Journal of Virtual Reality and Broadcasting, Volume 9(2012), no. 6

OCTAVIS:
Optimization Techniques for Multi-GPU Multi-View Rendering

Eugen Dyck!, Holger Schmidt!, Martina Piefke?, Mario Botsch!

!Computer Graphics Group,

ZPhysiological Psychology,

Bielefeld University

Abstract

We present a high performance—yet low cost—
system for multi-view rendering in virtual reality (VR)
applications. In contrast to complex CAVE installa-
tions, which are typically driven by one render client
per view, we arrange eight displays in an octagon
around the viewer to provide a full 360° projection,
and we drive these eight displays by a single PC
equipped with multiple graphics units (GPUs). In this
paper we describe the hardware and software setup,
as well as the necessary low-level and high-level op-
timizations to optimally exploit the parallelism of this
multi-GPU multi-view VR system.

Keywords: Multi-View Rendering, Multi-GPU

Rendering, Virtual Reality

1 Introduction

Thanks to the steady increase in computational re-
sources and rendering performance over the last
decade, virtual reality (VR) techniques have devel-
oped into valuable tools for a large variety of appli-
cations, such as automotive design, architectural pre-

Digital Peer Publishing Licence

Any party may pass on this Work by electronic
means and make it available for download under
the terms and conditions of the current version
of the Digital Peer Publishing Licence (DPPL).
The text of the licence may be accessed and
retrieved via Internet at
http://www.dipp.nrw.de/.

First presented at the GI VR/AR Workshop 2010,
extended and revised for JVRB

views, game development, or medical applications, to
name just a few. In all these applications a high level
of immersion is both desired and required.

Our approach is motivated by the medical research
project CITmed, which aims at the development of
a novel VR platform for the diagnosis and rehabili-
tation in neurology, neuropsychology, and psychiatry.
The fields of application are primarily disturbances of
brain functions resulting from stroke, cerebral trauma
caused by accidents, and neurological or psychiatric
diseases. In order to enable the transfer of the patient’s
training success to real-life situations, a sufficiently re-
alistic and immersive VR-version of an everyday task
has to be used for training. In the CITmed project, this
task is shopping in a virtual supermarket.

CAVE installations are known to provide a very
high level of immersion, but disqualify for our project
because of their high cost and maintenance effort,
which is mainly due to the fact that CAVEs are usually
driven by one rendering node per view. In contrast,
we propose a cost-efficient visualization system that
consists of eight standard (non-stereo) touch screen
displays arranged in an octagon around the patient,
thereby providing a full 360° horizontal view and a
simple interaction with the scene. To minimize the
stress on the patient we abandon stereo rendering. In
order to reduce hardware costs and maintenance ef-
fort, our so-called OCTAVIS solution is driven by a
single PC, which consequently is equipped with sev-
eral graphics processing units (GPUs) (see Figure 1).

This paper is an extended version of [DSB10] and
describes our hardware and software architecture, par-
allelization efforts, as well as low-level and high-level
performance optimizations that eventually enable the
real-time rendering of complex VR environments on
eight views using a single PC.

urn:nbn:de:0009-6-35119, ISSN 1860-2037

http://www.dipp.nrw.de/

Journal of Virtual Reality and Broadcasting, Volume 9(2012), no. 6

Figure 1:

In our OCTAVIS setup a single PC is
equipped with three GPUs that drive an operator dis-
play and eight displays that are arranged in an octagon
to provide a full 360° visualization.

2 Related Work

The standard approach to drive an eight-display sys-
tem is to use a render cluster consisting of one ap-
plication server and eight render clients. This solu-
tion, however, is complex in terms of both hardware
and software. First, it requires nine individual PCs
that are properly synchronized and connected through
a sufficiently fast network (Gigabit Ethernet, Infini-
band). Second, the rendering has to be distributed to
the render clients, by either employing a distributed
scene graph (e.g., OpenSG [OpelOb]) or by distribut-
ing OpenGL commands (e.g., Chromium [HHN102]).

