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Abstract—Industrial product design is characterized by in-
creasing complexity due to the high number of involved param-
eters, objectives, and boundary conditions, all typically changing
over time. Population-based evolutionary design optimization
targets to solve these kinds of application problems, offering
efficient algorithms striving for high-quality solutions. An im-
portant factor in the optimization setup is the representation,
which defines the encoding of the design and the mapping from
parameter space to design space. Being able to numerically
quantify the quality of different representation settings would
strengthen the optimal choice of encoding. Motivated by the bio-
logical concept of evolvability, we propose three criteria, namely
variability, regularity, and improvement potential, to evaluate linear
deformation representations for their use in shape optimization
problems. The first aspect characterizes the exploration potential
of the design space, the second measures the expected convergence
speed, and the third determines the expected improvement of
the quality of a design. We propose and experimentally analyze
mathematical definitions for each of the three criteria. We demon-
strate the successful application of our model to two evolutionary
optimization scenarios: fitting of 1D height fields and fitting of 3D
face scans, both based on RBF deformations. Due to the general
character of our definition we expect the transferability of our
concepts to alternative deformation methods.

I. INTRODUCTION

The increasing complexity in modern industrial design pro-
cesses requires advanced optimization methods to efficiently
come up with novel and high-quality solutions for successful
business. In automotive product design concurrent develop-
ment processes are applied to deal with different requirements,
e.g., from physical domains such as aerodynamic or structural
performance criteria, from manufacturing process layout, or
from design features specified by current customer demands.
Moreover, since these requirements change over time, an
efficient development process needs to cope with dynamic
environments to allow a high degree of flexibility.

Biologically-inspired population-based evolutionary opti-
mization algorithms are designed to handle these demands [1].
For these algorithms the encoding of the problem, i.e., the
representation of the design component, is one of the core
success factors. A careful design of the representation can
affect the computation time more than parameter tuning.
Thus, deciding on the type of representation and selecting
optimization parameters among the representation is a cru-
cial step which needs to be thoroughly evaluated before the

optimization is initialized. To maximize the positive effect of
the representation a quantification of the expected influence of
different representation settings on the optimization process is
required, which allows us to compare between them and to
select the most promising ones. To quantify the potential of a
representation in this context we analyze evolvability, which is
known to describe such a criterion in biological evolution [2].

Automotive aerodynamic design targets the optimization
of a given vehicle geometry for improved flow characteristics,
e.g., to minimize drag for higher fuel efficiency. For these
application scenarios shape morphing methods have shown
two strong advantages [3]: First, these methods are capable
of representing designs using a small number of parameters
while still offering a high degree of geometric flexibility, and
they can deal with complicated shape features such as holes
or edges. Second, computational grids, which are typically
required to determine the aerodynamic performance using
finite element/volume methods, are modified simultaneously
with the design update step, thereby avoiding costly (manual)
remeshing processes. Among these shape morphing algorithms
are state-of-the-art space deformation algorithms [4], such as
deformations based on radial basis functions (RBF) or free-
form deformation (FFD). In Figure 1 a typical automotive
evolutionary optimization is depicted, which starts with a base
design used to initialize the deformation method. For initial-
ization a surface and an application-dependent computational
mesh are represented by RBF or FFD parameters, which
are determined by a careful manual representation setup. By
repeating the steps of parameter recombination and mutation,
followed by design variation, evaluation, and selection, an
optimal design is generated.

As stated above, the initial representation setup is crucial
for the success of the optimization process, hence we have
to determine its quality. In the present paper we define such
quality criteria for deformation representations based on the
biological concept of evolvability and evaluate it in two design
optimization test scenarios. First, we discuss existing technical
evolvability concepts and related approaches in Section II.
In Section III we discuss RBF deformations as an example of
linear deformation methods, before we propose the evolvability
definitions in Section IV. We analyze this concept first in a
1D function approximation scenario with RBF deformations
(Section V). Afterwards we perform a more complex 3D
template fitting test in Section VI.
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Fig. 1. Overview of an evolutionary design optimization process: After the initial design is encoded into genotype parameters, the mutation and reproduction
steps produce different offspring genotypes, which lead to different design variations (phenotypes) through the genotype–phenotype mapping (the deformation
representation). The new designs are evaluated through the fitness function and the most promising designs are selected. This process is repeated until convergence.

II. RELATED WORK

It is well known from the literature that a guiding principle
for the evolution success is evolvability [2, 5]. However, there
exist a wide variety of definitions for the term evolvability,
which we have gathered, categorized, and extensively dis-
cussed in [6]. For instance in the context of engineering sys-
tems, evolvability is considered as an evolved quality specified
as “the ability of the configuration space (in this case, the
space of genotypes and phenotypes) to produce an endless
supply of viable configurations with remarkably few obvious
dead-end” [1], or “considered in the sense of the capacity of a
system to produce favorable phenotypic variations of a design
within a moderate number of generations while avoiding non-
feasible mutations” [7]. Along this line of thinking and in
agreement with Sterelny [8], we understand evolvability as
a combination of three major attributes, which promise a
mathematically motivated quantification of encoding setups in
the context of geometric representations: variability, regularity,
and improvement potential. In the following we review and
discuss these criteria, following our analysis in [6].

