
Realizing a Low-latency Virtual Reality Environment for Motor Learning

Thomas Waltemate1 Felix Hülsmann1,2 Thies Pfeiffer3 Stefan Kopp2 Mario Botsch1

1Computer Graphics Group 2Social Cognitive Systems 3CITEC Central Labs

Bielefeld University, Germany

Figure 1: Real-time feedback using a virtual mirror requires an immersive Virtual Reality environment that provides full-body motion
capturing, motion analysis, and realistic character rendering at a low end-to-end latency.

Abstract

Virtual Reality (VR) has the potential to support motor learning in
ways exceeding beyond the possibilities provided by real world en-
vironments. New feedback mechanisms can be implemented that
support motor learning during the performance of the trainee and
afterwards as a performance review. As a consequence, VR envi-
ronments excel in controlled evaluations, which has been proven in
many other application scenarios.

However, in the context of motor learning of complex tasks, includ-
ing full-body movements, questions regarding the main technical
parameters of such a system, in particular that of the required max-
imum latency, have not been addressed in depth. To fill this gap, we
propose a set of requirements towards VR systems for motor learn-
ing, with a special focus on motion capturing and rendering. We
then assess and evaluate state-of-the-art techniques and technolo-
gies for motion capturing and rendering, in order to provide data on
latencies for different setups. We focus on the end-to-end latency
of the overall system, and present an evaluation of an exemplary
system that has been developed to meet these requirements.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Virtual reality I.4.8 [Image Processing and
Computer Vision]: Scene Analysis—Tracking

Keywords: Low-Latency, Virtual Reality, Motor Learning

1 Introduction

Learning of new motor tasks or improvement of already known
ones is essential in many domains such as fitness training or reha-
bilitation. Often it is useful and much more efficient to learn motor
tasks with the help of a coach or another external source of feed-
back, since in this way the athlete gets information about whether
or not the given motor task was executed correctly and what kind
of errors were made.

The extensive capabilities of Virtual Reality (VR) seem to be an
ideal candidate to facilitate and boost the learning process [Rizzo
and Kim 2005; Schack et al. 2014]: A VR environment can be
equipped with high-precision sensors and can employ various feed-
back channels. Highly precise sensors gather data of the trainee,
which are analyzed in real time, in order to provide directed pur-
poseful feedback over various channels. This feedback can either
be given after the movement execution or—more interestingly and
more useful—during the execution. Especially in the latter case it
is important to ensure that the feedback is precisely timed, so that
it is presented exactly when it is relevant. As a consequence, the
environment has to be highly controlled, i.e., properties like the
end-to-end latency or tracking robustness either must be controlled
or at least have to be taken into account. It thus seems necessary to
report such basic properties of a system in every research address-
ing issues of motor learning in VR. This would allow researchers to
compare systems and to reproduce studies more reliably.

At the time being, no general guidelines for VR environments tar-
geted at motor learning seem to exists. Furthermore, for many sys-
tems described in literature, no sufficient information on relevant
aspects such as end-to-end latency, robustness of the motion capture
system, et cetera is given. Thus when building up a new VR envi-
ronment, one is faced with a vast number of potential techniques
and technologies, but a well-informed choice is hardly possible.



Figure 2: A minimal architecture for a VR environment for motor
learning combines a motion capturing system, motion processing
(e.g., for re-targeting or motion analysis), as well as a render en-
gine for high-fidelity character rendering.

In this paper we aim at improving this situation by

1. providing general requirements towards VR systems for mo-
tor learning,

2. evaluating and assessing state-of-the-art techniques and tech-
nologies,

3. presenting a system built according to the aforementioned re-
quirements,

4. providing latency measurements of the virtual environment
and giving hints on how to reduce latency.

A minimal VR system for motor learning would consist of compo-
nents for motion capturing, pre-processing of motion data, motion
analysis, feedback generation, rendering and display technology
(see Figure 2). As rendering and motion capturing are the back-
bones of the VR environment for motor learning, we focus on these
two components in this paper. We want to stress, however, that the
choice of display technology is very important, as projectors can be
found with latencies in the range between 15 ms and 140 ms. But
the decision for display hardware is relatively easy to make based
on technical specifications.

In the following, we start by developing general requirements to-
wards motor learning in VR applications (Section 2). After dis-
cussing related motor learning approaches in Section 3, we present
in Section 4 the essentials of our low-latency VR environment,
while also assessing particular state-of-the-art techniques and tech-
nologies for motion capturing and real-time rendering. In Section 5,
we present an evaluation of our system and report results of a pilot
user study, before concluding in Section 6.

2 Requirements

In this section we develop requirements necessary for an efficient
motor learning system in VR. Many researchers already pointed out
some of the most crucial requirements for VR applications in gen-
eral: For instance, Bierbaum et al. [2000] provide an overview in-
cluding general features like low latency, high frame rate, tracking
robustness, but also engineering requirements such as extensibility
and hardware abstraction. To our knowledge, this has not yet been
done for VR systems specialized on motor learning. In the follow-
ing we therefore carve out the most important requirements.

R1: Feedback on one’s own motion

As a first requirement, users have to be able to verify the correct
execution of a given motor task by getting feedback of whatever
kind. This feedback should be as intuitive as possible, and one of

the most intuitive ways is to let users observe their own motion by
viewing their own body.

In real world scenarios, like fitness or dance studios, self-
monitoring is usually achieved through a mirror. Thus, it seems
desirable to provide mirror-like feedback in VR training environ-
ments as well [Hämäläinen 2004]. This is inter alia motivated by
findings of Chau et al. [2003], who found that none of their pro-
posed layouts of students and teachers could improve upon a stan-
dard face-to-face configuration—similar to that of a mirror—when
learning Tai Chi. A virtual mirror, as planned in our setup, may
serve multiple purposes: it may show the optimal performance, just
as a teacher would, to guide the performance of the trainee; it can
simply reflect the real performance of the trainee to support self-
monitoring; or it could add augmentations to the real performance,
e.g., emphasizing errors. Finally, it serves as a perfect base for
further feedback strategies. Besides face-to-face layouts, a third
person view could also improve training results, as has been re-
cently shown by Covaci et al. [2014]. In summary it can be said
that self-monitoring is an essential ingredient on the way towards
meaningful visual feedback.

