regions
of high bending. We instead employ and extend the moving-least-
squares approximation of Martin et al. [2010], which is guaranteed
to be globally smooth and therefore leads to higher surface quality
of the upsampled visualization mesh. While Martin and colleagues
employ GMLS instead of MLS to avoid numerical problems, we
achieve the same effect by combining quadratic MLS with matrix
pseudo-inversion, which reduces both memory consumption and
computation effort by a factor of ten.

3 PROJECTIVE SKINNING
This section provides a brief summary of Projective Skinning (PS)
and defines the mathematical notation. For further details on projec-
tive skinning and the underlying projective dynamics we refer the
reader to [Komaritzan and Botsch 2018] and [Bouaziz et al. 2014].

Projective Skinning gets as input a character surface mesh and
an embedded skeleton. The latter is inflated to a volumetric repre-
sentation consisting of spherical joints and cylindrical bones. The
skin surface is then shrink-wrapped onto the volumetric skeleton,
such that each skin vertex/triangle has a corresponding bone ver-
tex/triangle. All pairs of corresponding skin and bone triangles
define prismatic elements, which are split into three tetrahedra
each, thereby defining the volumetric tissue mesh. This construc-
tion allows us to associate each tetrahedron with a surface triangle,
which we exploit for collision handling (Section 6).

The character pose is changed by manipulating joint angles,
from which a rigid transformation for each bone is determined
through forward kinematics. Bone vertices should move according
to their bone’s rigid transformation, while the animated positions of
skin vertices are determined by minimizing an elastic strain energy
for the tissue tetrahedra. This elastic deformation is computed
through Projective Dynamics [Bouaziz et al. 2014], using anchor
constraint to fix bone vertices to their bones and tetrahedron strain
constraints to penalize deformation of tetrahedra, i.e., to minimize
their deviations from rigid motions.

These constraints define a matrix Q ∈ IRP×N , where N denotes
the number of simulated skin and bone vertices and P the overall
number of constraints (one row per anchor constraint and four
rows per tetrahedron strain constraint). The local step of Projective
Dynamics computes a target position pi for each vertex i for each
constraint, corresponding to the closest projection that satisfies
the constraint. These individual projections pi are stacked into a
matrix p ∈ IRP×3. The unknown vertex positions xi are stacked into

a matrix x ∈ IRN×3, and are solved for in the global step through a
least squares fit to the projections:

QTQx = QTp. (1)

Dynamic tissue effects (“wobbling”) can be computed by adding a
mass term to the system(

1
h2

M + QTQ
)
x =

1
h2

Ms + QTp, (2)

where M is a diagonal matrix of per-vertex masses mi , h is the
simulation time step, s = x+hv an explicit Euler prediction, and v ∈
IRN×3 amatrix containing velocities. Themass term acts like anchor
constraints trying to satisfy Newton’s first law by constraining
vertices to their velocity-based predictions. The velocity is updated
at the end of each time-step through vt+1 = λ(xt+1 − xt)/h, where
λ ∈ [0, 1] can be used as damping parameter (0 corresponding to
infinite damping and 1 to no damping). One time-step of Projective
Skinning is shown in Algorithm 1.

Algorithm 1 Time-step of the Projective Dynamics solver
1: s← xt + hvt
2: x← s
3: for npd iterations do
4: p← projectConstraints(x)
5: x← solve

(
h−2M + QTQ

)
x = h−2Ms + QTp

6: xt+1 ← x
7: vt+1 ← λ (xt+1 − xt) /h

4 GPU-BASED PROJECTIVE SKINNING
In this section we will derive an efficient parallel GPU implementa-
tion of Projective Skinning. Most of the simulation steps explained
in Algorithm 1 are easy to parallelize on the GPU: The vector up-
dates (lines 1, 2, 6, and 7) can be processed with one thread per
vertex. The constraint projections (line 4) can be computed using
one thread per projection. To find the best rotation for the tetra-
hedron strain constraints, we use the GPU implementation of Gao
et al. [2018] of the SVD algorithm of McAdams et al. [2011a]. The
only critical point left is solving the linear system and computing
its right-hand side (line 5), which we discuss in the following.

4.1 GPU Conjugate Gradients
The system matrix A = h−2M + QTQ in Algorithm 1 is sparse,
symmetric, positive definite, and constant, such that its Cholesky
factorization can be pre-computed. Since the three spatial coordi-
nates can be solved for in parallel, a pre-factorized sparse Cholesky
solver is the most efficient option on multi-core CPUs. This situa-
tion changes considerably if the matrix has to be updated frequently
(e.g., due to collisions) and thus needs to be re-factorized or if the
method is to be implemented on the GPU.

The forward and backward substitutions involved in the two
triangular systems of a Cholesky solver are inherently sequential
algorithms. While there exist some GPU parallelization ideas [Liu
et al. 2016; Naumov 2011], solving medium-sized, sparse, triangular

MIG ’19, October 28–30, 2019, Newcastle upon Tyne, United Kingdom Komaritzan and Botsch

systems is still faster on the CPU. To avoid the computational bottle-
neck, we employ a preconditioned conjugate gradients (PCG) solver
instead. This iterative solver consists of a matrix-vector product
and three dot products per iteration, which both can easily be par-
allelized. Furthermore, in our context the solution of the previous
time-step can be used as an initial guess in the iterative solver, thus
reducing the number of required iterations. We therefore aim for
a GPU-based PCG solver that is faster than the CPU-based multi-
threaded pre-factorized sparse Cholesky solver of EIGEN [Guen-
nebaud et al. 2018], which is faster than the CPU-based PCG solver.

