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Abstract—A dynamic industrial design optimization requires
high-quality optimization algorithms as well as adaptive rep-
resentations to find the global solution for a given problem.
For adapting the representation to changing environments or
to new input we utilize the concept of evolvability, which in
our interpretation consists of three criteria: variability, regularity,
and improvement potential, where regularity and improvement
potential characterize conflicting goals between exploration and
exploitation. Our goal is the efficient adaptation of the represen-
tation according to a given preference weight between regularity
and improvement potential. We propose a combination of two
heuristics, Lloyd sampling and orthogonal least squares sampling,
to initialize the adaptation process for a given preference weight.
We show that this initialization improves the convergence speed of
the adaptation process as well as the resulting fitness. We then re-
alize a stepwise design optimization procedure by alternating the
adaptation of the representation with optimization of the design.
During the design optimization process we extract information
which we exploit in the next adaptation phase. We show that
an intermediate preference weight, balancing between regularity
and improvement potential, allows to exploit this information and
is robust to erroneous initial information. Thereby, we increase
the performance of the whole design optimization process.

I. INTRODUCTION

Modern industrial design development requires optimiza-
tion processes that can cope with multi-disciplinary product
specifications in dynamic environments. Biologically-inspired
population-based evolutionary optimization algorithms are de-
signed to handle these demands [1]. We focus on deformation-
based design optimization: In an evolutionary optimization
an input shape is deformed to improve with respect to some
fitness function, e.g., aerodynamic drag in automotive design
optimization. Hence, the deformation method/setup constitutes
the representation in our scenario, i.e., the mapping from defor-
mation parameters (genotype) to shape variations (phenotype).

It is well known that the initial deformation setup has a
strong impact on the performance of the optimization process.
The quality of such deformation representations, i.e., their
potential performance, can be estimated through the concept
of evolvability [1, 2], which can be quantified by the three
sub-criteria variability, regularity, and improvement poten-
tial [3]. With regularity and improvement potential roughly
corresponding to exploration and exploitation capabilities, re-
spectively, these two quality criteria are conflicting.

The concept of evolvability can not only be used for
analyzing existing setups, but also for their initial generation.
In this case, we (evolutionary) optimize the deformation setup
itself. Since our shape deformation framework is based on
radial basis functions (RBFs), setup optimization means to
determine where on the shape to place RBF kernels. The
inherent conflict between regularity and improvement potential
can be resolved by performing a multi-objective optimization
with respect to these two objectives and letting the designer
choose a compromise setup on the Pareto front [4].

Ultimately, for a high-performing design optimization pro-
cess, the deformation representation has to be able to adapt
to dynamic environments, such as, e.g., varying boundary
conditions of a CFD simulation in automotive design. In this
article, we perform the next step toward the goal of a truly
dynamic evolutionary design optimization: In a static design
optimization (non-varying fitness function or design target) we
alternate between setup generation/adaptation (where to place
RBF kernels?) and design optimization (which RBF coefficients
to use for shape deformation?), as illustrated in Figure 1.

As a first contribution, we improve the automatic setup gen-
eration of [4]. Instead of computing the Pareto front through
a multi-objective optimization and then selecting a setup on
the Pareto front as a preference-based compromise between
exploration and exploitation, we employ a preference-weighted
single-objective optimization to derive the deformation setup.
The involved optimization is initialized by an efficient combi-
nation of two kernel distribution strategies, namely orthogonal
least squares (OLS) [5, 6] and Lloyd sampling [7], which is
shown to improve the setup generation in terms of both quality
and computational performance.

Tuning a deformation setup toward improvement potential
(exploitation) requires a rough estimate of the fitness function’s
gradient. While in later adaptation stages this information
can be extracted from previous design optimization phases
(see Figure 1), the gradient estimate for setting up the initial
representation typically comes from expert knowledge. Both
gradient information might be out-dated or inaccurate. Hence,
the deformation setup must be able to exploit accurate infor-
mation while at the same time be robust against inaccurate
information. As a second contribution we analyze different
preference weights for setup adaptation and show that an
intermediate preference meets these two requirements.
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Fig. 1. Example of a stepwise design optimization process where the representation (RBF kernel distribution, red dots) is adapted in its domain (plane) according
to information on the target (color coded estimation of the fitness gradient).