R2: Low latency and high frame rate

The times in which any response delay below 1 s was considered
acceptable—as had been suggested by Shneiderman [1984]—are
long over. Work in the area of system response time suggests that
delays in the range of 80–100 ms will not be noticeable by the ma-
jority of users. In a study by Mauve et al. [2004] users did not
notice network lags below 120 ms, thus, depending on the appli-
cations, tolerable latencies might be even higher than 80–100 ms.
Gutwin [2002] showed that in a simple coordination task a delay
of 200 ms already significantly increased the error rates. However,
the examples used in such studies are primarily targeting human-
machine interaction or manipulation of objects and do not address
the issue of self-perception and self-monitoring.

Research on the effects of latency in the context of virtual environ-
ments has been primarily focused in research on distributed virtual
environments. In this context, Roberts et al. [1995] define the time
required to present the user’s actions back to the user as local la-
tency. In a study on collaborative virtual environments, Park et
al. [1999] show that with increased latencies, humans adopt a move-
and-wait strategy, waiting several seconds to let their views syn-
chronize, before continuing performing their tasks. They showed
that in such setups jitter had a larger impact on collaborative per-
formance than latency. The development of similar strategies has
to be avoided in our target scenario, as it would hamper with the
natural flow of movements.

Regarding display latencies, it has been shown that trained users are
able to detect a latency of perspective adaptation of about 15 ms in
a HMD-based study [Mania et al. 2004]. In CAVE- or Powerwall-
based VR systems, latency is less critical, as the projection screens
remain stationary. However, a highly responsive system is impor-
tant in terms of task performance and presence in VR environments
in general [Meehan et al. 2003]. In particular for HMDs a high
frame rate is also important. We thus want to separate the require-
ments regarding latency induced by the display technology (HMD
or projection-based) from the requirements regarding a low-latent
update of visual feedback, e.g., of a figure animated via motion
capturing. In our description we are focusing on the latter.

For feedback on one’s own motion (R1) in a virtual mirror, latency-
induced effects could be reduced since humans can use motor pre-
diction to adapt to delayed sensory feedback [Keetels and Vroomen
2012; Rohde and Ernst 2012; Heron et al. 2009]. Still, having
more complex feedback strategies and an augmented virtual mirror



in mind, low latency will become even more important for precise
presentation of feedback (e.g., an avatar pointing at erroneous parts
of the user’s body during movement execution).

However, no fixed rules concerning the maximum allowed level of
latency in VR motor learning applications exist. Literature suggests
values of 150 ms for controlling characters in computer games,
since higher latencies are already directly noticeable for untrained
users and affect players in several ways [Jörg et al. 2012]. Mee-
han et al. [2003] showed that decreasing the latency from 90 ms to
50 ms already affects presence in virtual environments. Mackenzie
and Ware [1993] used Fitt’s tapping task to investigate the influ-
ence of latency on performance: They found that the performance
of participants is reduced when being exposed to a latency of 75 ms
or higher. According to Ware and Balakrishnan [1994] even a la-
tency of 70 ms already affects performance in a VR reaching task.
In a non-VR tapping task Jota et al. [2013] found that performance
improves only little using latencies below 25 ms. Even for laten-
cies below 50 ms, only a very slight improvement was measured.
Improvements in latencies below 40 ms were not even noticed by
most untrained participants.

In conclusion, it seems to be desirable to reach the lowest possi-
ble latency. An optimal corridor of latencies for visual feedback
appears to be between 40 ms and 70 ms, depending on the specific
application. But since there is, to our knowledge, no study proving
guidelines for latency in immersive full-body motor learning, these
values can only be inferred from related systems.

R3: Minimal level of disturbance

To guarantee a natural and intuitive training, the user should be able
to move freely, at least regarding the movements that are relevant
for the motions to be trained. Thus the hardware attached to the
user has to be as unobtrusive as possible, since otherwise the user
would not be able to use her full range of motion. For instance,
the use of long and stiff wires as well as heavy components should
be prevented if possible: Participants should perform the motor ac-
tions as they would in a real training scenario. Besides issues of
naturalness of movements, obtrusive hardware could also make the
optimal perception of the virtual environment more difficult [Wit-
mer and Singer 1998]. Therefore motion capturing system and VR
environment have to be chosen to offer a reasonable compromise
between tracking precision, immersion, and obtrusiveness.

R4: Robust tracking

Many typical sports exercises include movements during which
parts of the body are occluded for outside-in tracking systems.
The motion capture system has to be as robust as possible against
such kind of occlusions, where single or multiple markers might
get lost. If the tracking is not robust enough, it might require a
re-calibration of the human that is to be tracked. Thus, the train-
ing has to be interrupted and cannot be continued until the re-
calibration is performed. The training is severely affected by such
a re-calibration procedure to re-align tracking: If this happens, the
naturalness of the application, as for instance demanded by Witmer
and Singer [1998], would be significantly reduced.

From all requirements, low latency (R2) is most crucial. We there-
fore argue that the latencies of a VR environment for motor learn-
ing should be reported whenever presenting results of studies con-
ducted in such a setup. This is important to exclude high latency
as a potential side effect in the conducted experiments. More gen-
erally, when the exact specifications of an environment are known,
the results of future experiments become better comparable as well
as more reproducible. That is why we lay a special focus on latency
measurement in this paper.

3 Related Approaches

This section gives a short overview of state-of-the-art approaches to
motor learning systems in VR with respect to requirements devel-
oped above. In the following, these are referenced as R1–R4.

