
Poly-Spline Finite Element Method

TESEO SCHNEIDER, New York University
JÉRÉMIE DUMAS, New York University, nTopology
XIFENG GAO, New York University, Florida State University
MARIO BOTSCH, Bielefeld University
DANIELE PANOZZO, New York University
DENIS ZORIN, New York University

Fig. 1. A selection of the automatically generated pure hexahedral and hexahedral-dominant meshes in our test set. The colors denote the type of basis used.
In the bottom-right, we show the result of a Poisson problem solved over a hex-dominant, polyhedral mesh.

We introduce an integrated meshing and finite element method pipeline
enabling solution of partial differential equations in the volume enclosed
by a boundary representation. We construct a hybrid hexahedral-dominant
mesh, which contains a small number of star-shaped polyhedra, and build a
set of high-order bases on its elements, combining triquadratic B-splines,
triquadratic hexahedra, and harmonic elements. We demonstrate that our
approach converges cubically under refinement, while requiring around
50% of the degrees of freedom than a similarly dense hexahedral mesh
composed of triquadratic hexahedra. We validate our approach solving
Poisson’s equation on a large collection of models, which are automatically
processed by our algorithm, only requiring the user to provide boundary
conditions on their surface.

CCS Concepts: • Computing methodologies → Modeling and simu-
lation; Physical simulation; Mesh geometry models; • Mathematics of
computing → Mesh generation;

Additional Key Words and Phrases: Finite Elements, Polyhedral meshes,
Splines, Simulation

ACM Reference format:
Teseo Schneider, Jérémie Dumas, Xifeng Gao,Mario Botsch, Daniele Panozzo,
and Denis Zorin. 2019. Poly-Spline Finite Element Method. 1, 1, Article 1
(February 2019), 16 pages.
DOI: 10.1145/nnnnnnn.nnnnnnn

2019. XXXX-XXXX/2019/2-ART1 $15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The numerical solution of partial differential equations is ubiquitous
in computer graphics and engineering applications, ranging from
the computation of UVmaps and skinningweights, to the simulation
of elastic deformations, fluids, and light scattering.
The finite element method (FEM) is the most commonly used

discretization of PDEs, especially in the context of structural and
thermal analysis, due to its generality and rich selection of off-the-
shelf commercial implementations. Ideally, a PDE solver should
be a “black box”: the user provides as input the domain boundary,
boundary conditions, and the governing equations, and the code
returns an evaluator that can compute the value of the solution at
any point of the input domain. This is surprisingly far from being
the case for all existing open-source or commercial software, despite
the research efforts in this direction and the large academic and
industrial interest.
To a large extent, this is due to treating meshing and FEM basis

construction as two disjoint problems. The FEM basis construction
may make a seemingly innocuous assumption (e.g., on the geom-
etry of elements), that lead to exceedingly difficult requirements
for meshing software. For example, commonly used bases for tetra-
hedra are sensitive to the tetrahedron shape, so tetrahedral mesh
generators have to guarantee good element shape everywhere: a

, Vol. 1, No. 1, Article 1. Publication date: February 2019.

1:2 • Schneider, T. et al.

difficult task which, for some surfaces, does not have a fully sat-
isfactory solution. Alternatively, if few assumptions are made on
mesh generation (e.g., one can use elements that work on arbitrary
polyhedral domains), the basis and stiffness matrix constructions
can become very expensive.
This state of matters presents a fundamental problem for ap-

plications that require fully automatic, robust processing of large
collections of meshes of varying sizes, an increasingly common
situation as large collections of geometric data become available.
Most importantly, this situation arises in the context of machine
learning on geometric and physical data, where a neural network
could be trained using large numbers of simulations and used to
compute efficiently an approximated solution [Chen et al. 2018;
Kostrikov et al. 2018]. Similarly, shape optimization problems often
require solving PDEs in the inner optimization loop on a constantly
changing domain [Panetta et al. 2015].

Overview. We propose an integrated pipeline, considering mesh-
ing and element design as a single challenge: we make the tradeoff
between mesh quality and element complexity/cost local, instead of
making an a priori decision for the whole pipeline. We generate high
quality, simple, and regularly arranged elements for most of the vol-
ume of the shape, with more complex and poor quality polyhedral
shapes filling the remaining gaps [Gao et al. 2017a; Sokolov et al.
2016]. Our idea is to match each element to a basis construction,
with well-shaped elements getting the simplest and most efficient
basis functions and with complex polyhedral element formulations
used only when necessary to handle the transitions between regular
regions, which are the ones that are topologically and geometrically
more challenging.

A spline basis on a regular lattice has major advantages over tra-
ditional FEM elements, since it has the potential to be both accurate
and efficient: it has a single degree of freedom per element, except at
the boundary, yet, it has full approximation power corresponding to
the degree of the spline. This observation is one of the foundations of
isogeometric analysis in 3D [Cottrell et al. 2009; Hughes et al. 2005].
Unfortunately, it is easy to define and implement only for fully regu-
lar grids, which is not practical for most input geometries. The next
best thing are spline bases on pure hexahedral meshes: while smooth
constructions for polar configurations exist [Toshniwal et al. 2017],
a solution applicable to general hexahedral meshes whose interior
singular curves meet is still elusive, restricting this construction
to simple shapes. Padded hexahedral-meshes [Maréchal 2009a] are
necessary to ensure a good boundary approximation for both regu-
lar and polycube [Tarini et al. 2004] hexahedral meshing methods,
but they unfortunately cannot be used by these constructions since
their interior curve singularities meet in the padding layer.

We propose a hybrid construction that sidesteps these limitations:
we use spline elements only on fully regular regions, and fill the
elements that are touching singular edges, or that are not hexa-
hedra, with local constructions (harmonic elements for polyhedra,
triquadratic polynomial elements for hexahedra). This construction
further relaxes requirements for meshing, since it works on general
hexahedral meshes (without any restriction on their singularity
structure) but also directly supports hex-dominant meshes, which
can be robustly generated with modern field-aligned methods [Gao

et al. 2017a; Sokolov et al. 2016]. These meshes consist mostly of
well-shaped hexahedra with locally regular mesh structure, but also
contain other general polyhedra. Our construction takes advantage
of this high regularity, adding a negligible overhead over the spline
FEM basis only for the sparse set of non-regular elements.

We demonstrate that our proposed Poly-Spline FEM retains, to a
large extent, both the approximation and performance benefits of
splines, at the cost of the increasing basis construction complexity,
and at the same time, works for a class of meshes that can be robustly
generated for most shapes with existing meshing algorithms.

Our method exhibits cubic convergence on a large data set, for a
degree of freedom budget comparable to trilinear hexahedral ele-
ments, which have only quadratic convergence. To the best of our
knowledge, this paper is the first FEM method exploiting the advan-
tages of spline basis that has been validated on a large collection of
complex geometries.

2 RELATED WORK
When numerically solving PDEs using the finite element method,
one has to discretize the spatial domain into finite elements and
define shape functions on these elements. Since shape functions,
element types, and mesh generation are closely related, we discuss
the relevant approaches in tandem.
For complex spatial domains, the discretization is frequently

based on the Delaunay triangulation [Shewchuk 1996] or Delau-
nay tetrahedrization [Si 2015], respectively, since those tessellations
can be computed in a robust and automatic manner. Due to their
simplicity and efficiency, linear shape functions over triangular or
tetrahedral elements are often the default choice for graphics ap-
plications [Hughes 2000], although they are known to suffer from
locking for stiff PDEs, such as nearly incompressible elastic materi-
als [Hughes 2000].
This locking problem can be avoided by using bilinear quadran-

gular or trilinear hexahedral elements (Q1 elements), which have
the additional advantage of yielding a higher accuracy for a given
number of elements [Benzley et al. 1995; Cifuentes and Kalbag 1992].
Triquadratic hexahedral elements (Q2) provide even higher accu-
racy and faster convergence under mesh refinement (cubic converge
in L2-norm for Q2 vs. quadratic converge for Q1), but their larger
number of degrees of freedom (8 vs. 27) leads to high memory con-
sumption and computational cost.

The main idea of isogeometric analysis (IGA) [Cottrell et al. 2009;
Engvall and Evans 2017; Hughes et al. 2005] is to employ the same
spline basis for defining the CAD geometry as well as for performing
numerical analysis. Using quadratic splines on hexahedral elements
results in the same cubic convergence order as Q2 elements, but at
the much lower cost of one degree of freedom per element (compa-
rable toQ1 elements). This efficiency, however, comes at the price of
a very complex implementation for non-regular hexahedral meshes.
Moreover, generating IGA-compatible meshes from a given general
boundary surface is still an open problem [Aigner et al. 2009; Li
et al. 2013; Martin and Cohen 2010].
Concurrent work [Wei et al. 2018] introduces a construction

that can handle irregular pure hex meshes, with tensor-product
cubic splines used on regular parts. However, we focus on handling

, Vol. 1, No. 1, Article 1. Publication date: February 2019.

Poly-Spline Finite Element Method • 1:3

general polygonal meshes and we use quadratic splines (note that,
our approach can be easily extended to cubic polynomials if desired).

A standard method for volumetric mesh generation is through hi-
erarchical subdivision of an initial regular hexahedral mesh, leading
to so-called octree meshes [Ito et al. 2009; Maréchal 2009b; Zhang
et al. 2013]. The T-junctions resulting from adaptive subdivision
can be handled by using T-splines [da Veiga et al. 2011; Sederberg
et al. 2004] as shape functions. While this meshing approach is very
robust, it has problems representing geometric features that are not
aligned with the principal axes.

