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For successful fitness coaching in virtual reality, movements of a trainee must be ana-
lyzed in order to provide feedback. To date, most coaching systems only provide coarse
information on movement quality. We propose a novel pipeline to detect a trainee’s er-
rors during exercise that is designed to automatically generate feedback for the trainee.
Our pipeline consists of an online temporal warp of a trainee’s motion, followed by
Random-Forest-based feature selection. The selected features are used for the classifi-
cation performed by Support Vector Machines. Our feedback to the trainee can consist
of predefined verbal information as well as automatically generated visual augmenta-
tions. For the latter, we exploit information on feature importance to generate real-time
feedback in terms of augmented color highlights on the trainee’s avatar. We show our
pipeline’s superiority over two popular approaches from human activity recognition
applied to our problem, k-Nearest Neighbor, combined with Dynamic Time Warping
(KNN-DTW), as well as a recent combination of Convolutional Neural Networks with
a Long Short-term Memory Network. We compare classification quality, time needed
for classification, as well as the classifiers’ ability to automatically generate augmented
feedback. In an exemplary application, we demonstrate that our pipeline is suitable to
deliver verbal as well as automatically generated augmented feedback inside a CAVE-
based sports training environment in virtual reality.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

VR environments and the possibility to provide extra informa-
tion as a reason to use them in sports training [5]. See [6] for a

Coaching environments for motor learning are becoming a
more and more popular research topic in virtual reality (VR) [1}
2,13 14]]. They offer possibilities that are not imaginable in clas-
sical coaching, such as augmented feedback strategies or multi-
sensory stimuli. Further, VR motion capture systems are able
to provide objective kinematic data of a trainee in real-time. In
their review, Miles et al.| especially highlight the flexibility of
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general discussion of VR techniques in sports. Obviously, feed-
back on the trainee’s performance is crucial for the success of
coaching systems. A coaching system has to assess the qual-
ity of the exercise — in the following called motor action —
performed by a trainee, and communicate this information in
terms of feedback. Often, algorithms developed in the context
of sports coaching either focus on the assessment of the per-
formed motion, or on the generation of feedback. In this arti-
cle, we propose an integrated pipeline that performs the detec-
tion of typical motor errors and provides results that are directly
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Fig. 1. In our real-time VR coaching environment, a trainee performs exer-
cises while being observed by a virtual coach. Our algorithm provides the
virtual coach with the information necessary to apply his feedback strate-
gies in an online manner.

interpretable in terms of automatically generated augmented vi-
sual feedback. Further, results can be linked to already existing
verbal feedback strategies. In order to develop such an inte-
grated solution, specific requirements, additional to a high clas-
sification quality, hold for the assessment of the trainee’s per-
formance:

R1 Connectable to existing feedback strategies: A coaching
system should spot the occurrence of typical errors in the
trainee’s performance that can be linked to feedback strate-
gies that have already been established by coaches in the
real-world.

R2 Real-time: Whether feedback at early stages of the move-
ment should be provided must be determined by the ap-
plied coaching strategies. However, to provide the coach-
ing system a maximal range of applicability, components
that assess the motor performance should deliver their re-
sults as soon as possible. If, for instance, the starting pos-
ture of a motor action is already problematic, the system
should be able to intervene, to prevent the trainee from
performing potentially problematic movement patterns, or
even from hurting herself. For an analysis of real-world
coaching and timing for the squat, we refer to [[7, 8, O].

R3 Interpretability: The classification process should be trans-
parent and interpretable. It ideally provides information
on the classified errors that can be used to generate aug-
mented feedback in the virtual environment. Furthermore,
an interpretable classifier gives experts the ability to verify
whether the classifier works in a plausible way.

R4 Conservative size of data sets: Recording high quality
training data and recruiting experts to perform data anno-
tation is time consuming and expensive. Thus, the system
should be able to deal with limited data sets to ensure prac-
tical usefulness of the coaching system.

R5 Minimal manual work: Manual work is expensive and
reduces the usefulness of developed approaches in real-
world applications. The classifier should require as few as
possible, manually coded, expert knowledge.

We argue that research in the area of VR that focuses on
these aspects, thus keeps in mind the ideal integration of the
kinematic movement analysis in a VR coaching system, would
advance the field of sports and rehabilitation coaching in virtual
environments. To this end, our contributions are as follows:

e We propose a new, interpretable, and real-time pipeline to-
wards the classification of error patterns in motor perfor-
mances. It uses a reference-based Dynamic Time Warping
of movement prefixes as a basis for a feature selection us-
ing Random Forest. The selected features are in a final
step classified by Support Vector Machines (SVM).

o We demonstrate that our pipeline can automatically gen-
erate real-time augmented feedback based on a trainee’s
motion. Further, we show an exemplary application of our
pipeline in a CAVE-based VR coaching environment (see
Figure [T), including verbal as well as augmented visual
feedback.

We use two data sets for evaluation. They consist of body-
weight squats and Tai Chi push movements. These are full-body
motor actions that are used in the context of rehabilitation as
well as for sports training. When executed by novice trainees,
various error patterns can be observed. Based on these data sets,
we show the ability of our pipeline to beat the popular classifier
KNN-DTW that has been found to be difficult to beat for typi-
cal time series classification tasks as shown in [[10}, [11]]. Further,
we compare our pipeline to a recent neural-network-based ap-
proach to human activity recognition [12]]. Our pipeline does
not only provide better classification results, but is also better
suited to generate augmented visual feedback. We use skeleton
data as input to provide classification results, as well as aug-
mented visual feedback in real-time. Due to using skeleton
data, our pipeline can be applied in combination with various
motion capture systems, as they typically output kinematic fea-
tures for the tracked subject’s joints.

2. Related Work

To assess the quality of human motor performances, two
main approaches have been applied. The first approach (Sec-
tion 2.T) is to engineer a highly specialized method, e.g., for
the evaluation of feedback strategies for a very specific type of
motor action. Often, a model for specific performance patterns
is manually designed drawing from expert knowledge. The sec-
ond direction (Section[2.2)) consists in using more general, data-
based approaches that have already been used in the context of
motor learning and motion assessment. In Section[2.3] we focus
on more general approaches from machine learning that have
not been typically used in the field.