Smeddinck et al. [2014] present a training system that covers a large
range of human movements. The system aims at improving mo-
tor performance for Parkinson’s disease patients. Participants can
monitor their own motion visualized through a coarsely rendered
skeleton. Furthermore, the movement of the instructor can also
be monitored, depending on experimental condition. The authors
evaluate the effect of different abstractions of instruction presenta-
tions on motor performance. A Microsoft Kinect camera was used
for motion capturing. The authors fulfill R1 (feedback on one’s
own motion), but did not provide any information on system la-
tency (R2). However, given the latencies of the Kinect sensor, they
can be expected to be well above 100 ms. Requirement R3 can be
considered fulfilled as no hardware has to be attached to the user
for Kinect-based motion tracking. The overall tracking robustness
can be assumed to be sufficient for the task of rehabilitation for
Parkinson’s disease patients and the employed set of simple move-
ments. However, using a Kinect camera might not be fast and robust
enough for more complex motions (R4).

A yoga training game with a special focus on visually impaired
people is presented by Rector et al. [2013]. They focus on spo-
ken feedback to help trainees to reach a desired yoga posture. To
get information about the performed movement, they also employ
a Kinect camera. As the system targets visually impaired people,
requirement R1, which demands for feedback on one’s own mo-
tion can be seen as fulfilled via the provided spoken feedback. In-
deed, the authors do not give any information on the system’s la-
tency (R2), which might be important to counter-steer over- and
under-shooting movements caused by a high latency. For example,
the system could state “Lean forward” based on a delayed mea-
surement, although the user already exceeded the desired angle.
Yet, yoga movements are typically rather slow, such that a high
latency might only slightly influence the given task. Requirement
R3, which requires a minimal level of disturbance, is fulfilled due
to the marker-less Kinect tracking. Concerning the robustness of
the tracking for the desired type of motion (R4), no information is
given. It can be assumed that the authors chose postures that are
easy to track with the Kinect camera and do not require too many
changes in user orientation or self-occlusions of body-parts.

A highly specialized training system for rowing in VR is presented
by Sigrist et al. [2014]. The user is placed in a modified boat, sur-
rounded by projection walls. An extended version of the rowing
blade is visualized and superimposed by the optimal blade posi-
tion. Furthermore, the authors employ auditory feedback, which
consists of a sonified oar blade and a sound which is played when
the blade enters the virtual water. Haptic feedback is applied via
resistance torques against the user’s movement as soon as the user’s
blade moves away from the target position. Virtual self-monitoring
(R1) is only possible via observing the virtual oar blade. Concern-
ing latency and frame rate (R2), no information on the overall la-
tency is given. Only the update rate of the projectors (> 30 Hz),
movement sonification (30 Hz), and the frequency of the haptic de-
vice (1000 Hz) is described. The Unity engine is used to render the
virtual ocean and the motion of the oar blade. Requirement R3 is
satisfied as no additional hardware except from headphones has to
be attached to the user and he/she is located inside a real boat. The
tracking can be assumed to be sufficiently robust (R4), since the
tracking task is not very complex.

Covaci et al. [2014] present a training system that aims at high-
precision tasks such as the basketball free throw. The system is



located in a CAVE environment, hence the ball has to be attached
to a special construction to prevent the walls from damage. The ball
and the user are tracked by a Vicon MX motion capture system. Di-
rectly after throwing the ball, the system calculates the trajectory of
the ball and visualizes the throw. The users can monitor their own
motion (R1) either in first- or in third-person perspective. The third-
person perspective can also be overlaid with the correct trajectory
of the ball. The system’s shutter glasses run at 30 Hz per eye, the
motion capture system has a frequency of 120 Hz. Information on
the system’s latency is not stated (R2). In a user study, the authors
showed that the overall latency did not disturb the users. Require-
ment R3 (minimal disturbance) was evaluated via questionnaires:
The interaction was stated as natural by participants, such that R3
can be considered fulfilled. The tracking is described as being ro-
bust (R4) and the calculation of the ball trajectory leads to correct
results in 87.5 % of 500 trials.

To summarize, many different approaches towards VR motor learn-
ing exist. However, information on end-to-end latency is only rarely
given. Hence results are difficult to compare, e.g., concerning the
achieved levels of performance, and it is difficult to exactly repli-
cate experiments. Furthermore, some systems use sensors unable to
provide a robust tracking for a broad set of possible motor actions.
To the best of our knowledge, no approach published until now aims
at providing a general, highly controlled, efficient training environ-
ment that satisfies the above mentioned requirements and provides
information on end-to-end latency. This work tries to fill this gap
via description, discussion, and evaluation of state-of-the-art tech-
niques, leading to an exemplary realization of a system that satis-
fies the stated requirements. Furthermore, we provide information
on the system’s end-to-end latency, which enables replication, com-
parison, and assessment of future experiments to be performed in
this particular VR system.

4 Realization of Low-Latency Environment

This section describes our hardware setup, provides an assessment
of state-of-the-art techniques for building a low-latency VR envi-
ronment for motor learning, and finally presents our design choices
and developments for this particular task. Figure 2 depicts the ar-
chitecture of our system. It consists of three major parts: (i) display
technology, (ii) render engine and (iii) motion capturing system /
motion preprocessing.

To display our virtual world, we decided to use a CAVE environ-
ment. This ensures a minimal level of disturbance (R3), since the
equipment attached to the user is limited to a pair of tracked 3D
glasses. These glasses are usually much lighter and smaller than a
full-sized HMD and there are no cables attached to the user. More-
over, the user is still able to see her own physical body and thus gets
feedback on her own motion (R1) without any additional equip-
ment. The still slightly narrow field of view of available HMDs
impedes self monitoring by looking at one’s own (virtually ren-
dered) body: The user has to make larger head movements, espe-
cially when looking down along one’s own body, which then may
interfere with the training goals. In particular training situations,
in which head and neck orientation and/or movements are essen-
tial, the additional weight imposed by the HMD also influences the
trainee’s posture compared to the optimal natural posture.

Our two-sided CAVE (L-Shape, 3 m × 2.3 m for each side) has a
resolution of 2100 × 1600 pixels per side. Each side is driven by
two projectors with INFITEC filters to enable passive stereoscopic
vision by utilizing wavelength division. Both walls (floor and front)
use back-projections. The four projectors are driven by a single
computer (2 Intel Xeon CPU E5-2609 @2.4 GHz, 16 GB Ram, 2
Nvidia Quadro K5000 GPUs).