One aspect of a representation is to ensure the exploration
of the design space—to produce a variety of designs on the
one hand and to achieve specialized, optimal ones on the other
hand. Variability characterizes this design space exploration
potential of a representation. The biological concepts mainly
evaluate the ratio between phenotype (design) variation and
genotype (parameter) variation [9, 10]. In [7] this idea is
transferred to a shape matching optimization using free-form
deformation. Their variability definition is based on global
information, which is derived from the analysis of the whole
design space. This was possible in their configuration, since the
design space was bounded by a box around the initial design,
but the concept is not suitable for problems with unbounded
parameter spaces—which we aim at. Local approaches analyze
the genotype neighborhood of a design [11, 12], and con-
sider the distance between the corresponding phenotypes as a
measure for variability, aiming for a widely spread phenotype
neighborhood. Transferring this idea to continuous genotype
spaces would look for representations (genotype–phenotype
mappings) with large gradient magnitudes, which is known
to cause numerical problems. These limitations motivate the
need for an improved variability measure.

Regularity is understood as a fitness-independent quality
criterion and is interpreted in different ways. It can be regarded
as an anti-outlaw condition [8] to prevent infeasible offspring.
In design optimization self-intersections are such infeasibili-
ties, which are reduced in [7], but regularity is not quanti-
fied there. Preventing or reducing infeasible designs (before
costly fitness evaluation) speeds up the optimization process.
Inspired by this property, we directly interpret regularity as
a criterion to measure the optimization/convergence speed.
Typically, optimization algorithms try to identify a trend in
the fitness landscape, a direction in which the fitness improves
the most. This is significantly influenced by the representation.
A local (strong causal) representation maps small changes in
the genotype to small phenotype variations, thereby preserving
the local neighborhood structure. This makes it easier for the
optimization to discover a promising direction in the fitness
landscape, in contrast to non-local (weak causal) representa-
tions. Causality [13] and locality [14] are two concepts that are
related to the convergence speed of evolutionary algorithms,
too. But they are typically associated to the mutation operator
(e.g., [15–18]), and are defined for discrete genotypes and
phenotypes only. We propose a definition of regularity that
generalizes these concepts to continuous design optimization
problems.

In the biological context several approaches identify evolv-
ability itself with adaptation potential or adaptation speed of a
population to an environment, e.g. [19]. But this definition is
rather imprecise, since a population is called adapted as soon
as beneficial traits occur more often. Referring to technical
optimization problems, where the goal is to improve an ini-
tial solution, the third aspect of evolvability is improvement
potential. This criterion is investigated for optimization in
varying [20, 21] as well as in static [22] fitness landscapes.
Estimating the improvement potential of a representation is
difficult due to, first, a lack of knowledge of the technical
application, where information about the fitness landscape may
not be available at the beginning of an optimization. Second,
it can be computationally expensive, especially for industrial
applications, if the local improvement potential is tested during
the optimization by additional data sampling and (surrogate)
modeling steps. These drawbacks motivate the need for novel
formulation of improvement potential in design optimization.



x′i = xi + u(xi)
X′ = X + UP
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Fig. 2. The linear RBF deformation u transforms the initial model X to X′

by translating each vertex xi of X by the displacement u(xi). The red dots
depict the centers cj of the radial basis functions.

III. LINEAR DEFORMATION REPRESENTATIONS

In a shape optimization scenario, for instance in auto-
motive product design, the design model to be optimized
(the phenotype) is typically represented by a surface polygon
mesh, where the n mesh vertices x1, . . . , xn ∈ R3 represent
points on the surface, which are connected by polygonal faces
(usually triangles or quads). The vertex positions xi could in
theory be used as optimization parameters in an evolutionary
optimization. However, for non-trivial models the complexity
of the model easily exceeds 1 million vertices, thus making
the direct optimization of vertex position intractable.

However, even for highly complex shapes the actual shape
deformations applied during optimization are rather simple,
low-frequency functions, which can therefore be controlled by
a small number of parameters. The representation is therefore
a deformation function u(x), which maps deformation param-
eters (genotypes) to shape variations (phenotypes), which are
then evaluated by the fitness function (see Figure 1). Both
free-form deformation (FFD) and radial basis functions (RBFs)
have been successfully employed in design optimization [4].
In this paper we focus on RBF deformations, since their
kernel-based setup is less constrained than lattice-based FFD
representations.

The initial design (x1, . . . , xn) is deformed into a shape
variant (x′1, . . . , x′n) by adding to each xi the displacement
u(xi), which for RBF deformation has the form

u(x) =
m∑
j=1

wj ϕ(‖cj − x‖) =:

m∑
j=1

wj ϕj(x) . (1)

Here, ϕj(x) = ϕ(cj − x) denotes the j-th scalar-valued radial
basis function, which is centered at cj ∈ R3 and weighted by
wj ∈ R3 (see Figure 2).

