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Summary. The adaptation of an existing volumetric simulation mesh to up-
dated parameters of the underlying CAD geometry is a crucial component
within automatic design optimization. By avoiding costly automatic or even
manual (re-)meshing it enables the automatic generation and evaluation of
new design variations, e.g., through FEM or CFD simulations. This is partic-
ularly important for stochastic global optimization techniques—such as evo-
lutionary algorithms—which typically require a large number of design vari-
ations to be created and evaluated. In this paper we present a simple yet
versatile method for high quality mesh morphing. Building upon triharmonic
radial basis functions, our shape deformations minimize distortion and thereby
implicitly preserve shape quality. Moreover, the same unified code can be used
to morph tetrahedral, hexahedral, or arbitrary polyhedral volume meshes. We
compare our method to several other recently proposed techniques and show
that ours yields superior results in most cases.
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1 Introduction

Simulation-based fully automatic design optimization is becoming a corner-
stone of the product development process of the automotive industry, aircraft
construction, and naval architecture. A key component to the successful and
efficient application of such an optimization process is the ability to adapt an
existing volumetric simulation mesh according to an updated CAD geometry.
The importance of such an automatic component is increased further when
dealing with complex geometries that prohibit automatic mesh generation and
require manual interaction by an expert instead, and/or when using stochastic
global optimization techniques that require a large number of design variations
to be created and evaluated in order to find the optimum.
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The adaptation of an existing simulation mesh is addressed by mesh mor-
phing or mesh warping: Given an initial CAD surface G and a volumetric mesh
M of that geometry, a shape variation G 7→ G′ is generated by modifying the
geometric embedding of G while keeping its topology fixed. Mesh morphing
then adapts the meshM such that the updated versionM′ conforms to the
updated boundary surface G′. Analogously to the CAD modification, only the
geometric embedding ofM (i.e., its node positions) is modified in this process,
while the mesh topology (i.e., its connectivity) stays fixed.

Mesh morphing techniques aim at preserving the element quality as much
as possible, thereby allowing for as large as possible geometric changes before
inevitably requiring some remeshing due to element inversion. Staten and
coworkers recently proposed and evaluated several mesh morphing techniques,
which they compared with respect to computational performance and element
quality on different tetrahedral and hexahedral meshes [26].

Motivated by the work of Staten et al. [26], building on their results,
and contributing to their benchmarking comparisons, we present and evalu-
ate a meshless morphing technique based on triharmonic radial basis functions
(RBFs). Our method yields highly smooth space warps that minimize distor-
tion and thereby preserve element quality. While being computationally more
expensive, our method offers the following compelling advantages: It is easy
to understand and straightforward to implement; it can be applied to tetrahe-
dral, hexahedral, or general polyhedral meshes; and finally, it more robustly
achieves higher quality results.

2 Related Work

The recent comparison of mesh morphing methods published by Staten and
colleagues [26] constitutes the starting point for our investigation. Based on
a set of test scenarios involving varying complexity and topology the au-
thors benchmark several techniques for warping volume meshes. Besides in
the meshing community, mesh morphing or mesh deformation methods have
also been a subject of intensive research in computer graphics. Within both
fields the different morphing approaches can roughly be classified into four cat-
egories: methods based on generalized barycentric coordinates, mesh smooth-
ing techniques, mesh-based variational methods that minimize certain fairness
energies, and meshless warping approaches. Most techniques assume the up-
dated positions of boundary nodes to be given and compute the new locations
of interior nodes from these boundary constraints.

Approaches based on barycentric coordinates determine the interior nodes
as a linear (affine or convex) combination of the boundary nodes through a
generalization of linear barycentric interpolation [28]. Examples are Wachs-
press coordinates [29], mean value coordinates [8], harmonic coordinates [14],
and maximum entropy coordinates [27, 12]. The simplex-linear method of [26],
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being a generalization of BMSWEEP [25], as well as its extension to natu-
ral neighbor interpolation [24], can also be associated to this category. While
these approaches typically have simple geometric constructions and therefore
are easy to implement and efficient to compute, the resulting morphs might
not be smooth enough to reliably preserve element quality.