2.1. Specific, Manually Designed Approaches
use a manually designed scoring function

to represent patients’ performance changes in a rehabilitation
setting [13]. Even though this approach provides compelling
results in the field of application, no detailed information on
occurred error patterns is gained, which would be necessary
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for the application of complex coaching strategies. Other ap-
proaches make use of rule-based systems to detect the occur-
rence of certain error patterns. In the context of yoga training,
Rector et al.| define optimal yoga poses [14]. De Kok et al.
went one step further by manually defining error patterns [2]
that focus on the whole trajectory. One major advantage of the
approaches by Rector et al. or de Kok et al. is their real-time
capability (R2). Specific feedback strategies, linked to typical
error patterns, can be applied immediately (R1) and the rules
can be directly interpreted by experts (R3). Nearly no training
data is needed (R4). Further, the results are deterministic. If the
rules are correct and exhaustive, and the motion capture system
works properly, an incorrect classification is unlikely to occur.
However, the rules are designed manually which violates (RS).
It is mostly not trivial — even when interviewing sports coaches
— to obtain exact information about which features are signifi-
cant or where to draw the border between a correct or an incor-
rect movement. And even if it is possible, the design of rules
requires enormous manual effort. For each motor action and
for each type of error, a detailed investigation on how to de-
scribe the motor action and the error has to be performed. For
complex error patterns, this quickly becomes infeasible. Thus,
we focus on approaches that automatically learn most of their
information from data.

2.2. Data-based Approaches for Performance Assessment

Taylor et al.|classify error patterns in rehabilitation exercises
using a combination of rule-based segmentation and Adaptive
Boosting on a set of manually defined features [[15]]. In a within-
subject cross validation, the authors obtain highly convincing
results. However, classification performance decreases signifi-
cantly when generalizing to new subjects. Furthermore, the de-
sign of feature sets requires additional manual work. |Yurtman
and Barshan| proposed an extension of Dynamic Time Warp-
ing (DTW) that is able to detect multiple occurrences of mul-
tiple exercise types in trajectories as well as to classify er-
ror patterns [[16]. Classification is performed by comparing
the just performed motion to pre-recorded templates and then
selecting the best matching one similar to 1-nearest-neighbor
Dynamic Time Warping (INN-DTW). Combinations of mul-
tiple error patterns cannot be considered as long as they are
not included as individually pre-recorded templates. Further,
the authors did not test for inter-subject performance. Another
prototype-based approach was described by [Parisi et al.| who
propose a recursive neural network for the assessment of sports
motion [17]. As indicator for motion quality, the system com-
pares the performed motion to the desired continuation of an
exercise. Single-subject evaluation leads to very high accura-
cies, whereas tests with multiple subjects lead to a high number
of false positives. |O’Reilly et al.| use a neural network classi-
fier to differentiate between correct and incorrect performances
of squats and to classify error patterns [18]. A leave-one-out
cross validation resulted in an accuracy of 80 % to distinguish
between correct and incorrect, but only in an accuracy of 57 %
for the classification of error patterns. Similar experiments were
conducted by |Giggins et al.| [19, 20]. Kianifar et al.| present an
approach towards distinguishing between good, moderate, and

bad performances of squat movements [21]]. They use a feature
vector based on manually designed features, such as skewness
and range, whose dimensionality is reduced using Sparse Prin-
cipal Component Analysis (SPCA). Decision Trees are used for
classification. The presented approach is only able to distin-
guish between three coarse classes of quality and cannot spot
single error patterns. In addition, manual effort is needed for
feature preparation. Furthermore, SPCA is an unsupervised al-
gorithm, which searches for a set of sparse principal compo-
nents that cover as much as possible of the variance inside the
data [22]]. This is problematic as most of the variance could be
induced due to individual differences rather than performance
errors. This might be especially risky for sports movements
that can differ considerably between subjects.

Overall, the data-based approaches employed in the context
of sports and rehabilitation applications have three weaknesses
in terms of their classification performance. First, it is often
not analyzed how well the trained classifiers generalize to new
subjects. Some of the addressed approaches require the sys-
tem be re-trained for each user. This procedure can rarely be
applied to real world coaching applications as subjects are of-
ten physically not able to provide all the required training data.
Second, the motor actions and error patterns are often rather
simple. Some systems only distinguish between, e.g., “good”
or “bad” for a motor action that only involves a very small
number of joints. Especially algorithms that use comparisons
with prototypes will perform worse on more subtle errors or
more complex movements when performing multi-subject eval-
uation as shown in [[17, [15]. Here, different styles and differ-
ences between subjects might predominate differences induced
by movement patterns underlying the motor errors. This holds
especially as many types of complex sports movements can
be executed correctly yet with different individual styles [23].
Furthermore, an analysis that only relies on an overall devia-
tion from a prerecorded desired performance, including task-
irrelevant deviations, is non-optimal when aiming at improving
the trainee’s performance [24] 25]. One reason is that some
muscle groups are often less requested, making the associated
body parts less relevant for the successful execution of a move-
ment.

2.3. General Approaches for Human Activity Recognition

Indeed, the classification of errors in motor performances
is a special case of time series classification. In this area,
ground-breaking work was performed by Wilson and Bobick,
who used hidden Markov models (HMM) for the recognition of
gestures [26]]. Other methods are based on decision trees [27],
SVMs [28]], or Multi-Layer Perceptrons (MLP) [29]. DTW
is usually applied to temporally align two recorded trajecto-
ries. As a pseudo-metric combined with a subsequent classi-
fication, DTW has a highly positive impact on motion classifi-
cation [30, 31, [10]. Xi et al. provide an extensive review com-
paring a large set of available classification methods, such as
HMMs, MLPs, and decision trees on time series data [[10]. They
show that no tested classifier is able to beat a combination of
DTW and 1-Nearest-Neighbor (INN-DTW). INN-DTW com-
pares the query trajectory to each available training trajectory
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using DTW as distance measure. Then the most similar train-
ing trajectory is used to predict the label of the query trajec-
tory. The superiority of this approach in comparison with other
classifiers, such as Random Forests, SVM, Bayes Networks, et
cetera, is supported by work from Bagnall and Lines|[11]]. Like-
wise, [Yurtman and Barshan|achieved good classification results
using a method similar to INN-DTW, which, however, was lim-
ited to simple movement patterns and was not evaluated with
respect to generalization to new subjects [16]].