Even when giving up splines or T-splines for standard Q1/Q2 ele-
ments, the automatic generation of the required hexahedral meshes
is problematic. Despite the progress made in this field over the
last decade, automatically generating pure hexahedral meshes that
(i) have sufficient element quality, (ii) are not too dense, and (iii)
align to geometric features is still unsolved. Early methods based
on paving or sweeping [Owen and Saigal 2000; Shepherd and John-
son 2008; Staten et al. 2005; Yamakawa and Shimada 2003] require
complicated handling of special cases and generate too many singu-
larities. Polycube methods [Fang et al. 2016; Fu et al. 2016; Gregson
et al. 2011; Huang et al. 2014; Li et al. 2013; Livesu et al. 2013], field-
aligned methods [Huang et al. 2011; Jiang et al. 2014; Li et al. 2012;
Nieser et al. 2011], and the surface foliation method [Lei et al. 2017]
are interesting research venues, but they are currently not robust
enough and often fail to produce a valid mesh.
However, if the strict requirement of producing hexahedral el-

ements only is relaxed, field-aligned methods [Gao et al. 2017a;
Sokolov et al. 2016] can robustly and automatically create hex-
dominant polyhedral meshes, that is, meshes consisting of mostly,
but not exclusively, of hexahedral elements. The idea is to build
local volumetric parameterizations aligned with a specified direc-
tional field, and constructing the mesh from traced isolines of that
parameterization, inserting general polyhedra if necessary. Their
drawback is that the resulting hex-dominant meshes, are not directly
supported by most FEM codes.
One option is to split these general polyhedra into standard ele-

ments, leading to a mixed FEM formulation. For instance, the field-
aligned meshing of Sokolov et al. [2016] extract meshes that are
composed of hexahedra, tetrahedra, prisms, and pyramids. However,
the quality of those split elements is hard to control in general. An
interesting alternative is to avoid the splitting of polyhedra and
instead incorporate them into the simulation, for instance though
mimetic finite differences [Lipnikov et al. 2014], the virtual ele-
ment method [Beirão Da Veiga et al. 2013], or polyhedral finite ele-
ments [Manzini et al. 2014]. The latter employ generalized barycen-
tric coordinates as shape functions, such as mean value coordinates
[Floater et al. 2005; Ju et al. 2005], harmonic coordinates [Joshi et al.
2007], or minimum entropy coordinates [Hormann and Sukumar
2008]. From those options, harmonic coordinates seemmost suitable
since they generalize both linear tetrahedra and trilinear hexahe-
dra to general non-convex polyhedra [Bishop 2014; Martin et al.
2008]. While avoiding splitting or remeshing hex-dominant meshes,
the major drawback of polyhedral elements is the high cost for
computing and integrating their shape functions.

In the above methods the meshing stage either severely restricts
admissible shape functions, or the element type puts (too) strong

M
S

Q

P

Fig. 2. Complexes involved in our construction. In green we show S, in red
Q, and in blue P.

requirements on the meshing. In contrast, we use the most efficient
elements where possible and the most flexible elements where re-
quired, which enables the use of robust and automatic hex-dominant
mesh generation.

3 ALGORITHM OVERVIEW
In this section, we introduce the main definitions we use in our
algorithm description, and outline the structure of the algorithm.
We refer to Appendix A for a brief introduction to the finite element
method and the setup of our mathematical notation.

Input complex and subcomplexes. The input to our algorithm is
a 3D polyhedral complexM, with vertices vi ∈ R3, i = 1, . . . ,NV ,
consisting of polyhedral cells Ci , i = 1, . . . ,NC , most of which
are hexahedra. Figure 2 shows a two-dimensional example of such
complex. The edges, faces, and cells of the mesh are defined com-
binatorially, that is, edges are defined by pairs of vertices, faces by
sequences of edges, and cells by closed surface meshes formed by
faces.We assume that 3D positions of vertices are also provided as in-
put and thatM is three-manifold, i.e., that there is a way to identify
vertices, edges, faces, and cells with points, curves, surface patches
and simple volumes, such that their union is a three-manifold subset
of R3.
We assume that for any hexahedron there is at most one non-

hexahedral cell sharing one of its faces or edges, which can be
achieved by refinement. We also assume that no two polyhedral cells
are adjacent, and that no polyhedron touches the boundary, which
can also be achieved by merging polyhedral cells and/or refinement.
This preprocessing step (i.e., one step of uniform refinement) is
discussed in Section 6. As a consequence of our refinement, all faces
ofM are quadrilateral.
One of the difficulties of using general polyhedral meshes for

basis constructions is that, unlike the case of, for example, pure
tetrahedral meshes, there is no natural way to realize all elements
of the mesh in 3D just from vertex positions (e.g., for a tetrahedral
mesh, linear interpolation for faces and cells is natural). This re-
quires constructing bases on an explicitly defined parametric domain
associated with the input complex.
For this purpose, we define a certain number of complexes re-

lated to the original complex M (Figure 2). There are two goals
for introducing these: defining the parametric domain for the basis,
and defining the geometric map, which specifies how the complex
is realized in three-dimensional physical space.
• H ⊆ M is the hexahedral part of M, consisting of hexahedra H .

, Vol. 1, No. 1, Article 1. Publication date: February 2019.

1:4 • Schneider, T. et al.

• P = M \ H is the non-hexahedral part of M, consisting of
polyhedra P .

• S ⊆ H is the complex consisting of spline-compatible hexahedra
S defined in Section 4.1.

• Q = H \ S is the spline-incompatible pure-hexahedral part of
M.

Note that the sub-complexes ofM are nested: S ⊆ H ⊆ M.
In the context of finite elements, the distinction between paramet-

ric space and physical space is critical: the bases on the hexahedral
part of the mesh are defined in terms of parametric space coordi-
nates, where all hexahedra are unit cubes; this makes it possible to
define simple, accurate, and efficient bases. However, the derivatives
in the PDE are taken with respect to physical space variables, and
the unknown functions are naturally defined on the physical space.
Remapping these functions to the parametric space is necessary to
discretize the PDE using our basis. We define parametric domains
M̂, Ĥ , Ŝ, and Q̂ corresponding toM,H , S, and Q, respectively. Ĥ
consists of unit cubes Ĥ , one per hexahedron H with corresponding
faces identified, and Ŝ and Q̂ are its subcomplexes. The complete
parametric space M̂ is obtained by adding a set of polyhedra for P,
defined using the geometric map as described below. For polyhedra,
physical and parametric space coincide.

Geometric map and complex embedding. The input complex, as
it is typical for mesh representations, does not define a complete
geometric realization of the complex: rather it only includes vertex
positions and element connectivity. We define a complete geometric
realization as the geometric map g : M̂ → R3, from the parametric
domain M̂ to the physical space. We use x̂ for points in the para-
metric domain, and x for points in the physical space, and denote
the image of the geometric map by Ω = g(M̂) (Figure 3).
The definition requires bootstrapping: g is first defined on Ĥ .

For example, the simplest geometric map g on M̂ can be obtained
by trilinear interpolation: g restricted to a unit cube Ĥ ⊂ M̂ is a
trilinear interpolation of the positions of the vertices of its associated
hexahedron H . We make the following assumption about g(Ĥ): the
map is bijective on the faces ofH , corresponding to the boundary of
any polyhedral cell P , and the union of the images of these faces does
not self-intersect and encloses a volume P ′. Section 6 explains how
this is ensured. Then we complete M̂ by adding the volume P ′ as
the parametric domain for P . We add this volume to the parametric
domain M̂, identifying corresponding faces with faces in Ĥ , and
defining the geometric map to be the identity on these domains.
The simplest trilinear map is adequate for elements of the mesh

outside the regular part S, but is insufficient for accuracy on the
regular part, as discussed below. We consider a more complex defini-
tion of g ensuring C1 smoothness across interior edges and faces of
S, described in Section 5, after we describe our basis construction.
Our construction is isoparametric, that is, it uses the same basis for
the geometric map as for the solution.

In other words, on Q we use the standard tri-quadratic geometric
map that maps each reference cube [0, 1]3 to the actual hex-element
in themesh. OnSwe use aC1 splinemapping, explained in Section 5.
On the polyhedral part, the geometric map is the identity, thus all
quantities are defined directly on the physical domain.

g H

Ĥ g
H

P = P̂

^x = g(x)

x̂

Fig. 3. Illustration of the geometric mapping.

Overview of the basis and discretization construction. Given an
input complex M, we construct a set of bases ϕ̂i : M̂ → R, i =
1, . . . ,N , such that:

• the restriction of basis function ϕ̂i to spline compatible hexahe-
dral domains Ŝ ∈ Ŝ is a spline basis function;

• the restriction to hexahedra Q̂ ∈ Q̂ is a standard triquadratic (Q2)
element function;

• the restriction to polyhedra P̂ ∈ P̂ (or P ∈ P) is a harmonic-based
nonconformal, third-order accurate basis function.

The degrees of freedom (dofs) corresponding to basis functions ϕ̂i
are associated with:

• each hexahedron either in S or adjacent to a spline-compatible
one (spline cell dofs);

• each boundary vertex, edge, or face of S (spline boundary dofs);
these are needed to have correct approximation on the boundary;

• each vertex, edge, face, and cell of Q (triquadratic element degrees
of freedom).

The total number of degrees of freedom is denoted by N . While most
of the construction is independent of the choice of PDE (we assume
it to be second-order), with a notable exception of the consistency
condition for polyhedral elements, we use the Poisson equation to
be more specific.
Note that hexahedra adjacent to S, but not in S (i.e., hexahedra

in Q) get both spline dofs and triquadratic element dofs: such a cell
may have ≥ 28 dofs instead of 27.
Polyhedral cells are not assigned separate degrees of freedom:

the basis functions with support overlapping polyhedra are those
associated with dofs at incident hexahedra.
We assemble the standard stiffness matrix for an elliptic PDE,

element-by-element, performing integration on the hexahedra Ĥ of
M̂ and polyhedra P . The entry Ki j of the stiffness matrix K for the
Poisson equation is computed as follows:

Ki j =
∑
Ĉ ∈M̂

∫
g(Ĉ)

∇ϕi (x) · ∇ϕ j (x) dx, (1)

where ϕi = ϕ̂i ◦ g−1. The actual integration is performed on the
elements in the parametric domain M̂, using a change of variables

, Vol. 1, No. 1, Article 1. Publication date: February 2019.

Poly-Spline Finite Element Method • 1:5

Fig. 4. Spline local grid (shown in dark), for an internal and a boundary
quadrilateral. The color codes are as defined in Figure 2.

Fig. 5. Spline hex degrees of freedom for a central element and a corner
one.

x = g(̂x) for every element:

Ki j =
∑
Ĉ ∈M̂

∫
Ĉ
∇ϕ̂i (̂x)T A(̂x) ∇ϕ̂ j (̂x) |Dg| dx̂ (2)

where A(̂x) is the metric tensor of the geometric map g at x̂, given
by Dg−1Dg−T, with Dg being the Jacobian of g.
In the next sections, we describe the construction of the basis

on each element type, the geometric map, and the stiffness matrix
construction.

4 BASIS CONSTRUCTION
We seek to construct a basis on Ω = g(M̂) that has the following
properties:

(1) it is C0 everywhere on Ω, C1 at regular edges and vertices,
and C∞ within each H and P (polynomials on hexahedra).

