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Abstract— We present a method for real-time bare hand
tracking that utilizes natural hand synergies to reduce the
complexity and improve the plausibility of the hand posture
estimation. The hand pose and posture are estimated by fitting a
virtual hand model to the 3D point cloud obtained from a Kinect
camera using an inverse kinematics approach. We use real
human hand movements captured with a Vicon motion tracking
system as the ground truth for deriving natural hand synergies
based on principal component analysis. These synergies are
integrated in the tracking scheme by optimizing the posture in
a reduced parameter space. Tracking in this reduced space
combined with joint limit avoidance constrains the posture
estimation to natural hand articulations. The information loss
associated with dimension reduction can be dealt with by
employing a hierarchical optimization scheme. We show that
our synergistic hand tracking approach improves runtime
performance and increases the quality of the posture estimation.

I. INTRODUCTION

Tracking the complete articulation of a freely moving
hand is a problem that is an ongoing research topic and
has numerous applications in robotics. Many existing hand
tracking solutions either require the user to wear cumbersome
equipment, are expensive or are inadequate for real-time
tracking. Some methods that use consumer-level depth sen-
sors can detect the positions of individual fingers and provide
a means for rough gesture interaction, but do not accurately
reconstruct the user’s hand posture with full degrees of
freedom (DoFs).

We have built a hand tracking system that uses a Kinect
camera to estimate the full articulation of a user’s bare
hand in real-time. Our method is a generative approach that
is based on fitting a virtual hand model to the 3D point
cloud obtained from the Kinect sensor’s depth camera. We
estimate the hand articulation by finding the pose and posture
parameters that minimize the error between the observed
point cloud and the model surface using inverse kinematics.
In doing so, we find the deformation of the 3D hand model
that best approximates the observed state of the user’s hand.

A prevalent issue in tracking a highly articulated object
like a hand is the number of DoFs that must be optimized.
The analysis of hand synergies aims to identify high-level
relationships in hand articulation in order to sensibly reduce
the dimensionality of hand posture representations. We ob-
tain such hand synergies through the principal component
analysis of motion capture data and use them directly in
the tracking process to reduce the parameter space and to
naturally constrain the hand posture estimation.

This paper extends our recent workshop paper [1] in
several aspects: First, we speed up the inverse kinematics

Fig. 1. The user’s hand posture is estimated in real-time by fitting a 3D
hand model to the Kinect point cloud using inverse kinematics.

with a linear prediction step and a cylinder model; then, we
employ joint limit avoidance to ensure physically plausible
hand postures. We also propose a highly robust hierarchical
optimization scheme. Finally we analyze the performance of
our hand tracking system with a detailed evaluation.

II. RELATED WORK

There are two main approaches to the hand pose estimation
problem, namely appearance based [2], [3] and model based
methods [4], [5]. In a recent paper [6], we used a data-driven
appearance based approach to control an anthropomorphic
robot hand. A color glove was detected and using a nearest
neighbor search in an image database the closest matching
image and corresponding posture and coarse rotation were
retrieved. However, appearance-based methods suffer when
the hand strays from configurations that are not known and
therefore can perform poorly in certain free moving hand
situations. It is for this reason that we have decided to
investigate a model based approach.

Recently, existing model based approaches that heretofore
had proved too computationally expensive for real-time ap-
plications [7] are now becoming feasible. Oikonomidis et al.
presented impressive results using a multi-camera setup [4]
and using the Kinect camera [8], [9] with variants of particle
swarm optimization, but these approaches suffer from high
computational complexity and had to be optimized to run
on a GPU. Ballan et al. [5] used features such as edges,
optical flow, and salient points extracted from videos in a
multi-camera setup to estimate the articulated pose of hands
interacting with objects within a single objective function.
They achieved lower posture estimation errors than those of
Oikonomidis et al. [4], but thus far their approach is not
real-time. Wang et al. [10] realized motion capture of hand
grasping and manipulation data by simultaneously modeling
hand articulation, object movement, and interactions between
the two in an optimization framework. They obtained physi-



cally accurate results, but their method is also not real-time.
The so-called curse of dimensionality is an issue that has to
be addressed by all hand posture estimation approaches and
a possible solution we have considered is to use synergies
to reduce the associated computational complexity.

