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Fig. 1. Captured facial expression of two actors (le� and right) with retargeting results to realistic and stylized characters. Our method automatically aligns
the ranges of motion of the captured actor and the target blendshape rig, such that expressions are restored faithfully even for stylized characters.
From le� to right: The face rigs Loki, Mery, and Billy, are courtesy of Mark Pauly, meryproject.com, and Jana Bergevin, respectively. Motion capture data ( right) courtesy of Feel Ghood Music.

While facial capturing focuses on accurate reconstruction of an actor’s per-

formance, facial animation retargeting has the goal to transfer the animation

to another character, such that the semantic meaning of the animation re-

mains. Because of the popularity of blendshape animation, this e�ectively

means to compute suitable blendshape weights for the given target charac-

ter. Current methods either require manually created examples of matching

expressions of actor and target character, or are limited to characters with

similar facial proportions (i.e., realistic models). In contrast, our approach

can automatically retarget facial animations from a real actor to stylized

characters. We formulate the problem of transferring the blendshapes of a

facial rig to an actor as a special case of manifold alignment, by exploring

the similarities of the motion spaces de�ned by the blendshapes and by

an expressive training sequence of the actor. In addition, we incorporate

a simple, yet elegant facial prior based on discrete di�erential properties

to guarantee smooth mesh deformation. Our method requires only sparse

correspondences between characters and is thus suitable for retargeting

marker-less and marker-based motion capture as well as animation transfer

between virtual characters.
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1 INTRODUCTION

Facial animation retargeting addresses the general problem of an-

imation transfer between virtual characters, with the transfer of

performance capture to virtual characters being the main applica-

tion. Recent developments in vision- and depth-sensor-based facial

motion capture [Cao et al. 2014; Ichim et al. 2015; Li et al. 2013;

Thies et al. 2016; Weise et al. 2011] made accurate captures of an

actor, traditionally limited to big �lm or game studios, a�ordable to a

much broader audience. Current real-time capture systems typically

adapt a realistic generic blendshape model to the actor. Since the

modi�ed and the original character have semantically equivalent

blendshapes, the captured actor performance is then transferred

between the characters by directly mapping the blendshape weights.

The special case of equivalent blendshapes between two characters

is often named parallel parametrization in retargeting context.

In practice, it is uncommon to encounter facial rigs with a com-

plete set of semantically equivalent blendshapes. Creating facial

rigs for animation is time consuming and requires highly skilled

artists. Therefore, a rig is carefully designed to �t the animation

needs, only modeling the necessary expressions. In addition, expres-

sive digital characters are often stylized and exaggerate the facial

proportions of humans. An e�ective retargeting method must either

transfer animation from facial motion capture markers to a blend-

shape rig or between faces with di�erent blendshape sets. Several
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retargeting approaches generate their own parallel parametrization,

by transferring the blendshapes of the character face rig to align

with the actor’s proportions. However, especially for stylized char-

acters this step often fails, due to di�erences in ranges of motion or

the shortcomings of current methods. The subsequent blendshape

estimation becomes erroneous, which has been addressed so far by

incorporating additional priors.

In this paper we propose a novel algorithm for creating actor-

speci�c blendshapes with the help of a training sequence consisting

of an actor’s facial motions that semantically correspond to the

blendshapes of the character face rig. We show that given a training

sequence that su�ciently covers the actor’s range of motion, it is

possible to create, in an unsupervised manner, an accurate parallel

parametrization – even if the facial rig and the actor di�er strongly

in their facial proportions. The key observation is that facial mo-

tions are similar across di�erent stylization levels, as motivated by

the facial action coding system (FACS) [Ekman and Friesen 1978].

The FACS describes facial expressions on the basis of muscle ac-

tivations and is a common reference for blendshape creation for

stylized and realistic human characters. Based on a new manifold

alignment approach and a novel energy measuring similarity of

facial expressions, we successfully align the ranges of motion of the

actor and the character face rig. This subsequently leads to accurate

retargeting (see Figure 1).

Our second contribution is a prior energy based on physically-

inspired deformations, which can be computed e�ciently even in

real-time applications. Our geometric prior addresses the few arti-

facts that remain even in case of accurate parallel parametrizations.

Both contributions are fully compatible with most previous methods,

suitable for real-time applications, and produce results compara-

ble or better than state-of-the-art o�ine methods [Seol et al. 2012]

(Figure 15).

2 RELATED WORK

As a key element of human-centered applications, research on vir-

tual faces and face animation has been an active �eld of research

for decades, resulting in a wide range of publications on this topic.

For a general overview we recommend the book of Parke and Wa-

ters [2008] and the more recent surveys focusing on rigging [Or-

valho et al. 2012] and blendshape animation [Lewis et al. 2014]. In

the following, we focus mainly on facial retargeting and assume

a certain familiarity with blendshape-based facial animation (Sec-

tion 3).

Cross-Mapping. To overcome problems at the transfer stage, cross-

mapping methods learn directly from semantically corresponding

facial expressions of the captured actor and a target face rig and

synthesize new poses based on these training examples. Di�erent

learning techniques have been proposed, starting with piece-wise

linear mapping [Buck et al. 2000] and locally linear embedding

[Wang et al. 2004], followed by more advanced machine learning

algorithms like RBFs [Deng et al. 2006], kCCA [Song et al. 2011],

simplicial basis [Kholgade et al. 2011], or shared Gaussian Process

Latent Variable Models (sGPLVM) [Bouaziz and Pauly 2014]. A key

advantage of all cross-mapping approaches is that they are applica-

ble to any type of character (e.g., even having di�erent number of

Fig. 2. Transferring blendshapes using deformation transfer leads to unnat-
ural deformations (center) or broken expressions (right) if facial proportions
are too di�erent. Neutral expressions are shown on the le�.
©Face rig: meryproject.com

eyes) or any facial rig (blendshapes, muscles, etc.). Unfortunately,

the performance of these methods is strongly tied to the quality

and number of given training examples. Often, at least 15–20 cor-

responding example pairs are required for su�cient results. For a

moderate facial rig with 40 blendshapes, this leads to 600–800 param-

eters which must be de�ned consistently by hand. However, even

in case of consistent training examples, the resulting expressions

still remain (sophisticated) interpolations of the training examples.