Mesh smoothing methods adjust interior node locations in order to explic-
itly optimize the quality of mesh elements [15, 23, 16], where the Mesquite
framework [6] offers implementations based on mean ratio, untangling, and
matrix condition number [15]. In the context of mesh warping the updated
boundary nodes act as fixed constraints while the interior nodes are deter-
mined by the optimization process. The mesh smoothing methods evaluated
in [26] worked well for small geometric changes, but were lacking robustness
for larger scale modifications. In comparison, the LBWARP method [23], a
weighted Laplacian smoothing based on the log-barrier technique, gives con-
siderably better results, but is computationally more complex.

Mesh-based variational methods compute smooth harmonic or biharmonic
deformations by solving Laplacian or bi-Laplacian systems [2, 11], which is
numerically more robust than most mesh smoothing techniques. The finite
element-based FEMWARP technique [2], which computes a harmonic defor-
mation, was generalized from tetrahedra to hexahedra in [26], and turned out
to be the most successful approach in Staten’s benchmarks. Note that har-
monic coordinates [14] (see above) are closely related to these approaches,
since they are also derived by solving a Laplacian system. The boundary
nodes’ harmonic coordinate functions can be thought of as “response func-
tions” of the Laplacian PDE. While the morphs produced by mesh-based
variational methods tend to preserve element quality very well, they have to
be custom-tailored to each mesh type (e.g., tetrahedral or hexahedral).

In contrast, meshless morphing techniques avoid this limitation by com-
puting a space warp d : IR3 → IR3 that deforms the whole embedding space,
thereby implicitly deforming each node of the mesh M. After the initial
freeform deformation (FFD) paper [22], many variants and extensions have
been proposed. We refer the reader to the survey papers [3, 20, 10], which fo-
cus on mathematical formalisms for the different methods, on the interactive
manipulation by a designer, and on shape deformation in the context of aero-
dynamic design optimization, respectively. However, spline-based FFD does
not offer the same degree of smoothness as harmonic or biharmonic morphs,
and it requires a rather tedious lattice setup.

We propose to combine the advantages of meshless approaches and mesh-
based variational methods by using triharmonic radial basis functions (RBFs)
for mesh morphing [4, 5, 13, 18]. Our RBF space warps are easy to setup
and compute, can handle arbitrary polyhedral meshes, and offer a degree of
smoothness equivalent or even superior to mesh-based variational techniques.
Moreover, we show that the same concept can not only be employed for mor-
phing the volumetric simulation mesh (Section 3), but also for morphing the
updated surface node locations (Section 4).
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3 RBF Volume Morphing

The input of the volume morphing are the surface nodes {s1, . . . , sm} and
interior volume nodes {v1, . . . ,vn} of the initial mesh M, as well as the de-
formed surface nodes {s′1, . . . , s′m} ofM′, where the si and s′i conform to the
CAD geometries G and G′, respectively. The goal is to find updated volume
node positions {v′

1, . . . ,v
′
n}, such that the element quality of the morphed

meshM′ is as good as possible.
Employing a space deformation approach, we treat the volume morphing

as an abstract scattered data interpolation problem. We are looking for a de-
formation function d : IR3 → IR3 that (i) exactly interpolates the prescribed
boundary displacements d(si) = (s′i− si) and (ii) smoothly interpolates these
displacements into the mesh interior. Radial basis functions (RBFs) are well
known to be suitable for solving this type of problem [30]. An RBF defor-
mation is represented as a linear combination of radially symmetric kernels
ϕj(x) = ϕ(‖xj − x‖), located at centers xj ∈ IR3 and weighted by wj ∈ IR3,
plus a linear polynomial that guarantees linear precision:

d(x) =

m∑
j=1

wjϕj(x) +

4∑
k=1

qkπk(x) , (1)

where {π1, π2, π3, π4} = {x, y, z, 1} is a basis of the space of linear trivariate
polynomials, weighted by coefficients qk ∈ IR3. Note that the polynomial term
is important, since it guarantees to find the optimal affine motion (translation,
rotation, scaling) contained in the prescribed displacements si 7→ s′i.

The choice of the kernel function ϕ : IR→ IR has a significant influence on
the quality of the deformation. We propose to choose ϕ(r) = r3, which by con-
struction results in a triharmonic deformation function (i.e., ∆3d = 0), since
the RBF kernels ϕj are fundamental solutions of the tri-Laplacian equation.
As a consequence, the RBF deformation minimizes the fairness energy [30]∫∫∫

IR3

∥∥∥∥∂3d∂x3

∥∥∥∥2 +

∥∥∥∥ ∂3d

∂x2∂y

∥∥∥∥2 + . . .+

∥∥∥∥∂3d∂z3

∥∥∥∥2 dx dy dz. (2)

Because of this our RBF deformations are even slightly more smooth than the
mesh-based harmonic or biharmonic morphs mentioned above. Compared to
a biharmonic RBF warp (ϕ(r) = r) the triharmonic morph indeed turned out
to provide a better element quality preservation in our experiments.

