Orthogonalization of Linear Representations
for Efficient Evolutionary Design Optimization

Andreas Richter
Computer Graphics Group, Bielefeld University
Bielefeld, Germany

Stefan Menzel
Honda Research Institute Europe
Offenbach, Germany
stefan.menzel@honda-ri.de

ABSTRACT

Real-world evolutionary design optimizations of complex shapes
can efficiently be solved using linear deformation representations,
but the optimization performance crucially depends on the initial
deformation setup. For instance, when modeling the deformation
by radial basis functions (RBF) the convergence speed depends on
the condition number of the involved kernel matrix, which previous
work therefore tried to optimize through careful placement of RBF
kernels. We show that such representation-specific techniques are
inherently limited and propose a generic, representation-agnostic
optimization based on orthogonalization of the deformation matrix.
This straightforward black-box optimization projects any given
linear deformation setup to optimal condition number without
changing its design space, which, as we show through extensive
numerical experiments, can boost the convergence speed of evolu-
tionary optimizations by up to an order of magnitude.
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1 INTRODUCTION

In contemporary industry practice, digital product development
of complex designs involves a number of major ingredients, like
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efficient optimization algorithms, shape representations, and sim-
ulation tools eventually enriched by surrogate models as perfor-
mance predictors. The set of optimization parameters is typically
determined by the degrees of freedom of the underlying shape
representation, but this strategy is intractable for highly complex
geometries based on mesh structures. It has been shown, how-
ever, that complex geometric models can efficiently be modified
using shape deformation or shape morphing techniques, using the
deformation’s controllers as optimization parameters [25]. This ap-
proach has successfully been applied to the optimization of various
real-world objects [7, 28, 34].

Due to the black-box character of many simulation tools that
are used for computing the object’s performance, evolutionary op-
timization is favored because of its capability to find global optima
without requiring gradient information. A typical vehicle design op-
timization that employs a computational fluid dynamics simulation
(CFD) for aerodynamic performance computation is depicted in
Figure 1. Because each performance evaluation of a design variant
amounts to a computationally expensive CFD simulation, fast con-
vergence to a high-quality solution (i.e., requiring few optimization
iterations) is of high practical relevance.

The deformation representation has a strong influence on the
convergence speed of the optimization. Deformation representa-
tions are therefore set up to provide the required design flexibility
with a minimum number of control parameters. Linear deforma-
tions, such as kernel-based radial basis functions (RBFs) [28] or
lattice-based free-form deformation (FFD) [26], are state-of-the-art
methods to realize shape morphing. For an initial setup, RBF kernels
or FFD control points have to be distributed on or around the shape,
either uniformly spaced or in a target-adapted manner according to
design heuristics or prior knowledge. Optimizing the initial setup
then amounts to finding optimal positions for kernels or control
points with respect to suitable quality criteria [22]. However, as we
will demonstrate in this paper, this representation-specific approach
is inherently limited when aiming at fast converging setups.

In this paper we approach the problem of setting up represen-
tations for fast convergence from a different, more fundamental
angle and propose a representation-agnostic optimization that is
based on the deformation matrix. RBF and FFD (like all linear de-
formation techniques) can be written in matrix notation, where a
constant deformation matrix maps the basis functions’ coefficients
(the genotype) to per-vertex displacements of the mesh geometry
(the phenotype). Interestingly, the expected optimization behavior
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Figure 1: Evolutionary automotive design optimization: Our focus is on the optimal initial representation setup, i.e., an optimal
genotype—phenotype mapping, which is determined by the distribution of control points (e.g., the RBF kernels shown in red)
and defined by the numerical properties of the resulting deformation matrix.

can be estimated from the deformation matrix alone. Inspired by the
concept of evolvability [30], we proposed the two criteria regularity
and improvement potential and showed them to strongly correlate
with convergence speed and quality of the final design — although
for RBF-based optimizations only [21].

We first show that the criteria regularity and improvement po-
tential generalize to other linear deformation methods besides ra-
dial basis functions, namely lattice-based free-form deformation
and surface-based thin shell deformation (Section 3). Inspired by
the general correlation between convergence speed and regularity,
which itself is defined through the matrix condition number, we
formulate an optimization based on the deformation matrix itself
(Section 4): For any given deformation setup, a matrix orthogo-
nalization leads to provably optimal regularity while preserving
both the design/phenotype space and the improvement potential.
Our optimization is computationally efficient, fully automatic, and
can be applied in a black-box-manner to any linear deformation
representation. It can boost convergence speed by up to an order
of magnitude without affecting the optimization’s outcome, as we
demonstrate through extensive numerical experiments (Section 5).