This often leads to inaccurate results for expressions that are too

di�erent from the training examples.

Parallel Parametrization. The simplest way to transfer an anima-

tion from one character to another is by creating two semantically

equivalent facial rigs. In this case, the animation can simply be trans-

ferred by copying the control parameters from one rig to another.

For blendshape-based facial rigs, manually creating semantically

corresponding sets of blendshapes is a labor-intensive task, requir-

ing not only excellent modeling skills and anatomical knowledge of

the face, but also a considerable amount of time. In order to auto-

mate this process, several approaches for transferring blendshapes

from a generic face model to a neutral target have been suggested.

Given a source blendshape rig and the neutral face of a target char-

acter, Noh and Neumann [2001] suggested �rst to establish dense

correspondences and then to transfer per-vertex displacements for

each expression. This was later improved using deformation gra-

dients [Sumner and Popović 2004] or Radial Basis Functions [Or-

valho et al. 2008; Seol et al. 2012, 2011]. Several improvements have

been suggested since then, ranging from incorporating examples [Li

et al. 2010], adding contact constraints [Saito 2013], interactive edit-

ing [Xu et al. 2014], to iterative re�nement schemes for real humans

[Bouaziz et al. 2013; Ichim et al. 2015; Seol et al. 2016]. However, if

the assumption that source and target models are of similar shape

is violated, deformation transfer and similar methods often fail to

preserve the semantics of the facial expressions (see Figure 2). The

resulting proportional mismatch then leads to artifacts at the re-

targeting stage: exaggerated actor blendshapes cause dampened
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Fig. 3. Retargeting a smile (le�) to di�erently personalized blendshapes

(top). Close-ups show the positions of the captured markers (blue) and

the corresponding vertices (green). Only well-matching blendshapes result

in accurate retargeting (center). Dampened personalized blendshapes (top

le�) cause over-exaggerated retargeting results (bo�om le�), since large

weights are necessary to fit the captured markers. Inversely, exaggerated

blendshapes (top right) cause damped retargeting results (bo�om right).

©Motion capture: Feel Ghood Music, ©Face rig: meryproject.com

animations, because smaller weights are su�cient to reach a tar-

get pose; conversely, dampened blendshapes cause larger weights

and exaggerated animations – up to the point of unnatural face

deformations (Figure 3).

Seol et al. [2012] address artifacts resulting from erroneous expres-

sion transfer by integrating velocities over a sequence of captured

frames. In contrast, we improve the transfer process, such that the

transferred blendshapes automatically adapt to the actor’s range

of motion. Given a motion sequence of an actor and sparse cor-

respondences between the actor and the character model (e.g., in

form of optical markers), our method automatically transfers the

blendshapes of the face rig to the actor space.

Manifold-based Techniques. Aligning the ranges of motion be-

tween the actor’s motion sequence and the character’s blendshape

rig signi�cantly improves our expression transfer and is inspired

by the success of manifold alignment methods [Pan and Yang 2010].

These approaches aim at registering two di�erent high-dimensional

data sets in a lower-dimensional embedding space. Themapping into

the lower-dimensional space has to minimize the distance between

the individual manifolds as well as to keep the original relationship

between the data elements by preserving the geometric structure

of the manifolds. Several unsupervised methods [Fan et al. 2016;

Wang and Mahadevan 2009] have been proposed for various applica-

tions, including transfer learning [Pan and Yang 2010], data mining,

automatic translation or image set matching [Cui et al. 2012; Pei

et al. 2012]. An important aspect is the dimensionality reduction,

where additional constraints ensure optimal embedding spaces. Of-

ten, transformations between embedding spaces are then solved by

eigen-decomposition of the graph Laplacian [Fan et al. 2016; Wang

and Mahadevan 2011, 2013]. In some sense, manifold alignment

techniques aim to �nd a low-dimensional space where Euclidean

distances better represent the similarity between the di�erent data

instances. In contrast, we want to identify character blendshapes

that match the proportions and ranges of motion of the actor in

the high-dimensional space. This requires the transfer of the orig-

inal blendshapes to the actor space, instead of projecting into a

low-dimensional space.