Bernstein [11] was the first to come up with the idea of
synergies and defined them to be high-level control schemes
for kinematic parameters. He suggested that they could
provide a mechanism by which the central nervous system
controls the high DoF human hand in an efficient way. It
was not, however, until Santello et al. [12] published their
paper on hand synergies that the rehabilitative protheses and
robots research communities realized their potential in terms
of controlling articulated hands and arms. Santello revealed
that 90% of the variance in the data of grasps directed
towards household objects could be described by as little
as 3 principal components (PCs). Many other studies have
since supported this view [13], [14].

Using synergies or other methods to reduce the dimen-
sionality of the problem of hand pose estimation for hand
tracking applications has a precedence. In an early paper,
Lee and Kunii [15] placed a set of constraints on joint angle
limits and movement types to reduce the DoFs or reject
infeasible inverse kinematics solutions. Wu et al. [16] used
the fact that hand articulations could be represented in a
lower dimensional space to perform a Monte Carlo tracking
algorithm. Unlike Lee and Kunii, they were able to track
the hand in real-time, but their method was view dependent
and rotation and scaling were not considered. Another view
dependent hand tracking particle filter approach [17] also
reduced the dimensionality of the problem by using inde-
pendent component analysis to compute basis components
for all fingers. Bray et al. [18] used smart particle filtering
to efficiently explore the high-dimensional search space with
fewer samples.

We use dimension reduction in order to simplify and
constrain the problem of inverse kinematics. A similar con-
cept was previously employed in the work of Grochow et
al. [19], who presented an inverse kinematics system based
on a learned model of human poses. Safonova et al. [20]
also used dimension reduction to synthesize realistic human
motion. Using a synergistic approach to reduce the DoFs of
a virtual hand model, we also reduce the high computational
complexity associated with model based approaches, while at
the same time realizing realistic (view unrestricted) real-time
bare hand tracking.

III. KINEMATIC HAND MODEL

We use a kinematic hand model consisting of 16 joints:
three for the proximal, intermediate and distal phalanges of
each finger and one wrist joint. The articulation of the hand
is represented by 20 degrees of freedom in our model: each
finger joint has a flexion-extension axis and the fingers’ base
joints each have an additional abduction-adduction axis. In
addition to the 20 joint angles controlling the hand’s posture,
the pose of the hand is represented by 6 degrees of freedom
for the global translation and rotation. In total we use 26

Fig. 2. Virtual hand model
with its control skeleton.

Fig. 3. Rest pose, forward
kinematics and skinning.

parameters to control the pose and posture of the hand in
our system.

These parameters and the kinematic chains of the joint hi-
erarchy define the forward kinematics of the hand, which can
be expressed in terms of a product of affine transformations.
A joint’s local transformation consists of the rotation defined
by its joint angle parameters and the translation relative to
its parent joint, if there is one. The global transformation
matrix Tj of joint j is given by the product of the local
transformations along its kinematic chain:

Tj =

n∏
i=1

Ti(θi), (1)

where Ti(θi) is the local transformation matrix associated
with the element θi of the kinematic parameter vector
θ = (θ1, . . . , θ26)T .

The virtual hand used to approximate the user’s hand
posture in our system is represented as a triangle mesh and is
deformed according to the articulation of the joints defined in
the kinematic hand model. The joint hierarchy serves as the
skeleton of the virtual hand model, as depicted in Figure 2.
A point v on the mesh surface can be transformed relative
to a joint j based on the forward kinematics of the skeleton:

v′ = TjT̂
−1
j v, (2)

where T̂j is the rest pose transformation of joint j and its
inverse is used to transform v to the joint’s local coordinate
frame. Since the transformation matrices Tj depend on the
parameter vector θ, the transformation of a point v based on
the skeleton can be expressed as a function of the parameters:
v = v(θ). We use this expression to calculate the forward
kinematics during the tracking process.

