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ABSTRACT
Many approaches for motion processing or motion analysis employ
Dynamic Time Warping (DTW) for temporally aligning an input
movement with a reference movement. DTW, however, does not
work online since it requires the complete input trajectory. Its online
extensionOpen-EndDTWcan lead to poor alignments. In this paper
we propose Weight-Optimized Open-End DTW, which combines
path-length weighting and joint weights optimized from training
data. We demonstrate our method to work online and to outperform
Open-End DTW in terms of alignment quality.
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1 INTRODUCTION
Online algorithms for motion analysis and synthesis become highly
important, as applications, such as virtual coaching environments,
gain more and more popularity. However, numerous state-of-the-
art algorithms for movement analysis and synthesis were originally
developed to work offline. Many of them require a temporal align-
ment of an input motion with a reference trajectory as preliminary
step [Giese and Poggio 2000; Krüger et al. 2017; Min and Chai
2012]. This alignment is frequently achieved via Dynamic Time
Warping (DTW). Even though DTW can be prone to outliers and
noise [Vlachos et al. 2002], DTW and its extensions provide com-
pelling results in various applications. Unfortunately, DTW needs
a whole trajectory to be completed before it can start calculating
the optimal alignment. Thus algorithms that rely on DTW can only
provide results as soon as the input motion has been completed.
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If the alignment could be estimated earlier, ideally directly after
an input frame is observed, such algorithms could already provide
results online during the performance.

An extension of DTW, Open-End DTW (OE-DTW) has been
shown to work for the alignment of trajectories in online scenar-
ios [Tormene et al. 2009], but unfortunately it can perform much
worse than its offline counterpart. This is crucial: If the alignment
fails, e.g., the algorithm decides that the final frame of an incom-
plete input motion still matches an early frame of the reference
motion (cf. Figure 1), the whole alignment can become useless. In
this case, all further steps that build on the aligned trajectories,
such as motion classification, might fail.

In this work, we extend OE-DTW by path-length weighting to-
gether with joint weights based on evolutionary optimization to
improve the alignment. We call the resulting algorithm Weight-
Optimized Open-End DTW (WOOE-DTW). Despite the fact that
there is a large number of related work on DTW and Open-End
DTW, we are the first who combine path-length weighting with
evolutionary optimized joint weights in favor of an improved align-
ment performance of Open-End DTW. Joint weights already appear
in the literature, however, these are often engineered based on prior
knowledge of the movement of interest or are based on heuris-
tics. We propose a data-driven optimization-based approach that
can, additionally to the improved online DTW performance, even
uncover insights on the movement of interest via the estimated
joint weights. We demonstrate that for our test scenario, which
contains recordings of 95 body-weight squats by 49 subjects, our al-
gorithmWOOE-DTW clearly enhances the alignment performance
compared to OE-DTW.

2 RELATEDWORK
One way to improve the performance of OE-DTW is to weight
individual features in the error function. This weighting can reduce
noise induced by unimportant features: If, for instance, two squat
movements have to be aligned, any impact of, e.g., the rotation of
the wrist should be minimized, since the rotation of the wrist has
nothing to do with the performance of the squat. If this joint influ-
ences the alignment, it can only induce noise. Jeong et al. propose
an approach to prevent DTW from aligning frames that belong to
different phases of a repetitive movement. They introduce a penalty
based on the temporal location of a frame. For the alignment of
motor performances we mainly focus on the online analysis of the
most recent single motor action. Thus we might not suffer from
repetitive movement, for which penalties as described in [Jeong
et al. 2011] would be wise to use. Other approaches introduce joint
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Figure 1: Bad and good alignment of a squat performance
(left and right) with a reference movement (middle). Note
that the bad alignment estimates an early frame of the refer-
ence as the end frame. Nearly the whole input movement is
mapped on one single reference frame. Using this alignment
to warp the input into the timing of the reference would
result in an incomplete movement. If the good correspon-
dence would be used, the result would be a similar move-
ment than the reference squat in time, but with the spatial
properties of the input trajectory.