Fig. 4. Complex interaction of blendshape weights. Le�:Weight cancellation
e�ects lead to a valid neutral face. Right: Constraining all weights to the
interval [0, 1] does still not guarantee valid face expressions.
©Face rig: meryproject.com

Expression Regularization. Common approaches for reducing arti-

facts in blendshape animation is to restrict the blendshape weights

to a �xed interval [Bregler et al. 2002; Chuang and Bregler 2002] or

to penalize large weights [Seo et al. 2011]. However, such heuris-

tics do not always succeed because combinations of blendshape

weights outside the speci�ed range can still produce valid faces

[Seol et al. 2011], and restricting blendshape weights to [0, 1] will

not necessarily result in plausible expressions (Figure 4). This phe-

nomenon is commonly known as blendshape interference [Lewis

et al. 2005]. Alternatively, PCA-based priors have been proposed for

direct blendshape manipulation [Anjyo et al. 2012; Lau et al. 2009]

and retargeting [Seol et al. 2012]. But these approaches strongly

depend on the quality and amount of training examples, where an

insu�cient set of example poses biases the solution towards the

closest training data [Anjyo et al. 2012]. In contrast, we consider

smooth skin deformation as a key factor and propose a prior that

penalizes surface deformation similar to many physically-inspired

facial animation methods [Barrielle et al. 2016; Bickel et al. 2007;

Ichim et al. 2016]. While all these methods outperform linear blend-

shapes in physical accuracy, the visual improvements often do not

justify the additional computation costs for many applications. We

therefore reformulate the large-scale deformation energy of Bickel

et al. [2007] to a suitable geometric prior for blendshape weights.

Furthermore, in order to additionally achieve sparse weight acti-

vation, one can either regularize using the L1 norm of blendshape

weights [Bouaziz et al. 2013] or transfer common practices inmanual

key-framing [Seol et al. 2011].

3 BLENDSHAPE ANIMATION AND RETARGETING

In this section we brie�y review blendshape facial animation and

blendshape-based facial retargeting and set up our notation. Sec-

tion 4 then introduces our improved blendshape transfer, which is a

pre-processing step before the actual retargeting. The retargeting it-

self can be further regularized using our geometric prior (Section 5).

Finally, we compare our proposed approach to state-of-the-art meth-

ods in Section 6.

Let the facial rig be given as a polygon mesh M, consisting of

N vertices, posed in neutral expression, and being equipped with

K expression blendshapes that all share the connectivity of M.

We denote the vector of stacked vertex positions of the neutral

face by v0 = (v10, . . . , v
N
0 )T, and of the k-th blendshape by vk =

(v1
k
, . . . , vN

k
)T. Due to the coupling of the x/y/z-coordinates the

blendshapes vk denote 3N -dimensional vectors.

For blendshape face animation we employ the delta-blendshape

formulation [Lewis et al. 2014], where the neutral expression v0 is

ACM Transactions on Graphics, Vol. 36, No. 4, Article 154. Publication date: July 2017.
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Fig. 5. Overview of facial animation retargeting pipeline, described for illustration purpose on the use case of retargeting marker-based animation. Our
method addresses the problem of obtaining personalized blendshapes by aligning the range of motion of the blendshape model with the range of motion of
the actor. In addition, we present a new prior for the retargeting step. ©Motion capture: Feel Ghood Music ©Face rig: meryproject.com

subtracted from the blendshape expressions vk to yield a displace-

ment �eld for activating a particular expression: �vk = vk � v0.

New facial poses v(w) are computed by displacing the neutral

face by a weighted sum of delta-blendshapes, with weights w =

(w1, . . . ,wK )
T, which can also be written in matrix form using the

delta-blendshape matrix �V = (�v1, . . . ,�vK ):

v(w) = v0 +

K’

k=1

wk�vk = v0 + �Vw . (1)

The main application for facial retargeting is the transfer of an

actor’s performance capture to a virtual character, mostly using

marker-based optical motion capture. We will therefore formulate

our approach for this problem setting, but note that our method

is not limited to marker-based retargeting, since any given facial

animation or marker-less performance capture can be easily con-

verted to a marker-based performance capture by tracing a subset

of “marker vertices” through time.

The actor’s performance is given as a 3M-dimensional vector

of M stacked marker positions (a1, . . . , aM )T that vary over time.

For a particular motion capture frame f , this data is denoted as

af = (a1
f
, . . . , aM

f
)T, and a0 represents a calibration frame of the ac-

tor in neutral expression. Like all retargeting methods based on par-

allel parameterization, we require sparse correspondences between

the actor’s face animation and the character’s face rig. These corre-

spondences are speci�ed as pairs of points {am0 , s
m
0 },m = 1, . . . ,M ,

on the neutral expressions of the actor and the character rig. The

same set of vertices on the expression blendshape vk is denoted

by sk = (s1
k
, . . . , sM

k
)T. Since the number M of markers and corre-

sponding vertices is much lower than the number of mesh vertices

(M ⌧ N ), the sk are called the sparse representation of the blend-

shape vk . We employ the same delta-formulation as above for sparse

blendshapes (�sk = sk � s0) and animation data (�af = af � a0).

The goal of any blendshape retargeting system is to compute the

time-varying weightsw that reproduce the facial expressions on the

target face rig for a given actor’s performance capture. This requires

a set of personalized sparse actor blendshapes pk = (p1
k
, . . . , pM

k
)T

that are semantically equivalent to the sparse blendshapes sk of the

character rig. For each captured frame f , the blendshape weights

wf can be computed by minimizing the squared distance between

the marker displacements �af and a weighted combination of the

actor’s sparse delta-blendshapes �pk = pk � p0:

EFit(w) =
1

M

�
�
�
�
�
�af �

K’

k=1

wk �pk

�
�
�
�
�

2

. (2)

The required personalized actor blendshapes pk are either manually

created or transferred from the face rig to actor space [Orvalho et al.

2008; Seol et al. 2012; Sumner and Popović 2004]. But as discussed

above and shown in Figures 2 and 3, this blendshape transfer often

fails for highly di�erent facial proportions, such as stylized char-

acters. We therefore propose an improved approach for automatic

blendshape transfer with range of motion adjustment in Section 4.