There already exist several implementations of general PCG
solvers on GPUs [Bolz et al. 2003; Buatois et al. 2009]. CuSPARSE
is part of the CUDA toolkit and provides all functions for building
a GPU-based PCG solver, i.e., sparse matrix-vector multiplication,
vector-vector multiplication, and vector addition. Unfortunately,
this straightforward approach results in many CUDA kernel calls,
which due to their computational overhead decreases performance.
A considerably faster approach was proposed byWeber et al. [2013],
using just one initialization kernel and three kernels per PCG itera-
tion. MAGMA [Anzt et al. 2014] is a linear algebra library that also
provides a PCG solver with minimized kernel invocations. However,
being optimized for large-scale linear systems, MAGMA is about
two times slower than a CPU-based sparse Cholesky solver for our
medium-sized matrices of a few thousand unknowns.

We therefore developed our own CUDA-based PCG solver that
minimizes the number of kernel invocations and employs a special
matrix format to optimized coalesced data access (Section 4.2). The
algorithm uses an initialization kernel and three kernels per PCG
iteration similar to the approach of Weber et al. [2013], as shown in
Algorithm 2. We use a Jacobi preconditioner J, which is simply the
inverse of the diagonal part of A. Note that a further reduction to
fewer kernels is not advisable, since all threads have to be synchro-
nized after each inner product and a global thread synchronization
within kernels is not supported by CUDA.

Algorithm 2 Solve Ax = b with PCG using preconditioner J

Input: Initialize x with solution of previous time-step

1: r← b − Ax
2: d← Jr
3: δ ← dTr
4: for npcg iterations do
5: γ ← δ
6: q← Ad
7: α ← dTq
8: α ← γ/α
9: x← x + αd
10: r← r − αq
11: δ ← rTJr
12: β ← δ/γ
13: d← r + βd

Init-Kernel

Kernel 1

Kernel 2

Kernel 3

1

2

4

3

5

6

7

8

9 10 11

12 13

14 15 16

9

10

12

11

13

14

15

16

1 9 10 11

2 12 139

312

410

5 14 15 16

6

13

14

711 15

816

CSR ELL5

1 9 10 11

2 12 139

312

410

5 14 15 16

6

13

14

711 15

816

0

0

000

0 0 0

000

0 0

0 0 0

1 9 10 11

2 12 139

3 12

4 10

5 14 15 16

6

13

14

7 11 15

8 16

Ours

Figure 2: In CRS sparse matrix format, data is stored row-
wise. If we use one thread per matrix row, the access pat-
tern will be uncoalesced (first thread access in red, second
blue, third yellow, fourthwhite; four threads per block used).
The ELL format uses zero padding, and column-wise storage
to support coalesced access. Our format is a combination of
both formats to reduce zero padding while still guarantee-
ing coalesced access. We store diagonal elements first since
they are needed for our preconditioner.

4.2 Matrix and Vector Storage
The performance of modern graphics hardware is limited by mem-
ory bandwidth rather than by computing operations. Optimizing
memory access is therefore the most important factor when aiming
for optimal performance. Read and write operations to global GPU
(device) memory should be avoided where possible. The remaining
accesses should be done in a coalesced way, meaning that data is
stored in structures of arrays rather than in an array of structures,
since it can be cached this way so that consecutive threads will read
and store consecutive data simultaneously. The most expensive step
in Algorithm 2 is the sparse matrix-vector multiplication, where
sparse matrix formats can reduce memory consumption, memory
accesses, and computing operations.

The compressed row storage (CRS) matrix format matches the
row-wise access pattern of PCG and hence is frequently employed.
It stores the non-zero matrix entries in a row-wise manner as an
array of values, an array of corresponding column indices, and an
array of non-zeros per row. Unfortunately, each per-row thread
accesses a different amount of elements in an uncoalesced way. The
ELLPACK (ELL) matrix format therefore uses a per-row padding
with zero elements to achieve a constant number of elements per
row and a column-wise data storage (see Figure 2). This results in a
coalesced access. Here it is important to know how many non-zero
elements per row we typically have in a projective skinning system
matrix. This depends on the number of edges incident to a vertex,
which in turn depends on its valence in the skin mesh as well as
the tetrahedralization of its incident tissue prisms. For a typical
character mesh, this results in about 4–19 non-zeros per row. Using
the ELL format, we would fill-up each row with zeros to get 19
elements, leading to many unnecessary data accesses.

Bell and Garland [2008] solve this problem by combining the
ELL format with the COO (triplet) format, but their approach needs
two kernels for one matrix-vector multiplication. Guo et al. [2016]
use a hybrid CRS/ELL format also using a separate kernel for each
part. Weber et al. [2013] instead employ the zero-padding for each
thread block individually, by computing the maximum amount of
non-zeros per row for each thread block instead of for the complete
matrix. There are a lot of other proposed formats that optimize the

Fast Projective Skinning MIG ’19, October 28–30, 2019, Newcastle upon Tyne, United Kingdom

Table 1: Timings (in ns) for sparse matrix-vector multipli-
cation Ax for different matrix formats, for a high resolu-
tion character mesh of 30k simulated vertices. The last four
cases use texture memory to speed up the random access
into x. The CPU version is implemented with EIGEN and
parallelized using OpenMP. In the 3D case, we process all
three spatial xyz-coordinates of x by one single thread.

1D 3D

Method timing speedup timing speedup

CPU 393 1 510 1
cuSPARSE 14.4 27.3 25.8 19.7
CRS 23.3 16.9 35.1 14.5
ELL 16.9 23.3 22.0 23.2
CRS + ELL 17.7 22.2 26.1 19.5
Ours 8.3 47.3 18.5 27.5

ELL or CRS formats, like ELL-R [Vázquez et al. 2009], sliced-ELL
[Monakov et al. 2010], as well as BCRS [Buatois et al. 2009], CRS-T
[Yoshizawa and Takahashi 2012], and CRS SIC [Feng et al. 2011].
In all these approaches, performance benefits come at the price of
additional data that has to be stored, the need to reorder matrix
rows, or the usage of more than one thread per row or multiple
kernels per matrix-vector product.