2 RELATED WORK

For the utilization of evolutionary optimization in practical applica-
tions it is important to guarantee an adequate convergence speed
to a high-performing solution. This is especially true for design
optimization with computationally expensive fitness evaluations,
such as computational fluid dynamics simulations for aerodynamics
or finite element simulations for structural reliability in automotive
optimization. Different acceleration strategies can be applied either
alone or in combination. Surrogate models [16, 20] approximate the
original fitness functions by a computationally less expensive one
and thereby reduce the cost of each fitness evaluation, at the price of
less accurate models and requiring sufficient training data. Choos-
ing proper operators for mutation, recombination, and selection
of an evolutionary algorithm tackles the problem from another an-
gle [2]. Tuning these operators may lead to fewer iterations required
for convergence depending on the shape of the fitness landscape.

In contrast, our focus is on enhancing representations, in particular
linear deformations, to provide an optimal initial parameter set on
which the evolution can efficiently optimize.

For design optimization based on linear deformations the setup
is typically realized in a manual step, e.g., in [28] for automotive
design optimization, in [7] for glider optimization, or in [34] for
design optimization of trains. Manual approaches to distribute the
representation’s handles heavily rely on the designer’s experience
w.r.t. the deformation formulation, i.e., the potential of deforma-
tion variations, and the problem at hand, i.e., where to expect the
largest fitness improvements. The manual representation setup
fully defines the deformation matrix and thereby determines the
convergence speed and potential fitness improvement. However,
as we will show in Section 4, these matrices can be drastically
improved by an automatic optimization technique.

Evaluating and optimizing representation setups requires suit-
able quality criteria. These criteria are motivated by prominent con-
cepts, like evolvability [17, 30], locality [24], and causality [27, 32],
which are known to promote an evolutionary search. The quality
criteria regularity and improvement potential, derived from the con-
cept of evolvability, have been shown in [21] to strongly correlate
with the convergence speed and the resulting quality of an evolu-
tionary design optimization, respectively. We apply these criteria
for our analysis and further extend the RBF deformations of [21]
by free-form deformation and shell deformations.

In [22] RBF kernel distributions are optimized to improve the
regularity of the initial deformation setup, requiring a computation-
ally expensive evolutionary optimization by itself. But despite the
high computation cost, the improvement in regularity (and hence
in convergence speed) is rather modest. In a similar spirit, [19, 28]
switched from indirect to direct manipulation of RBF and FFD to
improve causality and increase convergence speed. We show that
these representation-specific methods provide only limited gain in
convergence speed. In contrast, our method provably converts any
linear deformation representation to optimal regularity through
a suitable orthogonalization of the deformation matrix — without
changing RBF kernels or FFD control points, and therefore without
the need for an expensive optimization procedure.
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Figure 2: Displacements of kernel positions (RBF), handle
positions (shells), or control points (FFD) constitute the op-
timization parameters P, which control the deformation of
an initial design X to a design variant X’ through the linear
deformation operator/matrix M.

Regularity is strongly linked to the concepts of locality/causality,
which aim for representations where small changes in genotype
result in small changes in phenotype. This preservation of local
neighborhoods in the genotype-phenotype mapping allows for
more efficient explorative evolutionary search [24, 32]. However,
typically the mutation or crossover operators are addressed with
these concepts, e.g., with locality in genetic programming [11]
or grammatical evolution [29], or with causality for genetic rep-
resentations in antenna design [6]. In contrast, we incorporate
locality/causality into the representation. Not only does the orthog-
onalized representation setup feature optimal regularity, it also
perfectly realizes locality/causality and, as a consequence, results
in faster convergence of evolutionary optimization processes.

Our orthogonalization can be considered as a particular pre-
conditioning technique, which are used in numerical analysis to
improve the convergence of iterative solvers [3, 9, 18]. Our orthogo-
nalization employs the singular value decomposition, which is used
in [13] to increase the performance of evolutionary optimization.
But while the decomposition is apply to the mutation operator
in [13], we optimize the underlying deformation representation.