Recently neural networks have been frequently used in the re-
lated field of skeleton-based human activity recognition. They
typically reach a high classification performance, especially for
large training data sets. Recurrent Neural Networks (RNNs) al-
low for an online recognition of motor actions. For instance
Li et al.| propose a tree-like hierarchy of RNNs to distinguish
between actions learned on thousands of sequences. Other
approaches such as [33] focus on Long Short-Term Memory
(LSTM) networks with trust gates to model temporal proper-
ties of the data. Another approach works on a combination of
video and skeleton data [34]. Here, data is preprocessed by
convolutional layers to generate higher level features. The clas-
sification is then performed by an LSTM network and a combi-
nation of classification and regression layer. [Liu et al.| propose
context-aware attention LSTM networks to allow the network
to focus on informative joints for a specific motor action. This
is achieved via combining Spatio-Temporal LSTM layers with a
dedicated global context memory. A recent approach by Nunez
et al|also performs a temporal and spatial preprocessing of the
input to improve the classification performance [12]. A con-
volutional neural network (CNN) preprocesses data on the spa-
tial as well as on the temporal domain to generate higher-level
features that contain relevant information for the classification
task. This information is then passed to a LSTM network to
account for a larger temporal context.

Two approaches seem most suitable in the context of error
classification of sports movements. KNN-DTW as well as the
combination of CNNs with LSTMs (from now on called CNN-
LSTM). The combination of nearest-neighbor classifiers with
DTW is popular and difficult to beat in classic sequence classi-
fication [[11,[10]]. Furthermore, related approaches have already
been successfully used for the assessment of human motor per-
formances [16]]. CNN-LSTM has recently been proposed in the
field of human activity recognition [12]]. Although the approach
has not been demonstrated to work for subtle patterns such as
errors in motor performances, the preprocessing step based on
CNNs seems promising as it can be expected to learn the rele-
vant features for specific error patterns. Furthermore, the well
established field of CNNs provides methods to estimate the
saliency of specific features of the input of the classifier [36],
which would increase the interpretability (R3) of the approach.
Both approaches can be linked to existing feedback strategies,
as they are — given a sufficient classification quality — able
to classify typical error patterns (R1). Further, they are fully
data-driven and thus require only few manual work (R5). CNN-
LSTM can be expected to work in real-time (R2). Further, this
approach is described as being able to work even for small data
sets (R4). In our evaluation, we show that our pipeline outper-

(a) Marker placement.

(b) Skeleton representation.

Fig. 2. Marker setup and reconstructed skeleton representation.

forms KNN-DTW as well as CNN-LSTM.

3. Domain and Data Set

To build data sets for training and testing, we first identify
error patterns for the squat as well as for the Tai Chi push via
consulting coaches (squat: 14 coaches, on median 9 years of
experience. Tai Chi push: 1 coach, 14 years of experience),
literature (e.g., [I37]], [38]]), as well as videos from coaching ses-
sions (for the squat only, partly from corpus described in [8],
partly recorded in our own lab).

In a second step, motion data for both motor actions was
recorded using an OptiTrack motion capture system (10 Prime
13W cameras). Passive markers were mostly attached to a cus-
tomized motion capture suit; markers at the arms and the hands
were directly attached to the subjects’ skin (see Figure[2a). The
usage of a marker-based system, which is a well evaluated stan-
dard procedure in biomechanical analysis, allows us to obtain
highly precise motion capture data, that also covers fine-grained
errors and variations in motor performances. The marker suit is
designed in a way that allows a reliable positioning of mark-
ers, even if subjects sweat or are breathing heavily due to ex-
haustion. No other hardware that suffers from these issues was
attached to the subjects. The motion capture system outputs

Table 1. Analyzed error patterns in the execution of a squat (cf. data
from [8]]). The numbers denote the quantity of incorrect and correct exe-
cutions of the squat in our data, with respect to the corresponding pattern.

Performance Error Pattern #Erroneous #Correct
arched neck 33 29
feet distance not sufficient 45 33
hips do not initiate movement 23 51
hollow back 34 42
incorrect weight distribution 51 16
knees tremble sideways 23 33
legs extended at end 42 38
not symmetric 17 46
too deep 51 34
wrong dynamics 61 27
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(a) Incorrect weight
distribution.

(b) Right foot is in-

correctly rotated. chest height.

(c) Arms return at (d)Knees are in front

of the toes.

(e) The left leg is
moved forward.

(f) Arms and legs are
asynchronous.

Fig. 3. The images depict examples and symptoms for error patterns of the Tai Chi push mapped onto a virtual character. These images can only provide
a rough overview of how the errors could look like. Specific occurrences can deviate and require information on the rest of the movement. The patterns
“non-uniform movement” and “asynchronous” are not visualized as it is difficult to depict aspects of these error patterns in one single image.

kinematic features for k = 19 joints (see Figure per frame
at 120Hz. Each frame consists of k joint rotations as well as
k joint positions. Joint rotations are represented as quaternions
qi, ..., qx. Each quaternion denotes the rotation of a joint with
respect to its parent. The root rotation q; describes the rota-
tion of the root with respect to its rotation at the beginning of
the movement. As root joint we use the hips. The joint posi-
tions are represented by vectors t,...,t; € R3. Each t denotes
the translation relative to the position of the root joint at the
beginning of the movement. Further, we use joint angles as Eu-
ler angles, calculated from the quaternion representation, which
correspond to flexion/extension, abduction/adduction and twist
of the corresponding joint.

The squat data set consists of N = 96 squat movements com-
ing from 50 subjects. The Tai Chi data set consists of N = 120
recordings coming from 24 subjects. All recordings were an-
notated by an expert for the presence of any of the error pat-
terns. The expert had to add an intensity rating for each error as
well as confidence ratings for each decision. These ratings were
combined into a score in the interval [0, 1] by averaging. Only
ratings with a score above 0.5 were used for the experiment.
We selected the error patterns that appeared with a frequency
of at least 15 positive and negative examples for training. The
resulting patterns and their frequency in the training data are
listed in Table[I] and Table 2] Figure [3]and Figure [ provide a
visual overview of the errors from typical recordings mapped
on a virtual character.