We use a combination of ELL and CRS format that requires
no additional zeros and supports a completely coalesced global
memory access. The key idea is to utilize shared memory that can be
used by all threads of a thread block and provides faster access than
to global memory. Each row is processed by one thread. We use the
ELL format for the first nell row entries that is set to the minimum
amount of non-zeros per row. The remaining row elements are
stored in CRS format that are read coalesced, multiplied to the
vector element, and stored in shared memory. The usage of shared
memory enables us to read the data of all rows corresponding to
the thread block by the complete thread block instead of using
just one thread per row (see Figure 2 right). The amount of rows
processed by the thread block is equal to the amount of threads
per block. While the amount of values per row can differ largely
between consecutive rows, this variance is much smaller for blocks
of rows. After synchronizing the thread block, the products are
read, summed up, and stored in global memory by the thread that
is processing the corresponding row. The overhead produced by
the usage of shared memory is compensated for by coalescing and
distributing the global reads more equally.

So far, we focused on access patterns for the matrix A but not for
the vector x. Considering that the vector access patterns are hard to
predict and exploiting that the vector is accessed read-only, we use
texture memory here, as its cache accelerates random accesses. The
three different spatial coordinates (columns of x) could be processed
separately, leading to 3N threads that could work in parallel to
compute the N -dimensional matrix-vector product. However, in
that case the same matrix elements have to be read three times,

which for our matrix dimensions is slower than processing the
three coordinates in a single thread.

A performance comparison for the PCG matrix-vector multipli-
cation is shown in Table 1. In the following we analyze the impact
of the different optimizations. First, using the combined CRS/ELL
format and handling spatial coordinates separately, the matrix-
vector product Ax takes 53.7 ns. Handling all three coordinates in
one thread then improves performance to 28.6 ns. Using texture
memory to store the right-hand side and using shared memory to
distribute/coalesce the operations on the CRS part finally results in
the 18.5 ns reported in Table 1.

A drawback of our format is that we have to allocate an amount
of shared memory that is equal to the number of CRS-values in
the thread block. Since we cannot specify a different amount of
shared memory for each block, we have to allocate the maximum
amount of all blocks. Shared memory on our device (GTX 1080 TI,
compute capability 5.2) can use up to 48 kB of shared memory per
block and 96 kB per multiprocessor. Each multiprocessor can run
up to 32 blocks with a maximum total of 2048 threads in parallel.
Hence, even if we reduce the block-size, there is a limitation for
the size of the CRS part of 12 non-zeros (96 kB/(4 B · 2048)) per
row on average in the CRS matrix. If we exceed this limit, less
rows can be processed in parallel or we have to extend the ELL
part of the matrix, which leads to additional zero-padding. This
can be observed in Table 1 for the 3D timings. Here, we have to
allocate three times as much shared memory, which leads to a
smaller performance gain compared to the 1D case. Note that for
small matrices, like we typically use for our character skinning
(about 4k rows), the matrix-vector multiplication is dominated by
the overhead of calling the kernel, and the performance difference
of the different formats becomes very small. The usage of just one
kernel is thus the most important factor and disqualifies other,
more sophisticated matrix formats for our application. Our format
turned out to be a good trade-off between performance, memory
consumption, and simplicity.

For scalar products we use a standard approach. We process each
multiplication by a different thread and store the result in shared
memory. After a thread block synchronization, the first thread of
each block does the summation of the block’s elements and adds
the result to global memory by an atomic operation.

4.3 Soft Constraints vs Hard Constraints
In the original Project Skinning [Komaritzan and Botsch 2018],
bone vertices were attached to their corresponding bones through
anchor constraints, and skin vertices were transformed through
the tetrahedron strain constraints. In the context of Equations (1)
and (2), anchor constraints act as soft constraints by minimizing
the deviation of vertex positions from their target locations in a
least-squares manner.

We improve on this in a simple but effectivemanner: By replacing
soft anchor constraints by hard Dirichlet constraints, we remove
the Nb bone vertices from the set of unknowns and thereby reduce
the degrees of freedom from all N = Nb + Ns vertices to only the

MIG ’19, October 28–30, 2019, Newcastle upon Tyne, United Kingdom Komaritzan and Botsch

	0

	100

	200

	300

	400

	500

	600

	0 	2 	4 	6 	8 	10 	12 	14 	16 	18

FP
S

Number	of	Input	Mesh	Vertices	in	1000

CPU
CPU	HC

GPU
GPU	HC

Figure 3: Performance of Projective Skinning (in frames-per-
second) on CPU (Intel Xeon 6-core 3.6GHz) or GPU (Nvidia
GTX 1080 TI) and without or with hard constraints (HC).

Ns skin vertices. To this end, we partition the vectors and matrices
involved in (2) according to bone and skin vertices:

x =
(
xs
xb

)
, M =

(
Ms 0
0 Mb

)
, Q =

(
Qs Qb

)
,

and analogously for s. Note that Q and its sub-matrices (and the
projections p) now consist of (projections of) tetrahedron strain
constraints only and do no longer include anchor constraints. This
replaces the global system from (2) by the reduced version(

h−2Ms + QT
sQs

)
xs = h−2Ms ss + QT

s (p − Qbxb) .