Our virtual world consists of the following components: a virtual
fitness room with a virtual mirror mounted on the front wall. The
user is placed in front of this mirror and her motions are mapped
onto a generic avatar visible in the mirror. This effectively gen-
erates a virtual reflection of the user’s motions, which further en-
hances the fulfillment of the requirement for feedback on one’s own
motion (R1). The user’s motions are captured by an optical mo-
tion tracking system mounted at the top and the sides of the CAVE.
Motion data is streamed into the Motion Preprocessor, which pre-
pares the data for its use in the render engine and additional soft-
ware packages for further analysis and feedback generation. The
render engine then visualizes the scene while adapting the cam-
era perspective(s) according to the user’s head position/orientation
and animates the virtual character in the mirror using the full-body
tracking data.

In order to evaluate and compare the overall end-to-end latency of
different rendering and tracking approaches, we adopted and ex-
tended a well-established latency measurement approach [Liang
et al. 1991; Steed 2008; Friston and Steed 2014]: Typically, a pen-
dulum is placed inside the tracking area, and the tracking data is
visualized on a display behind the pendulum. A high speed camera
records both the swinging real pendulum and the virtual pendulum
on the screen. Afterwards, the recording is analyzed by hand, and
the time-offset between the real and virtual pendulum is the end-to-
end latency of the overall system. The following individual system
latencies add up to the total latency: tracking latency, network la-
tency, rendering latency, and display latency. The simple and peri-
odic movement of a pendulum allows the application of automatic
evaluation techniques [Friston and Steed 2014]. However, in our
case, we are not only interested in the end-to-end latency of a single
marker tracked by the system, but in the latency induced by (more
complex) full-body motion capture. Hence we replace the pendu-
lum by a human standing in the center of the CAVE, who is fully
tracked and instructed to move one arm up and down. The tracked
motions are mapped onto the virtual character, which is rendered
on the front screen (see Figure 3). The scene is again recorded by a
high-speed camera (170 Hz), and the video is analyzed by hand (see
supplementary video). To reduce errors due to manual labelling, we
average latency results over 30 trials.

In the following we first discuss our rendering solution, before pre-
senting the full-body motion capturing approach.

4.1 Real-Time Rendering

Stereoscopic visualization in a CAVE requires to render two im-
ages (left/right eye) for each projection wall (floor and front in our
case). Thus, the rendering framework must be capable of render-
ing multiple views per frame while still keeping up to the stated
requirements: We satisfy requirement R1 (feedback on one’s own
motion) by visualizing the movements of the participant through a
virtual character in a virtual mirror. Requirement R2 (low latency
and high frame rate) then mainly depends on the chosen hardware
and software solution for real-time multi-view rendering.

We first assess and evaluate several rendering techniques and check
how well they fit our requirements, before presenting the rendering
approach chosen for our low-latency VR system.

4.1.1 Evaluation of Existing Approaches

In terms of hardware, there are basically two solutions for stereo-
scopic rendering in a CAVE environment: The first is a render clus-
ter, typically using one render node per projection wall or per view.
The second possibility is to use a single computer with multiple
GPUs (multi-pipe rendering). We implemented both approaches



Projector
(floor)

Person 
tracked by

System

Motion mapped
to geometry on 
projection wall

Motion capture
system

Highspeed camera
observing real person

and virtual avatar

Figure 3: Overview on latency measurement: The person inside
the CAVE is equipped with a motion capture suit. Motion is directly
mapped on the virtual character. A high-speed camera records
both: real person and virtual character. Furthermore, it adds a
time-stamp to the video. Later on, the number of milliseconds be-
tween the real person reaching a turning point and the virtual char-
acter reaching the turning point is determined.

and compared them with respect to frame rate and latency. To this
end, we set up two test cases:

1. Distributed rendering on a minimalist render cluster of two
nodes with one GPU each, where each machine is responsible
for driving one projection wall.

2. Multi-pipe rendering on a single computer, which is equipped
with two GPUs for driving the two screens.

The cluster nodes and the single computer had identical system
specifications (2 Intel Xeon 2.4 GHz, 16 GB Ram), with either one
(cluster) or two (multi-pipe) Nvidia Quadro K5000 GPUs. The
cluster nodes were connected by a fast 10 Gigabit Ethernet network.

We analyzed how much latency the network communication of even
our minimalist render cluster introduces by employing the full-body
latency measurement described in the previous section. To this end,
we use an OptiTrack Prime13W system (240 Hz) for motion track-
ing (see Section 4.2) and map the motion onto a minimalist stick
figure. Rendering is done using InstantReality1, which is based on
the distributed rendering framework OpenSG2.

The scene was rendered at about 260 fps for the cluster setup and
280 fps for the multi-pipe setup. Over a range of 30 full-body la-
tency measurements we determined a mean latency of 50 ms for
the render cluster and 41 ms for the multi-pipe setup, with stan-
dard deviations of 12 ms and 10 ms, respectively. These results
demonstrate that even a minimal cluster consisting of only two ren-
der nodes can already lead to an increased latency. This suggests
that in terms of latency a multi-pipe framework on a single machine
should be preferred over a render cluster, at least when the number
of projection screens/views allows for a multi-pipe approach (eas-
ily for up to four walls). Additional reasons for the single-machine
solution are easy maintenance, easier implementation, and less ex-
pensive hardware setup.

1http://www.instantreality.org
2http://www.opensg.org

In terms of software frameworks, stereoscopic multi-view render-
ing is a mature and well-established topic, and consequently numer-
ous software solutions are available for this task. Full-featured VR
frameworks, like for instance InstantReality, which we employed
for the cluster-vs-multi-pipe benchmark, seem to be the canonical
first choice. However, being targeted at fast and easy prototyp-
ing of VR applications, the primary goal of InstantReality is not
high-performance rendering. While it supports character anima-
tion, it does not exploit GPU-acceleration for the involved skinning
computations. As a consequence, when tested on our high-quality
“mirror character” of 135k triangles, performance dropped down
to about 5 fps even for a single window. Since fast character ani-
mation is crucial to ensure low latency and high frame rate (R2),
InstantReality could not be employed.