4. Classification

Our classification pipeline is trained on the data described
in Section E} It learns a classifier for each error pattern, con-
sidering each training trajectory as one data point with the la-
bel pattern occurs or pattern does not occur. In the final ap-
plication, the pipeline receives a stream of frames of skeleton
data from a motion capture system and outputs a label w.r.t.
each error pattern. As we use skeleton data, our pipeline is
highly flexible. The architecture is not restricted to specific in-
put data, but can also be used with various motion capture al-
gorithms, such as marker-based, but also marker-less ones, for
instance [39, 40, 1411 142]].

In order to develop a preferably simple classifier that satis-
fies all our requirements, we rely on Support Vector Machines
(SVMs). They are one of the most successful machine learn-
ing algorithms in general [43]]. Additionally, they are fast and
especially linear kernel SVMs are easy to interpret. For clas-
sification, the SVM only has to determine on which side of a
hyperplane an input query lies. More technical and analytical
information concerning SVMs can be found in [44] p. 325].

In the context of motion trajectories, SVMs cannot be di-
rectly applied as they require input vectors of a fixed size. In
order to represent all data on a canonical time line of fixed size,
we exploit the general similarity between the trajectories that
all represent the same motor action. We use DTW to warp all
training and input trajectories into the timing of a fixed refer-
ence trajectory 7,. A detailed theoretical and analytical inves-
tigation of this algorithm can be found in [43] p. 69]. For each
frame ¢ of T, the corresponding frame in the to-be-warped tra-
jectory is extracted. Next, for these frames, we extract all joint
angles in Euler angle representation as well as the joint posi-
tions. The resulting feature vector thus has size 6|7k, where
|T,| is the number of frames of the reference trajectory and k the
number of joints. We have k = 19 and |T,| = 902 for the squat
movement and |7,| = 782 for the Tai Chi push.

The feature vector of size 6|T,|k comprises many irrelevant
features. For instance, we intuitively do not consider the rota-
tion of the wrist to be related to having a straight back. The
SVM classifier might suffer from this high number of irrel-
evant features as shown by Weston et al| [46] and |Chen and
Lin|[47]. According to their results, we assume a robust feature
selection method to be able to help improving classifier perfor-
mance. A good introduction into the area of feature selection
methods can be found in [48]]. In the past, Random Forests
(RF) have often demonstrated to lead to good feature selection
results [49] 47, 150, 51]. We use Random Forests as they tend
to lead to especially good results for small sample sizes and a
large number of features. Random Forests are based on Deci-
sion Trees, which learn a hierarchical set of rules to distinguish
between classes. Thereby, they implicitly weight the impor-
tance of each feature. See [52]] for more analytical informa-
tion on Random Forests. An in-depth analysis of the theoretical
background and the statistical properties of Random Forests can
be found in [53]]. Random Forests could be directly applied as
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(a) Hips do not initiate the (b) Incorrect weight distribu-
movement. tion.
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(d) Too deep.
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(g) Wrong dynamics and
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Fig. 4. The images depict examples and symptoms for error patterns of the squat mapped on a virtual character. These images can only provide a rough
overview of how the errors could look like. Specific occurrences can deviate and require information on the rest of the movement. The pattern “knees
tremble sideways” is not visualized as it is difficult to depict aspects of this error pattern in one single image.

classifiers, however classification using Random Forests leads
to high computational cost, as all trees in the forest must be
considered. Thus, we use a feature selection based on Random
Forests as preprocessing for the SVM-based classification dur-
ing training. We train one Random Forest for each error pattern
on the feature vectors extracted after DTW. To train the trees,
we use the Gini impurity as criterion to optimize the decision
rules [54]. As break condition for growing, we require all leaves
to contain only a single class or less than two samples. We ob-
served a number of 200 trees to lead to good results. For each
error pattern, the Random Forest assigns an importance value
to each feature via averaging the relative importance of the fea-
ture in each decision tree. Following an idea of Bi et al.| [S3]],
we add 10 random features to each frame before performing
the feature weighting. The average of their importance values
is used as threshold to discard irrelevant features. For the squat,
this leads to 570 features on average per error pattern (from
originally over 100,000 features). For the Tai Chi push, we
end up with about 500 features. We use the implementation
of Random Forests that is provided by scikit-learn [56] in ver-
sion 0.17.1. For each error pattern, we train one two-class SVM
with linear kernel on the selected features, which are standard-
ized via scaling to unit variance and removing the mean. The
implementation of the SVM is provided by scikit-learn. For-
mally, the classification is finally performed via evaluating the
sign of:

was(warp(Tx)) + b, (1)

where w is the weight vector which specifies the orientation of
the decision surface of the SVM and b is the bias which spec-
ifies the location of the decision surface. These parameters are
trained by the SVM in the final step. warp denotes the warping

of input trajectory Ty into the timing of the reference trajectory
T, and fs denotes the selection of the relevant features and the
scaling required for the SVM classifier.

Due to the classic DTW, this classifier only starts the classi-
fication as soon as an exercise has been finished. In order to ob-
tain a real-time classification, we provide two extensions to this
procedure: First, we use Weight-Optimized Open-End DTW
(OE-DTW), as proposed in [57], to make the temporal align-
ment work online. As a second extension, we train multiple
classifiers on prefixes of our training data, to be able to select
the best matching classifier for each point in time. In more de-
tail, the training works as follows. First, all training trajectories
are warped into the timing of the reference trajectory. Then, for
each error pattern, we train the above classifiers on prefixes of
the training trajectories in 5 % steps. The online classification
looks as follows. A trainee has performed a part of the exercise,
the input prefix. We warp this input prefix into the timing of
the reference trajectory using OE-DTW. OE-DTW returns, ad-
ditional to the alignment, the percentage c of the reference that
corresponds to the input prefix. If ¢ € [5%, 10%), we select the
first of our classifiers, if ¢ € [10%, 15%), we select the second,
and so on. We apply the classifier on the part of the warped in-
put that matches the prefix of the reference we used for training.
See Figure [5]for a visualization of the classification procedure.