The abovematrix is considerably smaller than the original one, since
half of the vertices are removed from the system. The absence of soft
constraints furthermore improves the matrix condition [Botsch and
Sorkine 2008], which improves PCG convergence. Both effects lead
to speed-up of 1.4 (for small meshes) up to 2.0 (for large meshes) on
the CPU (Figure 3). On the GPU the performance gain is only about
5% for small meshes, because our 3584 CUDA cores can solve smaller
systems completely in parallel, such that any further reduction just
leaves some threads idle. For larger systems, however, the reduced
formulation yields a speed-up of about 1.6 (see Figure 3), being up
to 16× faster than the original CPU Projective Skinning.

5 UPSAMPLING
Like many physics-based simulations, Projective Skinning [Komar-
itzan and Botsch 2018] does not use the full high-resolution mesh
for simulation. Instead the simulation is performed on a coarse-
resolution simulation mesh and then propagated or upsampled to
the original high-resolution visualizationmesh. However, the simple
normal displacements [Botsch and Sorkine 2008] used in [Komar-
itzan and Botsch 2018] for this purpose can lead to artifacts in
regions of strong bending, where normal displacements do not
recover a smooth high-resolution mesh. This problem is sketched
in Figure 4 and shown for the shoulder region in Figure 5d.

Figure 4: Upsampling the red mesh to the black one us-
ing precomputed normal displacements of the undeformed
meshes (left) is not able to reproduce the deformation prop-
erly (middle) like our MLS upsampling (right).

Inspired by [Martin et al. 2010]we employ amoving-least-squares
(MLS) approach to upsample deformations. To explain the idea, we
will use the index i for properties of the coarse simulation mesh
(vertices xi , normals ni) and the index j for properties of the high-
resolution visualization mesh. We refer to [Fries and Matthies 2004]
for more details on MLS interpolation.

Upsampling approaches operate on vertex displacements u(x) =
x′−x, where x′ denotes the vertex position in the animated skinned
pose and x in the rest pose. Displacements of simulated vertices
ui = u(xi) are known and are upsampled to u(xj) by fitting a local
affine transformation through weighted least-squares minimization:

min
a

∑
i
w

(xj − xi) a(xj) π (
xj

)
− ui

2 , (3)

where π (x) = (1,x ,y, z)T is a vector of linear monomials, a(x) a
3 × 4 matrix of coefficients, andw(r) a smooth weighting function

w(r) =

{
(1 − r/ρ)3 r < ρ

0 otherwise
(4)

with ρ defining the support radius of the MLS kernels. Minimizing
(3) with respect to a results in the upsampled displacements

u(xj) =
∑
i
uiNi j with (5)

Ni j = w
(xj − xi) π (xi)T G−1j π

(
xj

)
, (6)

Gj =
∑
i
w

(xj − xi) π (xi)π (xi)T , (7)

where all Ni j can be precomputed. This results in a simple and
perfectly parallel update rule (5) for the visualization vertices xj .

We deviate from the standard MLS interpolation in three ways.
First, using Euclidean distance for the weight function requires
special treatment when surface parts come close [Martin et al. 2010]
(e.g., inner thighs). We therefore employ the geodesic distance w.r.t.
the skin surface, computed through [Kimmel and Sethian 1998].

Second, we switch from linear to quadratic polynomials, i.e.,

π (x) = (1,x ,y, z,xx ,yy, zz,xy,xz,yz)T .

This allows us to locally reproduce linear and quadratic transfor-
mation, which yields more faithful reconstructions in regions of
strong bending (see Figure 5).

Third, in degenerate situations (Figure 5c) where G in (6) is
not invertible (when the points xi lie on a plane or quadric) the
system can either be under-constrained (xj lies on the same plane
or quadric) or has no solution. The first case can be solved by
replacing the inverseG−1 by theMoore-Penrose pseudo-inverseG+.
We further enhance the numerical robustness by mean-centering
and scaling the points xi within the support radius ρ (as well as

Fast Projective Skinning MIG ’19, October 28–30, 2019, Newcastle upon Tyne, United Kingdom

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5: Different examples of our upsampling. Linear (2nd column) and quadratic (3rd column) MLS upsampling using k = 8
(b),(c), 16 (e),(f) and 32 (h),(i) vertices of the simulated low resolution mesh (a). For small k-values, matrix G in (7) can become
ill conditioned (see (c)). Using a quadratic approximation leads to smoother result and less distortion of the simulated vertices.
The old approach (d) was not able to produce a transition from a straight to a curved region. (g) shows the result of a direct
simulation of the high resolution mesh. This example corresponds to the model character low in Table 2.

the point of evaluation xj) to the unit sphere. The second case
is very rare but can be provoked by using a unreasonably small
support radius ρ and meshes with many regions of perfect planes
or quadrics. In those cases, we fall back to the linear or constant
representation of the π (x) to the price of sacrificing quadratic or
linear precision. Since our upsampling is very efficient, increasing
the size of ρ can also be a solution in these cases.

Due to the partition of unity and linear reproduction of MLS
shape functions [Fries and Matthies 2004], the MLS upsampling
weights Ni j reproduce the initial mesh xj =

∑
i xiNi j . Similarly,

we can derive that there is no need to compute the displacement
field u(x). We can instead directly use vertex positions since

x′j = xj +
∑
i

(
x′i − xi

)︸ ︷︷ ︸
=ui

Ni j =
∑
i
x′iNi j +

(
xj −

∑
i
xiNi j

)
︸ ︷︷ ︸

=0

(8)

The implementation of this upsampling approach in CUDA is sim-
ple. Working with positions (8) instead of displacements (5) is a
massive reduction of memory accesses. To simplify the kernel even
more, we use a fixed amount k of nearest neighbors xi for each
xj (we found k = 20 to be sufficient). The radius ρ in (4) is set
to the distance of the (k + 1)st nearest neighbor for each vertex

individually. Figure 5 compares quadratic and linear MLS upsam-
pling with different values of k . Increasing k produces smoother
results but in case of linear MLS it also leads to over-smoothing
near joints. Quadratic MLS can better reproduce the deformation.
Two neighbor indices can be fused into one 4-byte-integer as long
as the simulation mesh has less than 216 vertices to reduce memory
reads even more. Those can be accessed in a coalesced way as well
as the Ni j . The read access of low resolution is highly unordered
and can thus be accelerated by using texture memory as already
mentioned in Section 4.2.