Fast character animation and high-quality rendering are (besides
many other features) provided by game engines like Unity3 or Un-
real4. While these game engines have not been designed for multi-
view rendering, there are extensions to use them in a CAVE. For
instance, the commercial software MiddleVR5 allows the use of
the Unity engine for CAVE rendering by taking care of the data
distribution and synchronization for distributed cluster rendering.
Although being designed mainly as a cluster solution, MiddleVR
also allows to set up a local cluster on a single computer, thereby
effectively providing a multi-pipe rendering solution. This con-
figuration will probably add less latency compared to a multi-
machine rendering cluster. However, with Unity and MiddleVR
being closed source, the data storage and data flow cannot be pre-
cisely controlled, which might be important for latency reduction.
CaveUDK [Lugrin et al. 2012] is a middle-ware for using the open-
source Unreal 3 engine in a CAVE and is based on a distributed
rendering approach. They report rather high end-to-end latencies
of 82 ms for pressing a button to trigger an event and 136 ms for
user navigation, which rules out this rendering solution.

While several other high-level and low-level software packages ex-
ist, such as OpenScenegraph6 or Equalizer [Eilemann et al. 2009],
respectively, we eventually decided to develop our own slim render-
ing framework, since this gives us full control to exploit low-level
hardware acceleration and parallelization. The architecture and fea-
tures of our rendering engine are presented in the next section.

4.1.2 Realization

In order to minimize latency, we developed a single-computer
multi-pipe approach for rendering the scene in the CAVE. High per-
formance rendering requires to offload all expensive computations
to the available GPUs. This is even more important for a multi-pipe
approach, because only this way it is ensured that the rendering
performance scales properly with the number of GPUs. In addi-
tion, data transfer costs have to be reduced to a minimum, which is
important for the implementation of character animation.

We minimize computational cost by animating the virtual character
using the very efficient and simple linear blend skinning [Jacobson
et al. 2014], where vertices xi are transformed using a weighted
linear blending of the joints’ transformation matrices Tj :

x′i =

(
n∑

j=0

wi,jTj

)
xi, (1)

where the weights wi,j determine the influence of joint/bone j onto
vertex i. Vertex normals ni are transformed using a similar equa-

3http://www.unity3d.com
4https://www.unrealengine.com
5http://www.middlevr.com
6http://www.openscenegraph.org

http://www.instantreality.org
http://www.opensg.org
http://www.unity3d.com
https://www.unrealengine.com
http://www.middlevr.com
http://www.openscenegraph.org


Figure 4: Data distribution in our render engine: Each GPU has
its own OpenGL context and scene graph. The scene graph nodes
represent an object in the GPU memory and carry a pointer to their
corresponding object in main memory. The nodes are kept up-to-
date using a versioning approach.

tion. Since this computation can be performed independently for
each vertex, it can easily be mapped to the GPU. In this case,
the rest-pose vertices xi and normals ni, as well as the skinning
weights wi,j remain constant in GPU memory, such that only the
(rather small number of) joint transformations Tj have to be up-
loaded to GPU memory in each frame. In contrast, a CPU imple-
mentation (as done, e.g., in InstantReality) uses fewer computation
cores and has to upload all new per-vertex data (x′i, n

′
i) to GPU

memory. A performance comparison on our high-quality charac-
ter (135k triangles) showed the GPU implementation to be about
50 times faster (2980 fps vs. 57 fps, single window, Intel Xeon E5-
1620 3.6 GHz, Nvidia GeForce GTX 980).

The virtual mirror is implemented by first rendering the scene, in-
cluding the animated character, from the mirrored perspective of
the user. The content of the resulting framebuffer is then mapped
as a texture onto the mirror geometry in the scene (see Figure 1 and
Figure 6). To animate the character, we stream the pre-processed
motion data from the Motion Preprocessor to the render engine us-
ing a network interface (compare Figure 2 and Figure 4). The data
is received asynchronously and is then directly used to update the
pose of the character. This updates the transformation matrices in
CPU memory, and a simple version counter approach is used to
keep the data on the GPUs up-to-date.

To ensure that the rendering scales well to the available GPUs, we
employed the WGL_GPU_affinity extension to ensure that the
OpenGL commands are sent only to the correct GPU. The OpenGL
context is shared for all views associated to one GPU, such that data
is stored only once on each GPU. In terms of lighting we use the
simple Phong lighting model, and we apply shadow mapping to the
character and other objects in the scene (see Figure 1 and Figure 6).

The resulting render engine provides all necessary features for our
VR motor learning environment, while maintaining a slim software
design and flexibility.

4.2 Motion Capture

Full-body motion capture is necessary to provide real-time aug-
mented feedback on motor performance. In the following, we give
an overview of state-of-the-art motion tracking approaches and as-
sess them with respect to the aforementioned requirements.

4.2.1 Evaluation of Existing Approaches

To track full-body motion, the distinction between outside-in and
inside-out approaches is important. For outside-in approaches,
markers are attached to the human body and the actual capturing
devices are placed at fixed positions outside the tracking area. The
inside-out approach works the other way around, for instance by
attaching inertial trackers to the user. Although the outside-in ap-
proach has to deal with occluded markers, it has the important ad-
vantage that no sensitive and/or heavy devices have to be attached
to the user. Furthermore, outside-in approaches do not suffer from
drift due to time-integration of sensor data, and they provide the ex-
act location of the user. Since we want to avoid attaching disturbing
hardware on the user (R3) we only take outside-in approaches into
account in the following.