In order to resolve ambiguities, prevent over-�tting, or penalize

artifacts, the above blendshape �tting process is typically regularized

through additional energy terms:

ERetarget(w) = EFit(w) + EReg(w) . (3)

Typical choices for the energy EReg(w) are (weighted combinations

of) L2 regularization kwk2 to penalize large weights [Lewis et al.

2014], L1 regularization kwk1 for inducing sparsity [Bouaziz et al.

2013], and penalization of temporal changes
�
�
�wf �1 �wf

�
�
�

2
to re-

move jitter [Lewis et al. 2014]. However, as we will show in Section 5,

our novel geometric prior, which operates on di�erential mesh prop-

erties instead of on blendshape weights, prevents geometric artifacts

while at the same time allowing for more expressive animation.
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4 AUTOMATIC BLENDSHAPE TRANSFER

A correct set of actor-speci�c blendshapes p1, . . . , pK , used in the

�tting term (2), is a crucial component of any retargeting method.

Existing approaches for transferring the character’s blendshapes to

the actor space compensate for proportional mismatches between

character rig and actor to a certain degree. Unfortunately, they often

fail to properly align the respective ranges of motion, in particular

for stylized characters (see Figures 2, 3). Our approach addresses

these shortcomings and is motivated by two main observations:

• Blendshapes typically de�ne the strongest deformation caused

by activating isolated facial muscles.

• Semantically equivalent expressions are highly similar for dif-

ferent characters, because facial muscles are consistent across

humans and remain consistent even for highly stylized characters

for the sake of easy expression recognition. Although semanti-

cally equivalent expressions are similar across identities, they are

not equal and di�er with respect to direction and magnitude.

We improve the blendshape transfer from the facial rig to the actor’s

proportions by aligning their facial expression manifolds. We learn

the actor’s expression manifold from a short, captured training se-

quence, consisting of F animation frames a1, . . . , aF . The actor’s

training sequence should contain semantically equivalent expres-

sions to the blendshapes of the facial rig; it should cover the actor’s

range of motion since blendshapes often correspond to extreme ex-

pressions. However, the training expressions might combine several

blendshapes in arbitrary order. As introduced above, the animation

data af consist of M markers with point correspondences on the

facial rig. The character’s sparse blendshapes s1, . . . , sK de�ne well

the expression manifold of the character rig.

Given the blendshape rig and a set of training expressions, our

method computes personalized actor blendshapes based on con-

cepts from manifold alignment (EMatch, Section 4.3). To this end,

we measure the similarity between the character’s blendshapes and

actor’s captured performance (Section 4.1) and extract the most im-

portant frames from the training data (Section 4.2). To regularize the

alignment process, the actor-speci�c blendshapes should not deviate

too much from an initial guess derived by RBF deformation (EMesh,

Section 4.4), and relations between individual blendshapes should

be preserved (ECEG, Section 4.5). Figure 5 illustrates schematically

our blendshape transfer in the context of facial retargeting.

Our blendshape transfer process is formulated as the minimiza-

tion of the following energy (with � = 0.01 and � = 0.1 in all shown

examples) and optimizes all personalized delta-blendshapes at the

same time, where the 3MK-dimensional vector�p = (�p1, . . . ,�pK )
T

contains the stacked blendshapes:

EAlign(�p) = EMatch(�p) + �EMesh(�p) + �ECEG(�p) . (4)

4.1 Facial Motion Similarity

The similarity of the ranges of motion is best visualized by con-

sidering the displacements of a single marker (�am
f
= am

f
� am0 )

over the entire training sequence and the delta-blendshapes of the

corresponding vertex on the facial rig (�sm
k
= sm

k
� sm0 ), as shown

in Figure 6. In some cases clear clusters of marker displacements

Fig. 6. Motion space comparison between an actor (right) and a blendshape
model (le�). Center: Overlayed motion space in delta representation for
selected markers of the actor (blue) and corresponding vertices in the blend-
shape model (green). Each line corresponds to a di�erent frame/blendshape.
Face rig courtesy of Jason Osipa. ©Motion capture: Feel Ghood Music

can be identi�ed, indicating that di�erent motions on that partic-

ular area occur mainly independently. For example, on the right

brow (Figure 6, eyebrow) three clearly distinctive motions can be

identi�ed, corresponding to raising and lowering the brow and

frowning. Considering that the captured training sequence consists

of over 2000 frames, the clear separation into these motion clusters

is surprising. This observation fuels our motivation to consider an

expressive training sequence to generate an actor-speci�c parallel

parametrization. Still, a clear solution may not always exist (Fig-

ure 6, lips). Even though there might be a lot of data available, it

is possible that no clear one-to-one correspondence between the

performance and speci�c blendshapes can be established. When a

clear correspondence can be identi�ed, it is best to exactly match

the speci�c expression. However, aligning blendshapes with un-

related expressions will result in a complete loss of the semantic

equivalence between the actor’s performance and the retargeted

animation.

In order to quantify the similarities between a blendshape k and

the actor’s expression at frame f , we compute the Pearson Cor-

relation Coe�cient between af and sk . In our case the mean of

a sampling set is replaced by the more meaningful neutral facial

expression. The computation of the correlation coe�cient ck,f be-

tween an actor’s expression af and a sparse blendshape sk then

simpli�es to the following equation in delta-representation:

ck,f =
�af · �sk

�
�
��af

�
�
� k�sk k

. (5)

Figure 7 shows the resulting similarity measures between selected

blendshapes and a training sequence. This simple dot-product for-

mulation of Equation (5) is e�ective, because:

• Displacements of blendshapes and actor’s expressions in similar

directions have high correlation,

• Locality of blendshapes is considered, because vertices that do

not move in blendshape �sk cancel out the contributions of the

corresponding expression �af .