Updating vertex normals for the deformed visualization mesh,
typically as a weighted average of incident triangles’ normals, is
another computational bottleneck. Our approach allows to use MLS
upsampling for normal vectors, too, simply by replacing π (x) by
π (n) in (7) and (6). This results in different weights Ñi j through
which we can compute normals as

n′j =
(∑

i
n′i Ñi j

) / ∑
i
n′i Ñi j

.
Our experiments revealed linear MLS to be sufficient for normal
interpolation. The resulting interpolated normals differ slightly
from re-computed normals in non-rigidly deformed regions, but
the difference is visually negligible.

MIG ’19, October 28–30, 2019, Newcastle upon Tyne, United Kingdom Komaritzan and Botsch

The MLS-based upsampling of vertex positions and normals
produces a computational overhead of just 1–2% when using five
times more vertices in the visualization mesh and k = 20 MLS
neighbors. On the CPU, this upsampling approach is about 2×
faster than the normal displacements in the original Projective
Skinning [Komaritzan and Botsch 2018]. The GPU implementation
of MLS upsampling is another 10× faster than its CPU version.

6 GLOBAL COLLISION HANDLING
In Projective Dynamics collision response is handled through uni-
lateral constraints: In case of a collision, the colliding vertex is
projected to the closest collision-free target position. If no collision
occurs, the constraint does not do anything. Since in Projective
Dynamics each constraint has to provide a target position, unilat-
eral collision constraints are added on demand whenever a collision
is detected, and removed as soon as the collision is resolved. This
approach, however, adds/removes rows to/from the matrix Q in
(1), which changes the global system matrix A in (2). When using
a Cholesky solver, each change in collision constraints triggers a
re-factorization, which drastically slows down the simulation.

Komaritzan and Botsch [2018] show that the naive approach to
simply project non-colliding vertices to their current position xt or
to their velocity-update s leads to unnatural dynamic behavior, be-
cause it artificially increases the weight of mass-inertia constraints
relative to the tetrahedron strain constraints. They therefore pre-
compute potential local collisions and use two different system
matrices, one with and one without collision constraints. In each
time step (see Algorithm 1), the first npd/2 iterations use the matrix
without collision constraints to get an initial guess for all vertices.
The second half of iterations uses the matrix with collision con-
straints, projecting vertices to either their collision-resolved state
or to their initial guess from the first iterations. While this meth-
ods works well for local collisions, extending it to global collisions
requires a collision constraint for each vertex-triangle pair in the
second half of iterations, thereby slowing down the simulation.

Matrix changes are not a performance problem for our itera-
tive PCG solver, since no factorization has to be updated and re-
computing the diagonal Jacobi preconditioner J is trivial. However,
special care has to be taken due to the optimized matrix format (see
Section 4.2), since completely re-building this matrix format would
be prohibitive. We therefore do not update A, but instead repre-
sent the system matrix as the sum A + Acol. Whenever collisions
change, we just rebuild the highly sparse matrix Acol and update
the diagonal entries of A. We store Acol in CRS format and use our
shared memory access pattern explained in 4.2. The computation
of QTp in (2) is handled in a similar way.

Collision detection is done on the CPUusing point-in-tetrahedron
tests accelerated by spatial hashing [Teschner et al. 2003]. The near-
est surface point for a colliding vertex can be efficiently determined
due to our volumetric tissue mesh construction: Each tetrahedron
can be uniquely associated with the skin triangle that its prismatic
cell was built from. Thus, if we detect a collision in a tetrahedron,
we project the colliding vertex onto this triangle’s plane. While
this is not always the closest point on the skin it is a very good
approximation (see Figure 6 and the supplementary video).

Figure 6: Global collisions (e.g., hands and body) lead tomore
realistic character animations (left). The original Projective
Skinning (right) only supports local collisions in joint re-
gions but not global collisions. The male model is part of
the MPI Dynamic FAUST dataset [Bogo et al. 2017].

For skinning animations we have a lot of resting contacts. If we
removed a resting constraint as soon as the colliding vertex has
left the tetrahedron, the collision constraint would no longer be
active and the strain constraints would push the vertex back into
the colliding state in the next iteration. This would cause the vertex
to alternate between a colliding and a resolved state. To avoid this
oscillating behavior, we retain all colliding triangle-vertex pairs
that have a distance less than a threshold δcol. We set this to 25% of
the mesh’s average edge length.

Resting contacts cause a second problem: As discussed by Ko-
maritzan and Botsch [2018], using target positions in collision con-
straints can lead to unnatural dynamic effects. For example, if the
character has colliding skin parts between upper arm and forearm
while jumping up and down, the global translation of the jumping
skeleton will be transferred through the strain constraints, but for
colliding vertices their target position would still be the untrans-
lated one, slowing these vertices down. To solve this problem, we
use translation-invariant collision constraints: Instead of using the
absolute position of the collision-free state as target projection, we
represent it relative to the corresponding skin triangle using three
edge-strain constraints acting like springs between the colliding
vertex and the triangle’s vertices.