3 PERFORMANCE CRITERIA FOR LINEAR
DEFORMATION REPRESENTATIONS

In complex design optimization scenarios, geometric objects are
typically represented as surface meshes, consisting of m vertices
with positions x1,...,X; € R3, which are connected by edges
forming polygonal faces (mostly triangles or quadrangles). The
large number of vertices for real-world models disqualifies their
direct usage as optimization parameters. Instead, one employs shape
deformation techniques that can be controlled by a comparatively
small number of parameters py,...,p, withn < m.
Deformation techniques frequently employed in design opti-
mization are free-form deformation (FFD) [14, 26] and radial-basis
functions (RBFs) [33]. In addition, thin shell models are used to
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Figure 3: Two test scenarios of [21]: Deforming a plane to a
height field (left) and a sphere to a face scan (right).

describe surface deformation in computational mechanics or com-
puter graphics [4, 5]. These techniques are linear deformations and
can therefore be written in matrix notation as

X' =X+MP,

where the (m X n) matrix M constitutes the deformation representa-
tion. It maps the initial design X = (x1,...,Xy) to a shape variant
X’ (the phenotype) through a displacement MP that is controlled
by the parameter vector P = (p,...,p,) (the genotype). While the
matrix M is constructed during initialization and kept constant, the
parameters P are varied by a human designer or an optimization
algorithm to produce shape variations (Figure 2).

In general, the matrix entry M; ; stores the jth basis function
evaluated at vertex x;, and p; is the coefficient or control parameter
of that basis function. For example, for the RBF deformation of [21],
M;j=¢ (||x,~ - cJ~||), with the kernel ¢ positioned at center c;. For
free-form deformation, which we additionally analyze in this paper,
M;; = Nj31 (ui)Nj32 (vi)N;3 (wj), a tri-cubic tensor-product B-spline
function evaluated at (u;,v;, w;), the local coordinates of x; w.r.t.
the FFD lattice [26] (implementation details in [10]). Finally, for
linear thin shells there is no analytic expression. The jth column is
the discrete response function to a virtual unit displacement of the
Jjth control handle, computed by minimizing physical stretching
and bending energies [4, 5].

Since the geometric model X is given, setting up the deforma-
tion representation amounts to distributing kernel positions (RBF),
defining the lattice of control points (FFD), or selecting some ver-
tices as handle points (shells). For RBF deformations we distinguish
between indirect manipulation (im), where the parameters p; corre-
spond to RBF coeflicients, and direct manipulation (dm), where the
parameters p; are interpreted as displacements at the RBF kernels.
For FFD the parameters p; correspond to displacements of control
points or they correspond to prescribed handle displacements for
shells.

The parameters p; then correspond to RBF coefficients (indi-
rect manipulation), RBF kernel displacements (direct manipulation,
see [21]), control point displacements (FFD), or prescribed handle
displacements (shells), respectively.

Estimating the expected performance of the design optimization
(or ultimately optimizing the initial setup for a better-performing
optimization) requires suitable quality criteria for evaluating the
deformation representation. We drew inspiration from the concept
of evolvability [30] and defined the three criteria variability, regular-
ity, and improvement potential in our previous work [21]. We only
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Figure 4: Visualization of two original basis functions and different orthogonal versions: Two columns of the deformation
matrix M (top left). Their closest orthogonal approximation as UV' of SVD (top right) are geometrically more similar to the
original bases than using only the U matrix of SVD (bottom left) or the Q matrix of a QR decomposition (bottom right).

consider the latter two criteria (since variability basically measures
the constant number of control parameters):

Regularity is defined as R(M) = 1/x(M), where k(M) is the
condition number of matrix M [12]. It characterizes the ex-
pected convergence speed of an evolutionary optimization
utilizing the deformation representation M.

Improvement potential measures a representation’s poten-
tial to improve the fitness of a design. It is defined by how
well the deformation setup M can approximate the (esti-
mated, approximated) gradient G of the fitness function:
PM) =1-||(I- MM*)G||%, with M* being the pseudo-
inverse of M and || - || p the matrix Frobenius norm [12]. For
instance, when the designer has a rough guess of the direc-
tion towards an optimal shape based on her experience or
data analytics, then this direction can be used as the esti-
mated gradient G.

For RBF deformations, we showed strong correlations between
regularity and convergence speed as well as between improvement
potential and final fitness [21]. We confirm and extend our statistical
analysis by adding free-form deformation and shell deformation
to the RBF-based experiments, using the same two test scenarios:
Deforming a plane to fit a target height field and deforming a sphere
to fit a target face scan (Figure 3). We refer to [21] for details on
these experiments and their evaluation.