The choice of the kernel function ϕ : R → R has a
significant influence on the resulting deformation and the
computation complexity [23]. In this paper we employ and
analyze globally-supported triharmonic thin-plate splines, ϕtri,
as well as compactly-supported Wendland functions, ϕW , with
support radii s varying from rather local to more global:

ϕtri(r) =

{
r2 log(r) for 2D domains,
r3 for 3D domains.

ϕW (r) =

{(
1− r

s

)4 ( 4r
s + 1

)
for r < s,

0 otherwise.

The RBF deformation (and thus the deformed shape) is
linear in the RBF weights wj . If we write the initial and
deformed shapes as (n × 3)-matrices X = (xT

1 , . . . , xT
n)

T and
X′ = (x′T1 , . . . , x′Tn )

T, respectively, we can write the shape
deformation in matrix notation

X′ = X + ΦW (2)

using an (n ×m) RBF matrix (Φ)i,j = ϕj(xi) and the RBF
weights W = (wT

1 , . . . ,wT
m)

T ∈ Rm×3.

In the above setting, the deformation u would be con-
trolled by manipulating the RBF weights wj . However, it has
been shown in the context of free-form deformation that so-
called direct manipulation is more intuitive for the human
designer [24] as well as more efficient in an evolutionary
optimization [25], due to the more direct and stronger causal
relation between optimization parameters and the resulting
shape deformation. In the RBF setting, a direct manipulation
is controlled by specifying the displacement dj for each center
position cj , and then solving a linear system for the weights
wj that meet the interpolation constraints:

W = Ψ−1 D , (3)

with D = (dT

1 , . . . ,d
T

m)T and (Ψ)i,j = ϕj(ci). Combining
equations (2) and (3) leads to the matrix representation of
direct RBF deformation:

X′ = X + ΦΨ−1 D . (4)

Note that both indirect manipulation (2) and direct defor-
mation (4) can be written as a linear deformation operator

X′ = X + UP , (5)

using a deformation matrix U (being Φ or ΦΨ−1) and defor-
mation parameters P (being W or D). From a mathematical
point of view the matrix Ψ−1 can also be considered as a
“preconditioner” that might speed up the optimization process.

The linear deformation representation now consists of this
(constant) matrix U, which is initially set-up by selecting the
kernel function ϕ and placing the RBF centers cj . During the
optimization process the algorithm selects different deforma-
tion parameters (genotypes) P(1),P(2), . . . , which are mapped
to shape variations (phenotypes) X(1),X(2), . . . , which are
successively evaluated by the fitness function f(X(k)). Figure 3
depicts the shape optimization process, where an initial plane
model is deformed using direct RBF manipulation in order to
closely fit a given target height field.

Our goal in this paper is to quantitatively rate the quality
or the potential of a linear deformation representation setup, in
order to estimate how well it will perform in an evolutionary
optimization, and then to pick the most promising setup. Note
that besides direct and indirect RBF deformation, all linear
deformation representations can be written in the form of
(5), such as, for instance, direct [24] and indirect free-form
deformation [26] or linear thin shell models [27]. In the
following section, we will therefore formulate evolvability-
inspired quality criteria based solely on properties of the
deformation matrix U to allow for possible generalization.



IV. EVOLVABILITY FOR LINEAR DEFORMATIONS

As described in Section I, we model quality criteria for
linear deformation representations in design optimization by
utilizing the biological concept of evolvability. To this end,
we propose mathematical formulations for the three evolvabil-
ity criteria variability, regularity, and improvement potential.
These criteria are designed to depend on the deformation
matrix U only, and should therefore generalize beyond RBF
deformations. To simplify the notation and derivation, we
first assume that the displacement function u(x) is scalar-
valued, such that the RBF coefficients wj ∈ R, hence
p = (w1, . . . , wm) ∈ Rm, and consequently u = Up ∈ Rn.
Since the deformation matrix U is identical for the 1D and 3D
deformation, this simplification does not change the resulting
formulation of the evolvability criteria.

A. Variability

Variability is meant to quantify the potential for exploring
the phenotype space—independent of the possibly complex
objective function—by varying the genotype parameters p
and mapping them to phenotype variations u = Up. A
representation has maximal variability if it can control the “1D-
displacement” u(xi) for each vertex xi ∈ X independently.
This, however, would require an intractable number m = n of
optimization parameters, and therefore a much smaller number
m� n is typically chosen in practice.

Consequently, not every desired shape variation ū =
(ū1, . . . , ūn) can be represented as Up. The variability cri-
terion will estimate how well a given arbitrary displacement ū
can be approximated as Up, by averaging the approximation
error ‖ū− Up‖ over all possible deformations ū.

