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Abstract—A successful design optimization crucially depends
on the underlying representation, which has to adapt to a variety
of demands and changing boundary conditions. Complex system
engineering addresses these challenges through key features like
self-organization, modularity, locality, or evolution. The repre-
sentation covers the parameter setup (location and quantity) and
the mapping between parameter space (genotype) and design
space (phenotype), and should allow for both adaptation and
specialization of a design. To quantify the potential of a rep-
resentation, suitable quality criteria are needed. Evolvability is
such a criterion, which has been derived from biological analysis.
However, many biological and technical studies propose different
definitions of evolvability. We analyze, interpret, and extend them
in order to derive an evolvability criterion suitable for complex
system engineering. This can be used as a basis for future design
optimization problems.

I. INTRODUCTION

The increasing complexity of engineering systems, as for
instance in automotive design scenarios, requires advanced
optimization methods to efficiently provide high-quality so-
lutions for real-world problems. The dynamic interaction of
different physical domains (e.g., drag minimization, stiffness
optimization, manufacturing constraints) as well as changing
customer demands (e.g., shape features) have to be considered
simultaneously and—in the optimal case—holistically.

Classic analysis focuses on specific, independent sub-
problems only, for instance optimization of representation
parameters, modeling of quality criteria, or the choice of the
optimization routine. In contrast, in complex system engineer-
ing relevant features are considered simultaneously, because
they are strongly linked and they interact with each other. The
changing environment requires highly flexible setups, which
have to offer room for adaptation and should even accept
unexpected behavior. A major task is the estimation and proper
quantification of the adaptation potential of the employed
representation. The motivation for this survey is to provide
a quantitative measure for optimization potential and devel-
opment capabilities of these digital prototypes. In our target
application—automotive design optimization—a prototype is
represented by a triangulated surface plus a so-called shape
morphing operator, such as free-form deformation (FFD) or
RBF morphing [1]. An example of both deformation methods
is shown in Figure 1.
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In complex system engineering, the evaluation of different
setups for the optimization of dynamically changing systems
has been investigated under the biologically-inspired term
evolvability. Evolvability, as a biological feature in evolution-
ary computation, characterizes the potential of an individual
or a population in the evolutionary process. A population
with high evolvability is expected to develop better in the
current environment and to adapt faster to new conditions.
In this context, evolvability takes into account the genotype-
phenotype relationship as well as the influence of the (po-
tentially changing) environment. But even in the field of
evolutionary biology there has not been a unique definition
of evolvability.

When transferring this concept to evolutionary optimiza-
tion in engineering applications, evolvability can be used to
measure the optimization potential of a representation. In
our automotive design scenario the representation consists
of the model parameters to be optimized (genotype), which
induce a design variation (phenotype) through the shape defor-
mation operator (genotype-phenotype mapping). By utilizing
the idea of evolvability in complex system engineering, we
want to analyze, quantify, and improve the representations,
which eventually should lead to an increased performance
of the resulting system. To this end we analyze different
definitions of evolvability derived from biological analyses and
experiments, examine studies based on these observations in
technical engineering, and evaluate these approaches in the
context of complex system engineering. The gained insight
allows us to motivate a conceptual formulation of evolvability
that is suitable as a quality criterion for representations in
complex system engineering. To this end, our general concept

Fig. 1. A typical free-form deformation (top) and an RBF morph (bottom)
in an automotive design scenario [1].



of evolvability has to be translated into application-specific
criteria, e.g., in the context of automotive design optimization.

We start by discussing complex system engineering in
Section II, where we describe key features, modeling ap-
proaches, and the importance of evolvability. Afterwards, we
give an overview of different interpretations of evolvability
in the biological context, and then bridge the gap from bio-
logical simulations to the optimization of technical problems
(Section III). In Section IV we briefly discuss further aspects
and topics related to evolvability. We summarize the gained
experience in order to propose an evolvability concept for
complex systems (Section V). A table that categorizes the
evolvability-related articles covered in this paper finally gives
a coarse overview of the literature.