Fast Projective Skinning MIG ’19, October 28–30, 2019, Newcastle upon Tyne, United Kingdom

Table 2: Benchmark results for several models with Ns simulated vertices,T simulated tetrahedra, andV visualization vertices,
comparing the original Projective Skinning (PS) with the CPU and GPU version of our approach. We list the simulation time
tsim of one time-step (10 local-global iterations, each with 10 PCG iterations); the time tus for upsampling to the visualization
mesh; performance in frames per second for skinning, upsampling, and visualization (fps); the time tcoll for collision detection
and matrix update; performance in FPS for skinning, upsampling, collision handling, and visualization (fpscoll).

PS CPU-FPS GPU-FPS

Model Ns T V tsim tus fps tsim tus fps tcol fpscol tsim tus fps tcol fpscol

Cylinder 800 4.8k 800 2.7 — 333 1.8 — 400 5.0 130 1.7 — 520 0.6 335
Character low 3801 20.3k 18k 12 0.75 70 6.6 0.47 120 22 33 1.8 0.04 460 2.0 220
Character mid 9605 50.2k 18k 35 0.74 26 17.2 0.48 52 57 12 2.9 0.04 315 5.4 108
Character high 18k 91k 18k 67 — 14 33.8 — 27 106 6 4 — 227 14.1 54
Armadillo 5189 31.1k 173k 21 11 25 11.1 5.3 43 37 14 2.2 0.54 307 3.8 145

7 RESULTS
Similar to the original Projective Skinning (PS), our new method,
which we call Fast Projective Skinning (FPS), avoids the well-known
artifacts of purely geometric methods, as shown in Figure 1. In
comparison to the local collisions of PS, our FPS provides full global
collision handling, leading to significantly improved results. This is
demonstrated in Figure 1 and Figure 6, but better visible in the dy-
namic animations shown in the supplementary video. Furthermore,
our new upsampling technique provides better reconstructions of
the high-resolution visualization mesh (Figure 5).

We compare the original PS to our new FPS on a range of dif-
ferent character models. All timings were measured on a standard
workstation equipped with Intel Xeon CPU (6 cores, 12 threads ×
3.6 GHz) and an Nvidia GTX 1080 TI (3584 CUDA cores, compute
capability 5.2). For parallelization we used OpenMP on the CPU
and CUDA 9.2 on the GPU. Note that while the GPU version of FPS
exploits the iterative PCG solver discussed above, the CPU version
employs EIGEN’s sparse Cholesky solver, since this is faster than
the CPU-based PCG solver. Timing results for the different methods
and their algorithmic components are provided in Table 2.

Without collisions, our CPU-FPS is about twice as fast as the
original PS, thanks to our hard-constraints formulation (Section 4.3)
and the MLS-upsampling (Section 5). Comparing PS to GPU-FPS,
the latter is faster by an additional factor of 4–8, depending on
model size. For large meshes, GPU-FPS is up to 16× faster than PS.

Analyzing FPS with global collisions, the CPU version has to
recompute the Cholesky factorization, which the PCG solver of the
GPU version avoids. Comparing the two, GPU-FPS is about 6×–10×
faster than CPU-FPS. Even with full collision handling, GPU-FPS
is faster than the original PS without collisions. Since both FPS
versions perform collision detection on the CPU, the difference in
their tcol times is due to matrix re-factorization in the CPU case.

Comparing the low-, mid-, and high-resolution character results,
one can observe that simulation time scales linearly with the num-
ber of simulation vertices Ns in the CPU. On the GPU, we observe
a sub-linear scaling due to overheads of kernel calls or a low GPU
occupancy for smaller meshes. When analyzing frames per second
we include the rendering of the visualization mesh of V vertices.

All GPU-FPS timings reported in Table 2 have been computed with
npd = 10 PD iterations in Algorithm 1, each of which usesnpcg = 10
PCG iterations in Algorithm 2. While this performance was fully
sufficient in our experiments, the number of PD iterations can be
further reduced to npd = 2 without noticing major visual differ-
ences, as shown in the supplementary video (one can observe a
slight difference at the fingers for abrupt hand motions). This re-
duces the simulation time by a factor of five and results in more
than 2000 frames per second when using the low-resolution simu-
lation mesh with MLS upsampling and without collision handling,
which is not much slower than skinning a character with standard
linear blend skinning (yielding a considerably lower quality).

8 CONCLUSION
We presented Fast Projective Skinning, an extension of Projective
Skinning that improves upon it in terms of both computational per-
formance and animation quality. Our GPU implementation of the
Projective Dynamics solver yields not just an considerable speed-up,
but also overcomes the dependence on a constant set of constraints
throughout the simulation. By exploiting this feature, Fast Projec-
tive Skinning becomes the first skinning approach that is capable
of detecting and handling arbitrary self collisions in real time. The
MLS-based upsampling of vertex positions and normals also yields
better results as well as better computational performance.

Like for Projective Skinning, the physical/anatomical plausibility
of our approach is limited by the simple one-layer tissue mesh
spanned between skin and bones, which can partly be observed
in the accompanying video. The computational performance of
FPS will allow us to use more sophisticated tissue meshes in the
future, for instance featuring rib cage and hips, as well as several
tissue layers of varying tissue stiffness. Thickness and stiffness of
those layers can maybe be learned from data to support an even
more realistic skinning while retaining the simplicity of our FPS
approach. Improving the anatomical correctness might eventually
make our character animation useful beyond computer games, such
as in real-time applications in a medical context.