For a given deformation ū, the optimal parameters p,
corresponding to the least squares approximation, can be
computed through the normal equations [28]:

min
p
‖Up− ū‖2 ⇔ UTUp = UTū ⇔ p = U+ū

with U+ = (UTU)
−1 UT being the pseudo-inverse of U. The

best-approximating deformation therefore is UU+ū, and its
approximation error is∥∥ū− UU+ū

∥∥ =
∥∥(I− UU+

)
ū
∥∥ . (6)

To analyze how well the design space can be explored by
varying the initial design X, we average the approximation
error (6) over all possible variations ū. Since a scaling of ū
will lead to the same scaling of the approximation UU+ū, we
restrict to unit-length variations ‖ū‖ = 1, i.e., all variations ū
from the n-dimensional unit-sphere Sn:

1

|Sn|

∫
ū∈Sn

∥∥(I− UU+
)

ū
∥∥2

dū

≤ 1

|Sn|

∫
ū∈Sn

∥∥I− UU+
∥∥2

F
‖ū‖2 dū

=
∥∥I− UU+

∥∥2

F
= n− rank (U) ,

where ‖·‖F denotes the Frobenius norm. The last derivation
step exploits the fact that UU+ equals an n-dimensional
diagonal matrix Ik with ones on the first k diagonal elements
and zeroes afterwards, for k being the rank of U.

Hence, the rank of the deformation operator U characterizes
the potential for design space exploration. We therefore define
the variability V based on the rank of U, but normalize it by
phenotype dimension in order to scale the values to [0, 1]:

V (U) :=
rank (U)

n
. (7)

According to this definition, a representation with good vari-
ability should have maximum rank m, i.e., all deforma-
tion/optimization parameters should be truly independent. The
maximum theoretical variability V (U) = 1 is achieved for
m = n, but typically V (U)� 1 due to m� n.

B. Regularity

Regularity should characterize the numerical stability of the
deformation process on the one hand, and the expected speed
of convergence on the other hand. A function is considered
numerically stable if a small (relative) change in the input
leads to a small (relative) change in the output [29]. We want
to characterize the stability of the mapping p 7→ Up, i.e., we
analyze the variation of the displacement u = Up due to a
change in the parameters p. In a numerically stable defor-
mation representation each deformation parameter pj should
have about the same influence on the resulting deformation
Up. More formally, a change in genotype p 7→ p + δ leads to
a corresponding change in phenotype U(p + δ) − Up = Uδ.
For a stable representation the amount of phenotype change
‖Uδ‖ should depend on the amount of genotype change ‖δ‖
only—and not on the direction of δ in genotype space.

In our case of a linear function, the numerical stability is
measured by the condition number of the involved matrix:

κ(U) =
σmax

σmin
,

where σmax and σmin denote the smallest and largest singular
value of the matrix U. In fact, the condition number mea-
sures the ratio of maximum to minimum phenotype variation
for unit-norm genotype changes: ‖Uδmax‖ / ‖Uδmin‖, where
δmax and δmin correspond to the maximum/minimum right
singular vectors of the matrix U [28].

It might be tempting to incorporate the fitness function
f into the regularity criterion, for instance by analyzing the
numerical stability of the mapping p 7→ f(x + Up), but we
cannot assume analytic knowledge of the fitness function. It is
known, however, that basic evolutionary optimizations perform
better if all genotype parameters have a similar influence on
the phenotype variation. A few dominant parameters might
slow down the optimization or otherwise require sophisticated
adaptation techniques.

For evolutionary processes, locality is known to charac-
terize the convergence speed. Mappings with strong locality
preserve the neighborhood of a genotype in the phenotype,
which is beneficial for evolutionary optimization [13, 18]. This
is formulated in Rothlauf’s definition of locality for discrete
genotypes/phenotypes [14]:∑

dgx,y=dgmin

∣∣dpx,y − dpmin

∣∣ ,
where dgx,y defines the distance between the discrete genotypes
x and y, dpx,y the distance between their discrete phenotypes,
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Fig. 3. The 1D function approximation scenario: The initial plane X is deformed via a linear deformation RBF UP. The handle displacements P(1),P(2), . . .
(red dots) of the direct RBF manipulation result in the deformed meshes X(1),X(2), . . . aiming to improve the fitting accuracy to a target height field.

and dgmin and dpmin the minimal values of these distances.
Assuming genotype variations of equal amount (dgx,y = dgmin)
the optimal/minimal locality is achieved if the corresponding
phenotype variations also have the same amount (dpx,y = dpmin).
Using the condition number as a regularity criterion can
therefore also be understood as a generalization of the concept
of locality from discrete genotypes/phenotypes to continuous
optimizations.

Thus, we define regularity based on the condition number,
but use the inverse in order to bound the values to [0, 1], with
0 being the worst value and 1 the optimal value:

R(U) :=
1

κ(U)
=
σmin
σmax

. (8)

C. Improvement Potential

While a high variability allows the optimization to even-
tually find beneficial shape variations, and a high regularity
suggests that it does so rather efficiently, both criteria cannot
guarantee that the optimization performs well for the specific
problem at hand—since both variability and regularity are
agnostic of the fitness function. Assuming some (approximate)
knowledge of the fitness function, the criterion improvement
potential is meant to estimate the potential of the representation
for improving the design w.r.t. the fitness function.

In an optimization process some regions of the phenotype
might already be close to optimal, while other parts still have
to be improved further. A successful representation should
then allow for and promote these particular required shape
variations. Analyzing whether the representation allows the
optimizer to push the design towards beneficial configurations
(larger fitness value) requires knowledge of ascent directions
in genotype space.