II. COMPLEX SYSTEM ENGINEERING

A system is a construct or collection of different elements
that together produce results not obtainable by the elements
alone [2]. Creating and linking these elements is the task of
the engineer in order to fulfill the customer’s needs throughout
the entire life cycle of the system.

Complexity arises through many different objectives or
conflicting interests, (nonlinear) interactions of components,
large design spaces, feedback loops, or adaptive processes [3].
Varying fields of research are involved, such as engineering
(dynamical systems and their control), computer science (mod-
eling and simulation), biology (self-organized systems), or
physics (physical models) [4]. Complex systems are based on
simple, maybe different, but separated components. They are
combined and linked together in order to achieve the multiple,
unpredictable, and time-varying goals. The system should be
able to change the representation or even the fundamental
structure. Examples are communication or transportation net-
works, financial markets, organisms, or insect colonies [5].

In classical engineering the designer gathers information
to specify the problem as precisely as possible. Uncertainty
is eliminated as much as possible. As a consequence many
pieces of information are needed, e.g., about the conditions
of the environment and the task that should be performed.
This requires specialized knowledge and competence of the
designer, who has to model the functionality and the overall
process. The typical approach is to simplify a system as much
as possible. Only when the designer tested the specialized sys-
tem well enough, it is completely fixed and reproduced. This
leaves no space for later adaptation other than intentionally
planned by the designer. The classical goal is to obtain a
single specialized solution that can be reliably reproduced.
The required predictability, transparency, and controllability
inevitably prevents self-adaptation [5].

Complex systems, in contrast, have to operate in unknown,
uncertain, unforeseeable, dynamic environments. The focus
is set on the adaptation potential to handle these demands.
The required flexibility is gained by simple, local, and linked
processes, which in concert solve the global problem. The
designer models these simple processes and their connection,
and thereby produces a “blueprint” [4]. The system is respon-
sible for the setup of the processes and their re-evaluation and
adaptation during the life time of the system (self-organization
and evolution). Thus the goal in complex system engineering is

to develop a method that enables the system to autonomously
interact with its environment; or as it is stated in Mina et al. [5]:
“becoming” is “being”.

For this approach two main characteristics are important:
self-organization and evolution [5]. Self-organization is a
large-scale and local organization of many simple components.
The term large-scale describes the interaction of different
conceived components with varying complexity. Like many
other concepts, self-organization is inspired by nature, e.g.,
in molecules many atoms form a large structure through
local forces. Although human-designed systems usually (and
intentionally) ignore this feature, we unconsciously use self-
organization in engineering problems: Small teams are built to
solve sub-problems, new links between solutions are created,
or problems are adjusted to new conditions. The result is
that non-trivial, large-scale optimization can be produced by
simple local processes [5], thereby leading to adaptive behavior
without external command.

Engineering complex systems requires evolutionary pro-
cesses to integrate self-organization [5]. The system is de-
signed to solve unpredictable problems on its own with little
information about the environment. The appropriate connec-
tion of components has to be re-adjusted or even the func-
tionality of components has to extend over time to accom-
plish the varying goals. The evolutionary selection—mutation—
recombination scheme handles these demands. The random
mutation and recombination may vary the components and
their linkage and the fittest configurations are selected with
respect to the current problem (environment) by algorithms
that implement these biological concepts. We want to state that
evolutionary processes are not restricted to complex systems
but advantageous in general engineering approaches.

The designer has to accept uncertainty as a system feature.
It should be seen as a chance to generate a variety of un-
expected new solutions. Depending on additional information
he has the freedom to choose some of them. The dimension
of the design space is seen as a benefit, since it increases
the variation of design solutions. Hence any limitation of the
design space has to be modeled carefully. A three-stage ap-
proach is proposed by Frei and Serugendo [3], where desired,
allowed, and possible areas are specified. This induces a user-
defined expectation, which cannot be set by the system itself.
The engineer has to implement concepts that keep the system
running within the specific area, but this at the same time
restricts the development of the system. Thus a tradeoff has
to be found, since the system should still be able to adapt its
behavior.