(2) it has approximation order 3 on each H and P .
The unknown function u on the domain Ω is approximated by

uh =
∑N
i=1 uiϕi , where ϕi are the basis functions. The support of

each basis function is a union of a set of the images under g of cells
in M̂.

The actual representation of the basis, which allows us to perform
per-element construction of the stiffness matrix, consists of three
parts. The first two parts are local: we define a local set of dofs and a
local basis. For hexahedral elements, there are several types of local
polynomial bases, each coming with its set of local dofs, associated
with a local control mesh for the element. These basis functions are
encoded as sets of polynomial coefficients. For polyhedral elements,
all local basis functions are weighted combinations of harmonic
kernel functions and a triquadratic polynomial, so these are encoded
as kernel centers, weights and polynomial coefficients.

Fig. 6. Plot of the spline bases for a regular 2D grid.

The third part is the local-to-global linear map that represents
local dofs in terms of the global ones. Importantly, unlike most stan-
dard FEM formulations, our local-to-global maps are not necessarily
simply identifying local dofs the global ones: some local dofs are
linear combinations of global ones. These maps are formally repre-
sented bym × N matrices, wherem is a small number of local dofs,
and N is the total number of global dofs. However, as the elements
local dofs depend only on nearby global dofs, these matrices have a
small number of nonzeros and can be encoded in a compact form.
In the following, we consider the construction of these three

elements (set of local basis functions, set of local dofs, local-to-
global map) for each of our three element types. But before we can
construct the basis for each element, hexahedral elements need to
be classified into S (spline-compatible) and Q.

4.1 Spline-compatible hexahedral elements
We define a hexahedron H to be spline-compatible, if its one-ring
cell neighborhood is a 3 × 3 × 3 regular grid, possibly cut on one or
more sides if H is on the boundary, see Figure 4.
The local dofs of this element type form a 3 × 3 × 3 grid (for

interior elements), with the element in the center (Figure 5 left); for
boundary elements, there are still 27 dofs, ensuring a full triquadratic
polynomial reproduction. If a single layer with 9 dofs is missing, we
add an extra degree of freedom for each face of the local 3 × 3 × 2
grid corresponding to the boundary. Other cases are handled in a
similar manner; e.g. the configuration for a regular corner is shown
in Figure 5, right.

The basis functions in this case are just the standard triquadratic
uniform spline basis functions for interior hexahedra. For the bound-
ary case, we use the knot vector [0, 0, 0, 1, 2, 3] in the direction per-
pendicular to the boundary. Figure 6 shows an example of the bases
in 2D, for an internal node on the left and for a boundary node on
the right. Finally, the local-to-global map simply identifies local basis
dofs with corresponding global ones.

Compared to a standard Q2 element, the ratio of degrees of free-
dom to the number of elements is much lower (a single degree of
freedom per element for splines), although the approximation order
is the same.

4.2 Q2 hexahedral elements
This element is used for all remaining hexahedra. It is a standard
element, widely used in finite element codes. Local dofs for this

, Vol. 1, No. 1, Article 1. Publication date: February 2019.

1:6 • Schneider, T. et al.

u
31

u
32

u
33

u
21

u
22

u
23

u
11

u
13u

12
q

11
q

12
q

13

q
31

q
32

q
33

q
21

q
22

q
23

Fig. 7. Local-to-global map for a Q2 element (gray) adjacent to a single
spline element (green).

element are associated with the element vertices, edge midpoints,
face centers, and cell centers (Figure 26).

The local basis functions for the element are obtained as the tensor
product of the interpolating quadratic bases on the interval [0, 1],
consisting of (t − 1

2)(t − 1), (t − 1
2)t , and (t − 1)t (Appendix C). The

only complicated part in the case of Q2 elements is the definition
of the local-to-global map. For the two-dimensional setting, it is
illustrated in Figure 7.

The difficulty in the construction of this map is due to the interface
between spline elements and Q2 elements, and the need to ensure
continuity between the two. In the two-dimensional case, suppose
that a Q2 element Q ∈ Q shares an edge with exactly one quad
spline element S ∈ S. Let ui j , i, j = 1, . . . , 3, be the global dofs
of the spline element, and let qi j , i, j = 1, . . . , 3, be the degrees of
freedom of the Q2 element, as shown in the picture.
In this case, we ensure C0 continuity of the basis by expressing

the values of the polynomials on Q ∈ Q at the shared boundary
points in terms of global degrees of freedom. Since both the Q2 and
the spline basis restricted to an edge are quadratic polynomials,
they only need to be equal on three distinct points of the edge to
ensure continuity. By noticing that the Q2 basis is interpolatory at
the nodes, it is enough to evaluate the spline basis at these edge
nodes.

For the two-dimensional example in Figure 7, the local-to-global
map for the local dofs q31, q32 and q33 along the edge (in blue) that
the Q2 element shares with the spline is obtained as follows:

q31 =
1
4
(u11 + u12 + u21 + u22) ,

q32 =
3
8
(u12 + u22) +

1
16

(u11 + u21 + u13 + u23) ,

q33 =
1
4
(u12 + u13 + u22 + u23) .

(3)

In 3D, the construction is similar. We first identify all spline bases
overlapping with a local dof qi j on the boundary of a Q2 element
(i.e., a vertex, edge, or face dof). To determine the weights of the
local-to-global map, we evaluate each spline basis on the local dof
qi j and set it as weight.

The remaining degrees of freedom of theQ2 element are identified
with global Q2 degrees of freedom at the same locations. We note
once again that at the center of cells in Q with neighboring cells
in S, there are two dofs, one spline dof and one Q2 dof. Figure 8
shows an example of two basis functions on the transition from
the regular part on the left to the “irregular” part on the right. We

Fig. 8. Plot of the bases on a junction between a regular (green) and an
irregular (red) part for a regular 2D grid.

clearly see that on the regular part the bases are splines and on the
irregular one are the standard Q2 basis function: on the interface
the functions are only C0.

4.3 Basis construction on polyhedral cells
The construction of the basis on the polyhedral cells is quite different
from the construction of the basis on hexahedra. For hexahedra,
the basis functions are defined on the parametric domain M̂, and
are remapped to Ω ⊂ R3 via the geometric map. For polyhedra, we
construct the basis directly in physical space.

On possible option to construct the basis on polyhedral cells is to
split each polyhedral cells into tetrahedra. This approach has two
main disadvantages: (i) it requires the use of pyramids to ensure
conformity to the neighboring hexahedra, (ii) it is difficult to guaran-
tee a sufficient element quality after subdivision. Instead, we follow
the general approach of [Martin et al. 2008] with two important
alterations designed to ensure third-order convergence.

Recall that all polyhedron faces are quadrilateral, and all polyhe-
dra are surrounded by hexahedra, specificallyQ2 hexahedra as their
neighborhood is not regular. Moreover, since we always perform an
initial refinement step, there are no polyhedral cells touching each
other. We use the degrees of freedom on the faces of these elements
as degrees of freedom for the polyhedra, therefore the local-to-global
map in this case is trivial.
Each dof is already associated with a basis function ϕ j defined

on the hexahedra adjacent to the polyhedron. We construct the ex-
tension of ϕ j to the polyhedron P from k harmonic kernelsψi (x) =
∥x − zi ∥−1 centered at positions zi outside the polyhedron and qua-
dratic monomials qd (x), d = 1, . . . , 10, as

ϕ j
��
P (x) =

k∑
i=1

w
j
iψi (x) +

10∑
d=1

a
j
dqd (x) (4)

= wj ·ψ(x) + aj · q(x),

where wj = (w
j
1, . . . ,w

j
k)

T,ψ = (ψ1, . . . ,ψk)
T, aj = (a

j
1, . . . ,a

j
10)

T,
and q = (q1, . . . ,q10)T. The coefficientswj and aj are r×k and r×10
matrices, respectively, with r = 1 (scalar PDEs) or r = 2, 3 (vector
PDEs). Following [2008], the weightsw j

i ,a
j
d ∈ Rk are determined

using a least squares fit to match the values of the basis ϕ j evaluated
on a set of points sampled on the boundary of the polyhedron P .
In [Martin 2011], it is shown that this construction automati-

cally guarantees reproduction of linear polynomials if qd are linear;
the quadratic case is fully analogous. However, this condition is
insufficient for high-order convergence, because our basis is non-
conforming, that is non C0. In the context of the second-order PDEs

, Vol. 1, No. 1, Article 1. Publication date: February 2019.

Poly-Spline Finite Element Method • 1:7

z
i

Fig. 9. The local basis for a polygon consists of the set of triquadratic
polynomials qd and harmonic kernels ψi centered at shown locations zi .

we are considering, it means that it lacks C0 continuity on the
boundary of the polyhedron. For this type of elements, additional
consistency conditions are required to ensure high-order convergence.
These conditions depend on the PDE that we need to solve.

FEM theory detour. To achieve higher order convergence three
conditions need to be satisfied: (1) polynomial reproduction; (2) con-
sistency, which we discuss in more detail below and (3) quadrature
accuracy. We refer to standard FEM texts such as [Braess 2007] for
details, as well as to virtual element method literature (e.g., [de Dios
et al. 2016] is closely related).
To satisfy the third condition, we use high-order quadrature on

the polyhedron: we decompose it into tetrahedra and use Gaussian
quadrature points in each tetrahedron (the decomposition is detailed
in Section 6.1). The first condition, polynomial reproduction, is
ensured by construction of the basis above.

The second constraint, consistency, requires further elaboration.
We first derive it for the Poisson equation, and then summarize the
general form. We leave as future work the complete proof of the
convergence properties of our method (cf. [de Dios et al. 2016]),
which requires, in particular, a proper stability analysis. Neverthe-
less, in Section 7 we provide numerical evidence that our method
does converge at the expected rate, and that its conditioning is not
affected in a significant way by the presence of nonconforming
polyhedral elements.

The standard way to find the solution of a PDE for a finite element
system is to consider its weak form. For the Poisson equation, find
u such that ∫

Ω
∆uv = −

∫
Ω
∇u · ∇v =

∫
Ω
f v, ∀v (5)

Remark. We omit, for readability, the integration variable dx. In
the remaining formulas we use integration over the physical space
exclusively, in practice carried over to the parametric space by
adding the Jacobian of the geometric map.