After discussing related work in Section II we give tech-
nical details to RBF deformations in Section III and their
evaluation with evolvability in Section IV. Then, we discuss
heuristics to initialize an adaptation process in Section V,
which we embed in a stepwise design optimization in Sec-
tion VI. We evaluate our concepts and show the results for
heuristic initialization of the adaptation process and the results
of the entire design optimization procedure in Section VII.

II. RELATED WORK

The first task in a design optimization process with adaptive
deformation representations is the generation of the initial
deformation setup. Manual setup generation based on the
designer’s expertise [8] is employed for design optimization
in general as well as for static setups for glider optimiza-
tion [9], but those approaches are not suitable for adapting the
deformation setup during an optimization process. Originally,
deformation representations are employed in scattered data ap-
proximation, e.g., for approximating a target shape. In [6, 10–
12] analytic data, e.g., gradient information of the given target
or information from an additional test optimization, is utilized
to initialize the deformation. These approaches are specialized
to set up deformations purely focused on the approximation of
one fixed target, and thus they neglect the exploration potential.

The representation setup for an evolutionary design opti-
mization process using adaptive B-splines is targeted in [13,
14]. The optimization alternates between the approximation
of a shape and the adaptation of the representation. To test
whether a representation is beneficial for the optimization
task, this task is performed for a few iterations. Like this the
performance of a representation is measured by the objective
function of the actual optimization task, but consequently more
optimization runs are required. In [15] the representation is
optimized implicitly by adding its parameters to the approx-
imation problem. This increases the number of optimization
parameters and thus leads to a slow optimization process
for computationally expensive fitness evaluations. Moreover,
the criterion for a high-quality representation again solely
depends on the optimization target, omitting further aspects
like exploration potential.

We alternate between the adaptation of the deformation
representation and the optimization of the design, similar
to [13, 14, 16]. For adapting the deformation setup we employ
the concept of evolvability, which quantifies the potential
to converge to the desired target (exploitation) as well as
the potential to explore the design space. To evaluate the
exploitation potential we require information about the targeted

design (i.e. the fitness function). In contrast to [13, 14, 16],
we extract such information during the design optimization
process without an additional data mining process. Because
exploration and exploitation are competing targets we analyze
different preferences to weight them, like in [17], where three
different preferences (0, 0.5, and 1) are analyzed for competing
targets in topology optimization. In the next section we give
the technical details of our deformation representation.

III. RBF REPRESENTATIONS

In a shape optimization scenario, for instance in automotive
product design, the design model to be optimized is typically
represented by a surface polygon mesh, where the n mesh
vertices x1, . . . , xn ∈ R3 represent points on the surface, which
are connected by polygonal faces (usually triangles or quads).
The vertex positions xi could in theory be used as optimization
parameters in an evolutionary optimization. However, for non-
trivial models the complexity of the model easily exceeds one
million vertices, thus making the direct optimization of vertex
positions intractable.

Even for highly complex shapes the actual deformations
applied during optimization are typically rather simple, low-
frequency functions, which can therefore be controlled by
a small number of parameters. Both free-form deformation
(FFD) [8, 18, 19] and radial basis functions (RBFs) [8, 9] have
been successfully employed in design optimization. In this
paper we utilize RBF deformations, since their kernel-based
setup is more flexible than lattice-based FFD representations.

The deformation function u(x), which maps deformation
parameters to shape variations, is added to each vertex xi of the
initial design X = (xT

1, . . . , xT
n)

T, resulting in a shape variant
X′ = (x′T1 , . . . , x′Tn )

T (Figure 2). The deformation function u(x)
has the form:

u(x) =

m∑
j=1

wj ϕ(‖cj − x‖) =:

m∑
j=1

wj ϕj(x) . (1)

Here, ϕj(x) = ϕ(‖cj − x‖) denotes the j-th scalar-valued
radial basis function, which is centered at cj ∈ R3 and
weighted by the coefficient wj ∈ R3.