However, computing the deformed hand model in this
manner results in a blocky, piecewise rigid articulation.
We therefore use a different animation technique for visu-
alization than for tracking. For visualization we obtain a
smooth deformation using linear blend skinning [21], which
computes deformed vertex positions by linearly blending the
transformation matrices of the joints influencing a vertex,
which is specified by a set of convex weights (ω1, . . . , ω16)
for each vertex. This results in a smooth deformation of the
virtual hand model in accordance to the control parameters
of the kinematic model. Figure 3 illustrates the forward
kinematics and skinning for a kinematic chain of two joints.



Fig. 4. Inverse kinematics posture estimation. The red squares are target
positions in the sensor point cloud, the black circles are the corresponding
effector positions on the surface of the model. The joint angle is updated
such that the target-effector error is minimized.

IV. INVERSE KINEMATICS HAND TRACKING

In our hand tracking approach, the pose and posture of the
user’s hand are estimated by fitting the virtual hand model
to the point cloud obtained from a Microsoft Kinect sensor.
By finding the articulation of the hand model that minimizes
the distance to the point cloud, the state of the user’s hand
that causes the observation is approximated.

The point cloud is calculated from the Kinect’s color
and depth images based on a precomputed RGBD-mapping,
which maps color values to the pixel coordinates of the depth
image and uses the camera parameters of the Kinect’s color
and depth cameras to calculate the global 3D positions of
the sensor points. The hand is then segmented by detecting
skin-colored pixels and omitting points whose coordinates
are outside of a predefined working volume. The remaining
points define the target constraints for the hand model fitting.

These target points are matched to their spatially closest
points on the surface of the hand model. Based on these
point-to-point correspondences we formulate the problem of
estimating the posture of the hand as finding the posture
parameters (joint angles and global pose) that transform the
hand’s skeleton such that the error between the deformed
model and target positions is minimized. This is an inverse
kinematics (IK) problem in which the points on the model
surface si are regarded as effector positions relative to
the skeleton, which are constrained to move towards their
corresponding target positions ti in the sensor point cloud.
Figure 4 illustrates the principle with a simplified example.

A. Inverse Kinematics

We denote the effector positions by a stacked vector s =
(s1, . . . , sk)T and the target positions by t = (t1, . . . , tk)T .
As stated in Section III, the effector positions can be
expressed as functions of the parameters si = si(θ) or
s = s(θ). The IK problem, t = s(θ), can then be solved by
iteratively finding a parameter update ∆θ from the previous
frame θ that minimizes the objective function:

E (∆θ) =
1

2
‖s(θ + ∆θ)− t‖2 +

1

2
‖D∆θ‖2 (3)

The first term models the least squares error between the
effectors si and their target positions ti. The second term
regularizes the underdetermined problem by damping the
parameter update ∆θ with a diagonal matrix D of damping
weights λ1, . . . , λ26. In our system we use no damping
(λi = 0) for the six pose parameters and only a small amount
of damping (λi = 1.0) for the 20 posture parameters.

We minimize (3) using a Gauss-Newton approach, each
iteration of which involves solving the linear system(

JTJ + D
)
δθ = JTe, (4)

where e = t− s is the current target-effector error and J is
the (3k × 26) Jacobian matrix of the effector positions

J =
∂s

∂θ
=

(
∂si
∂θj

)
i,j

. (5)

The straightforward calculation of J is described in [22].
Solving the system (4) yields the update direction δθ, whose
step size typically is determined by a line search. We start
with δθ and successively halve it (δθ ← 1

2δθ) until the error
eventually decreases, i.e., E (∆θ + δθ) < E (∆θ). Only
then the update ∆θ ← ∆θ + δθ is accepted. This process
is iterated until the Gauss-Newton minimization converges,
which typically requires 5–10 iterations. As a starting value
for ∆θ we simply use the update from the previous frame,
i.e., we use a linear prediction as initial guess.

While our technique is very similar to the popular damped
least squares method described in [22], it differs in two
important aspects: The selective damping (cf. [23]) by D (in-
stead of λI) increases responsiveness and performance of the
system and the step size control for δθ improves robustness
by preventing oscillations. Without this step size control, a
much higher damping is required to keep the tracking stable,
which however leads to a significantly higher “laggyness”.