Then, u is approximated by uh =
∑
i uiϕi , and v is taken to be in

the space spanned by the basis functions ϕ j . The stiffness matrix
entries are obtained as Ki j =

∑
C
∫
C ∇ϕi · ∇ϕ j , where the integral

is computed per element C , leading to the discrete system Ku = f
(Appendix A).

For general non-conforming elements, however, we cannot rely
on this standard approach. For example, if we consider piecewise-
constant elements for the Poisson equation, the stiffness matrix
would be all zeros.

However, for a given PDE, one can construct converging non-
conforming elements. One condition that is typically used, is that
the discrete matrix, constructed per element as above, gives us exact
values of the weak-form integral for all polynomials reproduced by
the basis (cf. k-consistency property in [de Dios et al. 2016]).
As our basis reproduces triquadratic monomials (i.e., they are

in the span of bases ϕi), we have qd (x) =
∑
i q

i
dϕi (x). To ensure

consistency, we require that any nonconforming basis function ϕ j
satisfies

−

∫
g(M̂)

∆qdϕ j =
∑
i
Ki jq

i
d (6)

for all triquadratic monomials qd .
To convert this equation to an equation for the unknown coeffi-

cientsw j
i and a

j
d , we observe that∑

i
Ki jq

i
d =

∫
g(M̂)

(∑
i
qid∇ϕi

)
· ∇ϕ j =

∫
g(M̂)

∇qd · ∇ϕ j (7)

due to the polynomial reproduction property. Separating the integral
into the part over the hexahedra д(M̂ \ P) and over the polyhedron
P = д(P), we write∑

i
Ki jq

i
d = CH +

∫
P
∇qd · ∇

(
wj ·ψ + aj · q

)
(8)

= CH + bTwj + cTaj

where

CH =
∑

Ĉ ∈M̂\P

∫
g(Ĉ)

∇qd ·∇ϕ j , b =
∫
P
∇qd ·∇ψ, c =

∫
P
∇qd ·∇q.

Similarly, the left-hand side of Equation (6) is reduced to a linear
combination of wj and aj . This forms a set of additional constraints
for the coefficients of the basis functions on the polyhedron. To
enforce them on each polyhedron, we solve a constrained least
squares system for each nonconforming basis function and store
the obtained coefficients.
Importantly, the addition of constraints to the least squares sys-

tem does not violate the polynomial reproduction property on the
polyhedron. This can be seen as follows. Let vh be the linear combi-
nation of basis functions ϕi overlapping P that yields a triquadratic
mononomial qd when restricted to P . Then vh is continuous on
Ω: the samples at the points of the boundary are from a quadratic
function, therefore, match exactly the quadratic continuation to
adjacent hexahedra.

The consistency condition (Equation 6) applied tovh simply states
that it satisfies the integration by parts formula, which it does as it
is C0 at the element boundaries, and smooth on the elements:

−
∑
C

∫
C
∆qdvh =

∑
C

∫
C
∇qd · ∇vh .

We conclude that vh is in the space defined by the consistency
constraint, and imposing this constraint preserves polynomial re-
production. See Appendix D for the complete list of constraints for
the Poisson equation.
More generally, for a linear PDE and for any polynomial q (for

vector PDEs, e.g., elasticity, this means that all components are

, Vol. 1, No. 1, Article 1. Publication date: February 2019.

1:8 • Schneider, T. et al.

polynomial) we require

a(qd ,vh) = ah (qd ,vh), where a(u,v) =

∫
Ω
F (x ,u,∇u,∆u)v

where F is a linear function of its arguments depending on u, and
ah is defined as a sum of integral over Ω after formal integration
by parts of F , to eliminate the second-order derivatives. For a con-
forming C0 basis, this condition automatically follows from the
integration by parts formulas, which are applicable. We now split
the two bilinear forms as a = aH + aP and ah = aHh + a

P
h where aH

and aHh contains the integral over the hexahedral known part, and
aP and aPh the integral over the polyhedral unknown part. Thus, for
a basis ϕ j we obtain the following set of constraints

aH (qd ,ϕ j) − aHh (qd ,ϕ j) = aH
(
qd ,w

j ·ψ(x) + aj · q(x)
)

− aHh

(
qd ,w

j ·ψ(x) + aj · q(x)
)
.

For a scalar-valued PDE, we have the same number of constraints
(5 in 2D and 9 in 3D) as monomials qd , thus we are guaranteed
to have a solution that respects the constraints for any k > 0. For
vector PDEs (e.g., elasticity), we impose the additional constraints
such that the coefficients

(
w
j
i

)
α
are the same for all dimensions α =

1, . . . , r , r = 2 or r = 3, which simplifies the implementation, but
increases the number of required centers zj , so that all constraints
can be satisfied. More explicitly, for vector PDEs we require that the
constraints

a(qsdeα ,ϕ
s
j eβ) = ah (q

s
deα ,ϕ

s
j eβ)

for α , β = 1, . . . , r are satisfied, with qs and ϕsj denoting scalar
polynomials and scalar basis functions respectively, defined as in (4)
for dimension 1, and eα is the unit vector for axis α . For dimensions
2 and 3, the number of monomials q is 5 and 9 respectively. The
number of constraints is given by r2q − q, and thus we will need
at least 15 zi in 2D and 72 in 3D to ensure that the constraints are
respected.

4.4 Imposing boundary conditions
We consider two standard types of boundary conditions: Dirichlet
(fixed function values on the boundary) and Neumann (fixed normal
derivatives at the boundary). Neumann (also known as natural)
boundary conditions are handled in the context of the variational
formulation of the problem as extra integral terms, in the case of
inhomogeneous conditions. Homogeneous conditions do not require
any special treatment and are imposed automatically in the weak
formulation.

We assume that the Dirichlet conditions are given as a continuous
function defined on the boundary of the domain. For all boundary
dofs, we sample the boundary condition on the faces of the domain
and perform a least-squares fit to retrieve the nodal values.

5 GEOMETRIC MAP CONSTRUCTION
The geometric map is a map from M̂ to Ω ⊂ R3, defined per element.
Its primary purpose is to allow us to construct basis functions ϕ̂i
on reference domains (i.e., the elements of M̂ that are unit cubes),
and then to remap them to the physical space as ϕi = ϕ̂i ◦ g−1. As

the local basis on the polyhedral elements is constructed directly in
the physical space, g is the identity on these elements.

The requirements for the geometric map are distinct for the spline
and Q2 elements, and are matched by using spline basis itself for S
and trilinear interpolation for Q2 elements.
Because of the geometric mapping g, for the quadratic spline,

the basis ϕi does not reproduce polynomials in the physical space;
nevertheless, the approximation properties of the basis are retained
[Bazilevs et al. 2006].
For Q2 elements, Arnold et al. [2002] shows that bilinear maps

are sufficient, and in fact allow to retain reproduction of triquadratic
polynomials in the physical space. This is very important for the
basis construction on polyhedral elements, as polynomial reproduc-
tion on these elements depends on reproduction of polynomials on
the polyhedron boundary.

Computing the geometry map. If we assume that the input only
has vertex positions vi for M, we solve the equations g(̂xi) = vi ,
which is a linear system of equations in terms of coefficients of g in
the basis we choose. In the trilinear basis, the system is trivial, as
the coefficients coincide with the values at xi , and these are simply
set to vi . For the triquadratic basis, this is not the case, and a linear
system needs to be solved. If the system is under-determined, we
find the least-norm solution.

6 MESH PREPROCESSING AND REFINEMENT
Without loss of generality, we restrict the meshing discussion to 2D,
as the algorithm introduced in this section extends naturally to 3D.
For the sake of simplicity, in this discussion the term polygon

refers to non-quadrilateral elements. As previously mentioned, our
method can be applied to hybrid meshes without two adjacent
polygons and without polygons touching the boundary, which we
ensure with one step of refinement. While our construction could
be extended to support these configurations, we favored refinement
due to its simplicity. Refining polygonal meshes is an interesting
problem on its own: while there is a canonical way to refine quads,
there are multiple ways to refine a polygon. We propose the use
of polar refinement (Section 6.2), which has the added benefit of
allowing us to resample large polygons to obtain a uniform element
size. However, to avoid self-intersections between edges during the
refinement, we impose each polygon be star-shaped. This condition
is often, but not always, satisfied by existing hybrid meshers: we
thus introduce a simple merging and splitting procedure to convert
hybrid meshes into star-shaped polyhedral meshes (Section 6.1),
and then detail our refinement strategy (Section 6.2).
Another advantage of restricting ourselves to star-shaped poly-

gons is that partitioning it into triangles (respectively tetrahedra
in 3D) is trivial, by introducing a point in the kernel and connect-
ing it to all the boundary faces. This step is required to generate
quadrature points for the numerical integration (Section 4.3): the
quality of the partitioning is usually low, but this is irrelevant for
this purpose.

6.1 Mesh preprocessing
We propose a simple and effective algorithm to convert polygonal
meshes into star-shaped polygonal meshes, by combining existing

, Vol. 1, No. 1, Article 1. Publication date: February 2019.

Poly-Spline Finite Element Method • 1:9

Fig. 10. Our algorithm iteratively merges polygons (gray polygon in the
first image), until the barycenter of the merged polygon is inside its kernel
(gray polygon in the second).

a) b) c) d)

Fig. 11. Polar refinement for polygons.

polygons until they are star-shaped (and eventually splitting them
if they contain a concave part of the boundary).
For every non-star-shaped polygon, we compute its barycenter

and connect it to all its vertices (Figure 10, left). This procedure
generates a set of intersecting segments (red in Figure 10), which
we use to grow the polygon by merging it with the faces incident
to each intersecting segment. The procedure is repeated until no
more intersections are found, which usually happens in one or
two iterations in our experiments. If we reach a concave boundary
during the growing procedure, it might be impossible to obtain
a star-shaped polyhedron by merging alone: In these cases, we
triangulate the polygon, and merge the resulting triangles in star-
shaped polygons if possible.

6.2 Polar refinement
Each star-shaped polygon is refined by finding a point in its kernel
(Figure 11, a), connecting it to all its vertices (b), splitting each edge
with mid-point subdivision and connecting them to the point in
the kernel (c), and finally adding rings of quadrilaterals around the
boundary (d). Figure 12 shows an example of polar refinement in two
and three dimensions. The more splits are performed in the edge, the
more elements are added. This is a useful feature to homogenize the
element size in case the polygons were expanded too much during
the mesh preprocessing stage. In our implementation, we split the
edges evenly, ensuring that the shortest segment has a length as
close as possible to the average edge length of the input mesh.