As the kernel function ϕ : R → R we employ globally-
supported triharmonic thin-plate splines, ϕtri, as well as
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Fig. 2. The RBF deformation u transforms the initial mesh X to X′ by
translating each vertex xi of X by the displacement u(xi). The distribution of
the RBF kernels (red dots) is crucial for a high-performing fitting process of
the mesh X to the target T.

compactly-supported Wendland functions, ϕW , with support
radii s varying from rather local to more global [20]:

ϕtri(r) =

{
r2 log(r) for 2D domains,
r3 for 3D domains.

ϕW (r) =

{(
1− r

s

)4 ( 4r
s + 1

)
for r < s,

0 otherwise.

Because the RBF deformation is linear in the weights we
can express the deformation of a mesh X to X′ in matrix
notation

X′ = X + UP , (2)

using an (n × m) deformation matrix U, which is defined
by the basis functions ϕj , and a (m × 3) parameter matrix
P, consisting of the weights wj as deformation parameters
(see [3] for details). The deformation matrix U, which we
call the deformation setup, depends on the employed ker-
nel and the center distribution. These two aspects define
the realizable deformations and thereby the performance of
a design optimization process. Evaluating and constructing
different deformation setups (different kernels and different
center distributions) with the concept of evolvability allows
us to initialize a high performing design optimization.

IV. EVOLVABILITY FOR LINEAR DEFORMATION SETUPS

The biological concept of evolvability is a very promising
approach to measure the expected performance of evolutionary
processes [21]. We understand evolvability as a combination of
three major attributes: variability, regularity, and improvement
potential [2]. In [3] we proposed a mathematical formulation
for the three attributes for linear deformation representations
U. Below we give a short summary of our model.

Variability V (U) measures the potential of a deformation
setup to explore the design space and is defined it as

V (U) =
rank (U)

n
, (3)

where n is the number of vertices of a design and rank (U)
denotes the rank of the matrix U [22]. In our scenario we
assume a fixed number of centers, i.e., constant variability.

Regularity R(U) is defined as

R(U) = κ−1(U) , (4)

where κ is the condition number of a matrix [22]. The
regularity of a deformation setup characterizes the expected
convergence speed of an evolutionary optimization [3]. In [4]
we showed that highly regular setups are uniformly distributed
over the whole domain. Thus, regularity indirectly character-
izes the exploration potential.

Improvement potential P (U) measures a representation’s
potential to improve the fitness of a design, and therefore
corresponds to exploitation. From a local point of view the
most beneficial design variation is the (estimated) gradient g
of the fitness function. Thus, we measure the improvement
potential P (U) as the approximation error with respect to this
gradient, which leads to:

P (U) = 1−
∥∥(I− UU+)g

∥∥2
2
, (5)

with U+ being the pseudo-inverse of U [22]. Because for
complex design optimization applications the calculation of the
fitness gradient is infeasible, we utilize designer knowledge or
data from previous optimization runs to derive an estimation.

To setup deformations in the adaptation phase of a de-
sign optimization process we have to specify a preference
between the conflicting targets regularity (exploration) and
improvement potential (exploitation). Like in [4] we define
an objective function balancing regularity and improvement
potential according to a preference weight λ ∈ [0, 1] as:

fλ(U) = λR(U) + (1− λ)P (U) . (6)

We use this objective function as the fitness for an evolutionary
optimization to setup deformations in the adaptation phase of
a design optimization process.

V. ADAPTATION PHASE

In the adaptation phase of a design optimization pro-
cess we optimize the deformation setup for a compromise
between regularity (exploration) and improvement potential
(exploitation) with an evolutionary method, aiming for Pareto
optimal solutions. In [4] we showed that a weighted single-
objective optimization (the covariance matrix adaptation evo-
lution strategy, CMA-ES [23]) with equation (6) is capable of
finding solutions close to the Pareto front much faster than
a multi-objective optimization (the non-dominated sorting ge-
netic algorithm II, NSGAII) with regularity and improvement
potential (equations (4) and (5)) as objectives. Hence, we
employ CMA-ES to adapt deformation setups.