Satisfying the interpolation constraints d(si) = (s′i − si) amounts to plac-
ing RBF kernels at the constraint positions (i.e., xj = sj) and finding the
coefficients wj and qk by solving the (m+ 4)× (m+ 4) linear system
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ϕ1(s1) · · · ϕm(s1) π1(s1) · · · π4(s1)
...

. . .
...

...
. . .

...

ϕ1(sm) · · · ϕm(sm) π1(sm) · · · π4(sm)

π1(s1) · · · π1(sm) 0 · · · 0
...

. . .
...

...
. . .

...

π4(s1) · · · π4(sm) 0 · · · 0





wT
1

...

wT
m

qT
1

...

qT
4


=



(s′1 − s1)T

...

(s′m − sm)T

0
...

0


. (3)

After solving this linear system we can compute the morphed meshM′ by
simply evaluating the RBF deformation at each volume node: v′

i = vi+d(vi).
This part can easily be parallelized and therefore is highly efficient. The com-
putationally most expensive part is the solution of the linear system (3), which
is dense due to the global support of ϕ(r). While there are advanced techniques
for efficiently solving this kind of systems, such as multipole expansion, multi-
level approximation, or greedy center selection schemes [7, 30, 18], this was
not necessary in all our test cases. Since most CAD geometries G and their
corresponding volume meshes M are constructed from several solid compo-
nents, we can simply perform the volume morphing individually for each of
these (reasonably small) components. In all our examples this could be done
using a standard dense linear system solver from the LAPACK library [1].

4 Surface Morphing

In order to establish a common baseline for comparison the benchmark tests
of Staten and colleagues [26] were all based on the same surface morphing, i.e.,
they all shared the same boundary surface nodes for M and M′. However,
while the quality of our RBF volume morphing alone is already promising,
the whole volume morph is completely determined by (and hence its quality
is bounded by) the surface morph, i.e., the surface node positions s′i ∈M′. In
order to further improve the quality of our results we propose a high quality
surface morphing method that is also based on triharmonic RBFs.

Since the topology of the CAD surface G is assumed to stay constant, there
is a one-to-one correspondence between the faces, curves, and corner vertices
of G and G′. Staten and colleagues exploit this fact for morphing curves: For
each curve node ci ∈ M, which is associated to a curve f : IR → IR3 of the
initial geometry G, they find the parameter value u such that ci = f(u) and
compute the morphed node as c′i = f ′(u), where f ′ ⊂ G′ is the morphed
curve corresponding to f ⊂ G. The morphed curves then act as boundary
constraints for morphing the surface nodes, which was performed using either
mesh smoothing or the weighted residual technique [26]. Both, however, lead
to a certain amount of distortion or even inverted surfaces triangles, which in
turn negatively impacts the volume morphing.
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In our approach we extend the curve morphing idea to the surface case:
For each surface node si we find its corresponding face f : IR2 → IR3 and its
(u, v)-parameters, and define the morphed surface node as the corresponding
point on the morphed face f ′(u, v). We first describe how to find the (u, v)-
parameters of a surface node si, before explaining the actual mapping from f
to f ′.

Given a surface node si, finding its corresponding face f and (u, v) param-
eters in theory amount to projecting si onto each face fk ∈ G and selecting the
closest one. Although this functionality is offered by most CAD kernels (Open-
CASCADE [19] in our case), in practice these projections are both compu-
tationally intensive and numerically instable for complex, trimmed faces. We
address both problems by densely sampling the CAD surface G, which requires
only robust and efficient evaluations and results in samples xj = fk(uj , vj).
For each surface node si we then find its closest sample point xj and project si
onto fk with (uj , vj) as initial guess. When storing the samples (xj , uj , vj , k)
in a kD-tree [21], finding the closest sample for a given si takes less than
0.01ms for a very dense sampling of about 15M sample points. This approach
significantly improved the efficiency and robustness of the projections.