5. Visual Augmented Feedback

We provide feedback in terms of a visual augmentation of the
trainee’s avatar. Body parts that are related to a just performed
error are highlighted in red. The manual selection of the impor-
tant body parts as well as the point in time when they typically

(h) Not symmetric and feet
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Fig. 5. Online classification of error patterns: The trainee (left column)
has nearly reached the deepest point of the squat. The input trajectory is
brought into correspondence (green dashed lines) with the reference using
OE-DTW. Then the input is warped to the timing of the reference. The new
warped trajectory (green box) corresponds to the first 60 percent of the
reference trajectory. Thus, the classifier that is responsible for the first 0 %
to 60 % of the reference is selected (orange) and performs the classification.

contribute to an error is a time-consuming task. Consequently,
we aim at extracting a visual highlight mask that provides tem-
poral as well as spatial information using feature importance
from our classification pipeline.

Our pipeline can easily be used to generate feedback, as the
specification of the hyperplane of the linear SVM can be inter-
preted as importance values for each feature at each time step.
The separating hyperplane is expressed by w/ x+b = 0, where x
is the input. The components of w can be interpreted as impor-
tance values assigned to each feature. Based on this informa-
tion, a visual highlight mask for each error pattern is calculated
offline after training. It can then be applied inside the coaching
application as soon as an error is detected.

First, joint importance is determined in two steps. The first
one performs denoising for each joint. If a joint is considered
important at a specific time step, but the temporal neighborhood
is considered not important, the importance value is set to zero.
Afterwards, for each joint, its importance values are summed-
up over time leading to joint weights w (k). Next, we calculate
the final highlight mask and, as this mask can be precomputed,
we smooth it to obtain better looking highlights. We set the val-
ues for all joints to zero whose joint importance w (k) is smaller
than 20 % of the largest value in w (k). Then, for each frame, we
sum-up all joint weights to obtain frame weights w /(7). These
provide us with information on which point in time is in general
important for the error pattern of interest. The frame weights
are smoothed via applying two closing masks followed by an
erosion mask. The final highlight mask A(z, k) for each spatial
feature k and each frame ¢ (with respect to the canonical time-
line) is then calculated by

0, if w(Nw;(ky(t) = 0
1, otherwise '

h(t, k) = { @

¥(t) is the binary label estimated by the classifier at frame .

6. Evaluation and Comparisons

6.1. Classification

We applied a 5-fold cross validation that aims at between-
subjects testing and similar proportions of positive and negative
labels in the folds as compared to the overall data set. We mea-
sure classification quality in terms of accuracy and F1 scores

Table 2. Analyzed error patterns in the execution of a Tai Chi push. The
numbers denote the quantity of incorrect and correct executions of the Tai
Chi push in our data, with respect to the corresponding pattern.

Performance #Erroneous #Correct
non-uniform movement 47 21
left leg moves forward 67 52
knee too much in front 23 65
incorrect weight distribution 17 64
backmost foot incorrectly rotated 39 65
asynchronous 35 39
arms return at chest height 16 73
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Fig. 6. Averaged scores of the classifiers on the squat data set.
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Fig. 7. Averaged scores of the classifiers on the Tai Chi push data set.

for the point in time where the classifier knows the whole input
trajectory. Additionally to presenting the average classification
performance per motor action and per error pattern, we check
for significance on the level of error patterns. To this end, we
perform a pairwise comparison of the classification success for
all test trajectories by using the Wilcoxon signed-rank test with
Bonferroni correction. The time measurements were conducted
on a machine with Intel CPU Core 17-7700K 4.2 Ghz.

We compare our pipeline to KNN-DTW and CNN-LSTM.
Further, we provide a comparison to Ad-Hoc classifiers for
specific error patterns. The overall classification quality of all
tested approaches is visualized in Figure[6|for the squat and Fig-
ure [/| for the Tai Chi push. For both data sets, the worst results
are obtained by KNN-DTW. The best results are obtained by
our own classifier. CNN-LSTM lies in between. Additionally
to the summarized classification quality, we provide results for
the individual error patterns. The accuracies for the single error
patterns can be found in Figure[8] Concerning our pipeline, for
all error patterns of the squat together, the necessary OE-DTW
as well as the classification itself need 5.2 ms on average. For
the Tai Chi push, we need on average 6.6 ms to perform the
single OE-DTW as well as the final classification for all error
patterns. The timings for the other approaches are presented in
the subsequent paragraphs.

6.1.1. Comparison to Hand-crafted Ad-hoc Classifiers
Manually hand-crafted classifiers such as the ones presented
in [2] are time-consuming to develop and thus violate require-
ment (R5), which demands few manual work. Further it is not
possible to develop these hand-crafted classifiers for all types
of errors. However, if they are available, they can mark a kind
of ideal performance to which a data-driven classifier can be
compared. For the squat, we developed hand-crafted ad-hoc
classifiers similar to [2] for some of the error patterns. For the
pattern “not symmetric”, we defined the symmetry of a posture
as the averaged quaternion distance between the rotations of
the right and the mirrored rotations of the left side of the sagit-
tal plane. To capture the trembling of the knees, we extract the

lateral movement of the knees. For the other error patterns, we
used manually selected joints and simple relationships between
them as input. For the manually selected and preprocessed input
features, we learn separating hyperplanes using a linear SVM
based on the same cross validation folds as used in the experi-
ments before. Our data-driven pipeline reaches a performance
in a range similar to the results of the manually crafted classi-
fier. However, our pipeline needs much less manual work and is
not only restricted to posture-based patterns, but also takes the
current point in time of an input motion into account. For the
patterns “knees tremble sideways” and “not symmetric”, which
are not well classified by the data-driven approaches, results
indicate that even manually crafted rules do not lead to better
results. For the pattern “knees tremble sideways” we obtain
an accuracy of 0.57 which is close to the accuracy of 0.56 ob-
tained by our own data-driven pipeline. For the pattern “not
symmetric”’, the manually crafted classifier obtains an accuracy
of already 0.73 instead of 0.64, however the F1 score is zero.

6.1.2. Comparison to KNN-DTW

KNN-DTW is the combination of k-nearest-neighbors
(KNN) as classification algorithm with Dynamic Time Warping
(DTW) as distance measure. For an input query, KNN searches
for the K data points that are most similar to the input. Then
it returns their label, using majority vote. In order to classify a
new query trajectory, KNN-DTW performs DTW with all tra-
jectories, and then, for each error pattern of interest, returns the
label of the closest trajectories that are annotated with respect to
this error pattern. We use the DTW with path-length weighting
as described in [57]]. For KNN, we select K = 9, as we observed
this value to lead to best results.