Modularity as well as weak linkage are further concepts.
Separated (modular) components can be modeled and ex-
changed easily if their dependencies are limited (weak link-
age). The individual components/processes have to be fully
functional even under changing conditions and have to be
sufficiently flexible to achieve time-varying goals. This concept
is referred to as robust optimization [6]; it can be used as one
design methodology in complex system engineering. Another
concept is multi-functionality, also known as degeneracy [7]:
Multiple processes may perform the same task in one envi-
ronment (redundancy), but work on different tasks under new
conditions (flexibility).



Besides self-organization further self-*-properties may be
added as characteristic properties of complex systems. Frei
and Serugendo [3] propose self-(re)configuration (parameter
adjustment over time) or self-repair (ability to correct failures).
The major aspects of complex systems—modularity, simplicity
and linkage of components, self-*-properties, or design space
models—are examined in greater detail in [8, 9].

Given that particular research area, the important chal-
lenges for complex system engineering are:

e  The simple components may be defined in a classical
manner and their connections have to be set flexibly.

e The design space has to be modeled carefully for
the (partly random) system evolution to find varying
solutions.

e  One has to focus on the optimal setup, rather than on
the “optimal” solution.

e Convergence criteria are non-trivial to model, since
the system’s progress is unpredictable.

But how is evolvability involved in this process?

As the system has to reflect on itself, it requires meta-
attributes to quantify the potential of its current configuration.
These criteria are robustness, degeneracy, or adaptability, and
they can be subsumed under the concept of evolvability.
Evolvability improves or guarantees the progress of the sys-
tem’s development. It classifies the behavior of the system; it
quantifies the design space that can be reached by the current
representation; it guarantees the performance improvement of
the system. In essence, evolvability covers the survivability,
the solution variety, the adaptation potential, and the evolution
speed in one single meta-attribute, and therefore is an impor-
tant quality criterion.

With this comprehensive quality criterion we aim at mea-
suring, optimizing, or adapting representation setups of com-
plex systems based on customer demands, optimization targets,
or environmental restrictions. But defining and measuring
evolvability is a difficult challenge. In the next section we
present a comprehensive analysis of biological and technical
approaches in order to collect different aspects and modeling
techniques for complex system engineering.

III. EVOLVABILITY

Evolution produces offspring of individuals through muta-
tion and recombination. The new offspring should ideally be
able to survive in the current environment and to adapt flexibly
to environmental changes, since this improves the evolutionary
development. In general, evolvability is meant to characterize
the developmental potential or capability of individuals in the
evolutionary process.

There is no unique precise definition of evolvability. Even
in biology, where the term evolvability stems from, many
different definitions have been proposed. Evolvability has been
defined as the ability of a genotype to produce heritable
phenotypic variation [10-12], the potential of a population
for producing novel mutations for their use in the evolution
of adaptations [13], or as a quantity to explain lineages of

populations in the tree of life [14]. These are only some of
the many different biological concepts. In general, evolvability
describes the quality of biological evolution or the evolutionary
capabilities of an individual or a population. It evaluates
potential future benefits [10, 15]. Influencing factors are, e.g.,
the genotype-phenotype relation, the variety of phenotypes, or
the speed of adaptation to natural (changing) environments.

Deriving from these approaches, and in agreement with
Sterelny [16], we understand evolvability as a combination of
the three attributes:

e regularity, which describes the quality of an individual
or a population independent of the current environ-
ment,

e  variability, which aims at a rich design space (pheno-
type),

e adaptation potential, which ensures the ability to adapt
to changing conditions.

Note that we replaced the term heritability from Sterelny [16]
by regularity in order to avoid conceptual conflicts, as heri-
tability can itself be considered as a measure for the evolution-
ary potential (see the heritability vs. evolvability discussions
in [17, 18]). In the following we discuss the evolvability
concept by analyzing the individual attributes step by step.

A. Regularity

Formulating a suitable fitness function for the development
of complex systems is a difficult and cumbersome process,
since one cannot incorporate every individual quality aspect
into the fitness criterion. This would inflate the fitness function,
increase the computational cost of its evaluation, and would
thereby slow down the overall optimization tremendously. One
should therefore try to prevent the generation of infeasible
(mortal) offspring before the environment (i.e., the optimiza-
tion) evaluates it. We understand regularity as a stability
attribute that reduces this infeasibility and thereby improves
the evolutionary process. For instance, in automotive design a
poor discretization of the car body will negatively influence
any CFD simulation, therefore such configurations should be
avoided. In the context of system engineering the restriction
to feasible (regular) offspring is a limitation of the design
space on the one hand, but on the other hand regularity can
be interpreted as a safety guard.

