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Abstract
Recent approaches to real-time bare hand tracking estimate the hand’s pose and posture by fitting a virtual hand
model to RGBD sensor data using inverse kinematics. It has been shown that exploiting natural hand synergies
can improve the efficiency and quality of the tracking, by performing the optimization in a reduced parameter
space consisting of realistic hand postures [SMRB14]. The downside, however, is that only postures within this
subspace can be tracked reliably, thereby trading off flexibility and accuracy for performance and robustness.
In this paper we extend the previous method by introducing an adaptive synergistic model that is automatically
adjusted to observed hand articulations that are not covered by the initial subspace. Our adaptive model combines
the robustness of tracking in a reduced parameter space with the flexibility of optimizing for the full articulation
of the hand, which we demonstrate in several synthetic and real-world experiments.

Categories and Subject Descriptors (according to ACM CCS): I.4.8 [Image Processing and Computer Vision]: Scene
Analysis—Tracking

1. Introduction

Visual tracking of human hand movements is a problem that
has applications in many different areas, such as human-
computer interaction, character animation and robotics.
While there are several existing hand tracking solutions,
many of these are expensive, inconvenient, or lacking in ef-
ficiency. Other methods provide means for rough gestural
interaction based on consumer-level depth cameras, but the
recovery of the user’s hand articulation with full degrees of
freedom (DoFs) remains an ongoing research topic.

In a recent paper, Schröder et al. [SMRB14] presented a
method for real-time bare hand tracking using an RGBD sen-
sor, where the hand posture estimation was formulated as an
inverse kinematics (IK) problem based on iterative closest
point correspondences between the sensor point cloud and a
virtual hand model. They perform the IK optimization in a
reduced parameter space, which was obtained from a mo-
tion capture database containing human hand movements
using principal component analysis (PCA). Solving the IK
problem in this subspace reduces computational complexity
and constrains the tracking to realistic hand postures even in
cases of incomplete or ambiguous sensor data.

However, this subspace tracking is a trade-off between ro-
bustness and flexibility of the hand posture estimation. Hand
articulations that are not contained in the database cannot be
reconstructed during tracking. While a large amount of nat-
ural hand postures can be represented in a synergistic sub-
space, some hand articulation details are not captured.

In this paper we present an extension to the above method
that adds flexibility to the posture estimation while main-
taining the robustness of tracking in a synergistic subspace.
To this end we define an adaptive PCA model that is ad-
justed during real-time tracking to account for observed hand
articulations that are not covered by the initial parameter
subspace. We closely follow and extend the approach out-
lined in [LYYB13], where such an adaptive model was used
for real-time facial performance capture. By extending the
hand tracking method described in [SMRB14] by an adap-
tive PCA model we robustly combine the natural constraints
provided by subspace optimization with the flexibility of op-
timizing in the full parameter space.

2. Related work

Approaches to the hand posture estimation problem are
commonly classified as appearance-based [WP09, RKK10,
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WPP11] or model-based methods. In this paper we focus on
the latter only and refer the reader to [SMRB14] for more
details.

The model-based approach of Oikonomidis et
al. [OKA11, OKA12] produces solid results using particle
swarm optimization (PSO) and a Kinect camera, but had to
be optimized to run on a GPU due to its high computational
complexity. The PSO hand tracking method has since been
extended and combined with other tracking approaches,
such as marker-based mocap [ZCX12] and gradient-based
optimization [QSW∗14]. Other model-based approaches
propose sophisticated optimization frameworks to accu-
rately reconstruct the articulation of hands [dLGFP11]
or hands interacting with objects [BTG∗12, WMZ∗13],
but these methods are thus far not suitable for real-time
tracking.

Schröder et al. [SMRB14] exploit hand synergies by
performing the inverse kinematics in a PCA subspace of
motion captured hand movements. Similar concepts were
previously employed for synthesis of realistic human mo-
tion [GMHP04, CH05, ZZMC13, LWH00]. Using synergis-
tic concepts to reduce the DoFs of a virtual hand model, the
high computational complexity associated with model-based
tracking is reduced, while at the same time facilitating ro-
bust real-time bare hand tracking. However, hand postures
not contained in the database or not covered by the global
PCA subspace cannot be tracked reliably.