For the squat, 9ONN-DTW leads to a classification perfor-
mance of on average accuracy = 0.69, f1 = 0.57, wheras our
pipeline reaches accuracy = 0.8, f1 = 0.74. Our pipeline leads
to better accuracies than 9NN-DTW in eight of the ten error
patterns. The differences are significant for the patterns “legs
extended at end” (p < 0.001), “feet distance not sufficient”
(p < 0.001), and “too deep” (p = 0.003). We observe a trend
towards significance for the patterns “hollow back” (p = 0.07)
and “hips do not initiate movement” (p = 0.08). Concerning the
Tai Chi push, 9ONN-DTW reaches accuracy = 0.69, f1 = 0.41
compared to accuracy = 0.78, f1 = 0.65. The accuracies of
our pipeline are better in five of seven patterns. We observe sig-
nificant differences between our pipeline and 9INN-DTW for the
pattern “arms return at chest height” (p = 0.03, this is the only
case, where one of the other approaches performs significantly
better than our pipeline), “left leg moves forward” (p < 0.001),
and “knee too much in front” (p = 0.005). We observe trends
for the patterns “incorrect weight distribution” (p = 0.08) and
“backmost foot incorrectly rotated” (p = 0.09). For the squat
as well as for Tai Chi, 9NN-DTW needs multiple seconds to
calculate all necessary DTWs for the comparison.

6.1.3. Comparison to CNN-LSTM
The combination of Convolutional Neural Networks (CNN)
and a Long Short-Term Memory (LSTM), as described

by is especially designed for the classification of
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Fig. 8. Accuracies of the classifiers for the squat (left) and the Tai Chi push (right) for each error pattern. Significant differences (p < 0.05) are marked

with a star (x).

human motion capture data [12]. We therefore compare to their
approach and give a brief description below. Fore more analyti-
cal insights and experiments on architecture and parameters, as
well as figures that visualize the architecture, we refer to the
original paper [12]]. Basic information on the underlying prop-
erties of CNNs and LSTMs can be found in [58]).

The input movement is first processed by the CNN. The CNN
learns a higher level representation of motion on the spatial as
well as on the temporal domain via spatio-temporal convolu-
tion. Next, the preprocessed feature map is handled by the
LSTM which covers the broader temporal context. The CNN
proposed by consists of six alternating Convolu-
tional (ReLU activation; filter sizes: 20, 50, 100; kernel sizes:
3, 2, 3) and Pooling layers. The LSTM consists of 100 units.
The training of the complete network, CNN-LSTM, consists of
two steps. In the first step the weights of the CNN are pre-
trained. The CNN is not yet connected to the LSTM, but to two
densly connected layers (300 units, 100 units, ReLu), followed
by an output layer with sigmoid activation. Time windows are
separately fed into the network together with the label of the
corresponding trajectory. The network is trained for 100 epochs
with a batch size of 200. Next, as suggested by [Nufez et al., the
dense layers are cut off and the pretrained CNN is connected to
the LSTM. Complete recordings of movements that consist of
a sequence of time windows are now used as input. The new
network is trained for 500 epochs with a batch size of 16 using
Adadelta [39]. According to [12]], due to the two-stage training,
higher accuracies can be achieved compared to training the final
network in one step. In our implementation, we use a window
size of T = 20 according to the experiments performed in [12]]
and we use a time shift of 10 that led to good results in our
experiments. As input, we use joint translations as they led to
better results than the combination of of translations and angles.
We implemented the networks using Tensorflow [60] in version
1.6.0 and Keras[Jin version 2.1.5..

Ihttps://keras.io

For the squat, CNN-LSTM leads to a classification perfor-
mance of on average accuracy = 0.75, f1 = 0.67, wheras our
pipeline reaches accuracy = 0.8, f1 = 0.74. For the squat, our
pipeline leads to better accuracies than CNN-LSTM in seven of
the ten error patterns. These differences are significant for the
patterns “hollow back” (p = 0.01) and “legs extended at end”
(p < 0.001). Concerning the Tai Chi push, CNN-LSTM reaches
accuracy = 0.72, f1 = 0.49 compared to accuracy = 0.78,
f1 = 0.65. The accuracies of our pipeline are better in five
of seven patterns. Among them, “knee too much in front”
(p = 0.004) and “backmost foot incorrectly rotated” (p = 0.03)
lead to significant differences. For both motor actions, no er-
ror pattern is significantly better classified by CNN-LSTM than
by our pipeline. CNN-LSTM needs approximately 8 ms for the
classification of all error patterns of the squat. For the Tai Chi
push, it needs around 7 ms on average.

6.1.4. Summary

In our summary, we only focus on the data-driven approaches
as the rule-based ad-hoc classifiers need a high amount of man-
ual work (R5) and as it is problematic to design them for all
of the error patters. For the squat, our pipeline leads to best
accuracies in six of the ten error patterns. In two cases, CNN-
LSTM leads to best results, in two cases INN-DTW obtains
best scores. Concerning the Tai Chi data set, our pipeline leads
to best accuracies in five of seven patterns. One pattern is best
classified by ONN-DTW, one is best classified by CNN-LSTM.
When using our own pipeline, we obtain the best averaged clas-
sification performance, followed by the CNN-LSTM, followed
by KNN-DTW. All three approaches allow for the application
of already existing feedback strategies linked to specific error
patterns (R1). As soon as an error is detected, the correspond-
ing feedback strategy can be triggered. The CNN-LSTM as
well as our new pipeline work in real-time (R2). This is not the
case for KNN-DTW, as the time needed for classification de-
pends on the size of the training set, and is already large for one
single comparison. All data-driven approaches work with small
data sets (R4) and require only few manual work (R5), namely
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the labeling and recording of the training data. We will focus
on the evaluation of the interpretability (R3) in terms of visual
augmented feedback that can be generated in the next section.

6.2. Visual Augmented Feedback

We provide a comparison of visual feedback obtained by our
pipeline to visual feedback we extract from the CNN-LSTM-
based approach. First, we describe how the latter can be used
to generate the desired highlight masks. For neural networks,
saliency maps have been established to provide information on
the importance of features in the input data [36]]. They are cal-
culated via deriving the output w.r.t. the input. We use the
implementation provided by keras-visE]in version 0.4.1. As the
input data for the CNN-LSTM-based approach consists of tra-
jectories with different lengths and different timings, we cannot
pre-process a fixed visual highlight mask for each classifier, but
calculate the saliences for each input. We map the saliences
to highlights if the error of interest is classified for the given
point in time. Preprocessing is not performed as the saliency
depends on the input movement a trainee performs, and these
movements are of different lengths and have different timings.