The regularity of phenotypes is oftentimes not employed
as an individual attribute, but rather incorporated into the
attribute robustness (e.g. [19]), which we discuss later in Sec-
tion IV-A. We explicitly emphasize and follow the approach
of Sterelny [16], where regularity is declared as an extra trait,
but also as a part of a more complex evolvability concept. The
regularity criterion has to avoid problems that do not depend
on the fitness function and which cannot be handled by the
variability criterion. Sterelny [16] describes it as an anti-outlaw
condition. A concrete example is given in [20], where control
lattices for free-form deformation are constructed such that
control points are well separated. This reduces the chance of
flipping of control points and thereby avoids unfeasible self-
intersections of the deformed object.



We cannot give a more precise definition of regularity,
because it strongly depends on the representation and the
actual optimization scenario. The designer has to define this
attribute as an environmental-independent stability criterion.
We incorporate it in our definition of evolvability in order to
improve the fitness-independent performance of the system.

B. Variability

As we have shown before, complex systems operate in
uncertain, dynamic environments. Therefore a criterion that
measures and preserves the flexibility of the representation,
independent of the environment, has to be incorporated in
the definition of evolvability. This criterion should furthermore
characterize the ability and potential to extensively explore the
design space (phenotype). In biology many different synonyms
exist for this concept, such as innovation, variation/variability,
or even evolvability itself, as for example in [11, 12, 21].
Variability describes the future potential of obtaining varying
phenotypes [11].

Wagner’s approach to RNA analysis [12] reveals interest-
ing properties and limitations of variability measures. This
approach can be considered as a representative for a whole
class of biological approaches that are based on the concept
of neutrality [21-25]. Two genotypes are neutral if they map
to the same phenotype, and they are neighboring when they
are connected via a single point mutation (a mutation that
changes just one parameter). The first variability definition
of Wagner [12] is based on the neighborhood of a genotype
(local definition), while the second definition analyzes the
neighborhood of all neutral genotypes of a given phenotype
(global definition). Both approaches compute the diversity of
the phenotype and are purely discrete. The second one even
requires global information of the phenotype. For complex
systems this is a major drawback, since they have to operate
with little information, and therefore cannot analyze the whole
parameter space or design space. In the automotive scenario
both spaces are continuous, which makes the definition of a
neighborhood cumbersome and imprecise.

Jin and Trommler [26] solve this problem by replacing
single point mutations by arbitrary mutations and by mea-
suring the ratio of phenotype diversity to genotype varia-
tion. This requires a proper definition of distance metrics
for both genotypes (parameter space) and phenotypes (design
space). Lehmann and Menzel [20, 27] transfer this idea to
a shape matching optimization using free-form deformation.
Their variability criterion, defined as the ratio of phenotype
variation to genotype variation, characterizes the quality of
different representation setups and is used to improve the
performance of the optimization. As the computation of this
criterion requires global information, it is not really suitable
for complex systems.

A possible solution can be derived from an approach
called novelty search, which replaces the fitness selection
criterion of evolutionary algorithms by a variability criterion.
Example applications for maze navigation and biped robot
experiments are described in [28-31]. Although we do not
discuss particular algorithmic details in this survey, we briefly
describe the idea for deriving variability: The variability of
each individual of an offspring is measured by a novelty metric,

which evaluates the dissimilarities to each other individual in
the population resulting in a highly diverse population. To
decide whether a concrete goal is reached one has to perform
an additional objective-oriented evaluation. In a general (non-
evolutionary) optimization context this approach can be seen as
the generation and the evaluation of local samples for different
representation setups.

The ability to extensively explore the design space is
measured by the variability criterion, which characterizes the
genotype-phenotype mapping. For complex system engineer-
ing we propose to define variability as the ratio of the potential
phenotype diversity induced by genotype variation. It then
is the designer’s task to specify diversity metrics in both
parameter space and design space as well as the mapping
between them. Since global information is not available in
complex systems, one has to fall back to local methods for
computing variability.