In this paper, we define an adaptive PCA model that can
adjust the synergistic subspace to previously unknown hand
articulations in real-time. This concept was used in a sim-
ilar fashion in [LYYB13] for real-time facial performance
capture in order to accurately adapt a blend-shape face
model to user-specific facial expressions. Using an adap-
tive PCA model we optimize the hand articulation in a low-
dimensional space that both constrains the estimation to re-
alistic postures while still allowing for high flexibility and
accuracy. We develop an incremental update of the adaptive
PCA subspace based on direct rank-one updates, which al-
lows for a highly efficient adaptation process.

Adaptive PCA extends the method of [SMRB14] in a
simple and efficient way by complementing the initial sub-
space model with a continuously updated local linear model.
While there are various other methods for linear or non-
linear local embeddings [UD08, RSH02], usually their per-
formance depends on the quality of model parameters or
they do not meet real-time requirements. Data-driven local
linear models were previously used for full-body motion
capture in [CH05,LZWM06]. Our method differs from these
approaches in that we aim to specifically model articulations
that are not present in the ground truth database.

In the following we briefly review the IK hand tracking
of [SMRB14], first using all DoFs (Section 3) and then the
reduced parameter subspace (Section 4), before presenting
our adaptive synergistic model in Section 5.

Figure 1: Virtual hand model with its control skeleton.

3. Inverse kinematics hand tracking

Our kinematic hand model consists of 16 joints, three for
each finger and one for the wrist (Figure 1). Its posture is
controlled by 20 joint angles, where each finger joint has
a flexion-extension angle and the fingers’ base joints each
have an additional abduction-adduction angle. In addition to
the 20 joint angles controlling the posture, the pose of the
hand is represented by 6 DoFs for the global translation and
rotation. In total we use a 26-dimensional kinematic param-
eter vector θ = (θ1, . . . ,θ26)

T to control the pose and pos-
ture of the hand. These parameters and the kinematic chain
of the joint hierarchy define the forward kinematics of the
hand model, which can be expressed in terms of a product of
affine transformations for each joint.

The geometry of the virtual hand model is composed of
capsule-shaped segments, which are rigidly transformed ac-
cording to the articulation of their corresponding joints, as
shown in Figure 1. A major advantage of simple capsule-
shaped segments is the efficient computation of point-to-
segment correspondences, which has to be performed many
times during the IK-based hand tracking.

The general tracking process is depicted in Figure 2. The
pose and posture of the user’s hand are estimated by fitting
the virtual hand model to the point cloud obtained from an
RGBD Kinect camera. In a preprocessing step, the hand is
segmented in the input point cloud by detecting skin-colored
pixels, omitting points whose coordinates are outside of a
predefined working volume, and uniformly sub-sampling the
detected hand pixels. The remaining points define the target
constraints {t1, . . . , tk} for the fitting process.

These target points are matched to their spatially closest
points pi on the surface of the hand model. Estimating the
hand articulation is then an inverse kinematics problem, in
which the k points pi = pi(θ) are regarded as effector posi-
tions (relative to the joint hierarchy and kinematic parame-
ters), which are subject to move towards their corresponding
target positions ti in the sensor point cloud.

To this end the pose is initialized by finding the best rigid
transformation between the target and effector points us-
ing the well known rigid iterative closest points (ICP) tech-
nique [BM92], based on the posture parameters from the
previous frame. Then the correspondences (ti,pi) are up-
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Figure 2: Schematic overview of the hand tracking process.

dated and used as input for the iterative IK-based pose and
posture estimation. During this process, the model parame-
ters θ are updated and the effector points pi(θ) are moved
according to the updated skeleton. This process is iterated
until the target-effector error converges, which usually takes
less than 10 iterations. The process of recomputing the corre-
spondences and solving the IK optimization is iterated sev-
eral times in a non-rigid ICP manner. As a result the vir-
tual hand model is aligned with the observation point cloud,
which yields the hand pose and posture estimation.