B. Joint Limit Avoidance

In order to prevent the IK optimization from generating
physically impossible hand postures, we constrain the pos-
ture parameters to plausible value ranges by adapting the
joint limit avoidance of Chan and Dubey [24] to our setup.
A posture parameter θi is slowed down by increasing its
damping parameter λi in the matrix D as soon as it reaches
its lower or upper joint limit θi,min or θi,max, respectively.
To this end a joint limit function Hi is defined as

Hi(θi) =
(θi,max − θi,min)

2

(θi,max − θi) (θi − θi,min)
,

and the damping parameter λi is scaled by (1 + |∂Hi/∂θi|)
iff θi is moving towards its limits. The latter criteria is
characterized by an increase of |∂Hi/∂θi| from the previous
frame to the current, i.e., if ∆ |∂Hi/∂θi| ≥ 0. If the
parameter is moving away from its limit (∆ |∂Hi/∂θi| < 0),
its movement is unrestricted. This simple method causes
parameters that move close towards their limits to slow down
and to virtually stop when the joint limit is nearly reached.
We obtain the joint limits θi,min and θi,max by extracting the
minimum and maximum values from a database containing
real human hand postures (see Section V).

C. Hand Tracking Process

The overall hand tracking process is illustrated in Figure 5.
After segmenting the hand in the Kinect point cloud and find-
ing the target-effector correspondences, the pose estimation
is initialized by finding the rigid transformation between the
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Fig. 5. Schematic overview of the overall hand tracking process.

target and effector point clouds using the well known rigid
iterative closest points (ICP) approach of Horn [25], using
the posture parameters from the previous frame. In the first
frame, this ICP fitting provides a good initialization if the
posture and orientation of the user’s hand roughly matches
the initial neutral state of the hand model.

Then the correspondences are updated and used as input
for the iterative IK-based pose and posture estimation. Dur-
ing this process, the parameter update is computed according
to (4) and the effector points are moved according to the
updated skeleton forward kinematics. This process is iterated
until the target-effector error converges. In practice, our
IK optimization usually takes less than 10 Gauss-Newton
iterations and for real-time tracking 5 iterations are sufficient.

The process of recomputing the correspondences and
solving the IK optimization is iterated several times in a
non-rigid ICP manner. As a result the virtual hand model is
aligned with the observation point cloud, which yields the
hand pose and posture estimation.

V. PRINCIPAL COMPONENT ANALYSIS

In the approach outlined in the previous section all 26
parameters of the kinematic model are freely optimized
within their joint limits during the IK update. While this
allows for high freedom of movement and mostly yields
plausible hand articulations, it can also result in inaccurate or
unnatural hand posture reconstructions in cases of incomplete
or ambiguous sensor data.

To overcome this problem, the space of possible hand
postures can be reduced in a meaningful way using hand
synergies derived from the principal component analysis of
a training data set containing real human hand motions.
Performing dimension reduction based on the most signif-
icant principal components provides a way to decrease the
number of parameters that need to be optimized and to
implicitly constrain the estimated hand postures to plausible
ones resulting from the training data.

In order to obtain a suitable training data set, we captured
various human hand motions using a Vicon motion tracking
system [26]. The positions of 16 retro-reflective markers
placed on a human hand were tracked by the Vicon system
and afterwards used to calculate joint angles corresponding
to our kinematic model [27]. The global pose information
was removed from the data, since they have no influence
on the hand posture synergies we want to exploit. The
recorded hand motions include various manual interaction
tasks, such as different grasping and twisting motions, sign
language, and general hand movements exploring the hand’s

natural degrees of freedom. This gave us a varied set of
hand postures that covered many aspects of natural hand
articulation.