C. Adaptation Potential

During the development of a complex system some parts
may already be (close-to) optimal in the current state, while
other parts have to adapt further to specific demands or
changing conditions. For instance, in an automotive design
process the roof may already be satisfactory, but the fender
has to be improved with respect to drag. A representation that
can only change both targets simultaneously is counterproduc-
tive. Enabling the representation to adapt to sensitive regions
requires to incorporate a fitness-dependent criterion into the
evolvability definition.

In the biological context several approaches identify evolv-
ability itself with adaptation potential or adaptation speed of a
population to an environment, e.g. [13, 32]. But this definition
is rather imprecise, since a population is called adapted as
soon as a beneficial trait occurs significantly more often. In
the engineering context the optimization potential in a varying
fitness landscape is investigated in [33-35]. In [36-38] the
structural bias of an environment is analyzed. When different
regions of the fitness landscape are linked, a representation
that can learn that linkage will better adapt to changes in
the environment than a representation that ignores the fitness
landscape. This approach, however, requires knowledge about
the different environments and the connections between them.
We regard this as a contradiction to unpredictability in complex
system engineering. The idea to include a fitness-dependent
learning process is promising though. While it may slow down
the development of the system in the beginning, it improves
the long-term performance. Since fitness evaluations typically
are computationally expensive, computationally cheaper surro-
gates can be used to approximate the original fitness function
and replace it in the optimization [39]. While the surrogates are
easier to evaluate by construction, they require an additional
learning step.

Aulig [40] selects the representation that results in the
best compromise for a variety of predefined environments
and define this representation to have the highest adaptation
potential. However, an additional evolutionary optimization for
each environment has to be performed in order to evaluate
each candidate and find the compromise, which can be rather
costly. This approach can be considered as performing local
optimizations for computing the adaptation potential.



Transferred to complex systems the adaptation potential
characterizes the (fitness) improvement potential of a represen-
tation. One has to classify different representation setups either
in a learning process, with an additional local optimization, or
even with a combination of both. Based on available informa-
tion about the environment this choice is left to the designer.
In the spirit of complex system engineering we can also
incorporate his/her experience, to specify important/sensitive
regions for later adaptation.

D. Summary

Our literature survey leads to a concept for evolvability that
is based on the three criteria regularity, variability, and adapta-
tion potential, which—as we have discussed—are important in
complex system engineering. How to exactly formulate them in
a specific application context depends on the individual setting.
Or, as Wagner stated in [12]: It is a matter of taste. Hence the
designer has to analyze the system in order to formulate a
particular quality attribute derived from these basic concepts.
Based on the available information and resources the designer
has to implement suitable methods for computing evolvability.

IV. FURTHER ASPECTS OF EVOLVABILITY

In the context of evolvability Many more attributes are
used and can be investigated. In complex system engineering
robustness is one important aspect, but its relation to evolv-
ability is discussed contrarily. Another important aspect of
complex systems is modularity. How it is integrated into our
evolvability model is shown after discussing robustness. The
setup of evolutionary algorithms influences the performance of
the system as well. From that point of view evolvability can
be defined even for algorithms, which we discuss in the third
subsection.

A. Robustness vs. Evolvability

In optimization scenarios a solution is considered robust if
noise does not affect its quality. The setup of an algorithm
is considered robust if noise on the input data still leads
to the same solution. Generally, the concept of robustness
is important in complex systems to induce stability. In the
biological context robustness reduces the mortality of offspring
and therefore promotes the evolutionary process. Wagner
and colleagues define it as the persistence of an organismal
trait under perturbations [19]. The authors analyze robustness
on three different levels: The first one is independent of
the environment and is called stochastic noise. Robustness
preserves the general quality if stochastic fluctuations occur
in (biological) systems. The second level characterizes the
influence of genetic variation on the phenotype. A trait is
regarded as robust if genetic variation preserves it. The third
level describes the survivability of a phenotype when changes
of the environment occur. Our definition of evolvability can
be considered to include robustness by interpreting stochastic
noise as one part of regularity. Moreover, robustness to varying
environments is covered by the attribute adaptation potential.