Although evolutionary optimization processes have the
possibility to find global optima, these optima may not be
reached for real-world problems because the fitness landscape
is very rugged or the dimension of the domain is too high [24].
The initialization of an evolutionary process has significant
influence on its convergence speed and on the quality of its
results. Thus, we aim at a good initialization to improve these
two aspects. For a fixed kernel type and a fixed number of
centers the optimization target for RBF deformation setups is
the center distribution. In [4] we showed that heuristic center
distributions for a preference solely on regularity or solely
on improvement potential can be generated efficiently using
Lloyd sampling and orthogonal least squares sampling (OLS),
respectively. The resulting distributions are almost as good as
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Fig. 3. OLS sampling results in adapted center distribution (center left) according to an estimated gradient (color coding left) whereas a Lloyd sampling results
in a uniform distribution (right). The combination of OLS and Lloyd results in a compromise distribution (center right). We utilize these two methods for the
initialization of an adaptation process of the center distribution.

optimized ones. Thus, these two methods are promising for
the initialization of an evolutionary optimization of the center
distribution. In the following, we combine Lloyd sampling and
OLS sampling to construct center distributions according to a
given preference weight, and use the resulting distributions as
initialization for a single-objective optimization.

The Lloyd algorithm [7] (also known as k-means clus-
tering [25]) distributes centers uniformly within a domain
(Figure 3 right). The algorithm is initialized with a distribution
and first clusters the domain: Each point of the domain is
assigned to its closest center. Then, each center is moved
to the barycenter of all domain points associated to it. This
alternating procedure is iterated until convergence.

The OLS algorithm [5, 6] solves least squares problems in
a greedy manner. In [3, 4] we motivated improvement potential
(equation (5)) through the least squares approximation problem
g = Up for parameters p = (p1, . . . , pm). The OLS algorithm
determines the influence of each parameter (or degree of
freedom) on the approximation error to g and iteratively selects
the parameter that reduces the least squares error the most.
Like this it selects the most important parameters in a greedy
manner. In our case each parameter pj corresponds to an RBF
center cj , such that OLS selects the RBF kernels best suited for
approximating the estimated gradient g (see [4] for details). We
initialize OLS with a large set of candidate centers (30× 30)
on a uniform grid and then select the best 25 ones, resulting
in a gradient-adapted center distribution (Figure 3).

We now combine both methods according to a given
preference λ ∈ [0, 1], with weight λ for regularity and (1−λ)
for improvement potential. Given m centers to be distributed
we place (1 − λ) · m centers in a gradient-adapted manner
(using OLS) and λ · m centers in a regular manner (using
Lloyd sampling). For example, we distribute 25 centers with
OLS for λ = 0 (Figure 3, center left), or we place 25 centers
with the Lloyd sampling for λ = 1 (Figure 3, right), or we
distribute 13 centers with OLS and 12 centers with Lloyd for
λ = 0.3 (Figure 3, center right). In our implementation we
first distribute (1 − λ) · m centers with OLS sampling and
then distribute the remaining λ · m centers with the Lloyd
algorithm. We initialize the Lloyd algorithm with the chosen
OLS centers and fill up the remaining λ ·m centers by farthest
point sampling [26]: We add centers one by one such that they
are as far away as possible from all other centers. Finally, we
run the Lloyd algorithm as described above, but this time keep
the OLS centers fixed. Note that the Lloyd algorithm moves
centers slightly off a curved domain, e.g., a sphere; we simply
project these centers back to the domain in the end.

This general approach allows the efficient construction
of center distributions for many different preferences and
domains. Utilizing these center distributions as initialization
for an evolutionary optimization process to adapt the centers
increases its convergence speed and improves the quality of the
resulting adapted center distribution (see Section VII-A). We
incorporate this adaptive procedure in the design optimization
process, which we discuss in the next section.

VI. STEPWISE DESIGN OPTIMIZATION

A complex design optimization process involves a de-
formation representation that can react and adapt to new
information. To adapt the center distribution we utilize the
concept described in the previous section in an alternating
process, where we switch between the adaptation phase of
the setup and the optimization phase of the design (Figure 1).
To adapt centers with respect to improvement potential we
need estimated gradient information. As a coarse estimation
any direction in which the design can be improved is possible.
We extract such a direction during the optimization process of
the design for the following adaptation phase.