weights based on inter- as well as intra-class variability of the ges-
ture of interest [Reyes et al. 2011]. In their evaluation, the weighted
DTW improved the classification quality for gesture recognition.
Arici et al. [2014] and Celebi et al. [2013] follow a similar approach.
Weights for each joint are calculated for each gesture class of in-
terest. The basic idea is to capture the contribution of each joint
to the specific gesture. This contribution is quantified via the total
displacement of the joint during the performance of a trained user.
Furthermore, an additional meta parameter inside the weighting
term is calculated based on maximization of a discriminant ratio

with respect to different gesture classes. The authors’ extensions of
DTW increase the performance of gesture classification for their
test cases. This approach is extended in [Choi et al. 2015]: The
authors introduce additional dynamic weights which are able to
change over time. To summarize, related approaches to feature
weighting mainly focus on the overall movement or the variance
of a feature. This prevents to account for important joints whose
movement is rather small. Additionally, unimportant joints that
move mostly non-functional could be higher ranked than the im-
portant ones. Instead of variance-based weights, we propose an
approach that uses a suitable optimization of DTW weights. To this
end, we introduce an error measure for DTW alignments and use
it to optimize weights.

Another problem of DTW is its bias against temporal shifts in the
warping function [Anguera and Ferrarons 2013; Dixon 2005; Sakoe
and Chiba 1978]. This bias is normally unwanted. As a solution,
some related approaches propose specific penalties that reward
temporal shifts [Dixon 2005]. Unfortunately, this has a major draw-
back: Even when a warp without any shift would be correct, the
penalty could induce the algorithm to prefer a different mapping. To
make DTW independent from assumptions on the movements’ tim-
ing, we apply path-length weighting [Anguera and Ferrarons 2013;
Muscariello et al. 2009]. This approach slightly increases the compu-
tational effort, but avoids the bias of DTW. In contrast to Anguera
and Ferrarons [2013], we do not privilege specific directions of the
warping path. Furthermore, we weight each feature on the whole
temporal axis equally, wheres in [Anguera and Ferrarons 2013] later
frames implicitly gain more weight for DTW. In favor of performing
path-length weighting, Muscariello et al. [2009] introduce a specific
weight matrix to store local path length weights as well as a matrix
that stores possible warping path lengths. In our approach, we only
require one additional matrix that stores the paths’ lengths.

3 SCENARIO AND DATASET
We use the body-weight squat as a test movement as it is frequently
used in sports training [Escamilla 2001] and rehabilitation [Bailey
et al. 2011; Escamilla 2001]. The squat involves nearly the whole
body to keep balance and is therefore a highly complex movement.
Moreover, it can be performed in different styles and thus expresses
a high variety of motion.

The input data for most algorithms that deal withmotion data is a
sequence, called trajectory, of featureswhich describe themovement
of the human body. The features can be, for instance, joint angles. A
trajectory of sports movements can be divided into the performance
of single exercises, also called motor actions. Motor actions can be
divided intomovement segments (for the squat: “preparation”, “going
down”, “is down”, “going up” and “wrap-up”). Our data is annotated
with respect to the current movement segment. It consists of 95
annotated squat performances, recorded from 49 subjects.

We use a skeleton-based approach to represent the motion cap-
ture data: Kinematic features of 19 joints are recorded at 120Hz
with a 10 camera Prime 13W OptiTrack system. The skeleton hi-
erarchy originates at the hips. Each single motion capture frame
consists of k = 19 joint rotations, encoded as unit quaternions. The
orientation of the root q1 — the hips — denotes the rotation of the
root with respect to the beginning of the motor action. Each other
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quaternion q2, . . . , qk denotes the rotation of the specific joint with
respect to its parent. By using only rotations and not positions, we
reduce the impact of subjects’ different body proportions.