In our evaluation, we first focus on the spatial dimension,
namely the joints. We examine the joint importance values
exemplary for the error patterns “hollow back™ and “incorrect
weight distribution”. For the “hollow back”, a straight posture
of the back is important. In our body model, the flexion of the
back is specified by joint vt10. Its flexion approximates the an-
gle between the lower part of the upper back (thoracic spine)
and the upper part of the lower back (lumbar spine). The er-
ror pattern “incorrect weight distribution” occurs, if the knees
and the hips move too much to the anterior. Based on [37], it
is required that the knees are kept in line with the toes. Con-
sequently, the whole lower part of the body can directly con-
tribute to the error “incorrect weight distribution”. Results for
our pipeline are obtained during training and averaged over all
cross validation folds. For the CNN-LSTM-based approach, we
calculate the importance for all joints for each test trajectory
that is correctly classified as erroneous. The resulting impor-
tance values are then averaged. For the “hollow back”, Fig-
ure Oa] contains the joint importances obtained by our pipeline
and Figure [Ob| contains the results for the CNN-LSTM. The re-
sults for the pattern “incorrect weight distribution” can be found
in Figure [I0] For both patterns, there are joints that are simi-
larly pointed out as important by both approaches, however, the
results for the CNN-LSTM are less clear and tend to highlight
joints that are not important for the given error pattern. Con-
cerning the “incorrect weight distribution”, the joints which ob-
tained high values by our pipeline are mostly in the lower parts
of the body which is in line with the theoretical information on
the error patterns. These joints are mostly also selected by the
CNN-LSTM, however, here, also parts of the upper body, such
as sternoclavicular and shoulder are considered as important.
This is problematic in terms of feedback, as the posture of the
upper body w.r.t. the error pattern depends on the subject’s pro-
portions. A coach might want the subject to focus on the lower

“https://raghakot.github.io/keras-vis/

part and to automatically move the upper part in a suitable way
to maintain a stable stand. Concerning the “hollow back”, our
pipeline selects exactly the joint that is important for the error
pattern from a theoretical point of view, namely vt10. Concern-
ing CNN-LSTM, also other less important joints, such as many
joints in the lower body, obtain high values. To summarize,
the joints selected by our pipeline are clearer and more suitable
for visualization. Further, the joints selected by CNN-LSTM
depend on the just performed movement, so selected features
could vary for different inputs.

Next, we compare the overall quality of augmented feedback
generated by both approaches. See Figure and Figure
for exemplary visual highlights generated by both approaches.
For the “hollow back” (cf. Figure [[Ta] [TTb), the CNN-LSTM-
based approach selects not only the back for the given exam-
ple, but also joints in the lower part of the body, whereas our
pipeline selects exactly the most relevant features, namely the
back. Concerning the “incorrect weight distribution” (cf. Fig-
ure[ITc] [TTd), the features selected by CNN-LSTM (left leg) for
the input are a subset of the important features, however, other
relevant joints, such as the right leg as well as the hips, are not
selected. In contrast, our pipeline provides a much clearer high-
light of the important joints. Concerning the error pattern “too
deep” (cf. Figure[I2)), our comparison demonstrates, that even
if the joints selected by CNN-LSTM are reasonable, the timing
of the feedback can be problematic. Here, the highlight for the
given trajectory is shortly activated already at the beginning of
the movement, thus at a point in time that does not have a direct
impact on the depth. In contrast, the highlights extracted from
our pipeline are visible exactly when the subject is approaching
the deepest point of the movement.

In summary, the highlights generated by our pipeline are
more meaningful compared to the ones generated by CNN-
LSTM. Additionally, the complete highlight mask can be pre-
computed and, if desired, manually checked for obvious errors
(e.g., an activation of highlights for error patterns such as “hol-
low back” that occur at a point in time that is not sufficiently
related to the error itself). When relying on the CNN-LSTM,
highlight masks for single performances can work sufficiently
well, whereas the highlight for other movements is problematic.
Consequently, our pipeline better satisfies requirement (R3), the
interpretability of the classifier. See the video in the supple-
mentary material for exemplary visualizations of automatically
generated augmented feedback.

7. Exemplary Coaching Session

In the following, we describe an exemplary coaching session
for the squat to demonstrate the abilities of our pipeline. The
trainee is placed in a two-sided CAVE (L-shape, dimensions:
3m X 2.3m for each side). Each wall is operated by two pro-
jectors which run at a resolution of 2100 x 1600 pixels. For
each wall, we use one NVIDIA Quadro P6000 graphics card.
The images for both eyes are separated using passive filters by
INFITEC. The rendering engine is self-developed and runs our
scene on one single computer at around 250 fps. The whole
environment has been designed for an unobtrusive and natural
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(a) Selection by our pipeline. (b) Selection by the CNN-LSTM-based approach.

Fig. 10. Comparison of selected joints for the error pattern “incorrect weight distribution”.

(a) “hollow back” (CNN-
LSTM): Additional to the
back, the legs are undesir-
ably highlighted.

(b) ‘hollow back” (ours):
The crucial part (the back)
is highlighted.

(c) “incorrect weight dis-
tribution”  (CNN-LSTM):
Only parts (left leg) of
the relevant joints are
highlighted.

(d) “incorrect weight distri-
bution” (ours): The relevant
parts in the lower body are
highlighted.

Fig. 11. Comparison of feedback generated by CNN-LSTM (a, ¢) and our pipeline (b,d). In (a, b) feedback for the error ‘“hollow back” is visualized, in
(c,d) the feedback for the error “incorrect weight distribution” is shown. If multiple error patterns occur at the same time, highlights are only shown for

one of them.
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(a) CNN-LSTM: Highlights
are already visualized for a
short period of time at the
beginning of the movement

(b) Ours: As the point in
time is not relevant for the
error pattern, no highlights
are shown.

(c) CNN-LSTM: Highlights
are correctly enabled (high-
lights on the left side of the
body are slightly brighter

(d) Ours: The highlights are
correctly enabled.

which is undesired.

than on the right side).