7 EVALUATION
We demonstrate the robustness of our method by solving the Pois-
son equation on a dataset of pure hex and hybrid meshes, con-
sisting of 205 star-shaped polygonal meshes in 2D, 165 pure hex-
ehedral meshes in 3D, and 29 star-shaped polyhedral meshes in
3D. The dataset can be found at https://cims.nyu.edu/gcl/papers/
2019-Polyspline-Dataset.zip. All those meshes were automatically

Fig. 12. Example of polar refinement for a polygon and a polyhedron. The
bottom view is a cut-through of the actual 3D mesh.

generated using [Gao et al. 2017a,b]. We show a selection of meshes
from our dataset in Figures 1 and 13.
We evaluated the performance, memory consumption, and run-

ning time of our proposed spline construction compared with stan-
dard Q1 and Q2 elements. For our experiments, we compute the
approximation error on a standard Franke’s test function [Franke
1979] in 2D and 3D (Appendix B). Note that in all these experiments,
we enforced the consistency constraints on the bases spanning the
polyhedral elements, to ensure the proper convergence order.
The 2D experiments were run on a PC with an Intel® Core™

i7-5930K CPU @ 3.50GHz with 64 GB, while the 3D dataset was run
on a HPC cluster with a memory limit of 64 GB.

Absolute Errors. Figure 14 shows a scatter plot of the L2 and L∞
errors on both 2D and 3D datasets, with respect to the number
of bases created by each type of elements (Q1, Q2, Splines), after
one step of polar refinement. The plot shows that in 2D both the
L2 and L∞ errors are about 1.5 orders of magnitude lower for our
splines compared to Q1, while keeping a similar number of dofs. In
comparison, Q2 has lower error, but requires a much larger number
of dofs. In 3D the spread of both errors is much larger, and the gain
in L∞ is less visible, but still present, compared to Q1.

Memory. A histogram of the memory consumption of the solver
is presented in Figure 15. The figure shows the peak memory usage
as reported by Pardiso [Petra et al. 2014a,b] when solving the linear
system arising from the FEM. Out of the 159 pure hexahedral models
we tested, 33 went out of memory when solving using Q2 elements,
while only 2 are too big to solve with our spline bases. On the star-
shaped hybrid meshes, one model is too big to solve for both Q2
and our spline construction. More detailed statistics are reported in
Table 1. We remark that the error for our method is higher than Q2
because our method has less dofs (50% less in average) since both
meshes have the same number of vertices.

Time. Figure 18 shows the assembly time and solve time for solv-
ing a Poisson problem on an unit square (cube) under refinement in
two (three) dimensions. Note that both steps (assembly and solve) are

, Vol. 1, No. 1, Article 1. Publication date: February 2019.

https://cims.nyu.edu/gcl/papers/2019-Polyspline-Dataset.zip
https://cims.nyu.edu/gcl/papers/2019-Polyspline-Dataset.zip

1:10 • Schneider, T. et al.

2D polygon. 3D hexahedral mesh. 3D hybrid mesh.

Fig. 13. Solution of the Poisson problem different meshes.

Er
ro
r

0 0.2×10 5 0.4×10 5 0.6×10 5 0.8×10 5 1×10 5 1.2×10 5 1.4×10 5
10 −8

10 −7

10 −6

10 −5

Q2
Q1
Our

L2

0 0.2×10 5 0.4×10 5 0.6×10 5 0.8×10 5 1×10 5 1.2×10 5 1.4×10 5

10 −7

10 −6

10 −5

10 −4
Q2
Q1
Our

L∞

0 0.5×10 6 1×10 6 1.5×10 6

10 −8

10 −7

10 −6

10 −5

10 −4

10 −3
Hexes Q1Hexes Q1
Hexes Our
Hexes Q2Hexes Q2
Hybrid Q1Hybrid Q1
Hybrid Our
Hybrid Q2Hybrid Q2

L2

0 0.5×10 6 1×10 6 1.5×10 6

10 −7

10 −6

10 −5

10 −4

10 −3

10 −2

10 −1
Hexes Q1Hexes Q1
Hexes Our
Hexes Q2Hexes Q2
Hybrid Q1Hybrid Q1
Hybrid Our
Hybrid Q2Hybrid Q2

L∞

Number of DOFs

Fig. 14. Scatter plot of the L2 and L∞ error versus the number of dofs on the 2D (first two) and 3D (last two) dataset.

50 100 150 200 250
0%

5%

10%

15%

20% Q2Q2
Q1Q1
SplineOur

Memory Usage (MB)
10 20 30 40 50 60 70

0%

10%

20%

30%

40%

50%

60%

70%

80% Q2Q2
SplineOur
Q1Q1

Memory Usage (GB)

Fig. 15. Peak memory for the direct solver as reported by Pardiso. Left: 2D
results. right: 3D results.

performed in parallel. For the 2D experiment we used a 3.1 GHz Intel
Core i7-7700HQ with 8 threads, while in 3D we used a 3.5 GHz Intel
Core i7-5930K with 12 threads (both machines use hyper-threading).
In Table 1 we summarize the timings for the large dataset using a
2.6 GHz Intel Xeon E5-2690v4 with 8 threads. In all cases, the total
time is dominated by the solving time.

Convergence. Figures 16 and 19 show the convergence of spline
elements vs Q1 and Q2 for the L2, L∞, and H1 norms, in the ideal
case of a uniform grid, both in 2D and 3D. This is in a sense the
best-case scenario that can be expected for our spline construction:
every element is regular and has a 32 or 33 neighborhood. In this
situation, splines exhibit a superior convergence > 3.0 under both
L2, L∞, and H1 norms.
On a 2D test mesh with mixing polygons and splines (model

shown in Figure 12 top), we achieved a convergence rate of 2.8
in L∞, and 3.1 in L2 (Figure 17, left). Figure 17 also displays the
convergence we obtained on a very simple hybrid 3D mesh, starting
from a cube marked as a polyhedron, to which we applied our

polar refinement described in Section 6. On this particular mesh, the
splines exhibited a L∞ convergence similar to Q2, albeit producing
an error that is somewhat larger.

Consistency Constraints. Figure 20 shows the effect of our con-
sistency constraint on the convergence of a polygonal mesh under
refinement (the one shown in Figure 12, top), with Q2 elements
used on the quadrilateral part. Without imposing any constraint
on the bases overlapping the polygon, one can hope at best for a
convergence of ∼ 2.0, whereas pure Q2 elements should have a con-
vergence rate of 3.0. With a constraint ensuring linear reproduction
for the bases defined on polyhedra, the convergence rate is still only
∼ 2.5. Finally, with the constraints we describe in Section 4.3 to
ensure the bases reproduce triquadratic polynomials, we reach the
expected convergence rate of ∼ 3.0.

Polyhedral Basis Resilience. Our polyhedral bases are less suscep-
tible to badly shaped elements than Q2. We computed the L2 and
L∞ interpolation errors for the gradients of the Franke function for
14 badly shaped hexahedra, Figure 21 shows some of them. The L2
and L∞ maximum and average errors are 3 times smaller with our
polygonal basis.

Conditioning and Stability. An important aspect of our new FE
method is the conditioning of the resulting stiffness matrix: this
quantity relates to both the stability of the method, and to its perfor-
mances when an iterative linear solver is used (important only for
large problemswhere direct solvers cannot be used due to their mem-
ory requirements). We compute the condition number of the Poisson
stiffness matrix on a regular and perturbed grid (Figure 22). In both
cases, our discretization has a good conditioning number, slightly
higher than pure linear elements, but lower than pure quadratic

, Vol. 1, No. 1, Article 1. Publication date: February 2019.

Poly-Spline Finite Element Method • 1:11

Er
ro
r

10 −1 5 2 10 −2 5 2 10 −3

10 −9

10 −8

10 −7

10 −6

10 −5

10 −4

10 −3

10 −2

Q1: 1.9975
Q2: 2.9784
Our: 3.1232

L2

10 −1 5 2 10 −2 5 2 10 −3
10 −9

10 −8

10 −7

10 −6

10 −5

10 −4

10 −3

10 −2

10 −1

Q1: 1.9905
Q2: 2.9403
Our: 3.1569

L∞

2
10 −1

9 8 7 6 5 4 3

10 −4

10 −3

10 −2

Q1: 1.8695
Q2: 2.9334
Our: 3.4724

L2

2
10 −1

9 8 7 6 5 4 3

10 −4

10 −3

10 −2

10 −1

Q1: 1.7403
Q2: 2.9787
Our: 3.5746

L∞

Max edge length

Fig. 16. Poisosn equation convergence plot in L2 and L∞ norm on a regular grid in 2D (first two) and 3D (last two).

Er
ro
r

50.01.051.0

10 −5

10 −4

10 −3

Q1: 1.9482
Q2: 3.3020
Our: 3.1126

L2

50.01.051.0

10 −4

10 −3

10 −2

Q1: 1.9432
Q2: 3.1699
Our: 2.8141

L∞

0.3 0.25 0.2 0.15 0.1

10 −4

10 −3

10 −2

Q1: 1.8902
Q2: 2.8758
Our: 3.2436

L2

0.3 0.25 0.2 0.15 0.1

10 −3

10 −2

10 −1

Q1: 1.8498
Q2: 2.8375
Our: 2.9893

L∞

Max edge length

Fig. 17. Poisson equation convergence plot in L2 and L∞ norm for a hybrid mesh in 2D (first two) and 3D (last two). Meshes are show in Figure 12.

Ti
m
e
(s
)

5 2 10 −2 5 2 10 −310 −3

10 −2

10 −1

1

10

10 2

10 3

Q1 solving: 2.2660Q1 solving: 2.2660
Q2 solving: 2.3530Q2 solving: 2.3530
Our solving: 2.2643
Q1 assembling: 1.8895Q1 assembling: 1.8895
Q2 assembling: 2.0414Q2 assembling: 2.0414
Our assembling: 2.0590

3 2
10 −1

9 8 7 6 5 4 3 2
10 −3

10 −2

10 −1

1

Q1 solving: 3.0327Q1 solving: 3.0327
Q2 solving: 3.4552Q2 solving: 3.4552
Our solving: 3.5060
Q1 assembling: 2.5716Q1 assembling: 2.5716
Q2 assembling: 2.9039Q2 assembling: 2.9039
Our assembling: 2.7612

Max edge length

Fig. 18. Time required to assemble the stiffness matrix and solve the linear
system on a regular grid in 2D (left) and 3D (right).