The core component of this hand tracking process is the
iterative optimization of model parameters θ given effec-
tor positions p = (p1, . . . ,pk)

T and their target positions by
t = (t1, . . . , tk)

T . The IK problem, t = p(θ), is solved by
finding a parameter update ∆θ to the current state θ in order
to minimize the objective function

E(∆θ) =
1
2
‖p(θ+∆θ)− t‖2 +

1
2
‖D∆θ‖2 . (1)

The first term penalizes the least squares error between the
effectors pi and their target positions ti. The second term
regularizes the under-determined problem by damping the
parameter update ∆θ with a diagonal matrix D. This damp-
ing is also used for joint limit avoidance (see [SMRB14]).

The objective function (1) is minimized using a Gauss-
Newton approach, where in each iteration a linear system is
solved for the parameter update:(

JT J+D
)

∆θ = JT (t−p(θ)) , (2)

where J= ∂p
∂θ

is the (3k×26) Jacobian matrix of the effector
positions [Bus09]. This update ∆θ has to be scaled to guar-
antee convergence. As mentioned above, the Gauss-Newton
minimization typically converges after 5–10 iterations.

Performing the IK optimization for all 26 kinematic
parameters during the tracking process closely aligns the
model with the observed sensor data with high freedom of
movement. However, if the sensor data is incomplete, am-
biguous or noisy, the computed point correspondences can
be unreliable and the optimization can therefore result in in-
accurate or unnatural hand posture reconstructions.

4. Optimization in PCA subspace

To overcome the above problem of full-DoF tracking, the
space of possible hand postures can be reduced in a mean-
ingful way by using hand synergies obtained from a PCA
of real human hand posture data. Schröder and colleagues
obtained such a dataset by capturing a high variety of hu-
man hand movements using a Vicon motion tracking sys-
tem [SMRB14].

Performing PCA on the set of 20-dimensional posture
data (the 6D pose is not considered for dimensionality re-
duction) and subsequently choosing the eigenvectors corre-
sponding to the l largest eigenvalues yields a 20× l ma-
trix of principal components, P. The conversion matrix M
that maps from the reduced (6+ l)-dimensional principal
component-space (PC-space) to the (6+20)-dimensional
parameter space has to consider both pose and posture:

M =

(
I 0
0 P

)
, (3)

where I is the 6× 6 identity matrix passing through the
global pose parameters (θ1, . . . ,θ6). The full parameter vec-
tor θ ∈ R26 can then be computed from the reduced PC-
space parameters α ∈ R6+l as

θ = Mα+µ, (4)

where µ ∈ R26 is the mean of the database postures. Given
this mapping, the forward kinematics of an effector point
pi can be written as a function of the PC-space parameters:
pi = pi(α) = pi(θ(α)). Optimizing the posture by mini-
mizing the objective function (1) in PC-space requires the
3k× (6+ l) Jacobian matrix of the effector positions w.r.t.
the PC-parameters α, which due to the chain rule is

JPC :=
∂p
∂α

=
∂p
∂θ
· ∂θ

∂α
= J ·M.

The PC-space parameter update ∆α is obtained by replacing
J by JPC and D by an analogous (6+ l)× (6+ l) damping
matrix in the Gauss-Newton iterations (2).

This facilitates hand tracking as described in Section 3 in
the reduced PC-space, which naturally constrains the esti-
mated hand postures to those represented by linear combi-
nations of the PCs of the posture database. While this im-
proves robustness and performance, it inherently restricts
tracking flexibility to a subset of the movements contained in
the database. In [SMRB14] a hierarchical optimization was
proposed, in which the optimization in a low-dimensional
parameter space was followed by local refinements in higher
dimensional spaces. While giving good results, this method
is not suitable for real-time tracking, firstly due to high com-
putational cost and secondly because the method did not take
advantage of temporal coherence, as the local refinements
outside of the low-dimensional synergistic subspace were
lost across frames, requiring a high number of ICP iterations.
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Figure 3: Online adaptation of the adaptive PCA model.