A. Principal Component Space

The final data matrix X of m entries of the 20-dimensional
posture data was pre-processed to have zero mean before
PCA was performed on it. This resulted in a 20 × 20
matrix V of eigenvectors and the set of 20 eigenvalues λ =
(λ1, . . . , λ20). Taking the eigenvectors in V corresponding
to the l largest eigenvalues yields a 20× l matrix of principal
components, C. Since the data used for PCA only contains
the 20 joint angles and not the additional 6 pose DoFs,
we construct the conversion matrix M that maps from the
reduced (6 + l)-dimensional principal component-space (PC-
space) to the (6 + 20)-dimensional parameter space:

M =

(
I 0
0 C

)
, (6)

where I is a 6× 6 identity matrix, requiring the global pose
parameters to be the first 6 in the parameter vector. The full
parameter vector θ ∈ R6+20 can be converted to the reduced
parameter vector in PC-space, α ∈ R6+l, by the mapping
(and vice versa by its inverse)

α = MT (θ − µ), and θ = Mα + µ. (7)

Here, µ ∈ R26 is the mean of the data matrix X with six
leading zero-entries for the pose DoFs. This allows the PC-
space parameters to be expressed as a function of the kine-
matic parameters, α = α(θ), and vice versa, θ = θ(α). In
order to perform inverse kinematics hand tracking (described
in Section IV) using the reduced PC-space parameters, the
parameter update rule must be adapted.

Given the above mapping, the forward kinematics of an
effector point si can be written as a function of the PC-space
parameters α = (α1, . . . , αl)

T : si = si(α) = si(θ(α)).
According to the chain rule, the 3k× l Jacobian matrix JPC

of the effector positions w.r.t. the PC-parameters α is:

JPC =
∂s

∂α
=
∂s

∂θ
· ∂θ
∂α

= J ·M, (8)

where J is the Jacobian matrix defined in (5). The joint limit
avoidance described in Section IV-B can be applied to the
PC-parameters in exactly the same way if upper and lower
limits αi,min and αi,max for the PC-space parameters αi are
available. We determine these parameter limits by iterating
through all postures in the training data set, projecting them
into PC-space, and storing the minimum and maximum
values along all PC-axes. The PC-space parameter update
∆α is obtained by replacing J by JPC and D by an
analogous (6 + l)× (6 + l) damping matrix in (4).

This facilitates hand tracking as described in Section IV
in the reduced PC-space, which decreases the size of the
matrices in the update calculation and reasonably constrains
the possible hand postures estimated by the tracking system.
The number l of PCs used for the dimension reduction
depends on the distribution of the data variance among the
principal directions (see Section VI).
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Fig. 6. Visualization of the DoFs represented by the first and second
most significant principal components of the captured hand posture data set
containing grasp movements.

B. Hierarchical Optimization

While optimizing in a reduced PC-space yields plausible
hand articulations, the estimation is limited to the postures
contained in the used ground truth data set. To combine the
benefits of reduced-DoF estimation with the flexibility of
full-DoF estimation, we propose a hierarchical optimization
scheme, in which a low-dimensional posture estimate is
successively refined by incrementally adding DoFs during
the estimation process.

This means that the IK optimization in the hand track-
ing process is performed in multiple stages, increasing the
number of PC-parameters used in each stage. The early
low-DoF estimation stages yield coarse initializations for
the subsequent higher-DoF stages. In the final stage of this
hierarchical scheme, all 26 DoFs are optimized. This allows
for a coarse-to-fine optimization process that robustly refines
the posture estimation based on hand synergies and yields
highly accurate posture reconstructions. This approach also
significantly lessens the dependency on temporal coherency
in the input data. However, due to the increased computa-
tional complexity, this hierarchical scheme is thus far not
suited for real-time tracking.

VI. RESULTS

In this section we first illustrate the PCA of the captured
hand posture data and give examples for the DoFs that can
be represented in a reduced PC-space. Then, we present
a detailed evaluation of the most important aspects of our
system and show some results of our tracking approach.

A. PCA Results

We discuss the results of the PCA for two training data sets
of hand postures: the complete data set of all recorded hand
movements (including various manual interaction motions,
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Fig. 7. Posture reconstruction and approximation error for one particular
posture with increasing number of principal components. The hand postures
on top show examples of the reconstruction of the original hand posture
using different numbers of principal components.

sign language, and general hand movements) and a reduced
data set containing only grasping movements. Approximately
80% of the variance in the complete data set is covered
by the principal components associated with the largest
3 eigenvalues, and approximately 90% of the variance is
covered by 6 principal components. For the grasping data
set the 3 most significant principal components cover 90%
of the variance. The 2 most significant principal components
cover about 83% of the data variance and can already be used
to represent meaningful hand synergies, which is illustrated
in Figure 6. To clarify the information loss resulting from
dimension reduction, Figure 7 shows the approximation error
for a specific hand posture w.r.t. the number of dimensions
used to represent it.