For the height field experiment, we first generate 100 random
setups each for RBF deformation (distributing 25 kernels), for shell
deformation (selecting 25 control handles), and for free-form defor-
mation (5 X 5 control grid). While distributing kernels and handles
is straightforward, we ensure the feasibility of the control grids by
making sure that they are not self-intersecting (see [10] for details).
For each random deformation setup we evaluate its regularity and
improvement potential, and then relate those to the total number
of iterations and final fitness value of a CMA-ES optimization [1].

We utilize a (1,10)-CMA-ES of the shark library [15] with an initial
step size s of 0.001 and default settings otherwise. The monotone
Spearman’s correlation coefficient [8, 31] between regularity and
convergence speed is 0.71 for FFD and shells together, 0.93 for RBF
only, and 0.91 for the complete set of RBF, FFD, and shells. The
correlation between improvement potential and fitting quality is
0.72 (FFD, shells together), 0.74 (RBF only), and 0.75 (RBF, FFD,
shells). All correlations are significant with a p < 1074,

The 3D face fitting works analogously, but we use 68 kernels/
handles for RBF/shell deformation and a 4 - 4 - 4 control lattice for
FFD. The correlation between regularity and convergence speed is
0.77 (FFD and shells), 0.94 (RBF), and 0.94 (RBF, FFD, shells), and that
between improvement potential and fitting quality is 0.62 (FFD and
shells), 0.83 (RBF), and 0.8 (RBF, FFD, shells). Also here all results
are significant with p < 1074,

While the correlations of FFD and shells are not as strong as
those of RBFs, the total set of all experiments clearly demonstrates
the general validity of the two criteria regularity and improvement
potential, which motivates the optimization of deformation setups
with respect to these measures.

4 MATRIX ORTHOGONALIZATION FOR
OPTIMAL REGULARITY

In previous approaches [23] RBF deformation setups are optimized
with respect to regularity and improvement potential through com-
putationally expensive evolutionary optimization of kernel posi-
tions. However, even when optimizing solely for regularity, the
resulting setups are still far from the optimal regularity value of
one for larger kernel widths (compare [22, 23]). This can be ex-
plained by analyzing the regularity definition: An optimal regular-
ity requires all singular values o; to be one for optimal condition
number k(M) = o1/0p (01 > - -+ > op), which is true for orthogo-
nal matrices only. For our non-square m X n matrix M with m > n,
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Figure 5: Pairwise comparison of the convergence speed of CMA-ES (#iterations until convergence) for different deformation
representations (column pairs), for original representation M (light color) versus orthogonalized representation M (dark color),
for fitting height fields (left) and face scan (right), averaged over 100 random setups each. The RBF tests are split up according
to the employed kernel function and its support radius: Wy, W5, W;5 refer to Wendland kernels of support radius 2, 5, and 15;
Tri refers to the triharmonic kernel; dm and im denotes direct or indirect deformation.

this requires the matrix columns my,. ..,my to be of unit length
and mutually perpendicular, which (with slight misuse of notation)
we call orthogonal, too. Because the RBF basis functions are not
orthogonal w.r.t. the Ly inner product, their discretization will in
general not lead to orthogonal columns m;. The same is true for
the B-spline basis of FFD and shells.

We approach the problem from a different angle, by directly
optimizing the matrix M, instead of indirectly manipulating it
through careful placement of RBF kernels or FFD control points.
The columns m; form a basis of the n-dimensional phenotype
sub-space of R™, since any displacement MP can be written as a
linear combination Z}’:l m ijT.. Asking these basis vectors to be
orthogonal and of unit length is in agreement with the concepts of
locality [24] and causality [27, 32], which are closely related to con-
vergence speed. They emphasize that similar parameter variations
should yield similar amounts of phenotype variation and that local
neighborhoods should be preserved, both of which is achieved by
orthogonal matrices. In the ideal case of an orthogonal deformation
matrix, regularity, locality, and causality nicely coincide.

In practice, however, the deformation matrix M is not orthog-
onal, and we propose to orthogonalize it, which corresponds to
a change of basis for the phenotype space. This can be achieved
by several techniques, such as Gram-Schmidt orthogonalization,
QR decomposition, or singular value decomposition (SVD) [12].
Although computationally most expensive, we employ the SVD,
since it is numerically most stable and yields the orthogonal matrix
closest to the original one [35], i.e., it changes the deformation basis
the least, as visualized in Figure 4.
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Figure 6: Different orthogonalization techniques based on
the singular value decomposition M = UZV' or the QR de-
composition M = QR vyield equivalent convergence speed.