5. Online adaptive PCA model

To overcome the limitations related to optimizing the hand
posture in a reduced parameter space, we define an adaptive
PCA model. This model can be automatically modified to
account for newly observed postures which cannot be repre-
sented within the initial PCA subspace. To this end, the PC
space conversion matrix M defined in (3) is extended by d
columns corresponding to adaptive PC basis vectors, result-
ing in the 26× (6+ l +d) subspace matrix

MA =

(
M 0

C

)
=

(
I 0 0
0 P C

)
, (5)

where I is the 6× 6 identity matrix, P is the 20× l ma-
trix containing the original principal components and C is
a 20×d matrix containing the “adaptive columns”, which
by construction will lie in the null space of P.

Following the terminology of [LYYB13], we refer to P
as the anchor matrix and C as the corrective matrix. The
anchor matrix remains fixed and prevents gradual drift of
the PCA model, whereas the corrective matrix is adaptive
and represents the observed hand articulations that cannot be
represented in the anchor space spanned by M. The number
of corrective dimensions d depends on the desired flexibility
of the adaptive model (see Sections 5.2 and 5.3).

The inverse kinematics posture estimation can be per-
formed in the extended adaptive PC space by using the Ja-
cobian matrix JA = J ·MA and an analogously extended
damping matrix in the Gauss-Newton process (2). The on-
line adaptation of the corrective matrix C takes place after
the non-rigid ICP process, during which the hand posture is
estimated using the current subspace matrix MA in the in-
verse kinematics optimization. Figure 3 gives a schematic
overview of the adaptation process.

At the beginning of the adaptation procedure, the posture
estimate from the current subspace MA is refined by an addi-
tional IK optimization in the full 26-dimensional parameter

space. This aligns the model more closely with the observed
point cloud and thereby captures details of the user’s hand
articulation that cannot yet be represented in the adaptive PC
space. Since the full-DoF IK optimization starts from a good
initial guess (the subspace IK result), it robustly improves
the posture low-DoF estimate. The result of this refinement
is an updated parameter vector θ̂ ∈ R26.

Based on this refined posture we compute the anchor
space residual ŝ as the orthogonal projection of the refined
posture θ̂ onto the complement of the anchor space:

ŝ =
(

I−MMT
)(

θ̂−µ
)
. (6)

As the leading six pose DoF entries of ŝ = (s1, . . . ,s26)
T are

zero by construction, we only consider the vector of joint an-
gle residuals s = (s7, . . . ,s26)

T in the following. Intuitively,
the residual vector s represents those aspects of the refined
posture that lie outside of the initial PC subspace P. A new
residual sample s is considered valid if ‖s‖ (the distance
of the refined posture from the anchor space) is above a
threshold smin (significant improvement) and below a thresh-
old smax (no outlier). In this case, it is stored in a FIFO
ring buffer matrix S = (s1, . . . ,sN). We use validity bounds
smin = 0.1 and smax = 3 and a buffer size of N = 250.

Once the buffer is full, i.e., N frames contributed signifi-
cant residuals, the corrective matrix C can be computed by
performing PCA on the sample matrix S. Standard meth-
ods for PCA compute an eigenvector decomposition of the
data covariance, e.g. by singular value decomposition (SVD)
of the data matrix, or eigenvalue decomposition (EVD) of
the covariance matrix itself. While the former is numerically
more accurate, we found that the latter generally has better
run-time performance for the rather tall N× 20 matrices in
our context. However, neither method scales well with the
size of the data matrix (see Table 1).

In the following, we focus on PCA computed by EVD
of the sample covariance. The covariance matrix K of the
sample matrix S is defined as

K =
1
N

N

∑
i=1

(si− s)(si− s)T , (7)

where s = ∑
N
i=1 si/N is the mean of the sample points. This

sum of outer products involves many numerical calculations
and can impact performance significantly for large N. Since
we need to update the corrective matrix for every new in-
coming sample si, this way of performing PCA can cause a
performance bottleneck. In the following, we explore alter-
native methods for performing PCA in order to compute the
corrective matrix C efficiently.