The direction that locally improves the fitness function the
most is its gradient with respect to genotype parameters, i.e.,
∇pf(x + Up) := ∂f(x + Up)/∂p. Since the analytic fitness
gradient is not known in most cases, we assume that at least
an approximate gradient direction g is available, for instance
through learning from previous optimization runs or adjoint
optimization approaches.

Given the improvement direction g, we measure how well
the representation can approximate it as Up. We proceed
similar to Section IV-A, assume ‖g‖ = 1, and find the least
squares approximation error to be

∥∥(I− UU+
)

g
∥∥2

. Since g is
normalized, this error is bounded from above by 1. To have the
criterion in the intuitive range [0, 1], with 1 being the optimal
value, we define the improvement potential P (U) (for a given
unit-norm improvement direction g) as

P (U) := 1−
∥∥(I− UU+

)
g
∥∥2

. (9)

The straightforward generalization to vector-valued deforma-
tion functions will be given in Section VI. After having defined
quantitative formulations for the three evolvability criteria
variability, regularity, and improvement potential, we will in
the following evaluate how well these criteria are able to
predict the quality and performance of different representation
setups for 1D function approximation (Section V) and 3D
template matching (Section VI).

V. TEST SCENARIO: 1D FUNCTION APPROXIMATION

Empirically evaluating our evolvability criteria within an
automotive design optimization scenario is impractical, since
(1) the complicated fitness function inevitably requires a com-
putationally expensive and thus slow optimization process, and
(2) no ground truth in the form of an analytically known global
optimum of the fitness function exists.

As a first evaluation scenario we have therefore chosen a
simple least-squares function approximation problem. Starting
from a plane discretized by a regular grid of 150×150 vertices
xi = (xi, yi)

T, we use a RBF function u : R2 → R to
approximate a given scalar height field, see Figure 3. The two
test functions to be approximated are a simple sine wave

s(x, y) = sin(π · (x+ y))2

with (x, y) ∈ [0, 1]2 and a more complex function used by
Giannelli et al. [30]:

s(x, y) =


0.5 cos(4π · q0.5) + 0.5 q < 1

16 ,

2(y − x) 0 < y − x < 0.5 ,

1 0.5y − x ,

with (x, y) ∈ [0, 2] × [0, 1] and q = (x − 1.5)2 + (y − 0.5)2,
see Figure 4. We discretize the target functions using the same
150×150 points xi and define scalar height values si := s(xi).

The fitness function f(p) measures the least squares ap-
proximation error between the target values si and the current
“design” up(xi), and has to be minimized with respect to the
deformation parameters p = (p1, . . . , pm):

f(p) =

n∑
i=1

(up(xi)− si)2
= ‖Up− s‖2 → min ,

Fig. 4. Scalar test functions: Sine wave (left), Giannelli function [30] (right).
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Fig. 5. Variability results for 1D function approximation. The table shows the Spearman’s correlation (and p-values) between variability and the fitting error.
For the widest Wendland kernel W15 and for the triharmonic kernel the correlation is very strong. The box-plot (left) visualizes the trend for the Giannelli test
function, showing that a higher variability results in a better fit. The pictures (right) show two fitting examples for the triharmonic kernel.

with s = (s1, . . . , sn)T. The deformation matrix U is defined
according to either indirect or direct RBF method, as shown
in equations (2) and (4), respectively.

In this particularly simple optimization scenario the global
optimum can directly be computed as in (1), leading to p =
U+s and u = UU+s. We will use this solution as a reference
when evaluating the evolvability criteria, since this allows us
to compare the evolutionary solution to the analytic one.

In order to experimentally evaluate the evolvability criteria
defined in Section IV, we generate a large variation of repre-
sentation setups using different kernel types, different numbers
of kernels, different support radii, and direct or indirect ma-
nipulation. We employ both the global triharmonic kernel and
compact (local) Wendland kernels of varying support radius.
To test the regularity and the improvement potential criterion
we randomly generate 100 different center setups for each
kernel function, each setup consisting of 25 centers. For the
variability analysis we expand the tests to 50, 75, and 100
centers per setup. In the case of the compact Wendland kernels
we set the support radii s (identical for all centers), such that
each point xi of the design mesh is overlapped (and hence can
be varied) by at least l RBF kernels. We chose l to be 2, 5, and
15, such that we can distinguish between more local (l = 2)
and more global (l = 15) setups. We denote the triharmonic
kernel with Tri and the different Wendland kernels with Wl in
the plots and tables. Analyzing these 4 kernels for both direct
and indirect manipulation on 100 random setups leads to 800
deformation representations to be evaluated in total.

We then analyze how well our evolvability criteria pre-
dict the actual quality/performance of the representation by
computing the Spearman correlation (using R [31]). This test
analyzes the monotonic correlation between two quantities
and calculates its significance (p-value). The intervals [0, 0.2[,
[0.2, 0.4[, [0.4, 0.6[, [0.6, 0.8[, and [0.8, 1] are classified as very
weak, weak, moderate, strong, and very strong correlation [32].
We interpret p-values smaller than .01 as significant and round
p-values smaller than 10−4 to 0. Note that our evolvability
criteria should be maximized (with 1 being the optimal value),
while the properties they characterize (e.g., fitting error, num-
bers of iterations) should be minimized. Hence, large negative

correlations are better, but in order to simplify interpreting
the numbers using the above intervals, we negate all reported
correlation coefficients, such that 1 is the optimal value.