But whether robustness to genetic variation promotes or
hinders variability is discussed contrarily. In biology robust-
ness and evolvability are usually reduced to the variety of
phenotypes [12, 21-25, 41-43]. Hence one could argue that

a highly robust phenotype is not variable, but this statement is
not always true. Wagner [12] defines robustness through the
concept of neutrality in two ways: local and global (similar
to the variability discussion in Section III-B). Robustness
quantifies the neutrality in the neighborhood of a phenotype
or the size of a whole set of neutral phenotypes, respectively.
Interestingly, the local definitions of robustness and variability
contradict each other, while the global ones agree: A large neu-
tral set of phenotypes has many, typically diverse neighbors,
and therefore also a higher variability.

The concept of cryptic gene variation [44] is a biological
observation including both robustness and variability. When
individuals are adapted to an environment their phenotype
variation decreases, which reduces mortality because few non-
adapted phenotypes occur. However, cryptic gene variation
preserves the variation hidden in the genotypes, which pro-
motes adaptation after a change in environmental conditions.
In [32] a non-monotonic relation between robustness and
variability is described, meaning that the most variable phe-
notype is medium robust. The authors argue that non-robust
phenotypes cannot survive and very robust ones cannot evolve.
In technical engineering this potential conflict is accepted, e.g.,
in [20, 27, 40, 45, 46]. The goal is to find variable solutions
that are as robust as possible. The solutions on this Pareto front
can be used according to the behavior of the environment. If
it is stable, robust ones are preferred. If it is varying, variable
ones are more promising.

The general conflict that robust phenotypes cannot adapt
to new conditions is analyzed in [7, 47-49]. Degeneracy is
proposed as the solution, and is defined as multi-functionality
of components. For example, two different components (e.g.,
proteins) may perform the same task in the current envi-
ronment, but different tasks once the environment changes.
The switch between redundancy and diversity, which char-
acterizes degeneracy, increases the robustness as well as the
adaptation potential. If one component fails the task is per-
formed by the redundant component, which reduces mortality.
Like this, variability and adaptation are ensured even under
environmental changes. In [49, 50] a multi-agent-system is
proposed as a successful example for integrating degeneracy.
The concept of degeneracy has two major drawbacks: First,
multi-functional components requires more resources and are
more complicated, which contradicts the goal of simple com-
ponents in complex systems. Second, degenerate mappings are
a contradictions to the mathematically well-behaved mappings
(e.g. bijections) that are typically preferred in optimizations.

There exist different concepts for including robustness as a
stability criterion in complex systems, either as an additional
meta-attribute or in the evolvability definition. We intentionally
avoid the stated conflict between robustness and variability,
and instead include it in regularity and adaptation potential,
the other two aspects of the proposed evolvability definition.

B. Modularity

Modularity is one important feature that has to be incorpo-
rated into complex systems as it increases their performance.
The articles [11, 13, 42] link evolutionary biology and evo-
lutionary computer science, and emphasize the importance of
the genotype-phenotype mapping. Modularity is one property



that can be included in this genotype-phenotype relation. In the
biological context it describes the independence of functionally
different regions of an individual. Independent components
reduce mortality in case one component fails, and there-
fore induce robustness from another perspective as discussed
before [10, 47, 51]. The flexibility to replace components
improves the adaptation potential. As a consequence, a high
modularity promotes the development of a system, such that
it can be evolved, optimized, or adapted easier and faster.
We incorporate modularity into the choice of the genotype-
phenotype mapping instead of defining it as an evolvability-
relevant attribute. For instance, in an automotive design sce-
nario different shape morphing methods can be used, such that
the optimization may pick the most promising one for different
regions of the shape.