For all our optimization steps, we use cross-validation (CV) with
5 folds. Our plots contain averaged results. We ensured that no
data from any recorded subject contained in a specific training
set is contained in the corresponding test set. This enables us to
test the generalization to new subjects, which is especially crucial
as performances can vary much between subjects. A leave-one-
subject-out protocol would also lead to reasonable results (similar
to CV, the test error of each sample contributes to the overall test
error), but would increase the training time.

4 ONLINE TEMPORAL ALIGNMENT
Dynamic Time Warping (DTW) establishes a frame-to-frame corre-
spondence between two trajectories. This is achieved via finding
the optimal warping path between both, according to an integrated
per-frame distance measure. The following subsection describes
the standard DTW algorithm [Müller 2007, p. 69].

Let T1 and T2 be motion capture trajectories. |Ta | denotes the
number of frames in the trajectory. To establish the correspondence
between T1 and T2, DTW first calculates the |T1 | × |T2 | per-frame
distance matrixM. Each elementM(i, j) contains the distance be-
tween frame i of T1 and frame j of T2. We define this distance as
the summed distance between all quaternions q1, . . . , qk of these
frames. As quaternion distance, we use the inner product as evalu-
ated in [Huynh 2009] and construct each entry inM as follows:

M(i, j) =
k∑

d=1
(1 − |qi,d · qj,d |). (1)

DTWnowfinds the alignment pathwithminimal costs from start
M(1, 1) to end M(|T1 |, |T2 |) through the matrix based on dynamic
programming. First, one calculates the (|T1 | + 1) × (|T2 | + 1) matrix
D which accumulates the minimal costs on possible paths. D(i, j)
in the accumulated cost matrix corresponds toM(i − 1, j − 1) in the
local cost matrix. D is initialized as follows:

D(i, j) =
{0, if i = 1 and j = 1
∞, otherwise .

The entries of D are iteratively updated as follows:

D(i, j) = M(i − 1, j − 1) +min{D(i − 1, j − 1),D(i − 1, j),D(i, j − 1)}.
(2)

for 2 ≤ i ≤ |T1 | + 1, 2 ≤ j ≤ |T2 | + 1. The alignment path is traced
back via minimizing the accumulated error in each step, starting
from D(|T1 | + 1, |T2 | + 1) [Müller 2007, p. 73]. To warp trajectory
T1 to the timing of T2, we select the corresponding frame in T1
according to the calculated alignment for each frame in T2.

As DTW needs two complete trajectories to calculate an align-
ment it cannot work online. This can be bypassed by using Open-
End DTW (OE-DTW) [Tormene et al. 2009]. OE-DTW allows to
align a prefixT1 of a query trajectory with a complete reference tra-
jectory T2. It yields a warp as well as an estimation of which frame
in the reference matches the last frame ofT1. Thus, the backtracing
step in OE-DTW does not start from D(|T1 | + 1, |T2 | + 1), but from

Figure 2: Comparison of the alignment quality of standard
DTW and OE-DTW averaged over all folds. Standard DTW
only provides results as soon as the whole input trajectory
is known, OE-DTW can already provide alignments earlier.

D(|T1 | + 1,Ω), with

Ω = argmin
j

D(|T1 | + 1, j), where 2 ≤ j ≤ |T2 | + 1.

Ω − 1 is the frame in the reference trajectory that matches the last
frame of the incomplete trajectory T1. To calculate OE-DTW for a
new incoming motion frame, we only have to update the last row
of the cost matrixM as well as the last row of the accumulated cost
matrixD. For implementation reasons, we start with the calculation
as soon as the input motion consists of at least three frames.