MIG ’19, October 28–30, 2019, Newcastle upon Tyne, United Kingdom Komaritzan and Botsch

ACKNOWLEDGMENTS
We would like to thank Bogo et al. [2017], whose models pro-
vide mesmerizing collision potentials. We are also very grateful to
Stephan Wenninger for his amazing dance moves shaking each cell
of the human body and to Wolf-Matthias Vogelsang for his work
on the upsampling implementation.

REFERENCES
Hartwig Anzt, William Sawyer, Stanimire Tomov, Piotr Luszczek, Ichitaro Yamazaki,

and Jack Dongarra. 2014. Optimizing Krylov Subspace Solvers on Graphics Process-
ing Units. In Proc. of IEEE International Parallel Distributed Processing Symposium
Workshops.

Nathan Bell and Michael Garland. 2008. Efficient sparse matrix-vector multiplication on
CUDA. Technical Report NVR-2008-004. NVIDIA Corporation.

Jan Bender, Matthias Müller, and Miles Macklin. 2017. A Survey on Position Based
Dynamics. In Eurographics Tuturials.

Federica Bogo, Javier Romero, Gerard Pons-Moll, and Michael J. Black. 2017. Dy-
namic FAUST: Registering Human Bodies in Motion. In Proc. of IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

Jeff Bolz, Ian Farmer, Eitan Grinspun, and Peter Schröder. 2003. Sparse Matrix Solvers
on the GPU: Conjugate Gradients and Multigrid. ACM Transactions on Computer
Graphics 22, 3 (2003).

Mario Botsch and Olga Sorkine. 2008. On Linear Variational Surface Deformation
Methods. IEEE Transaction on Visualization and Computer Graphics 14, 1 (2008).

Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014.
Projective Dynamics: Fusing Constraint Projections for Fast Simulation. ACM
Transactions on Computer Graphics 33, 4 (2014).

Christopher Brandt, Elmar Eisemann, and Klaus Hildebrandt. 2018. Hyper-reduced
projective dynamics. ACM Transactions on Computer Graphics 37, 4 (2018).

Luc Buatois, Guillaume Caumon, and Bruno Levy. 2009. Concurrent number cruncher:
a GPU implementation of a general sparse linear solver. International Journal of
Parallel, Emergent and Distributed Systems 24, 3 (2009).

Steve Capell, Matthew Burkhart, Brian Curless, Tom Duchamp, and Zoran Popović.
2005. Physically Based Rigging for Deformable Characters. In Proc. of ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation.

Dan Casas and Miguel A. Otaduy. 2018. Learning Nonlinear Soft-Tissue Dynamics for
Interactive Avatars. Proceedings of the ACM on Computer Graphics and Interactive
Techniques 1, 1 (2018).

Crispin Deul and Jan Bender. 2013. Physically-Based Character Skinning. In Proc. of
Virtual Reality Interactions and Physical Simulations.

Xiaowen Feng, Hai Jin, Ran Zheng, Kan Hu, Jingxiang Zeng, and Zhiyuan Shao. 2011.
Optimization of sparse matrix-vector multiplication with variant CSR on GPUs. In
Proc. of IEEE International Conference on Parallel and Distributed Systems.

Marco Fratarcangeli, Valentina Tibaldo, and Fabio Pellacini. 2016. Vivace: a practical
Gauss-Seidel method for stable soft body dynamics. ACM Transactions on Computer
Graphics 35, 6 (2016).

T.P. Fries and H.G. Matthies. 2004. Classification and overview of meshfree methods. In-
formatikbericht 2003-03, Revised 2004. Institute of Scientific Computing, Technical
University Braunschweig.

Ming Gao, Nathan Mitchell, and Eftychios Sifakis. 2014. Steklov-Poincaré skinning. In
Proc. of ACM SIGGRAPH/Eurographics Symposium on Computer Animation.

Ming Gao, Xinlei Wang, Kui Wu, Andre Pradhana, Eftychios Sifakis, Cem Yuksel,
and Chenfanfu Jiang. 2018. GPU Optimization of Material Point Methods. ACM
Transactions on Computer Graphics 37, 6 (2018).

Gaël Guennebaud, Benoît Jacob, et al. 2018. Eigen v3. http://eigen.tuxfamily.org.
Dahai Guo, William Gropp, and Luke N Olson. 2016. A hybrid format for better

performance of sparse matrix-vector multiplication on a GPU. International Journal
of High Performance Computing Applications 30, 1 (2016).

Daniel Holden, Bang Chi Duong, Sayantan Datta, and Derek Nowrouzezahrai. 2019.
Subspace neural physics: fast data-driven interactive simulation. In Proc. of ACM
SIGGRAPH/Eurographics Symposium on Computer Animation.

Alec Jacobson, Zhigang Deng, Ladislav Kavan, and J.P. Lewis. 2014. Skinning: Real-time
Shape Deformation. In ACM SIGGRAPH Courses.

Petr Kadleček, Alexandru-Eugen Ichim, Tiantian Liu, Jaroslav Křivánek, and Ladislav
Kavan. 2016. Reconstructing Personalized Anatomical Models for Physics-based
Body Animation. ACM Transactions on Computer Graphics 35, 6 (2016).

Ladislav Kavan, Steven Collins, Jiří Žára, and Carol O’Sullivan. 2008. Geometric
Skinning with Approximate Dual Quaternion Blending. ACM Transactions on
Computer Graphics 27, 4 (2008).

Meekyoung Kim, Gerard Pons-Moll, Sergi Pujades, Seungbae Bang, Jinwook Kim,
Michael J. Black, and Sung-Hee Lee. 2017. Data-driven Physics for Human Soft
Tissue Animation. ACM Transactions on Computer Graphics 36, 4 (2017).

R. Kimmel and J. A. Sethian. 1998. Computing geodesic paths on manifolds. Proceedings
of the National Academy of Sciences 95, 15 (1998).