For these systems, the next distinction is between marker-based and
marker-less approaches. Many commercially available systems ex-
ist for both approaches, such as the marker-based systems Vicon
and OptiTrack, or the marker-less systems Microsoft Kinect and
Organic Motion. The advantage of marker-less systems seems ob-
vious: No hardware has to be attached to the participants, thereby
reducing setup time significantly and minimizing user disturbance.
However, marker-less systems often depend more on lighting con-
ditions and a good view of the participant. We decided to focus
on marker-based systems, since they provide more robust and more
accurate tracking results in a CAVE environment. Nevertheless, we
also analyzed the marker-less Kinect sensor, since this device can
also operate in rather dark environments and is used in many related
approaches towards motor performance training (e.g., [Smeddinck
et al. 2014; Rector et al. 2013]).

For the marker-based systems, one can use active or passive mark-
ers. Passive markers simply reflect the infrared light emitted by the
tracking cameras. The tracking system captures a set of markers,
which then have to be consistently labeled. As soon as markers get
lost and re-appear later on, the labeling step can produce errors. Ac-
tive markers, as used in systems like PhaseSpace7 avoid the labeling
problem by emitting light at a unique frequency. The disadvantage
of active markers is that they require more service and are more
prone to get damaged during experiments. Furthermore, the marker
suits are more difficult to clean. Additionally, active motion cap-
ture suits are often less comfortable to wear than suits for passive
markers (R3).

Thus we decided to focus on outside-in tracking systems based on
passive markers. We analyzed and compared the Vicon T20 system
and the OptiTrack systems Flex 100 and Prime 13W. These systems
require a motion capture suit with attached markers, or having the
markers attached directly to the human skin. As motion capture suit
any tightly fitting sports clothing can be used as long as it does not
contain reflective materials. Thus these systems satisfy requirement
R3. We evaluate the end-to-end latency and update rate (R2) of the
different tracking systems using the latency measurement approach
described in Section 4. In order to focus on the tracking latency,
we only rendered a simple stick figure (at about 280 fps). Table 1
summarizes the resulting latencies for Vicon T20, OptiTrack Prime
13W, OptiTrack Flex 100, and Microsoft Kinect.

Concerning the robustness of the tracking (R4), the marker-based
systems meet our demands: For most basic movements and exer-
cises (e.g., squats, walking around, jumping), the user is tracked
without the need for re-calibration or returning to the T-Pose during
a session. In contrast, the tracking robustness for the Kinect camera
was worse: Here, many kinds of exercises, e.g. squats, cannot be
tracked reliably due to occluded body parts.

7http://www.phasespace.com

http://www.phasespace.com


System Price / Camera Camera Resolution Max. Frame-rate Used Frame-rate Latency Std. Dev.

Vicon T20 20,000 EUR 1600× 1280 500 Hz

100 Hz 54.9 ms 13.18 ms

240 Hz 44.7 ms 10.6 ms

500 Hz 38 ms 8.4 ms

OptiTrack Prime 13W 2,500 EUR 1280× 1024 240 Hz
100 Hz 59.7 ms 12.3 ms

240 Hz 41 ms 9.9 ms

OptiTrack Flex 100 600 EUR 640× 480 100 Hz 100 Hz 65.5 ms 21 ms

Microsoft Kinect 2 150 EUR 512× 424 30 Hz 30 Hz 98.8 ms 19.17 ms

Table 1: Comparison of end-to-end latencies of the different motion capturing systems (averaged over 30 measurements), also listing price
per camera, camera resolution, as well as the maximum and the employed frame rates.

Render Quality Fps Latency Std. Dev.

Stick figure 690 36 ms 9 ms

Low resolution 114 54 ms 9 ms

Low resolution + Shadows 88 60 ms 10 ms

High resolution 86 62 ms 12 ms

High resolution + Shadows 62 81 ms 14 ms

Table 2: Latency and performance values for different rendering
qualities (mean value of 30 tries and standard deviation). Ren-
dering a minimalist stick figure without a virtual environment, or
rendering the full gym scene and the virtual mirror, but using either
a low-resolution (20k triangles) or high-resolution (135k triangles)
virtual character, with optional shadow mapping.

4.2.2 Realization

Based on the benchmark results shown in Table 1, we decided to
use an OptiTrack Prime 13W system with 10 cameras. This marker-
based solution is a good compromise as long as there is no marker-
less option of similar performance and robustness. The Microsoft
Kinect was excluded due to its high latency (R2) and problems in
dealing with occluded body parts (R4). The Vicon cameras’ advan-
tage in terms of temporal and spatial resolution did not justify the
much higher price for our field of application. We decided to use
the Prime 13W system instead of the Flex 100 cameras because of
the wider field of view (82◦ vs. 58◦) and the higher temporal and
spatial resolution.

The cameras are arranged in a way that allows an almost failure-
free tracking. Participants are equipped with a marker suit with 44
markers for accurate skeleton tracking. This layout is based on the
41-marker layout specified by OptiTrack, which extends their basic
37-marker layout by two additional markers on each foot. These
increase the robustness of foot tracking and allow us to get infor-
mation on metatarsal rotation. We further extend this layout by
three markers on the back in order to capture the bending of the
spine in more detail. With the final setup, we are able to obtain
transformations for 23 joints. The system provides joint positions
and rotations, which are used to animate the virtual mirror charac-
ter, for feature extraction (e.g., calculation of movement direction,
speed, acceleration), and for motion analysis.

Figure 5: Example frames from one of the latency test videos
(highest quality character with shadows). The left image shows
the user’s arm approaching the lowest point. The image in the mid-
dle shows the turning point of the real arm, the picture on the right
shows the turning point of the virtual arm, while the real arm al-
ready moves upwards.

5 Benchmark

To evaluate the influence of rendering options on latency, we evalu-
ated different quality levels to find the best trade-off between qual-
ity and performance. The same measurement procedure as de-
scribed in Section 4 was used for 30 trials, and we report mean
latency values and standard deviations. The virtual scene used for
the tests consists of a virtual fitness studio (about 100 k triangles)
including the virtual mirror (see Figure 6).