B. Evaluation with Synthetic Data

In order to evaluate the accuracy and overall performance
of our hand tracking system we generated sequences of
synthetic Kinect images using the virtual hand model. The
model was animated using pre-recorded hand trajectories and
synthetic depth images were rendered, which could then be
used as input for our tracking system. This made it possible
to compare the postures generated by our system with the
known ground truth data.

The synthetic input data was generated with the same
model that was also used for tracking; no noise was added to
the depth images. This results in an idealized experimental
setup, in which the potential for highly accurate posture
reconstructions was given. We analyze the issues of noisy
input data and mismatch between the tracked real hand
and the virtual hand model in Section VI-C. Among the
experiments we conducted are tests for evaluating the trade-
off between the accuracy of the hand posture reconstruction
and the runtime efficiency of the tracking, analyzing the
benefits of using PC-space tracking, and the performance
of single-frame posture estimation using hierarchical opti-
mization. All experiments were conducted on an Octa-Core
Intel Xeon(R) E5-1620 CPU at 3.60GHz with 8 GBs of
RAM. Our implementation is heavily parallelized and fully
utilizes all eight cores during the correspondence search and
the construction of the Jacobian matrix.
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Fig. 8. Posture error and tracking time using subsampling density of 1/3
and varying numbers of non-rigid ICP iterations.
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Fig. 9. Posture error and tracking time using five non-rigid ICP iterations
and varying subsampling densities.

Accuracy-efficiency trade-off: The reconstruction accuracy
increases with (i) the number k of point cloud-to-model
correspondences used as input for the estimation and (ii) the
number of non-rigid ICP iterations. However, in turn the run-
time efficiency deteriorates with increased correspondences
and more non-rigid ICP iterations.

In order to be able to track at interactive rates, we reduce
the number of correspondences by linearly subsampling the
input point cloud. The point cloud sampling density and
the number of correspondence iterations are therefore the
parameters that need to be adjusted to optimize the accuracy-
efficiency trade-off. We tracked a synthetic input sequence
with varying values for these parameters in order to find
the best values for them. Evaluating the results for all
combinations revealed that for our purposes a subsampling
density of 1/3 and five non-rigid ICP iterations provided
the best trade-off between accuracy and efficiency. Figure 8
shows the posture error and tracking time for a subsampling
density of 1/3 and varying numbers of ICP iterations. After
five iterations the error is lower than 2◦ and less than one
third of the error of a single ICP iteration. The tracking
time increases linearly in the number of iterations. Figure 9
shows the posture error and tracking time for five ICP
iterations and varying subsampling values. The tracking time
is approximately 40 ms at a subsampling density of 1/3,
which facilitates sufficiently accurate tracking at approxi-
mately 25 fps.

Fig. 10. Example for posture estimation with incomplete data. The blue
points constitute the synthetically created input point cloud. The full-DoF
estimation (left) cannot correctly reconstruct the grasp posture because the
fingers in the input point cloud are partially occluded. The reduced-DoF
estimation (right) is able to reconstruct the posture despite the missing data.

PCA-constrained tracking: The main benefits of PCA-
constrained tracking are reduced computational complexity
and improved posture reconstruction in cases of incomplete
or ambiguous input data. To test this, we used a synthetic
sequence of a grasping motion, in which the fingers are
occluded by the back of the hand during the grasp and
thus disappear from the input data. We tracked this sequence
once with all DoFs and once with reduced DoFs based on
PCA of the grasp training data set. The number of principal
components (PCs) was chosen such that 99% of the variance
in the data set was covered, which resulted in five PCs. In
this experiment, the full-DoF tracking produced an average
posture error of about 12◦, whereas the reduced-DoF tracking
produced an average posture error of only about 4◦, despite
the severe self occlusions present. The full-DoF estimation
is less accurate because due to the partly missing corre-
spondence data for individual fingers, the model’s fingers
stop moving or collapse into the wrong part of the input
point cloud. The reduced-DoF estimation reconstructs the
input data more accurately because the employed synergies
cause the hand’s DoFs to move in correlation to each other.
This means that only some parts of the hand model need
explicit correspondence data in order to approach an accurate
reconstruction of the postures underlying the input. An
example of this can be seen in Figure 10.