Er
ro
r

10 −1 5 2 10 −2 5 2 10 −3

10 −5

10 −4

10 −3

10 −2

10 −1

Q1: 0.9971
Q2: 1.9842
Our: 2.0498

2
10 −1

9 8 7 6 5 4 3 2

10 −3

10 −2

10 −1

Q1: 0.9344Q1: 0.9344
Q2: 1.9908Q2: 1.9908
Our: 2.1980

Max edge length

Fig. 19. Poisson equation convergence plot in H1 norm on a regular grid in
2D (first plot) and 3D (second plot).

elements (while sharing the same cubic convergence property). To
evaluate the conditioning of the polyhedral bases we started from a
base mesh of good quality, marked 5% of the quads as polygons, and
pushed one of the vertices inwards. Even for this extreme distortion

Er
ro
r

2 10 −1 5 2

10 −5

10 −4

10 −3

10 −2

No Constraint: 2.0366
Linear: 2.2587
Quadratic: 3.1929

L∞

Max edge length

Fig. 20. L∞ convergence for the different consistency constraints on the
polyhedron of Figure 12.

Fig. 21. Low-quality polyhedra used to evaluate the interpolation errors.

of polyhedral elements, the conditioning remained similar to the
case when no polyhedral elements are used on the same mesh.

Elasticity. While most of our testing was done for the Poisson
equation, we have performed some testing of linear elasticity prob-
lems. Figure 23 top shows the solution of a linear elasticity problem
on a pure hexahedral mesh. The outer loops of the knots are pulled
outside of the figure, deforming the knot. The color in the figure rep-
resents the magnitude of the displacement vectors. On the bottom
we show the result for a Young’s modulus of 2e5.

, Vol. 1, No. 1, Article 1. Publication date: February 2019.

1:12 • Schneider, T. et al.
Co

nd
iti
on

nu
m
be
r

2 4 6

1000

10k

100k

1M

10M

100M

1B

10B

100B

Q1 PolyQ1 Poly
Q2 PolyQ2 Poly
Spline PolySpline Poly
Q1Q1
Q2Q2
SplineSpline

2 4 6
10k

100k

1M

10M

100M

1B

10B

100B

1T

Q1 PolyQ1 Poly
Q2 PolyQ2 Poly
Spline PolySpline Poly
Q1Q1
Q2Q2
SplineSpline

Number of refinements

Fig. 22. Evolution of the condition number of the stiffness matrix for the
Poisson problem under refinement. For each level of refinement we artifi-
cially marked 5% of the quads as polyhedra and move one random vertex
on the diagonal between 20% 40%, as shown in the insets figures in blue.
Note that some of the curves coincide, that is Q1 with Q1 poly and Q2 with
Q2 poly.

Fig. 23. Displacements computed solving linear elasticity on a pure hexahe-
dral 3D model, using spline bases. Top a complicated model with λ = 1 and
µ = 1, bottom a bended bar ν = 0.35 and large young modulus E = 2e5.

Er
ro
r

3 2
10 −2

9 8 7 6 5 4

10 −9

10 −8

10 −7

10 −6

10 −5

Q1: 2.0004Q1: 2.0004
Q2: 3.0000Q2: 3.0000
Our: 3.0001

L2

3 2
10 −2

9 8 7 6 5 4

10 −6

10 −5

10 −4

10 −3

Q1: 1.0001Q1: 1.0001
Q2: 2.0000Q2: 2.0000
Our: 2.0001

H1

Max edge length

Fig. 24. Linear elasticity convergence plot in L2 and H1 norm on a regular
grid in 2D.

Figure 24 shows a plot for the linear elasticity PDE with Young’s
modulus 200 and Poisson’s ratio 0.35 on a regular grid, and similar
results are obtained an hybrid mesh, Figure 25. The convergence
plots for Q1 and Q2 are obtained by mixing regular Q1/Q2 bases
with the polyhedral construction (Section 4.3).

Er
ro
r

4 3 2
10 −1

9 8 7 6 5 4

10 −6

10 −5

10 −4

10 −3

Q1: 1.9967Q1: 1.9967
Q2: 3.0037Q2: 3.0037
Our: 2.8050

L2

4 3 2
10 −1

9 8 7 6 5 4

10 −4

10 −3

10 −2

Q1: 0.9991Q1: 0.9991
Q2: 1.9999Q2: 1.9999
Our: 1.8347

H1

Max edge length

Fig. 25. Linear elasticity convergence plot in L2 and H1 norm on a hybrid
mesh in 2D.

Num dofs Solver Bases Assembly Memory
(MiB) L2 Error L∞ Error

Q1

mean 174,335 8′26′′ 15′40′′ 0′37′′ 1,132 7.60e−5 1.11e−3
std 177,192 20′29′′ 19′44′′ 0′40′′ 1,589 2.27e−4 2.69e−3
min 3,035 0′0′′ 0′17′′ 0′1′′ 5 5.57e−7 1.98e−5
median 105,451 1′2′′ 9′8′′ 0′23′′ 500 3.18e−5 3.39e−4
max 926,938 182′32′′ 101′27′′ 5′20′′ 9,329 2.88e−3 2.09e−2

Q⋆
2

mean 552,583 63′43′′ 13′11′′ 0′55′′ 5,716 3.62e−6 6.34e−5
std 355,783 72′42′′ 11′17′′ 0′59′′ 4,382 1.80e−5 2.00e−4
min 21,525 0′5′′ 0′19′′ 0′3′′ 94 5.85e−9 9.58e−8
median 457,358 34′17′′ 8′38′′ 0′40′′ 4,586 6.31e−7 1.06e−5
max 1,709,712 289′19′′ 52′4′′ 6′56′′ 15,677 1.87e−4 1.50e−3

ou
r⋆

mean 239,245 34′30′′ 14′59′′ 1′33′′ 3,728 1.65e−5 2.88e−3
std 178,979 62′19′′ 12′34′′ 1′15′′ 3,787 5.57e−5 1.82e−2
min 9,987 0′1′′ 0′21′′ 0′3′′ 61 4.09e−8 8.04e−7
median 189,880 9′13′′ 10′13′′ 1′11′′ 2,391 3.46e−6 2.62e−4
max 1,033,492 324′8′′ 55′11′′ 7′9′′ 15,681 5.85e−4 2.30e−1

Table 1. Dataset 3D pure hexahedra + star-shaped polyhedra (188 models
in total). The memory is the total peak memory (in MiB) as reported by
the solver Pardiso. ⋆does not include the models that went out of memory.
From left to right, the total number of DOFs, the time required to solve the
system, the time used to build the bases, the time employed to assembly
the stiffness matrix, the peak memory, the L2 error, and the L∞ error.

8 LIMITATIONS AND CONCLUDING REMARKS
We introduced Poly-Spline FEM, an integrated meshing and finite
element method designed to take advantage of recent developments
in hexahedral-dominant meshing, opening the doors to black box
analysis with an high-order basis and cubic convergence under
refinement. Our approach is to use the best possible basis for each
element of the mesh and is amenable to continuous improvement, as
the mesh generation methods and basis constructions improve. For
instance, in this setting, one can avoid costly manual mesh repair
and improvement, at the expense of modest increases in solution
time, by switching to more expensive, but much less shape-sensitive
elements when a hexahedron is badly shaped.
While our basis construction is resilient to bad element quality,

the geometric map between the splines and the Q2 elements might
introduce distortion (and even inversions in pathological cases),
lowering convergence rate. These effects could be ameliorated by
optimizing the positions of the control points of the geometric map,
which is an interesting avenue for future work.

Our current construction always requires an initial refinement
step to avoid having polyhedra adjacent to other polyhedra or to
the boundary. This limitation could be lifted by generalizing our

, Vol. 1, No. 1, Article 1. Publication date: February 2019.

Poly-Spline Finite Element Method • 1:13

basis construction, and would allow our method to process very
large datasets, that cannot be refined due to memory considerations.
Another limitation of our method is that the consistency constraints
in our basis construction (Section 4.3) are PDE-dependent, and they
thus require additional efforts to be used with a user-provided PDE:
a small and reusable investment compared to the cost of manually
meshing with hexahedra every surface that one wishes to analyze
usingQ2 elements. The code can be found at https://polyfem.github.
io/ and provides an automatic way to generate such constraints
relying on both the local assembler and automatic differentiation.
Poly-Spline FEM is a practical construction in-between unstruc-

tured Q2 and fully-structured pure splines: it requires a smaller
number of dofs than Q2 (thanks to the spline elements) while pre-
serving cubic convergence rate. We believe that our construction
will stimulate additional research in the development of hetero-
geneous FEM methods that exploit the regularity of spline basis
and combine it with the flexibility offered by traditional FEM ele-
ments. To allow other researchers and practitioners to immediately
build upon our construction, we will release our entire software
framework as an open-source project.

ACKNOWLEDGEMENTS
We are grateful to the NYU HPC staff for providing computing clus-
ter service. This work was partially supported by the NSF CAREER
award 1652515, the NSF grant IIS-1320635, the NSF grant DMS-
1436591, the NSF grant 1835712, the SNSF grant P2TIP2_175859, a
gift from Adobe Research, and a gift from nTopology.

REFERENCES
M. Aigner, C. Heinrich, B. Jüttler, E. Pilgerstorfer, B. Simeon, and Vuong. 2009. Swept

volume parameterization for isogeometric analysis.
D. Arnold, D. Boffi, and R. Falk. 2002. Approximation by quadrilateral finite elements.

Math. Comput. (2002).
Y. Bazilevs, L. Beirao da Veiga, J. A. Cottrell, T. J. Hughes, and G. Sangalli. 2006. Isogeo-

metric analysis: approximation, stability and error estimates for h-refined meshes.
Math. Meth. Appl. Sci. (2006).

L. Beirão Da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini, and A. Russo. 2013.
Basic Principles Of Virtual Element Methods. Math. Meth. Appl. Sci. (2013).

S. E. Benzley, E. Perry, K. Merkley, B. Clark, and G. Sjaardema. 1995. A comparison of
all hexagonal and all tetrahedral finite element meshes for elastic and elasto-plastic
analysis. In Proceedings of the 4th International Meshing Roundtable.