The results are listed in Table 2. For our high-resolution character
(135 k triangles), we observed a latency of 81 ms at 62 fps when us-
ing shadow mapping. Without shadows, a latency of 62 ms at 86 fps
was measured. Using the low-resolution character (20 k triangles)
reduces the latency to 60 ms at 88 fps (with shadows) and 54 ms at
114 fps (without shadows). As a baseline test, we also rendered a
simple stick figure without the surrounding fitness studio, which re-
sulted in a latency of 36 ms at 690 fps. We conducted an additional
test which consists of a single marker attached to a pendulum in-
stead of a tracked human. The pendulum was visualized as a box
inside the CAVE. Here, we observed a latency of 32 ms (SD=9 ms).

Our end-to-end latency consists of the individual latencies of the
cameras (approx. 4 ms according to manufacturer), of the track-
ing software, the motion preprocessing (approx. 2 ms), the network
communication (approx. 1 ms), as well as rendering, synchroniza-
tion, and display hardware (approx. 19 ms according to manufac-
turer). Figure 5 shows exemplary frames of the recording filmed
by the high-speed camera, showing the experiment using the high
resolution character and real-time shadows.



Figure 6: The visual quality achieved in the final system, including
artificial shadows for the trainee.

In a pilot study we examined whether users have the feeling of be-
ing able to control the virtual character and whether the system
induces simulator sickness (e.g., due to latency effects). For this
study we rendered the high-resolution character including shadow
mapping. 23 participants (15 female; age M=26.17, SD=8.94) in-
teracted for 5–6 minutes with our system: They had to perform
squats while getting simple textual feedback after having performed
a squat. The degree of perceived control was measured using a 7-
point Likert scale ranging from 0 (no control) to 6 (highest level
of control). The results were quite satisfying (M=5, SD=1). Fur-
thermore, no increase of simulator sickness, using the Simulator
Sickness questionnaire by Kennedy et al. [Kennedy et al. 1993],
was detected due to the experiment. For this experiment, we also
evaluated the robustness of our system in terms of full-body motion
capture: Only one single time, too many markers were occluded
which required a re-calibration of the participant. In all other trials,
temporary loss of markers was compensated by the system.

Figure 6 shows a photograph of a user reflected in the virtual mirror
inside our environment. Please also see the accompanying video,
which shows a user interacting with the system using the low-
resolution character. The second part gives a glance on the latency
measurement procedure recorded using a high resolution character
with shadows.

6 Conclusion and Future Work

In this paper we developed and motivated requirements for VR mo-
tor learning. We examined state-of-the-art techniques and technolo-
gies for motion capturing and rendering with respect to these re-
quirements, and propose a low-latency environment based on the

most promising components or approaches. In terms of rendering,
a single-PC multi-pipe approach was shown to achieve a lower la-
tency than even a minimal render cluster using two nodes. Our slim
custom-designed render engine maps all expensive computations to
the GPUs and parallelizes well. For full-body motion capture, we
decided to use the marker-based outside-in OptiTrack system. The
resulting system provides a virtual environment with a mirror and
a high quality character, and it can serve as a solid base for further
developments and experiments in VR motor learning.

Using the 20k-triangle character, our system meets the stated re-
quirements: The user is able to monitor his own motion in the vir-
tual mirror (R1). The overall latency of the system is at around
60 ms, which is comparable or better then related systems (R2).
The graphics engine runs at 88 fps, feeding four channels with
2100 × 1600 pixels each, which is sufficient to perceive smooth
images. Requirement R3 is also satisfied as users only have to
wear passive stereo glasses and tight clothing with attached mark-
ers. Of course marker-less motion tracking would be the ideal so-
lution, but to our experience the available solutions are not fast or
robust enough in a CAVE environment. Requirement R4 can also
be considered as satisfied, as shown in the accompanying video.

This paper gives guidelines on how to develop a VR environment
usable for motor learning experiments. Inherent variables of our
system as well as possible alternative approaches have been evalu-
ated and compared. This information should support reproducibil-
ity and increase comparability of experiments.

Our proposed system lacks portability, since the display technol-
ogy as well as the motion tracking system are fixed installations. A
portable system could be achieved by using components like a com-
modity depth sensor (e.g., Kinect) or inertial trackers for motion
tracking and a HMD for visualization. However, any configuration
of that sort will have the problems presented in this paper. Still,
developing a portable system for motor learning that can be used at
home or in a small clinic is an interesting challenge. It is then to be
evaluated how the more obtrusive display hardware (HMDs) influ-
ences participants’ performance of motor actions and their ability
of motor learning.

In future work we will also conduct experiments to quantify the
effect of reduced/increased/disturbed visual quality, latency, and
tracking robustness on user experience and task performance in the
field of motor learning. In particular, the influence of various levels
of latency will be analyzed in order to identify an upper bound on
latency that still allows for effective motor learning. Further steps
will go into the direction of development and evaluation of differ-
ent feedback strategies by augmenting the virtual mirror. Currently,
we are using the same generic male character for all users. An im-
portant next step is to automatically create virtual avatars for the
users by body scanning, which would then result in a more realistic
virtual mirror and achieve a stronger identification with the avatar.

Acknowledgements

This research was supported by the Cluster of Excellence Cognitive
Interaction Technology CITEC (EXC 277) at Bielefeld University,
which is funded by the German Research Foundation (DFG).



References

BIERBAUM, A. D. 2000. VR Juggler: A Virtual Platform for Vir-
tual Reality Application Development. PhD thesis, Iowa State
University.

CHUA, P. T., CRIVELLA, R., DALY, B., HU, N., SCHAAF, R.,
VENTURA, D., CAMILL, T., HODGINS, J., AND PAUSCH, R.
2003. Training for physical tasks in virtual environments: Tai
Chi. In Proc. of IEEE Virtual Reality, 87–94.

COVACI, A., OLIVIER, A.-H., AND MULTON, F. 2014. Third
person view and guidance for more natural motor behaviour in
immersive basketball playing. In Proc. of ACM Symposium on
Virtual Reality Software and Technology, 55–64.

EILEMANN, S., MAKHINYA, M., AND PAJAROLA, R. 2009.
Equalizer: A scalable parallel rendering framework. IEEE
Transactions on Visualization and Computer Graphics 15, 3,
436–452.