We compare the alignment quality of OE-DTW to the quality
of the offline alignment. To estimate the alignment error, we make
use of the annotated movement segments (“preparation”, “going
down”, “is down”, “going up” and “wrap-up”): WhenT1 is warped to
the timing of the reference T2, we count the number of frame pairs
in the warping path that belong to the same movement segment.
We consequently define the alignment quality as the percentage
of correctly aligned frame pairs. Figure 2 contains the results of
the comparison between standard offline DTW and OE-DTW. We
observe that the alignment quality of OE-DTW is inferior to the
one by standard offline DTW. In some cases, the alignment even
becomes completely degenerated: Starting from one specific frame
of the input trajectory, all further frames are warped to the same
frame of the reference trajectory. Such an alignment is visualized in
Figure 3(a). In the following, we describe and evaluate our proposed
extensions to improve the alignment performance.

4.1 Path-length Weighting
The formulation of the accumulated cost matrix is biased towards
shorter paths [Anguera and Ferrarons 2013; Dixon 2005; Sakoe and
Chiba 1978]: The shorter the path, the smaller the accumulated error.
This bias would make sense, if shorter paths would represent — in
general — better alignments than longer ones. However, this is not
the case: Let us consider the alignment of two performances of the
same motor action that are similar in the spatial domain, but differ
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(a) Failure of OE-DTW alignment: After a certain early input frame, all
remaining input frames are matched to the same reference frame.

(b) WOOE-DTW significantly improves the alignment quality for the
same two trajectories.

Figure 3: Comparison of exemplary alignments based onOE-DTWandWOOE-DTW.The image displays the local costmatrixM
together with the alignment path estimated by the two DTW variants. Both cost matrices are normalized to the same interval.
The axis’ labels indicate the frame numbers of the corresponding trajectories.

in timing. One of these trajectories is performed with a specific
speed. Now, the more similar the speed of the other trajectory is,
the shorter is the alignment path for the standard DTW: It would
stay mainly on the diagonal of D. However, if the performance is
paused, e.g., because the performing subject has to think about how
to continue, an optimal alignment path must leave the diagonal to
account for the change in timing. If we allow the algorithm to prefer
shorter paths, which means preferring less deviation in timing, it
would tend to stay on the diagonal. To make DTW independent
from assumptions on the movements’ timing, we apply path-length
weighting via adapting Equation (2) as follows:

D(i, j) = M(i − 1, j − 1) + D
(
argmin

(k,l )

(
D(k, l) +M(i − 1, j − 1)

L(k, l) + 1

))
,

where (k, l) ∈ {(i − 1, j − 1), (i − 1, j), (i, j − 1)}.
(3)

Matrix L contains the path-lengths of each optimal path. It is
updated together with D(i, j) based on the just calculated values for
k and l . After calculatingD and L, we determine the optimal path via
backtracing fromD(|T1 |+1,Ω). In each step, we divide all examined
cells of the accumulated cost matrix D by their corresponding path-
lengths from L and select the one with the smallest result.

Figure 4 displays the alignment quality of OE-DTW with path-
length weighting compared to standard OE-DTW. Additionally, we
calculate the alignment when extending OE-DTW with a diagonal
penalty [Dixon 2005]. We observe a positive impact of path-length
weighting on the alignment. When removing the weights or when
using a penalty factor for diagonal steps the accuracy decreases.

4.2 Evolutionary-weighted DTW
DTWuses an equal weighting for all joints in Equation (1). However,
for a given motor action, certain joints are more important for
the alignment than others: A motor action such as the squat, for
instance, mainly depends on the motion of the legs and the upper
arms. For DTW, non-functional motion in other joints, such as the
wrists, has the same impact on the alignment as these important
joints. Thus, if the motion in the legs is only minimal, but the

Figure 4: Impact of path-length weighting on the average
alignment quality of OE-DTW.

wrists move a lot, they would dominate the alignment, although an
optimal alignment would prefer a simultaneous motion in the legs.
Intuitively, one would thus increase the weight of the important
joints. Thus, we incorporate the joints’ importance for warping
using a weight vectorw with an entrywd for each joint, where d ∈

{1, . . . ,k}. Consequently the DTW cost matrix M from Equation
(1) is adapted as follows:

M(i, j) =
k∑

d=1
wd (1 − |qi,d · qj,d |). (4)

In a naive approach, we would now weight the joints we consider
important (e.g., the legs for the squat) more than the unimportant
ones (e.g., the wrists). Depending on the type of motor action,
this could require a huge effort in manually adjusting the weights.
Instead, we propose a data-driven approach to find the appropriate
weights. Related approaches for a better joint weighting [Arici et al.
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2014; Celebi et al. 2013] often quantify the joints’ importance via
their overall contribution to the motor action. The contribution is
quantified e.g., by calculating the variance of the joints’ features
in training recordings of the motor action of interest. However,
these joint weights are prone to a high amount of noise in some
of the involved joints. We aim at a goal-directed approach which
optimizes the joint weights w by a minimization of the alignment
error. In order to optimize w, we quantify the alignment error as

#IA
#CA + #IA

, (5)

where #CA is the number of frames on the warping path that are
aligned to the correct movement segment, #IA is the number of
incorrectly aligned frames, according to the annotations.

For each CV fold, we have to optimize the weights. As we can-
not directly compute derivatives of the DTW process, we use a
gradient-free method: Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) [Hansen and Ostermeier 1997]. An advantage
of evolutionary algorithms, besides not requiring a gradient, is their
low susceptibility to ending-up in local optima. We decide to use
CMA-ES, as the calculation of our error term is expensive and CMA-
ES only needs a comparatively low number of error evaluations
during the optimization. A further advantage of CMA-ES is the
small number of parameters: We only have to set initial weights w
(wd = 1 for all d), an initial step size (0.02), as well as the desired
population size (parent population: 6, offspring population: 12). We
use 300 iterations for optimization.

CMA-ES needs a fitness function to rate the quality of each
individual. To this end, we perform our weighted OE-DTW for each
training trajectory and a reference trajectory, based on the weights
to be evaluated. Then, we calculate the alignment error based on
Equation (5) for all training trajectories and sum-up the results. For
more details on how CMA-ES works, we refer to [Hansen 2016]. We
use the CMA-ES implementation from the Shark library in version
3.1.0, which is a reference implementation of [Hansen 2016].

We extend OE-DTW with optimized joint weights and path-
lengthweighting.We call the resulting algorithmWeight-Optimized
Open-End DTW (WOOE-DTW). As baseline to analyze the influ-
ence of optimized joint weights on the alignment, we use OE-DTW
with path-length weighting. Additionally, we compare our results
to another type of feature weighting related to approaches such
as [Arici et al. 2014; Celebi et al. 2013; Reyes et al. 2011]:We quantify
the influence of each joint on the motor action using its averaged
variance over the whole movement: For each training trajectory,
we calculate the variance of roll, pitch, and yaw of each joint over
time. This variance is normalized by the maximum variance of all
these features of the given trajectory. We then calculate the average
of each feature over all training trajectories. For each joint, the cor-
responding weight is the maximum value for roll, pitch and yaw of
the joint. For the OE-DTW that uses these variance-based weights,
we also use path-length weighting. See Figure 5 for the results. Our
optimized joint weights clearly achieve the best alignment quality.

For time measurements, we used a machine with Intel Core i7-
7700K 4.2GHz. The time needed to update the DTW matrices for
a new frame only depends on the size of the reference trajectory
and is constant during the whole process. The time to calculate the
optimal path after the matrices are filled depends on the size of the

Figure 5: Averaged impact of evolutionary optimized joint
weights on the alignment quality.

warping path which is always smaller than the sum of the lengths of
the input trajectories. On average, we need approximately 3ms for
the alignment if WOOE-DTW sees 20 % of the motor action used
as input, approximately 5ms if 60 % are available, and less than
7ms when WOOE-DTW knows the whole trajectory. Our results
show that WOOE-DTW allows further algorithms that require an
alignment of the current input, such as classifiers for error patterns
in sports or rehabilitation exercises, to provide results online.