After finding the face f and the (u, v) parameters, the node si has to be
moved to the corresponding point on the morphed CAD face f ′. This part is
more challenging than for the curve case, since the geometric embedding of a
face f : Ω → IR3 can be changed in two ways: (i) by modifying its geometric
parameters, e.g., spline control points or cylinder radii, and (ii) by changing its
parameter domain Ω, e.g., by adjusting its trimming curves. While (i) simply
amounts to evaluating f ′ instead of f , (ii) requires to morph the parameter
values (u, v) ∈ Ω to (u′, v′) ∈ Ω′.

In order to morph the parameter values to the updated parametric domain
we exploit the versatility of our approach and construct a 2D triharmonic RBF
deformation function dk : IR2 → IR2 for each face fk of the CAD model. To
this end we uniformly sample the (u, v)-boundary curves of the faces fk and
f ′k, resulting in 2D point samples {c1, . . . , cn} ∈ Ω and {c′1, . . . , c′n} ∈ Ω′.
Compared to the 3D case (1), computing the 2D triharmonic warp requires
only minor changes: The 2D triharmonic kernel is ϕ(r) = r2 ln(r), the poly-
nomial part consists of the basis {π1, π2, π3} = {x, y, 1}, and the coefficients
wj ,qk are two-dimensional. With these changes, and replacing si by ci, a lin-
ear system analogous to (3) is solved for the RBF warp dk. After performing
the parameter warp (u′, v′) = (u, v) + dk(u, v) the morphed surface node can
be computed as s′i = f ′k(u′, v′).

This method is easy to compute and produces high quality surface warps
of minimal parametric distortion. Thanks to its meshless nature, it can be
applied to all kinds of faces, such as simple non-trimmed rectangular faces,
trimmed faces with curved boundaries, as well as faces with trimmed holes
(see Bore and Pipe examples in the next section).
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5 Results

In this section we compare our mesh morphing technique to the results recently
published in [26]. The examples include meshes of varying topology, including
structured and unstructured hexahedral as well as tetrahedral meshes. The
complexity of the models ranges from ∼10-15k vertices for the Bore and Pipe
models up to ∼130k vertices for the Courier model. The Canister model used
in [26] was not available to us. A detailed description of the different geomet-
ric parameters for each model and how they are modified is given in [26]. We
restrict our comparison to those methods that either delivered the best results
(FEMWARP and LBWARP), or that were recommended by the authors for
sake of simplicity and efficiency (Simplex-linear). In order to ensure compara-
bility of the results we also measure element quality based on the scaled Ja-
cobian as described in [15]. For our RBF volume morphing, we include results
for both the original surface node locations from [26] (denoted RBF) as well as
those obtained by our surface morphing (denoted RBF-S). Following [26] we
investigate two different types of morphing—relative and absolute morphing.
In the former case the mesh is updated incrementally from the initial design
until the full parameter change is reached. In the latter case the initial mesh
is directly warped to the corresponding parameter change. In the following
subsections we present detailed results for the individual test cases. Selected
cut-views of morphed volume meshes highlighting regions being particularly
sensitive to degenerated elements are shown in Figure 8.

5.1 Bore Model

The change of parameters in the Bore model tests the ability of the different
methods to deal with scaling and rotation. An example morph from the initial
mesh to the full parameter change is shown in Figure 1. As can be seen from
Figure 2, our method is on par with or better than the FEMWARP and
LBWARP methods. We note that the element inversion after 75% parameter
change in case of the tetrahedral model is due to a defect in the morphed
surface mesh of [26]. By using our more robust surface morph we are able to
perform both the relative and the absolute morph up to a parameter change
of 100% without any inverted elements.

5.2 Pipe Model

The change of parameters in the Pipe model tests the ability of the different
methods to deal with nonlinear stretching. The initial and final shapes are
illustrated in Figure 4. The detailed results are given in Figure 5. While our
method provides superior results on the hex model, those on the tetrahedral
model are comparable. However, in contrast to other methods ours does not
result in inverted elements at 95% parameter change for the absolute morphing
of the tetrahedral model. Again, the results obtained using our combined
volume and surface morphing are superior. The difference in surface mesh
element quality is also illustrated in Figure 3.