J. Bishop. 2014. A displacement-based finite element formulation for general polyhedra
using harmonic shape functions. Int. J. Numer. Methods Eng. (2014).

D. Braess. 2007. Finite elements: Theory, fast solvers, and applications in solid mechanics.
R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud. 2018. Neural Ordinary

Differential Equations. ArXiv e-prints (2018).
A. O. Cifuentes and A. Kalbag. 1992. A performance study of tetrahedral and hexahedral

elements in 3-D finite element structural analysis. Finite Elements in Analysis and
Design (1992).

J. A. Cottrell, T. J. R. Hughes, and Y. Bazilevs. 2009. Isogeometric Analysis: Toward
Integration of CAD and FEA.

L. B. da Veiga, A. Buffa, D. Cho, and G. Sangalli. 2011. Isogeometric analysis using
T-splines on two-patch geometries. Comput. Meth. Appl. Mech. Eng. (2011).

B. A. de Dios, K. Lipnikov, and G. Manzini. 2016. The nonconforming virtual element
method. ESAIM: Mathematical Modelling and Numerical Analysis (2016).

L. Engvall and J. A. Evans. 2017. Isogeometric unstructured tetrahedral and mixed-
element Bernstein-Bezier discretizations. Comput. Meth. Appl. Mech. Eng. (2017).

X. Fang, W. Xu, H. Bao, and J. Huang. 2016. All-hex meshing using closed-form induced
polycube. ACM Trans. Graph. (2016).

M. S. Floater, G. Kós, and M. Reimers. 2005. Mean Value Coordinates in 3D. Comput.
Aided Geom. Des. (2005).

R. Franke. 1979. A Critical Comparison of Some Methods for Interpolation of Scattered
Data. (1979).

X. Fu, C. Bai, and Y. Liu. 2016. Efficient Volumetric PolyCube-Map Construction.
Comput. Graph. Forum (2016).

X. Gao, W. Jakob, M. Tarini, and D. Panozzo. 2017a. Robust Hex-dominant Mesh
Generation Using Field-guided Polyhedral Agglomeration. ACM Trans. Graph.
(2017).

X. Gao, D. Panozzo, W. Wang, Z. Deng, and G. Chen. 2017b. Robust Structure Simplifi-
cation for Hex Re-meshing. ACM Trans. Graph. (2017).

J. Gregson, A. Sheffer, and E. Zhang. 2011. All-Hex Mesh Generation via Volumetric
PolyCube Deformation. Comput. Graph. Forum (2011).

K. Hormann and N. Sukumar. 2008. Maximum Entropy Coordinates for Arbitrary
Polytopes. Comput. Graph. Forum (2008).

J. Huang, T. Jiang, Z. Shi, Y. Tong, H. Bao, and M. Desbrun. 2014. L1-based Construction
of Polycube Maps from Complex Shapes. ACM Trans. Graph. (2014).

J. Huang, Y. Tong, H. Wei, and H. Bao. 2011. Boundary aligned smooth 3D cross-frame
field. ACM Trans. Graph. (2011).

T. J. Hughes, J. A. Cottrell, and Y. Bazilevs. 2005. Isogeometric analysis: cad, finite
elements, NURBS, exact geometry and mesh refinement. Comput. Meth. Appl. Mech.
Eng. (2005).

T. J. R. Hughes. 2000. The Finite Element Method. Linear Static and Dynamic Finite
Element Analysis.

Y. Ito, A. M. Shih, and B. K. Soni. 2009. Octree-based reasonable-quality hexahedral
mesh generation using a new set of refinement templates. Int. J. Numer. Methods
Eng. (2009).

T. Jiang, J. Huang, Y. T. Yuanzhen Wang, and H. Bao. 2014. Frame Field Singularity
Correction for Automatic Hexahedralization. IEEE Trans. Vis. Comput. Graph. (2014).

P. Joshi, M. Meyer, T. DeRose, B. Green, and T. Sanocki. 2007. Harmonic Coordinates
for Character Articulation. ACM Trans. Graph. (2007).

T. Ju, S. Schaefer, and J. Warren. 2005. Mean Value Coordinates for Closed Triangular
Meshes. ACM Trans. Graph. (2005).

I. Kostrikov, Z. Jiang, D. Panozzo, D. Zorin, and J. Bruna. 2018. Surface Networks. CVPR
(2018).

N. Lei, X. Zheng, J. Jiang, Y.-Y. Lin, and D. X. Gu. 2017. Quadrilateral and hexahedral
mesh generation based on surface foliation theory. Comput. Meth. Appl. Mech. Eng.
(2017).

B. Li, X. Li, K. Wang, and H. Qin. 2013. Surface mesh to volumetric spline conversion
with generalized polycubes. IEEE Trans. Vis. Comput. Graph. (2013).

Y. Li, Y. Liu, W. Xu, W. Wang, and B. Guo. 2012. All-hex meshing using singularity-
restricted field. ACM Trans. Graph. (2012).

K. Lipnikov, G. Manzini, and M. Shashkov. 2014. Mimetic finite difference method. J.
Comput. Phys. (2014).

M. Livesu, N. Vining, A. Sheffer, J. Gregson, and R. Scateni. 2013. PolyCut: monotone
graph-cuts for PolyCube base-complex construction. ACM Trans. Graph. (2013).

G. Manzini, A. Russo, and N. Sukumar. 2014. New perspectives on polygonal and
polyhedral finite element methods. Math. Meth. Appl. Sci. (2014).

L. Maréchal. 2009a. Advances in Octree-Based All-Hexahedral Mesh Generation: Handling
Sharp Features.

L. Maréchal. 2009b. Advances in octree-based all-hexahedral mesh generation: handling
sharp features. In proceedings of the 18th International Meshing Roundtable.

S. Martin. 2011. Flexible, unified and directable methods for simulating deformable
objects. (2011). Phd thesis, ETH Zurich.

S. Martin, P. Kaufmann, M. Botsch, M. Wicke, and M. Gross. 2008. Polyhedral Finite
Elements Using Harmonic Basis Functions. In Proceedings of the Symposium on
Geometry Processing.

T. Martin and E. Cohen. 2010. Volumetric parameterization of complex objects by
respecting multiple materials. Comput. Graph. (2010).

M. Nieser, U. Reitebuch, and K. Polthier. 2011. CubeCover - Parameterization of 3D
Volumes. Comput. Graph. Forum (2011).

S. J. Owen and S. Saigal. 2000. H-Morph: an indirect approach to advancing front hex
meshing. Int. J. Numer. Methods Eng. (2000).

J. Panetta, Q. Zhou, L. Malomo, N. Pietroni, P. Cignoni, and D. Zorin. 2015. Elastic
Textures for Additive Fabrication. ACM Trans. Graph. (2015).

C. G. Petra, O. Schenk, and M. Anitescu. 2014a. Real-time stochastic optimization
of complex energy systems on high-performance computers. IEEE Computing in
Science & Engineering (2014).

C. G. Petra, O. Schenk, M. Lubin, and K. Gärtner. 2014b. An augmented incomplete fac-
torization approach for computing the Schur complement in stochastic optimization.
SIAM J. Sci. Comput. (2014).

T. W. Sederberg, D. L. Cardon, G. T. Finnigan, N. S. North, J. Zheng, and T. Lyche. 2004.
T-spline Simplification and Local Refinement. ACM Trans. Graph. (2004).

J. F. Shepherd and C. R. Johnson. 2008. Hexahedral Mesh Generation Constraints. Eng.
Comput. (2008).

J. R. Shewchuk. 1996. Triangle: Engineering a 2D quality mesh generator and Delaunay
triangulator.

H. Si. 2015. TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator. ACM
Trans. Math. Softw. (2015).

D. Sokolov, N. Ray, L. Untereiner, and B. Lévy. 2016. Hexahedral-Dominant Meshing.
ACM Trans. Graph. (2016).

, Vol. 1, No. 1, Article 1. Publication date: February 2019.

https://polyfem.github.io/
https://polyfem.github.io/

1:14 • Schneider, T. et al.

M. L. Staten, S. J. Owen, and T. D. Blacker. 2005. Unconstrained Paving & Plastering: A
New Idea for All Hexahedral Mesh Generation.

M. Tarini, K. Hormann, P. Cignoni, and C. Montani. 2004. PolyCube-Maps. ACM Trans.
Graph. (2004).

D. Toshniwal, H. Speleers, R. R. Hiemstra, and T. J. Hughes. 2017. Multi-degree smooth
polar splines: A framework for geometric modeling and isogeometric analysis.
Comput. Meth. Appl. Mech. Eng. (2017).

X. Wei, Y. J. Zhang, D. Toshniwal, H. Speleers, X. Li, C. Manni, J. A. Evans, and T. J.
Hughes. 2018. Blended B-spline construction on unstructured quadrilateral and
hexahedral mesheswith optimal convergence rates in isogeometric analysis. Comput.
Meth. Appl. Mech. Eng. (2018).

S. Yamakawa and K. Shimada. 2003. Fully-automated hex-dominant mesh generation
with directionality control via packing rectangular solid cells. Int. J. Numer. Methods
Eng. (2003).

Y. J. Zhang, X. Liang, and G. Xu. 2013. A robust 2-refinement algorithm in octree or
rhombic dodecahedral tree based all-hexahedral mesh generation. Comput. Meth.
Appl. Mech. Eng. (2013).

A BRIEF FINITE ELEMENT INTRODUCTION
Many common elliptic partial differential equations have the general
form

F (x,u,∇u,∆u) = f (x), x ∈ Ω,

subject to

u(x) = d(x), x ∈ ∂ΩD and ∇u(x) · N(x) = n(x), x ∈ ∂ΩN

where N(x) is the surface normal, ∂ΩD is the Dirichlet boundary
where the function u is constrained (e.g., positional constraints) and
∂ΩN is the Neumann boundary where the gradient of the function
u is constrained. The most common PDE in this class is the Poisson
equation −∆u = f .

Weak Form. The first step in a finite element analysis consists of
introducing the weak form of the PDE: find u such that∫

Ω
F (x,u,∇u,∆u)v(x) dx =

∫
Ω
f (x)v(x) dx,

holds for any test function v vanishing on the boundary. This refor-
mulation has two advantages: (1) it simplifies the problem, and (2)
it weakens the requirement on the function u. For instance, in case
of the Poisson equation, the strong form is well defined only if u
is twice differentiable, which is a difficult condition to enforce on
a discrete tesselation. However, the weak form requires only that
the second derivatives of u are integrable, allowing discontinuous
jumps. Using integration by parts it can be further relaxed to∫

Ω
∇u(x) · ∇v(x) dx =

∫
Ω
f (x)v(x) dx,

where only the gradient of u needs to be integrable, that is u ∈ H1,
and can thus be represented using piecewise-linear basis functions.