A. Results: Variability

Variability characterizes the potential for design space
exploration, and is measured as the (normalized) rank of the
deformation matrix U, see (7). Representations with a high
variability are expected to result in more accurate fits. A closer
look at the deformation matrices of indirect manipulation (Φ)
and direct manipulation (ΦΨ−1), see (2) and (4), reveals that
both matrices have the same rank, which is the dimension of
the range of Φ. For the same setup of RBF centers, direct and
indirect manipulation thus have identical variability.

In all our experiments the deformation matrices generated
from random center setups had full rank m, such that the
variability depends on the numbers of kernels, but not on their
type and placement (as long as kernels do not coincide). We
therefore increase the variability by adding more RBF centers.
Since we characterize the potential for accurate fits, instead of
the actual result of an evolutionary process, we compute the
optimal fitting errors using the analytic solution and thereby
rule out any negative effects of a randomized search.

The table in Figure 5 shows the correlation (and its p-
values in brackets) between fitting accuracy and variability.
The correlation is significant for all basis functions, very strong
for triharmonic kernel and the widest Wendland kernel (W15),
and weak for the local ones. The box-plot, visualizing this
trend for the Giannelli test (Figure 5, left), depicts a widely
spread fitting error for local kernels (W2), which decreases
with increasing support radius (W15). That is because local
basis function with a small support are very sensitive to the
random center distribution whereas global kernels are more
robust. For instance, the chance to randomly place centers in
already optimal regions, such they do not influence the fitting
result, is much higher for local basis functions. Hence, we
can state that global kernels are typically more accurate. The
results for the sine function are very similar, such that we omit
their visualization.
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Fig. 6. Relation between regularity and convergence speed (#iterations until convergence) for the Giannelli test function. Left: direct manipulation, center:
indirect manipulation, right: comparison of direct and indirect manipulation. It can be observed that a higher regularity results in a faster convergence, and that
direct manipulation and local kernels are preferable in terms of convergence speed.
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Fig. 7. Relation between the improvement potential and the fitness value (approximation error) scenario for the Giannelli function (left: λ = .5) and for
template fitting (middle: λ = .5, right: λ = 1). The plots clearly demonstrate the validity of our improvement potential criterion.

B. Results: Regularity

Regularity is meant to estimate the expected convergence
speed, and is computed as the inverse condition number κ(U),
see (8). As evolutionary optimization we use the (1,10)-CMA-
ES (covariance matrix adaptation evolution strategy) of the
shark3.0 library [33], since we want to use this algorithm in
the automotive design optimization later on. We measure con-
vergence speed by counting the number of iterations until the
optimization converges. We consider the algorithm converged
as soon as the optimizer reaches a fitness value that is within
a 5% tolerance of the true analytic solution.

Figure 6 plots the regularity criterion against the number of
iterations until convergence for the different kernel functions
on the example of the Giannelli test function. The results for
the sine test function are very similar, such that we omit the
plot. Table I summarizes the Spearman’s correlations of the
regularity criterion and the required numbers of iterations for
all employed kernel types. Only 3 out of the 16 tests are not
significant and are marked in red.

TABLE I. SPEARMAN’S CORRELATION (AND P-VALUES) BETWEEN
REGULARITY AND CONVERGENCE SPEED FOR THE 1D FUNCTION

APPROXIMATION PROBLEM.

Tri W15 W5 W2 all
Giannelli

direct .63 (0) .71 (0) .51 (0) .60 (0)
.91 (0)

indirect .22 (.027) .39 (0) .44 (0) .53 (0)
Sine
direct .80 (0) .64 (0) .82 (0) .58 (0)

.87 (0)
indirect .2 (.05) .13 (.19) .51 (0) .60 (0)

For direct manipulation we observe a strong correlation be-
tween regularity and convergence speed for all basis functions.
This correlation becomes weaker, but is still moderate, for
the significant indirect manipulation results. When comparing
indirect and direct manipulation, Figure 6 reveals that in all our
experiments direct manipulation setups have a better regularity
and converge faster than the indirect ones, which is in line with
the results of [25].

The relation of our regularity criterion with Rothlauf’s
locality measure [14] motivates the analysis of Wendland
kernels with different support radii. It can be observed in
Figure 6 that more local kernels converge faster than more
global ones, which is also hinted at by their better regularity
values. In Figure 6 (right) all kernels (direct and indirect
manipulation) are plotted together, showing a strong correla-
tion between regularity and convergence speed for a range of
different methods, which is also confirmed by the Spearman’s
coefficients in Table I (column 6).

Overall it can be stated that our regularity criterion is a
good indicator for the convergence speed of a deformation
representation. Our direct-vs-indirect and local-vs-global re-
sults are in agreement with results known from the literature,
stating that w.r.t. convergence speed direct manipulation and
local kernels should be preferred.