Martin Komaritzan and Mario Botsch. 2018. Projective Skinning. Proceedings of the
ACM on Computer Graphics and Interactive Techniques 1, 1 (2018).

Jing Li, Tiantian Liu, and Ladislav Kavan. 2019. Fast simulation of deformable char-
acters with articulated skeletons in projective dynamics. In Proc. of ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation.

Weifeng Liu, Ang Li, Jonathan Hogg, Iain S Duff, and Brian Vinter. 2016. A
synchronization-free algorithm for parallel sparse triangular solves. In Proc. of
European Conference on Parallel Processing.

Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J.
Black. 2015. SMPL: A Skinned Multi-person Linear Model. ACM Transactions on
Computer Graphics 34, 6 (2015).

Miles Macklin, Matthias Müller, and Nuttapong Chentanez. 2016. XPBD: Position-
based Simulation of Compliant Constrained Dynamics. In Proc. of ACM International
Conference on Motion in Games.

Nadia Magnenat-Thalmann, Richard Laperrière, and Daniel Thalmann. 1988. Joint-
dependent Local Deformations for Hand Animation and Object Grasping. In Proc.
of Graphics Interface.

Sebastian Martin, Peter Kaufmann, Mario Botsch, Eitan Grinspun, and Markus Gross.
2010. Unified Simulation of Elastic Rods, Shells, and Solids. ACM Transactions on
Computer Graphics 29, 4 (2010).

Aleka McAdams, Andrew Selle, Rasmus Tamstorf, Joseph Teran, and Eftychios Sifakis.
2011a. Computing the singular value decomposition of 3 × 3 matrices with mini-
mal branching and elementary floating point operations. Technical Report 1690.
University of Wisconsin-Madison.

Aleka McAdams, Yongning Zhu, Andrew Selle, Mark Empey, Rasmus Tamstorf, Joseph
Teran, and Eftychios Sifakis. 2011b. Efficient Elasticity for Character Skinning with
Contact and Collisions. ACM Transactions on Computer Graphics 30, 4 (2011).

Alexander Monakov, Anton Lokhmotov, and Arutyun Avetisyan. 2010. Automatically
tuning sparse matrix-vector multiplication for GPU architectures. In Proc. of Inter-
national Conference on High-Performance Embedded Architectures and Compilers.

Matthias Müller and Markus Gross. 2004. Interactive Virtual Materials. In Proc. of
Graphics Interface.

Matthias Müller, Bruno Heidelberger, Matthias Teschner, and Markus Gross. 2005.
Meshless Deformations Based on Shape Matching. ACM Transactions on Computer
Graphics 24, 3 (2005).

Matthias Müller, Matthias Teschner, and Markus Gross. 2004. Physically Based Sim-
ulation of Objects Represented by Surface Meshes. In Proc. of Computer Graphics
International.

Maxim Naumov. 2011. Parallel solution of sparse triangular linear systems in the
preconditioned iterative methods on the GPU. Technical Report NVR-2011-001.

Junjun Pan, Lijuan Chen, Yuhan Yang, and Hong Qin. 2017. Automatic skinning
and weight retargeting of articulated characters using extended position-based
dynamics. The Visual Computer 34, 10 (2017).

Yue Peng, Bailin Deng, Juyong Zhang, Fanyu Geng, Wenjie Qin, and Ligang Liu. 2018.
Anderson acceleration for geometry optimization and physics simulation. ACM
Transactions on Computer Graphics 37, 4 (2018).

Nadine Abu Rumman and Marco Fratarcangeli. 2015. Position-Based Skinning for Soft
Articulated Characters. Computer Graphics Forum 34, 6 (2015).

Shunsuke Saito, Zi-Ye Zhou, and Ladislav Kavan. 2015. Computational Bodybuilding:
Anatomically-based Modeling of Human Bodies. ACM Transactions on Computer
Graphics 34, 4 (2015).

Matthias Teschner, Bruno Heidelberger, Matthias Müller, Danat Pomerantes, and
Markus Gross. 2003. Optimized Spatial Hashing for Collision Detection of De-
formable Objects. In Proc. of Vision, Modeling and Visualization.

Rodolphe Vaillant, Gäel Guennebaud, Loïc Barthe, Brian Wyvill, and Marie-Paule
Cani. 2014. Robust Iso-surface Tracking for Interactive Character Skinning. ACM
Transactions on Computer Graphics 33, 6 (2014).

Francisco Bonilla Vázquez, Ester M. Garzón, J. A. Martínez, and Jonathan Carrero
Fernández. 2009. The sparse matrix vector product on GPUs. In Proc. of International
Conference on Computational and Mathematical Methods in Science and Engineering.

Huamin Wang. 2015. A Chebyshev semi-iterative approach for accelerating projective
and position-based dynamics. ACM Transactions on Computer Graphics 34, 6 (2015).

Daniel Weber, Jan Bender, Markus Schnoes, André Stork, and Dieter Fellner. 2013. Effi-
cient GPU data structures and methods to solve sparse linear systems in dynamics
applications. 32, 1 (2013).

Hiroki Yoshizawa and Daisuke Takahashi. 2012. Automatic tuning of sparse matrix-
vector multiplication for CRS format on GPUs. In Proc. of IEEE International Con-
ference on Computational Science and Engineering.

	Abstract
	1 Introduction
	2 Related work
	3 Projective Skinning
	4 GPU-Based Projective Skinning
	4.1 GPU Conjugate Gradients
	4.2 Matrix and Vector Storage
	4.3 Soft Constraints vs Hard Constraints

	5 Upsampling
	6 Global Collision Handling
	7 Results
	8 Conclusion
	Acknowledgments
	References