During a non-converged design optimization process we
expect that a previously successful variation, i.e., the difference
between the design before (X) and after (X′) some optimization
steps, will be successful in the next steps, too. Thus, we
evaluate the results of a design optimization after a fixed
number of iterations k and use the difference between the
vertex positions xi ∈ X of the initial design and the result
after k iterations x′i ∈ X′ to compute a new estimation of
the gradient (following the approach in [27]). Without loss
of generality we assume a one dimensional deformation of
the n points. Thereby, one coordinate xi of each vertex xi
is deformed and we define the estimation of the gradient
g = (g1, . . . , gn) as:

ĝi = (x′i − xi)3, g =
ĝ
‖ĝ‖2

Note that for deformations of higher dimension the gradient
becomes a Jacobian matrix. In this case we apply the above
formula for each dimension/coordinate and use the Frobe-
nius norm for normalization. We compute cubic differences
for three reasons: First, they preserve the sign of the dis-
placements. Second, linear differences as displacements can
be exactly reproduced with the previous center distribution.
Hence, a focus purely on improvement potential with these
displacements as the estimated gradient would choose the
previous centers for the next phase, which would keep the



centers fixed. The cubic leads to gradient estimations that
cannot be exactly approximated by the old center distribution,
thus leading to a varied distribution. Third, during a design
optimization process the fitness gain of well-shaped design
regions may dominate a small loss of fitness resulting from
poorly shaped regions. The resulting deformations in poor
regions are smaller than in well-shaped regions, but they still
would be incorporated into the new gradient. Thus the cubic
power scales down the small displacements of bad regions and
emphasizes larger displacements of well-shaped regions.

The computation of the gradient based on the last k
iterations allows us to intentionally forget information. If the
old information still was good then the new gradient will be
similar to the old one, such that there will not be a negative
effect. But old information may dominate new one, e.g., the
changes in the design are rather large in the beginning of an
optimization process compared to later stages. This effect is
avoided when analyzing just the last k iterations. In our tests
we set k to 30 (for 1D function approximation) and 50 (for
3D template fitting) to reduce random effects in the beginning
of a design optimization process.

In the next section we discuss the results of our concept to
perform the adaptation phase and then we analyze the whole
design optimization process.

VII. EVALUATION

In this section we evaluate the proposed adaptive stepwise
optimization on two test scenarios: In the first one we fit
a plane to a target height field by minimizing the squared
difference between both functions (see Figure 6 and [3] for
the details). This simple scenario allows us to analytically
compute gradient information and hence to perfectly control
the error in the “estimated” gradients. Afterward we extend this
experiment to the fitting of a sphere to a target head model,
both represented as triangle meshes.

We first analyze the adaptation of deformation setups, i.e.,
the RBF center distribution, utilizing the combined Lloyd and
OLS sampling proposed in Section V. Second, we analyze
the stepwise optimization by alternating setup adaptation and
shape optimization.

A. Adaptation Phase

We perform setup adaptation (i.e., kernel distribution) by
minimizing equation (6) for RBF deformation matrices, and
analyze this optimization for three different preference weights
(λ = 0.0, 0.5, and 1). The optimization is performed with
CMA-ES [23] from the shark 3.1 library [28]. In [4] we already
showed the feasibility of such a single-objective optimization
for constructing Pareto-optimal deformation setups. We opti-
mize 25 RBF centers cj , each having 2D coordinates in the
plane, leading to a 50-dimensional optimization problem. With
the default settings of the shark library this results in a CMA-
ES with 7 parents and 15 offspring per iteration. We terminate
the optimization if a new result is only up to 0.1% better
than the average of the previous 50 iterations. This strategy
gives a certain robustness against an early termination of the
randomized search.

We evaluate five tests for both a random initialization and
the heuristic OLS/Lloyd initialization, and for three kernel
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Fig. 4. A setup optimization with our heuristic initialization (solid lines) con-
verges faster and yields better values than the optimization with a randomized
initialization (dashed lines).
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Fig. 5. Comparison of heuristic (red stars) and random (black triangles) initialization for the single-objective optimization of the kernel distribution, and the
solutions computed through multi-objective optimization from [4]. The single-objective optimization out-performs the two-objective optimization in most tests,
and heuristic initialization leads to improved setups on average.
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Fig. 6. Stepwise design optimization initialized with accurate gradient information in the beginning. A compromise preference between improvement potential
and regularity is chosen for setup adaptation, leading to good fitting quality and convergence speed.

types: a compact Wendland kernel with support radii 0.25 and
0.5, and a global triharmonic kernel [20]. The improvement
potential for the initial center distribution was derived from
the exact analytic gradient.