FRISTON, S., AND STEED, A. 2014. Measuring latency in virtual
environments. IEEE Transactions on Visualization and Com-
puter Graphics 20, 4, 616–625.

GUTWIN, C. 2002. The effects of network delays on group work
in real-time groupware. In Proc. of European Conference on
Computer Supported Cooperative Work, 299–318.

HÄMÄLÄINEN, P. 2004. Interactive video mirrors for sports train-
ing. In Proc. of the third Nordic conference on Human-computer
interaction, ACM, 199–202.

HERON, J., HANSON, J. V., AND WHITAKER, D. 2009. Effect
before cause: supramodal recalibration of sensorimotor timing.
PLoS ONE 4, 11.

JACOBSON, A., DENG, Z., KAVAN, L., AND LEWIS, J. 2014.
Skinning: Real-time shape deformation. In ACM SIGGRAPH
Course Notes.

JÖRG, S., NORMOYLE, A., AND SAFONOVA, A. 2012. How
responsiveness affects players’ perception in digital games. In
Proc. of ACM Symposium on Applied Perception, 33–38.

JOTA, R., NG, A., DIETZ, P., AND WIGDOR, D. 2013. How fast
is fast enough? a study of the effects of latency in direct-touch
pointing tasks. In Proc. of ACM SIGCHI Conference on Human
Factors in Computing Systems, 2291–2300.

KEETELS, M., AND VROOMEN, J. 2012. Exposure to delayed
visual feedback of the hand changes motor-sensory synchrony
perception. Experimental brain research 219, 4, 431–440.

KENNEDY, R. S., LANE, N. E., BERBAUM, K. S., AND LILIEN-
THAL, M. G. 1993. Simulator sickness questionnaire: An en-
hanced method for quantifying simulator sickness. The interna-
tional journal of aviation psychology 3, 3, 203–220.

LIANG, J., SHAW, C., AND GREEN, M. 1991. On temporal-
spatial realism in the virtual reality environment. In Proc. of
ACM symposium on User interface software and technology, 19–
25.

LUGRIN, J.-L., CHARLES, F., CAVAZZA, M., LE RENARD, M.,
FREEMAN, J., AND LESSITER, J. 2012. CaveUDK: a VR game
engine middleware. In Proc. of ACM symposium on Virtual re-
ality software and technology, 137–144.

MACKENZIE, I. S., AND WARE, C. 1993. Lag as a determinant
of human performance in interactive systems. In Proc. of the

ACM INTERACT’93 and CHI’93 conference on Human factors
in computing systems, 488–493.

MANIA, K., ADELSTEIN, B. D., ELLIS, S. R., AND HILL, M. I.
2004. Perceptual sensitivity to head tracking latency in virtual
environments with varying degrees of scene complexity. In Proc.
of ACM Symposium on Applied perception in graphics and visu-
alization, 39–47.

MAUVE, M., VOGEL, J., HILT, V., AND EFFELSBERG, W. 2004.
Local-lag and timewarp: providing consistency for replicated
continuous applications. IEEE Transactions on Multimedia 6,
1, 47–57.

MEEHAN, M., RAZZAQUE, S., WHITTON, M. C., AND
BROOKS JR, F. P. 2003. Effect of latency on presence in stress-
ful virtual environments. In Proc. of IEEE Virtual Reality, 141–
148.

PARK, K. S., AND KENYON, R. V. 1999. Effects of network
characteristics on human performance in a collaborative virtual
environment. In Proc. of IEEE Virtual Reality, 104–111.

RECTOR, K., BENNETT, C. L., AND KIENTZ, J. A. 2013. Eyes-
free yoga: an exergame using depth cameras for blind & low vi-
sion exercise. In Proc. of International ACM SIGACCESS Con-
ference on Computers and Accessibility, 12:1–12:8.

RIZZO, A., AND KIM, G. 2005. A SWOT analysis of the field of
virtual reality rehabilitation and therapy. Presence 14, 2, 119–
146.

ROBERTS, D. J., SHARKEY, P. M., AND SANDOZ, P. 1995. A
real-time, predictive architecture for distributed virtual reality.
In Proc. of ACM SIGGRAPH Workshop on Simulation & Inter-
action in Virtual Environments.

ROHDE, M., AND ERNST, M. O. 2012. To lead and to lag–forward
and backward recalibration of perceived visuo-motor simultane-
ity. Frontiers in psychology 3.

SCHACK, T., BERTOLLO, M., KOESTER, D., MAYCOCK, J., AND
ESSIG, K. 2014. Technological advancements in sport psychol-
ogy. Routledge Companion to Sport and Exercise Psychology:
Global perspectives and fundamental concepts. Routledge, 953–
965.

SHNEIDERMAN, B. 1984. Response time and display rate in hu-
man performance with computers. ACM Computing Surveys 16,
3, 265–285.

SIGRIST, R., RAUTER, G., MARCHAL-CRESPO, L., RIENER, R.,
AND WOLF, P. 2014. Sonification and haptic feedback in ad-
dition to visual feedback enhances complex motor task learning.
Experimental brain research 233, 1–17.

SMEDDINCK, J. D., VOGES, J., HERRLICH, M., AND MALAKA,
R. 2014. Comparing modalities for kinesiatric exercise instruc-
tion. In ACM CHI’14 Extended Abstracts on Human Factors in
Computing Systems, 2377–2382.

STEED, A. 2008. A simple method for estimating the latency
of interactive, real-time graphics simulations. In Proc. of ACM
symposium on Virtual reality software and technology, 123–129.

WARE, C., AND BALAKRISHNAN, R. 1994. Reaching for ob-
jects in VR displays: lag and frame rate. ACM Transactions on
Computer-Human Interaction 1, 4, 331–356.

WITMER, B. G., AND SINGER, M. J. 1998. Measuring presence
in virtual environments: A presence questionnaire. Presence:
Teleoperators and virtual environments 7, 3, 225–240.