C. Further Targets of Evolvability

The evolutionary algorithm that is used for developing and
optimizing engineering systems has a strong influence on the
resulting performance. For instance, if it hinders variability
the system cannot change or adapt. This is investigated in the
field of genetic programming, e.g., in [52-55]. Evolvability,
regarded as the adaptation potential of a population to the
environment, characterizes the mutation, the recombination,
and the selection criterion of evolutionary algorithms. Since
these are stochastic algorithms, a probability-based definition
of evolvability is commonly used. Obtaining the probability
measures (e.g., the probability that a phenotype varies) is one
major problem, and methods based on additional optimization
steps or local information are frequently used. Of course,
algorithmic operators, such as the adaptation of mutation
step size or recombination probability, repair and support the
evolvability of complex systems.

In the more general context—evolvable hardware—
different targets of the quality criterion evolvability are in-
vestigated in [56—62]. In these works the setup and choice of
algorithms is discussed, as well as the representation setup,
or different fitness strategies to achieve different optimization
goals. The focus is set to these aspects, instead of to a general
quality criterion. Many relevant attributes of complex systems
are covered, such as the use of simple components, modularity,
evolutionary methods, or varying goals. This enriches our
understanding of the different attributes that can be evaluated
by evolvability.

V. CONCLUSION AND PROSPECT

The most frequently used approach for solving engineer-
ing tasks still is classical engineering: dividing the problem
into sub-problems, simplifying and solving them. After this
process the solution is fixed, which prevents the adaptation to
unpredictable environments. With growing problem and system
complexity due to, e.g., nonlinear interactions of components,
feedback loops, and adaptive processes during a system’s life-
time, the unpredictability of system behavior further increases.
Therefore the complex system engineering approach does not
target specialized solutions, but rather aims to implement a

blueprint and development guidelines to let the system unfold
and adapt itself while interacting with the environment.

The representation setup significantly determines the devel-
opment capability of a system. It has to be flexible enough for
the system to be able to automatically adjust to changing ob-
jectives/environments during the system’s lifetime. This level
of self-organization, led by an evolutionary process, can result
in beneficial unexpected solutions. The designer is responsible
for the layout of the components or representation to enable a
constant evaluation and adaptation of the representation.

In this paper we considered evolvability as a quality
criterion for measuring the potential of a representation for
complex systems. Based on basic analyses in biology, evolv-
ability characterizes the potential success of a population in
evolution. We analyzed concepts in biology and their trans-
fer to technical systems, and pointed out disadvantages and
promising approaches. Summarizing from literature a three-
stage classification is motivated.

The first aspect that evolvability has to cover is a fitness-
independent quality, which we interpret as regularity. It is
included to prevent unfavorable designs. The second aspect
preserves the potential variety, and is fitness-independent,
too. If we achieved a beneficial design during the design
optimization we need this variability to react on changing
environments or targets. Some design regions may be crucial
for the design process. It is important that the representation
promotes the adaptation of these regions. Quantifying this
adaptation potential improves the performance of the design
process and is a third aspect of evolvability.

We discussed robustness in this context, since it is an
important feature in engineering. The basic idea is to induce
stability, reduce mortality, and thereby improve the evolu-
tionary progress. It can be analyzed on the three levels like
evolvability. With respect to variability contradicting positions
exist in literature. We have shown arguments supporting the
assumption that robustness promotes variability and arguments
against this statement. We implicitly included robustness into
our evolvability concept, since we regard a regular or adaptable
individual as robust.

We are aware that the optimization algorithms for engi-
neering complex systems influence their performance, too. In
this survey, however, we focus mostly on the representation
setup. Other aspects or more concrete definitions of regularity,
variability, and adaptation potential (in a specific application
context) could be analyzed in future studies. We gathered
the articles that we included in this survey and categorize
them in Table I. Short notices to the different approaches
towards evolvability, their basic results, and the context of the
evolvability analysis are summarized in this table. Our next
step is to define evolvability precisely for an automotive design
optimization scenario and to evaluate this definition through
extensive simulations.
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TABLE 1L