Basis Functions. The key idea of a finite element discretization
is to approximate the solution space via a finite number of basis
functions ϕi , i = 1, . . . ,N , which are independent from the PDE
we are interested in. The number of nodes (and basis functions)
per element and their position is directly correlated to the order
of the basis, see Figure 26. We note that the nodes coincide the
mesh vertices only for linear basis functions. Instead of solving
the PDE, the goal becomes finding the coefficients ui , i = 1, . . . ,N
of the discrete function uh (x) =

∑N
i=1 uiϕi (x) that approximates

the unknown function u. For a linear PDE this results in a linear
system Ku = f , where K is the N ×N stiffness matrix, f captures the
boundary conditions, and u is the vector of unknown coefficients

ui . For instance, for the Laplace equation the entries of the stiffness
matrix are

Ki j =

∫
Ω
∇ϕi (x) · ∇ϕ j (x) dx.

Local Support. Commonly used basis functions are locally sup-
ported. As a result, most of the pairwise intgerals are zero, leading
to a sparse stiffness matrix. The pairwise integrals can be written as
a sum of integrals over the elements (e.g., quads or hexes) on which
both functions do not vanish. This representation enables so-called
per-element assembly: for a given element, a local stiffness matrix is
assembled.

For instance, if and element C has four non-zero basis functions
ϕi , ϕ j , ϕk , ϕl (this is the case for linear Q1 quad) the local stiffness
matrix KL ∈ R4×4 for the Poisson equation is

KL
o,p =

∫
C
∇ϕn (x) · ∇ϕm (x) dx,

where o,p = 1, . . . , 4 andm,n ∈ {i, j,k, l}. By using the mapping of
local indices (o,p) to global indices (m,n), the local stiffness matrix
entries are summed to yield the global stiffness matrix entries.

Geometric Mapping. The final piece of a finite element discretiza-
tion is the geometric mapping g. The local integrals need to be
computed on every element. The element stiffness matrix entries
are computed as integrals over a reference element Ĉ (e.g., a regular
unit square/cube) through change of variables∫
C
∇ϕn (x)·∇ϕm (x) dx =

∫
Ĉ
(Dg−T∇ϕ̂n (x))·(Dg−T∇ϕ̂m (x))|Dg| dx,

whereDg is the Jacobianmatrix of the geometric mapping g, and ϕ̂ =
ϕ ◦g are the bases defined on the reference element Ĉ . While usually
g is expressed by linear combination of ϕi , leading to isoparametric
elements, the choice of g is independent from the basis.

Quadrature. All integrals are computed numerically by means
of quadrature points and weights, which translates the integrals
into weighted sums. Although there are many strategies to generate
quadrature data (e.g., Gaussian quadrature), all of them integrate
exactly polynomials up to a given degree to ensure an appropriate
approximation order. For instance, if we use one quadrature point
in the element’s center with weight 1, we can integrate exactly
constant functions.

Right-hand Side. The setup of the right-hand side b is done in a
similar manner: its entries are bi =

∫
Ω
ϕi (x)f (x) dx.

Dirichlet boundary conditions are treated as constrained degrees
of freedom. The Neumann boundary conditions are imposed by
setting

bj =

∫
∂ΩN

ϕ j (x) · n(x) dx

for any node j in ∂ΩN .
As for the stiffness matrix assembly the basis and node construc-

tion for the right-hand side is performed locally.

, Vol. 1, No. 1, Article 1. Publication date: February 2019.

Poly-Spline Finite Element Method • 1:15

Q1 Q2 Q1 Q2

Fig. 26. Node position for the linear and quadratic bases in two and three
dimensions.

B TEST FUNCTIONS
In our experiments, we use the test functions proposed in [Franke
1979]. For 2D:

f2D(x1,x2) =
3
4
e−

(9x1−2)2+(9x2−2)2
4 +

3
4
e−

(9x1+1)2
49 −

9x2+1
10

+
1
2
e−

(9x1−7)2+(9x2−3)2
4 −

1
5
e−(9x1−4)

2−(9x2−7)2 ,

and 3D:

f3D(x1,x2,x3) =

3
4
e−

(9x1−2)2+(9x2−2)2+(9x3−2)2
4 +

3
4
e−

(9x1+1)2
49 −

9x2+1
10 −

9x3+1
10

+
1
2
e−

(9x1−7)2+(9x2−3)2+(9x3−5)2
4 −

1
5
e−(9x1−4)

2−(9x2−7)2−(9x3−5)2 .

C BASIS FUNCTIONS
We use Lagrange tensor product function to interpolate between
the nodes in quadrilateral and hexahedral elements. We provide the
explicit formulation for Q1 and Q2 both in 2D, the 3D formulation
follows. The four linear bases are constructed from the 1D linear
bases

α1(t) = 1 − t and α2(t) = t

as the tensor products

ϕ1(u,v) = α1(u)α1(v), ϕ2(u,v) = α1(u)α2(v),

ϕ3(u,v) = α2(u)α1(v), ϕ4(u,v) = α2(u)α2(v).

Similarly the nine quadratic bases follow from the three quadratic
polynomials

θ1(t) = (1 − t) (1 − 2t), θ2(t) = 4t (1 − t), θ3(t) = t (2t − 1)

as

ϕ1(u,v) = θ1(u)θ1(v), ϕ2(u,v) = θ1(u)θ2(v), ϕ3(u,v) = θ1(u)θ3(v),

ϕ4(u,v) = θ2(u)θ1(v), ϕ5(u,v) = θ2(u)θ2(v), ϕ6(u,v) = θ2(u)θ3(v),

ϕ7(u,v) = θ3(u)θ1(v), ϕ8(u,v) = θ3(u)θ2(v), ϕ9(u,v) = θ3(u)θ3(v).

D POLYHEDRAL BASIS CONSTRAINTS
We restrict the detailed explanation to 2D, the three-dimensional
case follows. Let pi = (xi ,yi), i = 1, . . . , s , be the set of collocation
points, that is, the points where we know the function values. For
the FEM basis ϕ j that is nonzero on the polyhedral element P , we
want to solve the least squares system Aw = b, where

A =
©«
ψ1(p1) . . . ψk (p1) 1 x1 y1 x1 y1 x21 y21
...

. . .
...

...
...

...
...

...
...

ψ1(ps) . . . ψk (ps) 1 xs ys xs ys x2s y2s

ª®®¬ ,

b is the evaluation of the basisϕ j from the neighbouring elements on
the on the collocation points, andw = (w1, . . . ,wk ,a00,a10,a01,a11,a20,a02).

Now to ensure consistency we need that

−

∫
g(M̂)

∆qϕ j =

∫
g(M̂)

∇q · ∇ϕ j

holds for any of the 5 monomials. We now split the previous integral
over the polygon P and over the known non-polygonal part P =
g(M̂) \ P

∫
P
∆qϕ j +

∫
P
∇q · ∇ϕ j = −

∫
P
∆qϕ j −

∫
P
∇q · ∇ϕ j .

We remark that the right-hand side of this equation is known since
the bases on P are given, we call the five term ci j following the same
indices as ai j (e.g., c20 = −

∫
P ∆x2ϕ j −

∫
P ∇x2 · ∇ϕ j).

We now evaluate the left-hand side for the five 2D monomials

∫
P
∆xϕ j +

∫
P
∇x · ∇ϕ j =

∫
P

∂ϕ j

∂x
,∫

P
∆yϕ j +

∫
P
∇x · ∇ϕ j =

∫
P

∂ϕ j

∂y
,∫

P
∆(xy)ϕ j +

∫
P
∇(xy) · ∇ϕ j =

∫
P
y
∂ϕ j

∂x
+

∫
P
x
∂ϕ j

∂y
,∫

P
∆x2ϕ j +

∫
P
∇x2 · ∇ϕ j =

∫
P
2ϕ j +

∫
P
2x
∂ϕ j

∂x
,∫

P
∆y2ϕ j +

∫
P
∇y2 · ∇ϕ j =

∫
P
2ϕ j +

∫
P
2y
∂ϕ j

∂y
.

, Vol. 1, No. 1, Article 1. Publication date: February 2019.

1:16 • Schneider, T. et al.

By plugging the definition of ϕ j over P we obtain the following
consistency constraints for the coefficients a00,a10,a01,a11,a20,a02:

k∑
i=1

w
j
i

∫
P

∂ψ

∂x
+ a10 |P | + a11

∫
P
y + 2a20

∫
P
x = c10

k∑
i=1

w
j
i

∫
P

∂ψ

∂y
+ a01 |P |+

a11

∫
P
x + 2a02

∫
P
y = c01,

k∑
i=1

w
j
i

∫
P
(y
∂ψ

∂x
+ x
∂ψ

∂y
)+

a10

∫
P
x + a01

∫
P
y + a11

∫
P
x2 + y2 + 2(a20 + a02)

∫
P
xy = c11

2
k∑
i=1

w
j
i

∫
P
(ψ + x

∂ψ

∂x
) + 2a00+

4a10
∫
P
x + 2a01

∫
P
y + 4a11

∫
P
xy + 6a20

∫
P
x2 + 2a02

∫
y2 = c20,

2
k∑
i=1

w
j
i

∫
P
(ψ + y

∂ψ

∂y
) + 2a00+

2a10
∫
P
x + 4a01

∫
P
y + 4a11

∫
P
xy + 2a20

∫
P
x2 + 6a02

∫
y2 = c02.

, Vol. 1, No. 1, Article 1. Publication date: February 2019.

	Abstract
	1 Introduction
	2 Related Work
	3 Algorithm Overview
	4 Basis construction
	4.1 Spline-compatible hexahedral elements
	4.2 Q2 hexahedral elements
	4.3 Basis construction on polyhedral cells
	4.4 Imposing boundary conditions

	5 Geometric map construction
	6 Mesh preprocessing and refinement
	6.1 Mesh preprocessing
	6.2 Polar refinement

	7 Evaluation
	8 Limitations and concluding remarks
	References
	A Brief Finite Element Introduction
	B Test Functions
	C Basis functions
	D Polyhedral basis constraints