C. Results: Improvement Potential

The improvement potential estimates how much a given
representation can potentially improve the fitness value, based
on how accurate a given approximate gradient g can be repro-
duced, as described in (9). We expect deformation setups that
can approximate the direction g well to result in solutions with
a better fitness value. To emulate this approximate knowledge
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Fig. 8. The 3D template fitting scenario: An initial sphere X is deformed via a linear deformation function UP. The handle displacement P(1),P(2), . . . (red
dots) results in the deformed meshes X(1),X(2), . . . aiming to improve the fitting accuracy to a target scan.

of a beneficial direction, we define g to be a smoothed version
of the true analytic gradient ∇pf :

g̃ = λ
∇pf

‖∇pf‖
+ (1− λ)

1
‖1‖

, g =
g̃
‖g̃‖

,

where 1 = (1, . . . , 1) is a vector with n ones. The blending pa-
rameter λ models the “reliability” of the approximate gradient
g, which matches the exact gradient for λ = 1 and does not
contain any fitness-related knowledge for λ = 0. We conduct
our experiments with λ = 0.5 and λ = 0.75.

A first observation is that for a fixed center placement
the improvement potential is identical for direct and indirect
manipulation (analogously to the variability criterion), such
that we only have to consider different kernel types, support
radii, and kernel placements.

Table II shows the Spearman’s correlation between our
improvement potential and the final fitting accuracy. Since we
want to measure the potential for improvement, we measure
the fitting accuracy by the distance to the (known) analytic
solution. Since the (quadratic) function approximation problem
can be solved by setting the fitness gradient to zero, the
correlation is 1 if a precise gradient is known (λ = 1), which
is not shown. For a small distortion (λ = .75) the correlation
between our criterion and the resulting fitting error still is close
to optimal. Even tests with a larger distortion (λ = .5) result
in a strong correlation for the Giannelli function. Although
the correlation values for the sine test function are worse, all
results are still significant for both test functions. Figure 7
plots the improvement potential against the resulting fitting
error. The left image depicts the very strong correlation for the
Giannelli test function with the different kernel functions. It
can be observed that the triharmonic kernel and the Wendland
kernel with largest support approximate the estimated gradient
direction better and also result in a better solution. A similar
trend can be observed for the sine test function as well.

Overall, these results clearly demonstrate that the idea of
estimating the improvement potential by approximating an

TABLE II. SPEARMAN’S CORRELATION (AND P-VALUES) BETWEEN
IMPROVEMENT POTENTIAL AND FITTING ACCURACY FOR THE 1D

FUNCTION APPROXIMATION PROBLEM.

Tri W15 W5 W2 all
Giannelli test
λ = .75 .99 (0) .99 (0) .98 (0) .99 (0) .99 (0)
λ = .5 .91 (0) .95 (0) .71 (0) .75 (0) .89 (0)
Sine test
λ = .75 1.00 (0) .97 (0) .96 (0) .98 (0) .98 (0)
λ = .5 .99 (0) .76 (0) .32 (0) .34 (5·10−4) .86 (0)

(approximate) fitness gradient works well even for imprecise
gradient information, which might very well be available in
practical real-world applications.

VI. TEST SCENARIO: 3D TEMPLATE FITTING

In the previous 1D function approximation scenario we
were able to analytically compute the global optimum, which
we exploited for the analysis of the evolvability criteria. The
3D template fitting scenario described in this section is con-
siderably more complex, since the fitness function has many
local minima and the global solution is not known. The goal is
to fit a given triangle mesh X (a sphere in our experiments) to
a target face scan T using an RBF deformation u : R3 → R3,
as depicted in Figure 8. The sphere model is discretized using
n ≈ 10k vertices, the scan consists of m ≈ 12k points.

In contrast to the 1D function approximation problem,
where each point (x, y, 0)T on the plane corresponds to a point
(x, y, s(x, y))T on the height field, there is no such one-to-
one correspondence between the vertices of the sphere and
points of the scan. Hence, the fitness function, which measures
the approximation error between the two models, computes
distances between any point on the (deformed) sphere and its
closest point of the scan, and vice versa. These closest points
are denoted by

cT(xi) = arg min
tj∈T
‖xi − tj‖ , cX(tj) = arg min

xi∈X
‖tj − xi‖ .

These closest-point-pairs vary during the iterative optimization
depending on the deformed sphere X(k) at iteration k. This
yields the (non-static) fitness function

f(P) =
1

n

n∑
i=1

∥∥∥xi + uP(xi)− cT

(
x(k)
i

)∥∥∥2

+
1

m

m∑
j=1

‖tj − cX(k)(tj)‖2 , (10)

where x(k)
i denotes the i-th vertex of the mesh X(k). Note that

for the sake of a simpler formulation, we do not incorporate
any regularization terms, which otherwise should be used
to prevent over-fitting and yield a higher surface quality, as
discussed, e.g., in [34].