ASPECTS AND DEFINITIONS OF EVOLVABILITY

biological simulation

variation on the genotype
and phenotype

variation additionally de-
fined through probability

evolvability as product of
phenotype and genotype
distance

evolvability = adaptation

degeneracy =
functionality

robustness promotes phenotype evolvability; definitions based
on neutrality; fitness independent

robustness promotes this definition

recombination/mutation rate analysis; setup of the algorithm
highly influences evolvability

robustness integrated in definition automatically; fitness inde-
pendent

robustness-evolvability relation is non-monotonic

switch between redundancy and diversity (dependent on the
environment) improves robustness and evolvability (adapta-
tion); concept based on neutrality neutrality

binding sides analysis, neutral
networks

gene regulatory circuits, pro-
tein simulations

algorithm analysis

transcription factors in cell
growth

RNA simulations

simulations of a multi-agent
system

Definitions Result Context Articles
evolvability = variability | genotype-phenotype mapping is a key object for the rep- | biological analysis, biological | [10, 11, 13, 42,
and modularity resentation problem; robustness, modularity, variation are | principles in internet evolution | 47]
important for evolvability; fitness independent definition
evolvability = variability | changing fitness promotes variation thus evolvability; fitness | evolutionary computation [63]
and adaptation dependent definition of evolvability
evolvability = variability | heritability alone is not a good measure; evolvability defini- | biological analysis of animal | [15, 17, 18]
3 and heritability tion is highly problem dependent; evolvability definition is | population studies
< fitness and selection criterion dependent
§ evolvability as probabilistic | evolvability is the probability of a future trait given the current | biological analysis [14]
§ model environmental and features of the population; promoting
= features are (low) mutation rate and variation
'% mathematical framework for algorithm analysis; structures | conceptual mathematical anal- | [64—68]
19 (e.g. specific functions) are evolvable with respect to different | ysis
;:: probability distributions
robustness as probabilistic | mathematical (probability) framework of robustness for net- | mathematical biological net- | [69-72]
model works defined works analysis
robustness = regularity and | robustness is persistence of a trait under perturbations; pertur- | biological analysis [19]
variation and adaptation bation are: noise, genetic variation, environmental variation
cryptic gene variation as bi- | genotype variety of a phenotype promotes robustness in a | biological analysis [44]
ological concept of robust- | stable environment and adaptation in a varying environment;
ness and adaptation cryptic gene variation depends on neutrality
evolvability as a criterion | many attributes have to be incorporated, e.g., modularity, | software engineering [73]
for long term development adaptation, testability, variability, consistency, etc.
evolvability, robustness = | genotype robustness hinders genotype evolvability, phenotype | RNA, Transcription factor | [12, 21, 25, 74]

[22-24, 43]

[41, 75]

[26]

[7, 49, 50]

algorithm setup in engineering

evolvability for representations

novelty (variation) search as
selection criterion in algo-
rithms

evolvability as number of
successful solved problems

evolvability = performance
of algorithm

evolvability = robustness
and variation (and heritabil-
ity)

evolvability =
potential

adaptation

positive correlation between novelty search and optimization
performance; sampling needed to compute variation (evolv-
ability)

combination of novelty and fitness based search is most
promising

novelty search worse than fitness search when target changes

modularity of genotype-phenotype mapping increases evolv-
ability

gradient information used to improve individuals after recom-
bination; fitness dependent

genotype size, choice and setup of algorithms investigated
with respect to fast fitness improvement

increasing evolvability promotes optimization; variation and
robustness negatively correlated; evolvability as tradeoff; her-
itability gained through control volume setup; fitness inde-
pendent

evolvable setups superior to robust ones regarding the adapta-
tion to new fitness environments; compromise between fitness
dependent and independent definition most successful

redundancy promotes evolvability

predicting the fitness development improves evolvability and
optimization performance; model based on probability mea-
sures used for a search operator

maze navigation, robot walk

neural networks in maze navi-
gation, pattern guessing, robot
walk

maze navigation

maze navigation, neural net-
works

genetic programming, gene ex-
pression programming

evolvable hardware

continuous free-from deforma-
tion, discrete Boolean func-
tions

spline matching, pattern guess-
ing, neural network learning,
sting writing grammar, hexa-
pod simulation

grammar evolution

car optimization, simulation on
test functions

[28, 31, 76, 77]

[29]

[30]

[51]

[52, 53, 55]
[56-62]

[20, 27, 45, 46]

[33-38, 40, 78]

[48]
[39, 54]
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