Contrast Enhancement. The similarity measure can be further

improved by two heuristics: Identifying important blendshapes for

a frame in the training sequence (i) is easier for more unique blend-

shapes and (ii) is easier for blendshapes with strongest displace-

ment. Both properties are considered by computing a trust value for
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Fig. 7. Motion space similarity between selected blendshapes (rows) and
actor’s performance (columns) consisting of 2150 frames. Please notice the
blocking structure, indicating redundancy of information.
©Motion capture: Feel Ghood Music ©Face rig: meryproject.com

each sparse blendshape. We �rst compute the total displacement

dk = k�sk k of blendshape �sk . In a second step the sparse blend-

shapes are re-ordered according to their displacements dk , such

that �s1 is the blendshape with the largest displacement and �sK
the one with the smallest displacement. We then build a between-

blendshape correlation matrix C(k, l) := ck,l (see Figure 11). Finally,

the trust value tk is computed as

tk = 1 �

Õk�1
l=1

c+
k,l

max1kK

⇣
Õk�1
l=1

c+
k,l

⌘ , (6)

where similarity between sparse blendshapes is measured using

the positive Pearson Correlation Coe�cient c+
k,l
= max(0, ck,l ). The

sum
Õk�1
l=1

c+
k,l

adds all c+
k,l

within rowk of the strictly lower triangle

matrix, and the dominator is the maximum of all row sums. The

sparse blendshape with the largest displacement has no entries in

the strictly lower triangle matrix, such that t1 = 1. All remaining

sparse blendshapes will only have tk ⇡ 1 if they are uncorrelated to

sparse blendshapes with larger displacements. Hence, a blendshape

modeling a subtle lip motionwill likely get a very low trust value due

to high correlations with other, more expressive mouth blendshapes,

while a brow-raising blendshape will have a high trust value as it is

mostly uncorrelated to other blendshapes.

In practice, most computed similarity values, except the blend-

shape with maximum displacement, will never reach a trust value of

one, because even semantically equal expressions di�er for di�erent

faces. We therefore propose to amplify high correlation values and

reduce low correlation values using the following transformation:

b
⇣

ck,f

⌘

=

e
rc+

k, f

er/2 + e
rc+

k, f

. (7)

Fig. 8. Cumulative correlation function (not displacements) for identifying

peak expressions within a training sequence. 82 expressions have been

identified from the similarities shown in Figure 7.

The steepness r of the function is set to 15 in all our examples. Finally,

we linearly interpolate between the original and the modi�ed corre-

lation values, depending on the trust value. The computed similarity

c̃k,f replaces then the original correlation from Equation (5):

c̃k,f = (1 � tk ) c
+

k,f
+ tk b

⇣

c+
k,f

⌘

. (8)

4.2 Key Expression Extraction

Blendshapes represent peak expressions that we want to match to

the actor’s most similar expressions. After computing the similarities

c̃k,l between blendshapes and the training sequence, we remove

the temporal redundancy between consecutive frames following

Coleman et al. [2008]. The correlations of each blendshape over

the whole training sequence (corresponding to a row in Figure 7)

are �rst low-pass �ltered to remove some super�uous noise. The

employed Gaussian kernel is kept small (three frames wide) to avoid

over-smoothing fast and peak motions. Finally, all �ltered rows

are added together by summing over columns. In this cumulative

representation of the data, we extract all local peaks in order to

obtain a set of most similar facial expressions. Figure 8 shows the

resulting cumulative function and the extracted peaks.

4.3 Manifold Alignment

Given a similarity measure c̃k,f between a sparse blendshape and an

actors’s expression, our goal is to �t the personalized blendshapes

�pk to the actor’s expressions �af . This means that a closed-eye

blendshape should be �tted to an actor’s expression with closed

eye(s) in the training sequence, without being in�uenced by the

negatively correlated eye-opening movements. Inspired by mani-

fold alignment techniques we �rst consider the problem as the

minimization of the following energy:

EMatch(�p) =
1

F

F’

f =1

K’

k=1

c̃k,f

�
�
��pk � �af

�
�
�

2
. (9)

However, this energy formulation would break the local support

of blendshapes. Figure 9 shows an example of closing the eyes. In

general eyes blink simultaneously, leading to high correlations of
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Fig. 9. Blendshapes local support. From le� to right, a closed-eye frame
and corresponding marker positions (blue), fi�ing results of the eye-closed
blendshape using EMatch without local support (red) and with local support
considered (green), and the original blendshape for reference.
©Motion capture: Feel Ghood Music ©Face rig: meryproject.com

Fig. 10. Local deformations of blendshapes. Red encodes the strongest
displacement within a blendshape. From le� to right : le� eye closed, kiss,
open smile, right smile, and jaw drop. ©Face rig: meryproject.com

both eye-closing blendshapes (left and right). Without special con-

sideration of the local support of each blendshape the alignment

is distributed between both blendshapes. Including a mask of the

blendshape displacements e�ectively disambiguates the displace-

ment distribution (Figure 10). Similar to Seol et al. [2016] we encode

local support with a soft mask vector uk for blendshape k . The

mask entries corresponding to the x/y/z coordinates of markerm

of blendshape k are computed as
�
�
��sm

k

�
�
� /max1mM

�
�
��sm

k

�
�
�, with

max1mM

�
�
��sm

k

�
�
� denoting the largest marker displacement within

the blendshape �sk . Our �nal matching function is then

EMatch(�p) =
1

F

F’

f =1

K’

k=1

c̃k,f

�
�
��pk � diag(uk ) · �af

�
�
�

2
. (10)

4.4 Geometric Constraint

Deformation transfer and similar automatic approaches in general

do not create accurate parallel parametrizations. However, such

methods preserve the original semantics and local properties of the

transferred expression quite well. A transferred smile will remain

a recognizable smile, although it might be too dampened or too

exaggerated. Preserving the local features of an expression, e.g., the

o-shape of the lips for the kiss expression, is the intention of the

geometric constraint.