In the evolutionary setting, we again employ the CMA-ES
of the shark library [33] to minimize the fitness function (10).
Since we cannot compute the analytic solution as a ground
truth reference for analyzing the evolvability criteria, we fall
back to the gradient-based Gauss-Newton approach of [34] for
computing the reference solution.
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The analysis of the variability criterion confirms the find-
ings of the previous section: Since the RBF matrices have
full rank, adding more RBF kernels directly increases the
variability, which correlates (very) strongly with the fitting
accuracy, see Figure 9.

Analyzing the relation of our regularity criterion and
convergence speed reveals significant correlation in all but
one case (indirect manipulation, triharmonic kernel), see Ta-
ble III. Plotting regularity against numbers of required itera-
tions (Figure 10) shows the same trend as in the 1D function
approximation scenario, which confirms that our regularity
formulation characterizes convergence speed even in more
complex scenarios.

We have to slightly adjust the formulation of the im-
provement potential, since the 3D deformation leads to an
(n× 3)-dimensional fitness gradient, such that we replace the
vector norm of equation (9) by the Frobenius norm. Given a
normalized approximate gradient ‖G‖F = 1, the improvement
potential is

P (U) := 1−
∥∥(I− UU+

)
G
∥∥2

F
. (11)

Since the closest-point-correspondences change during the op-
timization procedure, even the exact gradient of the initial state
X will be inaccurate after the first few iterations. We therefore

TABLE III. SPEARMAN’S CORRELATION (AND P-VALUES) BETWEEN
REGULARITY AND CONVERGENCE SPEED FOR THE 3D TEMPLATE FITTING.

Template fit Tri W15 W5 W2 all
direct .86 (0) .71 (0) .56 (0) .47 (0)

.87 (0)
indirect .11 (.3) .42 (0) .48 (0) .34 (10−4)
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Fig. 10. The correlation between regularity and convergence speed for
the 3D template fitting is equivalent to the results of the 1D function
approximation case. We plot the results of direct manipulation only, since the
poor convergence of the indirect triharmonic configuration (200k iterations)
would otherwise dominate the plot.

TABLE IV. CORRELATIONS (AND P-VALUES) BETWEEN IMPROVEMENT
POTENTIAL AND FITTING ACCURACY FOR 3D TEMPLATE FITTING.

Template fit Tri W15 W5 W2 all
λ = 1 .38 (10−4) .61 (0) .74 (0) .71 (0) .93 (0)
λ = .75 .38 (10−4) .60 (0) .74 (0) .74 (0) .91 (0)
λ = .5 .38 (10−4) .57 (0) .67 (0) .66 (0) .90 (0)

use this exact initial gradient (λ = 1), as well as distorted
version (λ = 0.5 and λ = 0.75) to evaluate the improvement
potential. The correlation between the improvement potential
and the final fitting accuracy is significant for all kernel types.
For the Wendland kernel the correlation is strong, whereas the
correlation is weaker for the triharmonic kernel, see Table IV.
We can again observe a strong correlation when we analyze
the test samples of all kernels (see Figure 7, center and right).
These results demonstrate again that the approximate gradient
information G can be rather inaccurate and will still lead to a
valid prediction of the eventual fitness.

The analysis of the 3D template fitting scenario confirms
the results of the simpler 1D function approximation setting:
Our formulations of variability, regularity, and improvement
potential indeed represent reliable criteria for evaluating the
quality of representation setups. The regularity experiments
again reveal that direct manipulation performs better than
indirect manipulation. Regarding variability and improvement
potential, there is no difference between the two manipulation
approaches, which thus motivates the use of direct manipula-
tion for future evolutionary optimizations. Also in agreement
with the 1D function approximation results, local kernels
converge faster, whereas global kernels result in more accurate
approximations, which leads to (interesting) conflicting goals
when setting up deformation representations.

VII. SUMMARY AND FUTURE WORK

A smart representation design tremendously supports the
efficiency of industrial product optimization. Inspired by the
biological concept of evolvability we propose a mathematical
model for quantifying the quality of linear deformation repre-
sentations. Our formulation is based on the three characteristics
variability, regularity, and improvement potential.

Variability covers the design space exploration potential
independently of the fitness or objective function. Its definition
is based on the rank of the deformation matrix, and our results
confirm that increasing the operator’s variability improves the
quality of the solution.



Regularity, which we define as the inverse of the con-
dition number of the deformation matrix, characterizes the
expected convergence speed of the optimization algorithm.
Our experiments show a significant and strong correlation
between regularity and convergence speed, and reveal that
direct manipulation and local RBF kernels have the highest
regularity and converge the fastest.

Improvement potential depends on the ability to reproduce
an approximate fitness gradient, implying a numerical quan-
tification of most beneficial local variations. Our experiments
support that already a coarse gradient information yields sig-
nificant correlations between improvement potential and fitting
accuracy. Best results are achieved by global RBF kernels.

Based on these findings, two research directions seem
most promising: First, since variability, regularity, and im-
provement potential are partly contradicting, a multi-objective
optimization should be used to reveal the Pareto front of
RBF representation setups. Second, we will analyze how well
our evolvability criteria generalize to different kinds of linear
deformation methods, such as free-form deformation.
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