Thanks to the reduced number of DoFs, our PCA-based
hand tracking improves runtime performance from 25 fps up
to 30 fps in our experiments.

Hierarchical single-frame estimation: Since our hand
tracking approach is dependent on temporal coherency in
the input data, cases in which a good posture initialization
is not known can be difficult to handle. The hierarchical
optimization scheme described in Section V-B alleviates this
dependency thanks to a coarse-to-fine estimation process. We
confirmed this experimentally by performing single-frame
posture estimation with and without hierarchical optimiza-
tion. The input data for this experiment were several frames
of distinct sign language gestures and the only initialization
given was the global pose of the hand. The data set used
for the PCA was the complete training set of recorded sign
language hand trajectories. To facilitate maximally accurate
reconstructions, we used the complete point cloud as input
and performed 10 non-rigid ICP iterations. In cases of highly
self-occluded input data it was impossible for the non-



(a) Hierarchical single-frame estimation

(b) Non-hierarchical single-frame estimation

Fig. 11. Example illustrating hierarchical and non-hierarchical single-frame
posture estimation. The blue points constitute the synthetically created input
point cloud. The hierarchical estimation successively approximates the input
posture with increasing DoFs (from left to right: initial state, 1 DoF, 4 DoF,
full DoF). The non-hierarchical estimation gets stuck in a local minimum
due to bad initial correspondences (left: initial state, right: full DoF).

hierarchical full-DoF estimation to produce accurate posture
reconstructions from a single frame, resulting in an average
posture error of approximately 22◦ over all input frames. On
the other hand, the hierarchical estimation arrived at an accu-
rate reconstruction for every posture, resulting in an average
posture error of approximately 0.4◦. The computation time
for each frame was about 10s. Figure 11 shows a compar-
ison between hierarchical and non-hierarchical single-frame
estimation for a specific posture example.

C. Real-Time Hand Tracking

In practice, most of the idealized conditions of our exper-
imental setup do not necessarily hold true, because the data
obtained from the Kinect sensor can be noisy and the virtual
hand model used for tracking usually does not perfectly
match the user’s real hand. We found that sensor noise did
not severely impair the tracking quality within the distance
of about 0.8 to 1.5 meters. To adjust to the hand sizes of
different users we changed the overall scale of the hand
model, which gave satisfactory results. This suggested that
the geometric details of the virtual hand model are not that
important during tracking, as long as the model’s overall
scale and proportions matched the user’s hand.

We furthermore found that using a simplified cylinder-
based hand model during tracking did not negatively affect
the tracking accuracy and sped up the correspondence search.
To evaluate the effect of using a cylinder hand model instead
of a triangle mesh, we compared the posture reconstruction
error using a cylinder model and the mesh model in our
evaluation framework. Using full-DoF tracking the average
posture error increased from approximately 2◦ to 4◦ using

the cylinder model. Using reduced-DoF tracking there was
virtually no difference in the posture error.

Figure 12 shows an example of a tracking sequence in
which the full-DoF posture estimation results in an unnatural
state due to a rapid hand motion causing incomplete sensor
data, whereas the reduced-DoF estimation results in a natural
approximation of the user’s hand. This illustrates the benefit
of performing the optimization in a reduced parameter space
based on natural hand synergies.

Our tracking system runs at approximately 25 fps with
full-DoF tracking and about 30 fps with (6 + 6)-DoF track-
ing in PC-space. A live performance of our real-time hand
tracking system is shown in the accompanying video.

VII. DISCUSSION

In our hand tracking approach, the hand posture is es-
timated using positional information from a Kinect point
cloud as geometric constraints to fit a virtual hand model by
means of inverse kinematics. The extension of the method
to allow for optimization in a dimensionally reduced PC-
space is simple and serves to constrain the parameter space
in a meaningful way. Using a varied set of motion capture
data as training data set facilitated the derivation of natural
hand synergies that covered a wide range of natural hand
movements.