We decompose M using the thin SVD [12] into M = UZVT, with
orthogonal matrices U € R™*" and V € R™" and a diagonal ma-
trix © € R™" containing the singular values %; ; = 0;. Removing
the singular values X (or setting all o; to one) yields the orthog-
onalized deformation matrix (as the product of two orthogonal
matrices):

M=UV'. (1)



GECCO 18, July 15-19, 2018, Kyoto, Japan

RBF deformation Result
2000( — Uniform setup «\\
Uniform \
Adapted
1500 * Adapted+Orthogonal b
2
81000}
g
8 Adapted setup
= 500
% 50 100 150 200 250 300 e
Fitting error
RBF deformation Uniform setup ~ Result
50000 Uniform & B '
Adapted - /
40000 *» Adapted+Orthogonal v
«» 30000
g
% 20000 Adapted setup
10000 : (N
o/
’ : ‘¢
0.002 0.0025 0.003

Fitting error

Andreas Richter, Stefan Dresselhaus, Stefan Menzel, and Mario Botsch

Iterations

Iterations

FFD deformation Result

Uniform setup

1o00r ' Unif(‘)rm
Adapted
800 » Adapted+Orthogonal ;‘/ \
600 s
400]
. Adapted setup
200 e / (
0
0 20 40 60 80 100
Fitting error B
FFD deformation Result
50000 Uniform ’
* Uniform+Orthogonal .
40000 Uniform setup /
30000
20000
-
10000 /
: 4

0.002 0.0025 0.003

Fitting error

Figure 7: Matrix orthogonalization for custom-tailored setups. We analyze height field fitting (top) and face fitting (bottom),
using RBF deformation (left) and FFD (right). The uniformly distributed setups (having higher regularity) converge faster
than the target-adapted ones, but the adaptive setups (having higher improvement potential) achieve a better fitting quality
with lower error. Orthogonalizing the target-adapted setup combines both advantages: low error and fast convergence.

By construction k(M) = 1, therefore M has optimal regularity, lo-
cality, and causality, and we can expect faster convergence (see next
section). Since the columns of M span the same phenotype space as
the columns of M, the improvement potential is unchanged and the
optimization can reach the same optimum in both variants. In prac-
tice, starting from a given representation M, we first compute its
orthogonal version M and then perform the evolutionary optimiza-
tion (more efficiently) based on M. The resulting optimal parameter
vector P is finally mapped back to the original representation M as
P = VX !VTP. This allows us to perform the optimization using
the more efficient representation, but to convert the optimized pa-
rameters (exactly) back to the original representation, where they
have their originally intended semantic meaning.

5 RESULTS AND EVALUATION

In order to analyze the orthogonalization’s effect on the conver-
gence speed in actual evolutionary optimizations, we compare op-
timization runs with and without orthogonalization of the defor-
mation representation for the experiments described in Section 3.
For the two test scenarios (height field, face scan) and the different
types of representations (RBF, FFD, shell) we run an evolutionary
optimization for 100 random setups each. Following [21], the RBF
tests are further split up according to the employed kernel function
and its support radius: Wy, W5, Wy refer to Wendland kernels of
support radius 2, 5, and 15; Tri refers to the triharmonic kernel; dm
and im denotes direct or indirect deformation (see [21] for details).
Like before, we utilize a (1,10)-CMA-ES of the shark library [15]

with manually determined optimal initial step sizes s for each repre-
sentation. For the 1D height field (Figure 3) we chose s = 0.001 for
the unmodified and s = 0.01 for the orthogonal setting. For fitting
3D faces (Figure 3) we chose s = 0.001 and s = 0.05, respectively.
Otherwise the default settings of the shark library are applied. The
results in Figure 5 show that on average the orthogonalized setups
converge faster than the unmodified ones, by more than an order
of magnitude for representations with low initial regularity, such
as FFD and im-RBF. These numerical experiments demonstrate that
our orthogonalization approach — which raises high expectations
for faster convergence due to the its optimal regularity — indeed
meets these expectations.

Although we recommend the SVD-based orthogonalization M =
UV from Equation (1) due to its numerical stability and the fact
that it minimally modifies the input setup, Figure 6 shows that alter-
native orthogonalizations, such as using the U-matrix of SVD or the
Q-matrix of QR decomposition, yield equivalent results in terms of
convergence speed. This emphasizes the importance of the general
concept of orthogonal representations, which is in agreement with
the concepts regularity [21], locality [24], and causality [27, 32].