In Figure 4 we show convergence plots of the fitness of the
deformation setup U, either being solely improvement potential
f0(U) = P (U), a compromise between improvement potential
and regularity f0.5(U) = 0.5 · P (U) + 0.5 · R(U), or solely
regularity f1(U) = R(U). The fitness values are averaged over
five trials. For each kernel the heuristic initialization (solid
lines in Figure 4) out-performs random initializations (dashed
lines in Figure 4). The CMA-ES with heuristic initialization
converges to better values, converges faster to same values,
or even converges faster and reaches better values than with
random initializations.

Comparing the generated setups to the solutions computed
with NSGAII (Figure 5, blue dots) reveals that a weighted
single-objective optimization with heuristic initialization (red
stars) shows a very high performance compared to the two-
objective optimization, except for the values of improvement
potential for the triharmonic kernel, which are slightly worse
(Figure 5 right). Moreover, heuristic initialization leads to bet-
ter setups than to random initialization for the Wendland ker-
nels and results in setups of similar quality for the triharmonic
kernel. These results and the largely superior performance of
the single-objective optimization confirm the benefit of our
proposed OLS/Lloyd initialization for setup adaptation.

B. Stepwise Design Optimization: 1D Function Approximation

In this section we analyze the stepwise design optimization
for the height field approximation scenario, where we again
evaluate three different preference weights (λ = 0, 0.5, and
1) for the adaptation phase. The design optimization process
alternates between setup adaptation (Section V) and optimiza-
tion of the fit (Section VI). For the former we distribute 25
RBF kernels with two coordinates with a (7,15)-CMA-ES, for
the latter we optimize the 25 RBF parameters with a (6,13)-
CMA-ES. The number of parents and offspring results from
the default settings of the shark library. We perform the fitting
for k = 30 iterations and alternate with the setup adaptation
five times, which we denote as one test (see Figure 6). Each test
took approximately 40 minutes on an Intel Xeon, 8×3.60GHz,
with 8 GB of memory.

To reduce the random effects of the setup adaptation and
the fitting optimization we perform five tests for each of the
three kernel functions (Wendland kernel with support radius
0.25 and 0.5, and a global triharmonic kernel) and each of
the three preference weights (λ = 0, 0.5, 1). First, we analyze
the optimization process with exact gradient information for
the initial setup generation (Figure 6). But in a real-world
optimization scenario such accurate information typically is
not available. To simulate such a scenario we intentionally
feed the initial setup generation with an erroneous gradient
estimation. In Figure 7 we sketch such an estimation compared
to the accurate gradient direction.

In the case of accurate gradient information we expect that
a preference λ = 0, i.e., a focus on exploitation, results in the



Target Accurate gradient Erroneous gradient

Fig. 7. Sketch of an accurate gradient direction derived from the target and
an erroneous gradient which completely ignores the peak in the target.
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Fig. 8. Convergence plot for the adaptive optimization procedure for
1D function approximation initialized with accurate gradient information.
Choosing an intermediate preference (purple line) to set up the deformation
result in good fitting quality for Wendland kernels (top, center) and out-
performs a pure focus on exploitation for triharmonic kernels (bottom).

TABLE I. THE REGULARITY FOR THE SETUPS DURING A DESIGN
OPTIMIZATION PROCESS. THE VERY LOW VALUES (RED) OF A SETUP

PURELY OPTIMIZED FOR IMPROVEMENT POTENTIAL WITH A
TRIHARMONIC KERNEL CHARACTERIZE A SLOW CONVERGING

OPTIMIZATION PROCESS.