Optimizing in a reduced PC-space as opposed to the high-
dimensional hand posture space improves runtime perfor-
mance and prevents implausible hand postures by constrain-
ing the estimation to realistic postures. These constraints can
reduce the mobility of the posture estimation to some extent,
but the overall tracking benefits from the increase in stability
and plausibility of the estimated hand postures, especially in
cases where the input data is incomplete or ambiguous.

The number of principal components needed to cover most
of the variance in the data depends on the number and type
of movements contained in the data set. The less varied the
captured movements are, the less parameters are needed to
represent the most meaningful hand synergies involved. This
simplifies the problem of tracking specific movements, such
as various types of grasping, to an optimization of only 2 or
3 posture parameters, but impairs the approximation of more
general hand movements.

By employing a hierarchical optimization scheme, we
are able to overcome the fact that low-DoF estimations
are limited by the postures contained in the ground truth
data. Our synergistic approach improves estimation quality
by explicitly including prior knowledge about the tracked
movements. If the types of movements are unknown prior to
tracking or a very general posture estimation is desired, our
purely IK-based approach yields satisfactory results unless
the input data is highly inconsistent.

The main bottleneck of our system currently is the corre-
spondence computation used in the non-rigid ICP optimiza-
tion. We are planning on replacing our current CPU-based
implementation with a GPU-based implementation. This way
the complete input point cloud can be used during the fitting



Fig. 12. Example hand tracking sequence. Top row: full-DoF posture estimation. Bottom row: reduced-DoF posture estimation. The full-DoF posture
estimation fails to correctly track the posture during a rapid hand movement. The ring and pinky fingers collapse into the same point cloud segment,
resulting in an unnatural posture. The reduced-DoF posture estimation has less mobility but maintains plausible hand postures across the whole sequence.

process without impairment of runtime performance, which
will further improve estimation accuracy.

The accuracy of the approximation of the user’s hand
posture also increases when the dimensions of the virtual
model closely match those of the user’s hand. We are in-
vestigating a calibration procedure that automatically adjusts
the virtual model’s structural parameters, such as scale and
finger segment lengths, to arbitrary hands.
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based inverse kinematics,” ACM Transactions on Graphics, vol. 23,
no. 3, pp. 522–531, 2004.

[20] A. Safonova, J. K. Hodgins, and N. S. Pollard, “Synthesizing phys-
ically realistic human motion in low-dimensional, behavior-specific
spaces,” ACM Transactions on Graphics, vol. 23, no. 3, pp. 514–521,
2004.

[21] D. Jacka, A. Reid, and B. Merry, “A comparison of linear skinning
techniques for character animation,” in In Afrigraph. ACM, 2007,
pp. 177–186.

[22] S. R. Buss, “Introduction to inverse kinematics with Jacobian trans-
pose, pseudoinverse and damped least squares methods,” 2009, unpub-
lished survey.

[23] S. R. Buss and J.-S. Kim, “Selectively damped least squares for inverse
kinematics,” Journal of Graphics Tools, vol. 10, no. 3, pp. 37–49,
2004.

[24] T. F. Chan and R. V. Dubey, “A weighted least-norm solution based
scheme for avoiding joint limits for redundant joint manipulators,”
IEEE Transactions on Robotics and Automation, vol. 11, no. 2, pp.
286–292, 1995.

[25] B. K. P. Horn, “Closed-form solution of absolute orientation using
unit quaternions,” Journal of the Optical Society of America A, vol. 4,
no. 4, pp. 629–642, 1987.

[26] J. Maycock, D. Dornbusch, C. Elbrechter, R. Haschke, T. Schack, and
H. Ritter, “Approaching manual intelligence,” Künstliche Intelligenz –
Issue Cognition for Technical Systems, vol. 24, no. 4, pp. 287–294,
2010.

[27] J. Maycock, J. Steffen, R. Haschke, and H. Ritter, “Robust tracking
of human hand postures for robot teaching,” in IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems (IROS), 2011, pp. 2947–2952.