Our approach offers an interesting view onto the concept of
indirect versus direct manipulation. Indirect manipulation deforms
a geometry by changing the coefficients of the basis function (e.g.,
RBF coefficients or spline control points), while direct manipulation
prescribes displacements of some handle points on the surface and
solves a linear system to determine the coefficients that yield this
desired deformation. Direct manipulation has better regularity and
converges faster in a design optimization [21], as also confirmed
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that of the original setup M (dotted) in the beginning of the optimization. While the fast-converging uniform setup show an
overall similar behavior (left), for the adaptive setups with low initial regularity our optimized setup converges faster (right).

by our experiments (Figure 5). The switch from indirect to direct
manipulation can be considered as a matrix preconditioning that
improves regularity to a certain extend [21]. In this view, our or-
thogonalization provides a superior alternative that projects the
matrix to optimal regularity, thereby improving convergence speed
even more (Figure 5).

While the previous experiments analyzed our orthogonalization
technique for random setups only, we now demonstrate its prac-
tical relevance by applying it to custom-tailored setups. Figure 7
shows the results for height field fitting and face scan fitting aver-
aged over 10 trials using both RBF and FFD representations. The
utilized uniform deformation setups have a higher regularity and
therefore converge faster, but target-adapted setups have a higher
improvement potential and achieve better fitting results. When
setting up deformation representations by specifying RBF kernels
or FFD control grids, one always has to find a compromise between
these two extremes, as analyzed in detail in [22]. In stark contrast,
our matrix-based setup optimization does not face this problem,
as it projects any input setup to optimal regularity without chang-
ing its phenotype space or improvement potential. Applying the
setup orthogonalization to the target-adapted setups consequently
preserves its ability to generate high-quality fitting results, but
considerably reduces the number of iterations required to do so.
The impact of orthogonal decompositions is stronger for the more
complex face fitting scenario. The adaptive RBF setups did not fully
converge due to their low regularity, and hence yield an error that
is only slightly lower than the uniform setups. The orthogonalized
adapted setups converge without problems and show the lowest
errors. In the FFD example, we did not succeed in constructing an
adaptive lattice to produce better results than the uniform lattice.

Therefore we only analyze the uniform lattice and its orthogonal-
ized version, where the latter converges considerably faster to a
considerably better solution.

For the previous experiments we hand-tuned the initial step
sizes for the CMA-ES in order to focus the analysis on the actual
representations. While for long-running optimizations the initial
step size s has a minor effect, its choice is more important for fast-
converging optimizations. Given an initial step size s for the original
representation M (e.g., from the designer’s knowledge), it can be
converted to the orthogonal representation M by compensating for
the normalization of the matrix columns m;:

1 n
§=s-; E Hmj|
Jj=1

where Hm J” is the length of the jth column of M (see Figure 8).

, (2

~

6 CONCLUSION

For any design optimization, convergence speed and solution qual-
ity are crucial aspects to guarantee short product development
cycles. This is especially true for real-world evolutionary design
optimizations with computationally expensive fitness functions.
The choice of optimization parameters, i.e., the chosen representa-
tion, drastically influences the results. Optimally setting up linear
deformation representations, which play a major role in practical
design optimization of complex geometries, is therefore a (very
challenging) problem of high practical relevance.

We argued that setting up a deformation representation by care-
ful placement of kernels or control points can lead to high-quality
results for target-adapted setups, but is inherently limited for opti-
mizing convergence speed, since the deformation basis functions do
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not yield an orthogonal deformation matrix. The resulting setups
violate the design principles of regularity, locality, and causality,
and will in general not provide high convergence speed.

Our automatic setup optimization is inspired by the concept of
regularity, which we showed to generalize to free-form deformation
and shell deformation beyond the previously evaluated RBF defor-
mations [21]. The proposed SVD-based orthogonalization can be
applied to any linear deformation representation, is easy to imple-
ment, efficient to compute, and is optimal with respect to regularity,
causality, and locality. The optimized setups showed performance
improvements by up to an order of magnitude.

Since the orthogonalized matrix spans the same phenotype space
as the original matrix, our setup optimization does not negatively
affect the optimization’s results. For the user it acts as a perfect
black-box: The designer provides an input representation, which is
automatically orthogonalized; the optimization is efficiently per-
formed using the orthogonal representation; and the final result is
converted back to the original representation. Our approach has
the potential to become a general recommendation for adapting
any matrix in the context of linear deformation representations.

In the future we will analyze our representation optimization for
more complex geometric models and more complex fitness func-
tions, such as the automotive design optimization shown in Figure 1.
Additionally, because regularity and improvement potential are cur-
rently only defined for linear deformation representations, we are
anxious to generalize these criteria to non-linear representations.
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