Preference Iteration
0 30 60 90 120

Wendland kernel,
s = 0.25

λ = 0 0.486 0.244 0.151 0.054 0.152
λ = 0.5 0.862 0.787 0.735 0.690 0.767
λ = 1 0.974 0.977 0.978 0.979 0.977

Wendland kernel,
s = 0.5

λ = 0 0.268 0.105 0.098 0.075 0.089
λ = 0.5 0.618 0.757 0.640 0.625 0.687
λ = 1 0.824 0.848 0.813 0.813 0.809

Triharmonic kernel
λ = 0 0.052 0.041 0.031 0.028 0.029
λ = 0.5 0.578 0.580 0.374 0.536 0.444
λ = 1 0.596 0.596 0.596 0.597 0.596

best fitting values, because the resulting center distribution is
adapted to best fit the features (plateau and peak) of the target.
A distribution tuned for regularity (λ = 1) might explore the
design space more, but has centers in already optimal regions.
An intermediate preference (λ = 0.5) combines both, the
potential to exploit information and to explore.

For the Wendland kernel with small support, the interme-
diate preference results in fitting values almost as good as
for λ = 0 (Figure 8, top). For the larger Wendland kernel,
the intermediate preference is on par with a preference on
improvement potential (Figure 8, center), and for triharmonic
kernels it even out-performs this preference (Figure 8, bottom).
As shown in Table I, a preference of 0.5 results in setups with
good regularity values, significantly better than a preference
of 0 and on a similar level with a preference of 1. Because
regularity characterizes the convergence speed, a triharmonic
kernel in combination with a preference of 1 converges slowly.
An intermediate preference guarantees both: a good fitting
quality (exploitation) and good regularity with the potential
to explore a design.

In complex design optimization scenarios we have to base
the estimation of the gradient information either on designer’s
input according to an expected target or on data from previous
tests. For example, in Figure 9 we set the estimated gradient
according to a variation of the plateau that a designer manually
specified, intentionally ignoring the peak in the middle. In such
scenarios the optimization process should be able to explore
further design regions. But a focus purely on improvement
potential/exploitation would relentlessly construct center distri-
butions according to this misleading estimation of the gradient.

For example, in Figure 9 (top) the centers are only placed
near the plateau during the whole design optimization process.
Choosing a compromise between improvement potential and
regularity results in center distributions that are more spread
on the domain and thereby can explore the design space better.
Thus, the estimation of the gradient extracted during the next
design optimization phase is more accurate for the following
adaptation phase. As a consequence, the center distribution has
a higher quality and results in improved designs, as can be seen
in Figure 9, bottom.

In Figure 10 we plot the average fitting values of the five
tests for the three kernels and three preferences. A compromise
preference (the purple solid line) out-performs a focus on
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Fig. 9. Design optimization with an erroneous estimation of the initial gradient given by a designer (left). Top: Adapting purely to improvement potential
“exploits” the misleading erroneous gradient information, resulting in fits of low quality. Bottom: A compromise between improvement potential and regularity
manages to repair the initially misleading gradients.
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Fig. 10. Convergence plot for the adaptive optimization procedure for 1D function approximation initialized with an estimated gradient given by a designer.
An adaptive process (solid lines) performs better than a non-adaptive process (dashed lines). Choosing an intermediate preference (solid purple line) handles the
coarse estimation of the gradient and out-performs a pure preference focus on improvement potential (solid red line) or regularity (solid blue line).

either regularity or improvement potential for the Wendland
kernels and is as good as a focus on regularity for the
triharmonic kernel. This shows that a compromise between
exploration and exploitation can repair initially misleading
gradient estimations.

Moreover, we compare the stepwise optimization process,
which alternates setup adaptation with shape optimization,
to a non-adaptive optimization procedure. For the latter we
construct the deformation setup just once in the beginning,
according to the estimated gradient, and omit the following
adaptation phases. As expected, the stepwise optimization per-
forms better than the non-adaptive one (see Figure 10, dashed
lines), which demonstrates its benefit for design optimization.