Based on the sparse correspondences between the neutral ex-

pressions s0 (of the character rig) and a0 (of the actor), we create

an initial guess gk for each personalized blendshape pk using RBF-

deformations [Orvalho et al. 2008; Seol et al. 2012]. To this end we

�rst compute an RBF thin-plate spline that transforms the neutral

expression s0 to a0, by placing an RBF center at every marker sm0 and

solving for the RBF weights. The resulting RBF function is then used

to convert all delta-blendshapes �sk to the initial guesses �gk of the

actor blendshapes. We also tried deformation transfer [Sumner and

Popović 2004] for this process and can con�rm the similarity of the

Fig. 11. Computed Pearson Correlation Coe�icient between an exemplary

blendshape set of the Mery character. Signed correlations are used in Sec-

tion 4.5 to preserve both similarities and dissimilarities between blendshapes.

Only positive correlations between animation frames and blendshapes are

required for Section 4.3. ©Face rig: meryproject.com

results [Seol et al. 2012]. We preferred the RBF deformation method

due to higher stability in case of degenerate meshes.

The goal of the geometric prior is to preserve the local shape

properties of the initial guesses gk while computing the personalized

blendshapes pk . Local shape properties can be encoded well using

per-vertex Laplacians [Botsch and Sorkine 2008], but this requires a

triangle mesh, and so far the sparse blendshapes have been de�ned

as sets ofM marker points only. We therefore triangulate the marker

points (in the u�-domain given by the parameterization), and add

edges connecting upper/lower eyelids and lip markers to bene�t

from contact relationships [Saito 2013].

We formulate our geometric constraint as an energy that penal-

izes the change of the Laplacians between the unknown vertices

of the personalized blendshape �pk and the initial guesses �gk .

This formulation is equivalent to a physically-inspired energy that

minimizes bending [Bickel et al. 2007; Saito 2013]:

EMesh(�p) =
1

M

K’

k=1

M’

m=1

�
�
�∆

⇣

�pm
k

� �gm
k

⌘�
�
�

2
. (11)

As a discretization of the Laplace operator we employ the standard

cotangent weights [Pinkall and Polthier 1993].

4.5 Cross-Expression Constraint

The last energy term is responsible for maintaining the relationship

between di�erent blendshapes. If, for example, the mouth-open

expression is corrected, this correction should also partly apply to

the o-viseme. Inspired by application and relationship of graph and

mesh Laplacians [Belkin and Niyogi 2005], we construct a Cross-

Expression Graph that connects all blendshapes with each other. In

this graph each sparse blendshape becomes a node with edges to

all other sparse blendshapes and edge weights are encoded using

ACM Transactions on Graphics, Vol. 36, No. 4, Article 154. Publication date: July 2017.



154:8 • R. Blanco i Ribera et al.

bl
en
ds
ha
pe
s

ke
y
ex
pr
es
sio
ns

se
qu
en
ce
1
(2
15
0
fra
m
es
)

ke
y
ex
pr
es
sio
ns

se
qu
en
ce
2
(7
40
fra
m
es
)

tim
e
(s)

Loki 46 73 46 18.71

Osipa 33 71 43 5.37

Mery 54 82 49 23.25

Billy 39 76 48 7.57

Table 1. Details about the sequences, extracted key expressions, and the
blendshape rigs, together with timings for automatic blendshape transfer.
Both sequences were captured with 99 optical markers.
©Face rigs: Mark Pauly, Jason Osipa, meryproject.com, Jana Bergevin

the signed similarity measure from Equation (5). We use signed

correlations as edge weights (Figure 11) in order to preserve both

similarities and dissimilarities between blendshapes. The weighted

signed graph Laplacian [Kolluri et al. 2004; Kunegis et al. 2010] of

one node is then de�ned as the weighted sum over its neighborhood:

∆(�sk ) =
1

Õ

l,k

�
�ck,l

�
�

’

l,k

ck,l (�sl � �sk ) . (12)

The graph Laplacian ∆(�pk ) for the personalized blendshapes is

de�ned equivalently. Similar to Equation (11), the resulting energy

term penalizes dissimilarity of correlated blendshape displacements:

ECEG(�p) =
1

M

K’

k=1

k∆ (�pk � �sk )k
2
. (13)

4.6 Numerical Optimization

Optimizing for the personalized blendshapes �pk requires mini-

mizing EAlign from Equation (9) consisting of the three quadratic

energies EMatch, EMesh, and ECEG. The energies are all separable

in the x/y/z coordinates of �pk , but are coupled between all blend-

shapes through ECEG. This leads to three linear systems of size

(MK ⇥ MK), which is more e�cient to solve than one big linear

system of size (3MK ⇥ 3MK). The entire framework was imple-

mented within Maya [Autodesk 2016] using the Maya Python API,

and all tests were performed on a computer with an Intel I7 3.4 GHz

processor and 8GB of memory. The linear systems were solved with

the SciPy sparse solver [Jones et al. 2001]. Details and timings are

listed in Table 1.