5.1. Computation of the corrective matrix

In [LYYB13] the iterative expectation maximization (EM)
algorithm for PCA presented in [Row98] was used to com-
pute the corrective matrix more efficiently. This algorithm
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progressively updates an approximation of a dataset’s PC
subspace given only a limited number of sample points at a
time. A single EM iteration for updating the corrective ma-
trix involves the following calculations:

1. E-step: Y = (CT C)−1CT S
2. M-step: C = SYT (YYT )−1

These steps are iterated several times before orthonormaliz-
ing the result C. While this method can outperform standard
PCA methods in some cases, it still involves many numeri-
cal operations and calculations, including a matrix orthonor-
malization, and needs to be iterated 3–4 times to converge
[Row98], which altogether diminishes the run-time benefits
in our application context, making it perform slightly worse
than EVD PCA for large N (see Table 1).

It can be observed that for larger N the cost of the EVD
PCA method is dominated not by the 20× 20 eigenvector
decomposition of K, but instead by the computation of the
matrix K itself as in (7), which scales linearly with N.

In contrast, we exploit the incremental nature of the adap-
tation process by revising the computation of the covariance
matrix K in such a way that allows us to efficiently update
the covariance in an incremental way, given a single new
corrective sample at a time. The method we propose below
results in constant costs for computing K and its eigenvector
decomposition—independent of the buffer size N.

We achieve this goal by rewriting the definition of the co-
variance matrix K in a way that allows for an incremental
adaptation based on rank-one updates. Expanding the outer
products in (7) yields

K =
1
N

N

∑
i=1

(si− s)(si− s)T

=
1
N

N

∑
i=1

[
sisT

i − sisT − ssT
i + s sT

]
=

1
N

[
N

∑
i=1

sisT
i −

(
N

∑
i=1

si

)
sT − s

N

∑
i=1

sT
i +N s sT

]

=
1
N

[
N

∑
i=1

sisT
i −N s sT −N s sT +N s sT

]

=
1
N

[
N

∑
i=1

sisT
i

]
− s sT . (8)

Based on this expression, the mean and covariance of the
sample points are decoupled, allowing us to directly and sep-
arately update them given a single new sample point at a
time. Once the sample buffer S is full, the mean s and the
covariance K are explicitly initialized by computing (7). Af-
ter this, each subsequent incoming sample sin replaces an old
sample sout in the FIFO ring buffer matrix S. The two sam-

PCA method N = 100 N = 500 N = 1000
Jacobi SVD 125µs 272µs 477µs
EVD 60µs 119µs 198µs
Exp. Max. 54µs 137µs 254µs
Inc. cov. (ours) 35µs 35µs 35µs

Table 1: Run-times for the corrective matrix update using
different PCA methods for varying sample buffer sizes. PCA
using SVD, EVD and EM scale poorly with increasing buffer
sizes, whereas our method runs in constant time.

ples are then used to directly compute the updated mean s′

and covariance K′ in an incremental way:

s′ = s+ sin

N
− sout

N
(9)

K′ = K+
sin sT

in
N
− sout sT

out
N

+ s sT − s′s′T . (10)

Update (9) shifts the mean according to the incoming and
outgoing samples and update (10) is a series of rank-one up-
dates to the covariance matrix derived from (8), which can be
computed efficiently in a single loop. Finally, the new cor-
rective matrix C is obtained by performing eigenvalue de-
composition of the updated covariance matrix K′.

This computation of the corrective matrix is independent
from the size N of the buffer matrix S and therefore allows
for an efficient update of the adaptive model in constant time
given a single new sample. The computational cost of the up-
date is dominated by the eigenvalue decomposition. Table 1
lists average run-times for PCA using SVD, EVD, expecta-
tion maximization, and our incremental covariance method
and shows the latter to outperform the previous methods.

We note that it is also be possible to directly update the
EVD of K or the SVD of S after rank-one modifications
[BNS78, Bra06], but our approach is more straightforward
to implement and provides a significant improvement over
non-incremental methods with only minor algorithmic mod-
ifications.