8 Daniel Sieger, Stefan Menzel, and Mario Botsch

M

d : IR3 → IR3

p′ = p+ d(p)

M′

Fig. 1. Volume mesh morphing of the hexahedral Bore model using RBFs.
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Fig. 2. Morphing results of the Bore model.
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Fig. 3. Comparison of element quality in the morphed surface mesh. While there are
distortions in the meshes of Staten et al. [26] (left), our surface (right) is perfectly
aligned to the updated CAD geometry.

5.3 Courier Model

The Courier model is the most complex model in our comparison. In contrast
to previous examples the hexahedral mesh of this model is an unstructured
one. Especially in case of the absolute tetrahedral mesh morphing all methods
presented in [26] result in inverted elements as soon as a change of parameter
values of 65% is reached. In contrast, our method results in inverted elements
only after a parameter change of 75%. Unfortunately, due to a mismatch
between CAD geometry and initial tetrahedral mesh we could not apply our
surface morphing method for the tetrahedral Courier model.

5.4 Performance

The execution time in seconds for a single morphing step is given in Table 1.
Since in our method the performance does not differ between absolute and
relative morphing we only report timings for absolute morphing. In general our
method is computationally more expensive than those investigated by Staten
et al. However, in all but one case our method allows to perform an absolute
morph to the full parameter change without resulting in inverted elements,
while other methods might only reach this goal by falling back to several steps
of relative morphing, thereby becoming computationally more expensive. We
also note that the timing for the tetrahedral Courier model is due to the fact
that the model—unlike the hexahedral one—is only decomposed into four
large components. Finally, we note that in our current implementation we
morph each component in a serial manner. Exploiting the parallel nature of
the problem would further increase the performance of our method.
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M

d : IR3 → IR3

p′ = p+ d(p)

M′

Fig. 4. Volume mesh morphing of the hexahedral Pipe model using RBFs.
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Fig. 5. Morphing results of the Pipe model.
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M

d : IR3 → IR3

p′ = p+ d(p)

M′

Fig. 6. Volume mesh morphing of the hexahedral Courier model using RBFs.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

% Parameter Change

M
in
.S

ca
le
d
Ja

co
bi
an

Courier Hex Model–Relative

RBF
RBF-S
FEMWARP
LBWARP
Simplex-linear

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

% Parameter Change

M
in
.S

ca
le
d
Ja

co
bi
an

Courier Hex Model–Absolute

RBF
RBF-S
FEMWARP
LBWARP
Simplex-linear

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

% Parameter Change

M
in
.S

ca
le
d
Ja

co
bi
an

Courier Tet Model–Relative

RBF
FEMWARP
LBWARP
Simplex-linear

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

% Parameter Change

M
in
.S

ca
le
d
Ja

co
bi
an

Courier Tet Model–Absolute

RBF
FEMWARP
LBWARP
Simplex-linear

Fig. 7. Morphing results of the Courier model.



12 Daniel Sieger, Stefan Menzel, and Mario Botsch

Bore Hex Bore Tet Pipe Hex Pipe Tet Courier Hex Courier Tet

5.483 8.078 3.094 5.690 9.3397 32.7698

Table 1. Single step performance in seconds.

6 Conclusion and Future Work

In this paper we presented a simple and versatile method for high-quality
mesh morphing of both surface and volume meshes using RBFs. The fairness
of our triharmonic RBF morphs leads to similar or superior element qual-
ity compared to all techniques evaluated in [26]. The implementation of our
method is straightforward and essentially requires setting up the linear sys-
tem (3) and solving it using a standard solver. Therefore, it can be considered
significantly easier to implement than, e.g., the LBWARP and FEMWARP
approaches employed in [26]. Furthermore, our RBF morphs are more flexi-
ble, since they can be applied to tetrahedral, hexahedral, or even arbitrary
polyhedral meshes.

As has already been observed in [26], using relative morphing can be used
to prevent inverted elements in the resulting mesh. Similar approaches have
been used in the graphics community to perform deformations that are free of
self-intersections [9, 17]. These approaches typically rely on the integration of
a smooth space-time vector field, which by construction guarantees absence
of self-intersections and element inversions. However, for most practical ap-
plications a full integration is not necessary and successive splitting of the
deformation can be used to prevent inversions. An interesting challenge and
direction for future work is the question when and how to split the defor-
mation, e.g., uniformly across the whole deformation or only when an actual
inversion occurs.
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Fig. 8. Cut views for the Bore, Pipe, and Courier models after performing an
absolute morph to the full parameter change. The worst 5% of the elements are
highlighted in red.
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