5 GEOMETRIC PRIOR

After computing the personalized blendshapes �pk , the blendshape

weights wf can be estimated for each frame �af of the actor’s per-

formance. Despite accurate personalized blendshapes, the �exibility

provided by the facial rig might not be su�cient to faithfully repro-

duce the actor’s expressions, leading to artifacts in the retargeted

face v(wf ). We observe that one essential property of a valid expres-

sion is a surface free of fold-overs, i.e., without strong local bending.

Thus, instead of formulating an arbitrary criterion for the values

of the blendshape weights (see Section 3), we derive a physically-

inspired prior similar to Equation (11) that penalizes surface bending

and thereby eliminates fold-overs [Bickel et al. 2007; Saito 2013].

We formulate the prior energy in terms of blendshapes and their

weights, instead of in terms of vertex positions, so that our prior can

be incorporated into any blendshape-based retargeting framework.

For faces, it seems natural to select the neutral pose v0 as the orig-

inal, undeformed state. Thus our geometric prior penalizes bending

between an expression v and the neutral face v0:

EPrior(v) =
1

N

N’

n=1

�
�∆

�

vn � vn0
��
�
2
. (14)

Based on Equation (1) the deformed face v = v(w) can be written in

terms of the blendshape weights w. Analogously, the displacement

v � v0 can be written as �Vw. Plugging this into the above prior

energy and writing the Laplacian as a (3N ⇥ 3N ) matrix L, again

using the cotangent weights [Pinkall and Polthier 1993], leads to

the formulation of the prior energy in terms of w:

EPrior(w) =
1

N
kL�Vwk2 . (15)

The combination of the �tting energy (2), the geometric prior

energy (15), and a sparsity regularization ESparse(w) = 1
K kwk1,

leads to our objective function for facial retargeting:

ERetarget(w) = EFit(w)
|  {z  }

ActorSpace

+ µ EPrior(w)
|       {z       }

RigSpace

+� ESparse(w)
|         {z         }

WeightSpace

. (16)

Unlike previous approaches, our energies operate in the spaces

where modi�cations of the input data are minimal. First, EFit is

computed in the actor space, such that the incoming animation is

not modi�ed. In contrast, EPrior is computed in the rig space based

on the original blendshapes. Finally, in accordance with common

practices in manual key-framing [Seol et al. 2011], weight activation

sparsity is directly enforced on the blendshape parameter space,

which simpli�es any subsequent manual editing of the animation.

Under the assumption that the actor’s markers are saved in cm and

the face rig has been uniformly scaled to roughly match the actor’s

head, we recommend to set µ = 0.3 and � = 0.6.

The retargeting was implemented as a Maya command plugin

using the Maya C++ API. We pre-compute the matrix product L�V

as it remains constant over time. Due to the L1 sparsity term, the

retargeting solves an Iteratively Re-Weighted Least Squares problem

of size (K ⇥K) using the Eigen library [Guennebaud et al. 2016]. On

average we achieve 105 fps, which con�rms that the proposed prior

is very suitable for real-time applications.

6 EVALUATION

In order to evaluate our blendshape transfer algorithm and our

geometric prior, we �rst compare each part to common alternative

formulations in a realistic but simple scenario. Doing so has the

advantage that contributions can be evaluated individually and

limitations of each method become clearly visible. The results of

this evaluation are also shown in the accompanying video.
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Fig. 12. Retargeting using personalized blendshapes created by our algorithm (Our), RBF proportion matching (RBF ), and example-based facial rigging (EBFR).
In all cases facial semantics are restored faithfully, and in particular for stylized characters our algorithm outperforms the other approaches.
©Motion capture: Feel Ghood Music ©Face rigs: Mark Pauly, meryproject.com, Jana Bergevin
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Fig. 13. Retargeting using space-time facial cloning with our personalized
blendshapes (Our+SFC) and with the RBF proportion matching (RBF+SFC).
Please notice the improved expressivity and fewer artifacts for our method.
©Motion capture: Feel Ghood Music ©Face rigs: Jason Osipa, Jana Bergevin

6.1 Automatic Blendshape Transfer

As described previously, RBF-deformation and deformation transfer

are the most common techniques for personalizing blendshapes.

We compare our algorithm to the RBF-proportion matching [Seol

et al. 2012] and example-based facial rigging [Li et al. 2010]. For

the example-based facial rigging we select 15 distinctive facial ex-

pressions from our captured sequence as training examples. Distinc-

tiveness is guaranteed by clustering all expressions of the training

animation using k-means. The expressions closest to the cluster

centers are then chosen as examples. We initialize the correspond-

ing blendshape weights as the result of our retargeting algorithm

for these speci�c frames. Since this method alternatingly optimizes

for blendshape geometries and blendshape weights, it requires only

approximated blendshapes weights at the beginning. No peak ex-

pressions are required as examples.

We retarget the input animation to both, realistic and stylized

characters. For this comparison, we only use ESparse for regular-

ization and exclude any other prior. As shown in Figure 12, our

blendshape transfer outperforms existing approaches, in particular

if facial proportions di�er signi�cantly. In all cases plausible results

are obtained, and in nearly all cases expression intensity is restored

faithfully. In contrast, the quality of the RBF-proportion matching

[Seol et al. 2012] and example-based facial rigging [Li et al. 2010]

Fig. 14. Comparison of our geometric prior (top), the model-specific PCA
prior (middle) and the L2 regularization (bo�om). From le� to right, starting
with a retargeting without regularization, we successively increase prior
activation until a solution without self-intersections is obtained. ©Face rig:
Jason Osipa

degrades with a higher degree of stylization. Figure 13 demonstrates

that other retargeting algorithms, like space-time facial cloning

[Seol et al. 2012], also bene�t from our more accurate personalized

blendshapes.