5.2. Continuous tracking in adaptive space

The adaptive PCA model allows us to perform local posture
refinements after fitting in a reduced PC space without losing
temporal coherence. Since increasing the buffer size does not
negatively impact run-time performance, we can choose a
large buffer size containing a long history of samples. How-
ever, while using a long history captures more details miss-
ing from the anchor space, it can cause the adaptive PCA
model to drift from the initial synergistic model, which can
compromise the plausibility of the reconstructed postures.
As our tracking system runs at approximately 25 fps, a sam-
ple buffer size of N = 250 captures a history of new postures
for approximately ten seconds, which can fully account for
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the local refinements and additionally captures hand artic-
ulation details that are not present in the initial synergistic
subspace in a robust way.

The analysis of hand postures in [SMRB14] shows that
90% of the variance of a dataset of highly varying hand pos-
tures can be represented by six PCs and 90% of the vari-
ance of specific hand movements, such as grasping, can be
covered by as little as three PCs. Based on these findings
we use l = 3 dimensions for the initial PC subspace and
d = 3 corrective dimensions for continuous tracking with the
adaptive PCA model. Using more corrective dimensions in-
creases flexibility but comes at the price of losing robustness
(see Section 6). Less than three corrective dimensions cause
the estimation to be driven mostly by the initial PCs.

5.3. Learning a synergistic model by demonstration

Beyond capturing local posture refinements, the adaptive
PCA model can be used to generate a synergistic model
from scratch, as an alternative to relying on a pre-recorded
database of human hand postures. To this end, the user
demonstrates individual hand movements in a training
phase, during which the adaptive model learns the correc-
tive DoFs that represent these movements. Then, the anchor
space is incrementally expanded to include the trained cor-
rective dimensions.

In the beginning of the learning process, the anchor matrix
P should be initialized with a single manually defined hand
posture. After training the adaptive model by demonstrat-
ing a certain new hand movement, the anchor space can be
expanded by joining the anchor matrix P with the corrective
matrix C and re-initializing the adaptive model with this new
anchor space. As only isolated movements are demonstrated
during the training phase, it is sufficient to use d = 1 new
corrective dimension at a time. Alternatively, more correc-
tive dimensions can be used during training to capture more
involved movements and learn multiple synergistic DoFs si-
multaneously.

6. Results

In the following we show results of our hand tracking sys-
tem. We first compare the accuracy achieved by the adaptive
PCA model to that of a non-adaptive method based on syn-
thetic input data. Then, we provide experimental results of
our real-time tracking system using a Kinect camera.

6.1. Evaluation with synthetic data

We evaluate the accuracy of our posture reconstruction by
using synthetically generated input point clouds based on
known ground truth posture data. The virtual hand model
was animated using this posture data and synthetic depth im-
ages were generated from a rendering of the virtual hand.
These depth images were then used as input for our tracking
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Figure 4: Posture reconstruction accuracy using the full 26-
dimensional parameter space (left), reduced space with 6
PCs (center), and adaptive subspace with 3 anchor DoFs
and 3 corrective DoFs (right). The blue points show the in-
put point cloud for one specific frame. The error values are
averages over the entire synthetic sequence.

method. The synthetic images were particularly designed to
include a high amount of self-occlusions during complex fin-
ger movements.

The generated image sequences were tracked in multiple
runs, varying the optimization method (full-DoF, reduced
PC-space, adaptive PC-space). For all methods, we mea-
sured the difference between the postures generated by our
system and the known ground truth postures by computing
the average joint angle error. Additionally, we report the av-
erage distance between the sensor point cloud and their cor-
responding points on the hand model surface.