Fig. 12. Pattern “too deep”: Comparison of feedback generated by CNN-LSTM and our pipeline at two different time steps. The beginning of the movement
(a, b) is not relevant for the error pattern and should thus contain no highlights. The other time step (c,d) is relevant and should thus contain highlights.
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Fig. 13. Schematic overview of the VR setup.

interaction [? ], including lightweight passive glasses and no
heavy or cabled equipment attached to the trainee. We refer
to [? ] for more information on our VR environment. See Fig-
ure[I3|for a schematic overview of the VR setup.

The virtual environment shows a gym which contains a vir-
tual mirror in front of the user. The user’s motion is mapped
on an avatar, a 3D scan of the user, inside the virtual mirror [?
]. The advantage of such personalized avatars has been demon-
strated in [? ]. Next to the mirror a virtual coach observes the
user’s motion and provides feedback (see Figure [I). The be-
ginning and the end of each motor action are automatically de-
tected similar to [2]]. Errors in the user’s performance are clas-
sified using our pipeline. Based on this information, the coach
addresses the patterns “incorrect weight distribution”, “feet dis-
tance not sufficient” and “hollow back”. To this end, the coach
uses verbal feedback as well as augmented feedback inside
the virtual mirror. The augmented feedback includes a rota-
tion of the perspective inside the virtual mirror, color highlights

mapped on the virtual character (see Figure [I4a)), and a replay
of the last squat performed by the user to observe the occurred
error (see Figure[T4b). The accompanying video shows the ex-
emplary coaching session in our virtual environment. While
the user performs squats, classification results are plotted as an
overlay inside the video. The error patterns the coach addresses
are highlighted.

8. Discussion and Conclusion

The focus of this work is on the assessment of motion per-
formed by a trainee in a sports coaching environment in VR, us-
ing the squat and the Tai Chi push as test case. We had a special
focus on the combination of error detection with the automatic
generation of augmented feedback. To this end, we carved out
proper requirements. We introduced a new pipeline that sat-
isfies these requirements and consists of two main parts: The
classification of motor errors and the automatic generation of
augmented feedback. For evaluation, we use two motor tasks,
namely the squat and the Tai Chi push. We demonstrate that our
pipeline is able to beat KNN-DTW as well as a recent neural
network-based approach [12] in terms of classification perfor-
mance and generated augmented visual feedback. Our pipeline
has been specifically designed to treat the special properties of
motion data in order to classify typical errors in real-time. Con-
sequently, known properties of the problem, such as the tempo-
ral warping or the feature selection, are covered by the architec-
ture of the pipeline. The neural network-based approach needs
to learn most of these properties from the training data which
could explain the superior performance of our pipeline. The
squat and Tai Chi data sets used in this publication are publicly
available via the DOI: 10.4119/unibif2930611.

Even though general classification performance of our
pipeline is high, the performance is not convincing specifically
for two error patterns for the squat and one for the Tai Chi push.
The pattern “arms return at chest height” is classified with a
very low F1 score (f1 = 0.1). A possible reason could be the
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(a) The hollow back is highlighted on the avatar inside the virtual
mirror. The perspective of the mirror image is rotated to enable the
user to observe his errors without the need to change his body’s
orientation.

(b) The user’s last squat is replayed in the virtual mirror. The per-
spective of the mirror is rotated to enable the user to observe how
the knees move in front of his toes which is one of the indications
for the error pattern “incorrect weight distribution”.

Fig. 14. Desktop rendering of feedback mechanisms that can be applied by the virtual coach.

immense imbalance between positive (16) and negative (73) ex-
amples in combination with the fairly complex error pattern.
Concerning the squat, the error pattern “not symmetric” is de-
tected with F1 scores only slightly above 0.4. This error pattern
is annotated in trajectories where some joints are not symmetric
between the left and the right side of the body. As this can oc-
cur in almost all joints and all phases of the movement, the fea-
ture selection cannot easily spot those features of interest that
are relevant. For the other problematic pattern, “knees trem-
ble sideways”, our results look similar. This pattern describes a
very subtle movement. Also, it can spread temporarily: Exactly
the frames that are problematic for subject A can be correct for
subject B and vice versa. Finally, the number of trembles can be
different for different subjects which also makes classification
harder. Focusing on such patterns that are hard to classify, is a
reasonable direction of future work, as here even a hand-crafted
ad-hoc classifier was unable to obtain good classification re-
sults. One possible solution could be a combination of more
complex higher-level features within our pipeline. Concerning
the generated augmented feedback, note that the feedback we
generate can only work if the classifier itself performs well. For
error patterns such as “not symmetric” or “knees tremble side-
ways”, the classifier is unreliable, thus also the selected features
have no explanatory power.

A limitation of our pipeline is that temporal properties of the
movements are not covered directly. However, for motor ac-
tions where the user’s timing has an influence on whether cer-
tain errors occur, temporal information could be included via
adding velocity as well as information on the warping function
extracted from DTW. The list of error patterns and the anno-
tated training data for the Tai Chi movement is only based on
information from a single, albeit experienced coach and on liter-
ature. Taking into account information from more experts could
further improve the developed model. Another interesting focus
of future work could be the application of our pipeline to fur-
ther challenging motor actions, such as dancing or martial arts.
As we specifically designed our pipeline with a focus on dealing
with error classification in sports movements, we would assume
similar results due to the general properties of the data. To en-

hance the overall performance of the classifier, one direction of
future work could be improvements in the single components of
the pipeline, for instance concerning extensions of DTW as well
as an evaluation of further approaches towards feature selection
such as the ones described in [62]. Concerning the augmented
feedback, we even do not always need classification in order
to provide feedback. In cases where just the attention of the
trainee needs to be guided to the crucial parts of the movement
with respect to a certain error pattern, we only need the first part
of the pipeline, the temporal warping. Then, we could highlight
the important joints based on Equation[2] One aspect of future
work is to further investigate when to provide which amount
of augmented feedback. Another direction of future research is
motivated by the usability of the virtual environment. To attach
motion capture markers to subjects is time-consuming. Recent
approaches from pattern recognition and computer vision are
able to extract the human posture from video images. Focusing
on accurate marker-less and low-latency motion capture algo-
rithms is promising to advance the field of sports coaching in
virtual environments.
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