C. Stepwise Design Optimization: 3D Template Fitting

Because the 1D fitting of height fields is a rather simple
test scenario we increase complexity in a 3D template fitting
procedure (as we did in [3, 4]). The goal in this design
optimization scenario is to fit a template (sphere) to a scanned
face (Figure 2). Each vertex of the design has three degrees of

freedom and exact gradient information is not available (see [3]
for details). In contrast to the 1D function approximation
scenario we distribute the kernels on the initial unit sphere
or its deformed state. Furthermore, we increase the number
of kernels from 25 to 75 to obtain plausible fits resulting in
150 parameters to be optimized in the adaptation phase. In the
design optimization phase we optimize 225 parameters because
each vertex has three degrees of freedom. With the default
settings of the shark library this leads to a (9,19)- and (10,20)-
CMA-ES, respectively. Like in the function approximation sce-
nario we alternate between adaptation and design optimization
five times which took approximately three hours for the whole
stepwise optimization due to the increase in complexity. We
perform the fitting procedure for k = 50 iterations, exemplarily
shown in Figure 11. To reduce random effects we perform
the optimization process three times for three preferences, a
compact Wendland kernel and the global triharmonic kernel.

As in the previous test scenario we want to show that an
intermediate weight (λ = 0.5) between improvement potential
and regularity to adapt the kernel distribution overcomes bad
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Fig. 11. Example results of an adaptive template fitting process where the RBF kernels are adjusted on the deformed mesh with a compromise preference
between regularity and improvement potential, i.e., between exploration and exploitation.

Target Initial sphere Erroneous gradient

Fig. 12. As erroneous gradient information for template fitting we use
displacements just on the bottom of sphere (right) to initialize the adaptation
of the kernel distribution.

initial estimations of the gradient and out-performs an adap-
tation strategy with a preference either set for improvement
potential (λ = 0.0) or regularity (λ = 1). We intentionally
construct erroneous gradient information by utilizing displace-
ments in normal direction just on the bottom of the sphere
(Figure 12). The convergence plots (Figure 13) show the same
trend as in the function approximation scenario, namely that
the stepwise design optimization with an intermediate pref-
erence weight between improvement potential and regularity
repairs a low-quality estimation of the gradient and performs
better than an adaptation strategy that either sets the kernels
to obtain maximal regularity or sets them to obtain maximal
improvement potential. An intermediate preference allows for
a plausible fit of the whole scan and deforms important regions
more accurately (Figure 14), thereby leading to an improved
design.

VIII. SUMMARY AND FUTURE WORK

The adaptation strategy of a representation is crucial for
the performance of an evolutionary optimization process. The
concept of evolvability reveals powerful quality criteria for
setups, especially regularity and improvement potential, to be
utilized in an adaptation process. Regularity and improvement
potential are conflicting targets, which therefore have to be
carefully weighted.

First, we analyzed heuristics to initialize the adaptation
(optimization) process of a deformation representation. We
successfully combined the Lloyd sampling for regular setups
and the OLS sampling for setups with high improvement
potential in order to construct initial deformation setups ac-
cording to a given preference weight. With this initialization
we increase the computational performance and the resulting
quality of an evolutionary adaptation procedure.
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Fig. 13. Convergence plot for the adaptive optimization procedure of the 3D
template fitting. Choosing an intermediate preference (purple line) to setup
the deformation out-performs a preference of 0 or 1.

Result with
preference λ = 0.5

Result with
preference λ = 1

Fig. 14. Using an intermediate preference (left) between regularity and
improvement potential to adapt setups is robust to erroneous initial gradient
information and utilizes extracted information of the design optimization
phase to improve the fit in an important region. In contrast, adaptation
purely focusing regularity results in a plausible fit but neglects the extracted
information (right).



Second, we integrated this procedure into a stepwise design
optimization process. We showed in two test scenarios, fitting
of 1D height fields and fitting of 3D face scans, that an interme-
diate preference weight between regularity and improvement
potential to adapt the deformation setup performs better than
setting the preference to either construct highly regular setups
or setups with optimal improvement potential. For our test
cases, a compromise includes both: the potential to exploit
information (via improvement potential) and the potential to
explore the design (obtained indirectly from regularity).

In this article we performed all tests in a static environment
and used a fixed preference for the whole stepwise design
optimization process. Our next goal is to realize a flexible
adjustment of the preference during a dynamic design opti-
mization process, first in our test scenarios and finally in an
automotive design optimization.
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