Figure 4 shows exemplary results of this evaluation. For
the depicted posture the standard full-DoF optimization pro-
duces an inaccurate posture reconstruction due to highly oc-
cluded data, which cause bad correspondences. The reduced-
DoF IK approximates the ground truth posture more accu-
rately, but due to the inflexibility of the PC-space the hand
model is not closely aligned with the point cloud. Our adap-
tive PCA model produces a result that is closer to the ground
truth posture. The average error values over the whole syn-
thetic sequence (Figure 4, bottom) reflect these properties of
the different optimization methods. The full-DoF estimation
is the least accurate in terms of posture recovery, although
producing low constraint errors (partly due to wrong cor-
respondences). The adaptive model combines flexible and
accurate reconstruction of the hand animation with the ro-
bustness of PC-space optimization.
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Figure 5: Tracking results with Kinect input. The full-DoF estimation cannot correctly recover the middle posture due to self-
occlusions. Estimation in the reduced PC-space yields a plausible result in spite of these occlusions, but lacks the flexibility to
accurately recover the upper and lower postures. Estimation in the fixed PC-space with subsequent refinement cannot recover
the lower posture due to the inaccurate PC-space initialization. Our adaptive model successfully recovers all postures.

When using an adaptive model with d = 6 corrective DoFs
instead of d = 3, the average constraint error slightly de-
creases from 5.5 mm to 5 mm, but the average posture error
increases from 8.2◦ to 9.4◦. This indicates that the flexibility
gained by additional corrective DoFs comes at the price of
lower estimation quality when incomplete sensor data pro-
duces unreliable correspondences.

6.2. PCA and refinement without adaptive model

Our adaptive method continuously updates the PCA sub-
space to account for deviations from the fixed PCA model,
allowing previously unknown observed postures to be incor-
porated in a temporally coherent way. Performing local pos-
ture refinements without subsequently adapting the subspace
causes the estimation to be mainly driven by the fixed PCA
model, which can produce inaccurate results in cases of un-
known hand articulations.

Figure 5, bottom row shows an example where the input
hand posture cannot be accurately represented in the fixed
PCA subspace (third column). Subsequent full-DoF refine-
ment of the posture based on this initialization without an
adaptive model reaches an incorrect local minimum (fourth
column). In contrast, estimation with an adaptive model re-
produces the input posture well (fifth column), because the
adaptive subspace was robustly updated according to the re-
fined observations during the previous frames.

6.3. Experimental results using a Kinect camera

Our tracking system is deployed on an Octa-Core Intel
Xeon(R) E5-1620 CPU at 3.60GHz with 8 GB of RAM. Our
implementation is heavily parallelized and fully utilizes all
eight cores during the correspondence search and the con-
struction of the Jacobian matrix. The tracking system runs
at approximately 25 fps. The PCA adaptation procedure in-
volving the full-DoF posture refinement and the computa-
tion of the corrective matrix usually takes less than 5 ms to
complete and therefore does not negatively impact run-time
performance.

Figure 5 shows examples comparing the hand posture
reconstruction using the full-DoF, reduced PC-space, re-
duced PC-space with subsequent refinement and adaptive
PC-space optimization for point clouds from a Kinect cam-
era. Our camera setup is arranged with a top-down view of
the workspace, which contains minimal clutter to facilitate
robust segmentation of the user’s hand. A live performance
of our tracking system is shown in the accompanying video.

7. Discussion

We presented a hand tracking method that fits a virtual hand
model to an RGBD sensor point cloud by performing an in-
verse kinematics optimization in an adaptive reduced syner-
gistic parameter space. Using an adaptive PCA model con-
strains the estimation to realistic hand postures while simul-
taneously allowing for continuous hand articulation refine-
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ments. The direct modification of the corrective matrix based
on incremental rank-one updates during the online adap-
tation of the PCA model is efficient and generally useful
for applications related to dimension reduction. The over-
all quality of the results indicates applicability in fields like
character animation and robotics.

Future work includes the acceleration of the closest point
search and Jacobian construction with an optimized GPU-
based implementation. The resulting performance improve-
ments will allow for increased input point cloud density
and usage of sensors with higher frame-rate and resolution,
which will in turn improve the quality of our refinement
and adaptation process. While a higher frame-rate requires
a larger buffer size N for our adaptive PCA model in or-
der to cover the same time span, this will not negatively
impact run-time performance, since our incremental adap-
tation method is independent from the buffer size N. The
overall tracking quality could be further improved by com-
bining our gradient-based approach with discriminative and
probabilistic methods.
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