6.2 Geometric Prior

Next we compare the e�ectiveness of the proposed geometric prior

to di�erent well-established facial priors. To illustrate the e�ect of

the di�erent priors on the retargeting results, we in this section gen-

erate personalized blendshapes using the RBF proportion matching

[Seol et al. 2012], since this method yielded the most artifacts in the

evaluation of Section 6.1. The actual retargeting is then computed as

described in Section 5, where we replace the prior energy EPrior of

Equation (16) by several options. Note that we employ the sparsity

energy ESparse for all examples.

As a simple prior we incorporate an L2 weight regularization

EPrior(w) = kwk2. The combination of L2 regularization and L1
regularization (ESparse), also known as Elastic Net [Zou and Hastie

2005], enforces small weights but is less restrictive than non-negativity

constraints. This is bene�cial since there exist valid facial expres-

sions with negative weights. In addition, we compare our geometric

prior to the model-speci�c PCA prior [Seol et al. 2012]. The PCA

is constructed from the given blendshapes only, in order to have

equal input conditions. For the comparison, we identify the frames

with strongest artifacts and step-wise increase µ until the geometric

artifacts are removed. Figure 14 shows the e�ect of each prior for

one representative example. Our prior converges the fastest to an

artifact-free expression, because it minimizes bending at the vertex

level, without being limited to the given examples as in the PCA case.

In addition, Figure 15 compares our real-time capable retargeting

with the o�ine method of Seol et al. [2012].
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Fig. 15. Retargeting using our personalized blendshapes in combination
with the geometry prior (Our) and space-time facial cloning (SFC) for o�line
retargeting. Semantics are restored faithfully and the high expressivity of
the original actor is maintained. Especially for stylized characters our real-
time algorithm outperforms even o�line state of the art approaches.
©Motion capture: Feel Ghood Music ©Face rig: meryproject.com

6.3 Discussion and Limitations

In rare cases we observed inaccuracies during retargeting for our

algorithm, RBF-proportion matching, and example based facial rig-

ging. While di�erent methods might work better for speci�c frames,

our method performs better when considering the overall sequence.

A particular strength of our method is that it also works for highly

stylized characters, as long as the blendshapes approximately re�ect

natural facial movements.

Like any data-driven approach, the performance of our method

depends on the availability of good training data, which in our case

is an expressive facial sequence. However, because we do not enforce

to capture isolated FACS expressions, we consider this requirement

as minor: In an o�ine scenario the entire animation sequence can

be used for training, while for real-time applications it takes only a

few seconds to create such a sequence. Our results were computed

using the full animation sequence as the training sequence for a fair

comparison with the o�ine retargeting of Seol et al. [2011]. In the

absence of expressive data for certain expressions, mesh constraints

(Section 4.4) ensure plausible blendshapes that are similar to the

well-established expression transfer methods, while blendshape

constraints (Section 4.5) balance the changes occurrying to similar

blendshapes.

We observed that mouth expressions are highly similar (e.g., o-

viseme, kiss, mouth-open), making it very di�cult to identify equiv-

alent blendshapes across di�erent identities in the training sequence

(Figure 16). In such cases, EMatch tends to under-estimate the trans-

fered blendshapes. Although this is addressed by enhancing the

contrast of the similarities to obtain a better �t to the actor’s expres-

sions (Equations (7), (8)), the adjusted blendshapes might be more

subtle than the actor’s expressions, resulting in slightly exaggerated

expressions (Figure 16, bottom) at the retargeting step. However,

the user can always return to the default RBF-based deformation

transfer using only EMesh and ECEG (Figure 17).

Reference Our RBF EBFR

Fig. 16. Semantic changes for subtle expressions appear for all approaches.
Our method allows the user to seamlessly blend between our and RBF
blendshape transfer by increasing the weights of EMesh and ECEG.
©Motion capture: Feel Ghood Music ©Face rigs: meryproject.com, Mark Pauly.

Fig. 17. Sparse blendshape comparison of the initial guess (RBF transfer)
and our blendshape transfer method. Sparse blendshapes of the character
rig (right) are adjusted to match the actor’s proportions (le�).
©Motion capture: Feel Ghood Music ©Face rigs: meryproject.com

While our approach shows convincing results on the tested blend-

shape rigs and animations, our alignment might not reproduce the

desired result if blendshapes model a very cartoony behavior (e.g.,

popping eyes) or vary in the amount of facial features (e.g., di�erent

number of eyes). Cross-mapping approaches to facial animation

retargeting are better suited for this type of animation.

Our method does not address the transfer of �ne-scale details.

In practice, it is not often desired, as �ne-scale details are already

encoded in the facial rig and should remain consistent when the

animation is transferred from di�erent actors.

By replacing the automatically computed correlations with man-

ually selected weights for speci�c examples, our method can easily

be extended to a semi-supervised method. Because our similarity

measure is limited to the range [0, 1], which is equivalent to the rec-

ommended weight space for blendshapes, such an extension would

be straightforward.

7 CONCLUSION

Retargeting with properly corrected blendshapes is crucial if the

intensity of facial expressions should be retained. We exploit the

inherent similarities between facial expressions of di�erent propor-

tions to generate, through a combination of statistical and geometric

methods, a parallel parametrization that �ts the range of motion of

the actor and preserves the semantic relationships and geometric
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properties of the character’s blendshapes. Furthermore, we intro-

duced a new prior that takes advantage of the di�erential mesh

properties.
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