5 DISCUSSION AND CONCLUSION
In this paper, we propose an extension of Open-End DTW to im-
prove the online alignment of a reference movement with an in-
coming motion stream. We demonstrate that the alignment quality
of Open-End DTW can strongly fall behind the alignment of the
offline DTW. To explain this behavior, we carve out two reasons.
One is the preference of DTW for shorter paths. We demonstrate
that simple penalties for diagonal paths in the accumulated weight
matrix, which are suggested in related literature, do not necessarily
improve the alignment quality. To circumvent the bias of DTW,
we propose path-length weighting and show its positive impact
on the alignment quality. The other drawback of OE-DTW is the
equal weighing of all joints: In real-world scenarios, some joints
are more important for certain motor actions than others, which is
not considered by DTW. We exploit our annotated training data to
optimize weights for each joint using evolutionary optimization.
We show that our extension WOOE-DTW improves the alignment
quality of OE-DTW and beats variance-based joint weights. We
reach a high alignment score that nearly reaches the performance
of offline DTW. This shows that WOOE-DTW can provide good
alignments even for such heterogeneous data as the performance
of fitness exercises. See the supplementary video for a comparison
of the warps obtained by standard OE-DTW and WOOE-DTW.

As WOOE-DTW calculates an online correspondence between
the input prefix and a given reference, online segmentation of the
input motion comes for free. Labels of the reference trajectory can
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directly be transferred to the input. When using the proposed ap-
proach for an online stream of arbitrary motion data, preceding
to starting the WOOE-DTW calculation, the beginning of the mo-
tor action of interest must be detected. This can be, for instance,
achieved via state-machine-based segmentation [de Kok et al. 2015]
or by sliding-window-based classification [Cao et al. 2004].

Some approaches such as [Van Hanh et al. 2009] and [Caramiaux
et al. 2015], which aim at the alignment of motion capture data,
rely on algorithms other than DTW, partly to be less prone to
noise and outliers. However, these two related approaches rely
on parameters that have to be adjusted manually whereas our
implementation does not have such critical parameters that directly
affect alignment performance. Still, it might generally be interesting
to compare the performance of these approaches to WOOE-DTW
on our heterogeneous data set: This data is, as it consists of motion
capture data, noisy and it contains outliers, as the squat can be
performed with different styles.

5.1 Limitations and Future Work
Our extension of DTW requires manual labeling of training data.
Indeed, the labels are as simple as “movement segment starts”. In
our test scenario, we already obtain high accuracies using less than
100 annotated example movements. One limitation of our results
is that we only use the squat for evaluation. Even though it is a
comparatively complex motion and it is used in many related ap-
proaches, further test cases with different kinds of motor actions
and synthetically generated data would be desirable to strengthen
our results. We assume that different motor actions will lead to
similar results: We did not use any squat-specific heuristics or tun-
ing, but instead propose a data-driven optimization. Evaluating our
approach for newmotor actions only requires to annotate the move-
ment segments in new training data and to run the evolutionary
optimization to obtain the weights for the new motor action.

In the future, an integration and evaluation of WOOE-DTW
in combination with other optimizations of DTW is worthwhile,
such as Derivative DTW [Keogh and Pazzani 2001], Sakoe-Chuba
Band [Sakoe and Chiba 1978], and Fast DTW [Salvador and Chan
2007]. Furthermore, the representation of the motion capture data
itself is worth evaluating. In our work, we rely on raw data. Heloir
et al. [2006] propose a PCA-based representation. Although this
requires the crucial part of the movement to be covered by the PCA,
such an approach can be worth using for specific types of motor ac-
tions. Another representation that can be worth evaluating is based
on Self-Organizing Maps [Deng et al. 2011]. Other evaluations of
the proposed WOOE-DTW could consist in using it in the context
of classification of specific error patterns for a given motor action
or in the discrimination of motor actions.
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