In contrast, we decided for a single-PC multi-GPU
solution for driving our OCTAVIS system. Our work-
station is a standard, off-the-shelf PC, equipped with
three GPUs that can drive three displays each. This
allows us to use nine displays in a configuration as de-
picted in Figure 1. The main question is how to design
the rendering architecture such that the parallel per-
formance of this multi-GPU system is exploited in an
optimal manner.

The major graphics vendors already provide solu-
tions for combining several GPUs in order to increase
rendering performance (NVIDIA’s SLI, ATI’s Cross-
Fire). Note, however, that these techniques only sup-
port a single graphics output, and hence are not appli-
cable in our multi-view setup. NVIDIA’s QuadroPlex
is a multi-GPU solution that combines up to four
Quadro GPUs in an external case. Two QuadroPlex
boxes can therefore be used to drive eight displays, but

such a system comes at a price of more than $20,000.
ATT’s EyeFinity is a technology for driving several dis-
plays by one graphics board, and hence is rather a
multi-view approach, but not a multi-GPU solution.

In our system we do not make use of any of these
techniques, but rather handle each view and each GPU
individually. This requires an efficient mechanism for
distributing the rendering to the different GPUs.

To this end, we first experimented with higher-
level APIs, such as the distributed scene graph
OpenSG [OpelOb] and the multi-GPU-aware scene
graph OpenSceneGraph [OpelOa]. However, these
frameworks turned out not to be flexible enough to
give (easy) control over the crucial details affecting
multi-GPU performance (as discussed in Section 7).

A distribution of low-level OpenGL commands
based on Chromium [HHNT02] was done by Rabe
et al. [RFLO7], who built a system similar to ours.
However, their performance results are rather disap-
pointing, mainly due to the overhead induced by the
Chromium layer. An elegant abstraction-layer for par-
allel rendering is provided by the Equalizer frame-
work [EMPO09], which allows for distributed OpenGL
rendering using render clusters, multi-GPU setups, or
any combination thereof.

Our design goal was to keep the OCTAVIS system
as simple as possible—both in terms of hardware and
software—since this allows for easy maintenance and
future extension. To this end, we do not employ any
higher-level API for distributed or parallel rendering,
but instead custom-tailor a (simple) low-level OpenGL
solution for our target system.

3 Rendering Architecture

Since we do not build our rendering architecture on
top of a high-level framework, we have to take care
of the distribution of render commands to the different
GPUs (Section 3.1) and the data management (Sec-
tion 3.2). This low-level control will later enable us to
employ crucial performance optimization techniques
(Sections 4 and 5).

3.1 Distributing OpenGL Commands

Our multi-GPU multi-view architecture consist of
three GPUs with three outputs each, which drive the
eight VR displays of our OCTAVIS system. We there-
fore have to be able to address OpenGL commands to
a particular display attached to a particular GPU.

urn:nbn:de:0009-6-35119, ISSN 1860-2037

Journal of Virtual Reality and Broadcasting, Volume 9(2012), no. 6

[GPUs [Views/GPU [Views | FPS NVIDIA [FPS ATI]

1 1 1 583 273.6
2 1 2 275 2538
3 1 3 193 258.8
1 2 2 30 129.7
2 2 4 14.6 121.5
3 2 6 938 121.5
1 3 3 - 82.4
2 3 6 - 79.4
3 3 9 - 78.1
Table 1: Comparing frame rates for a 870k triangle

model using NVIDIA GeForce 9800 GX2 and ATI
Radeon HD 5770 cards, respectively, in several multi-
GPU and multi-view setups.

At application start-up, we generate a single full-
screen window for each of the eight views, with each
window having its own OpenGL context. For Unix op-
erating systems distributing render commands is easy,
since an individual X-server can be explicitly assigned
to each view. In our medical research project, however,
external constraints require Windows as an operating
system, which does not provide this explicit control.

The Windows Display Driver Model 1.1 used in
Windows 7 provides improved support for multi-GPU
applications, but it turned out that the actual perfor-
mance strongly depends on the GPU driver. Our ex-
periments revealed that the NVIDIA driver dispatches
all OpenGL render commands to all available GPUs.
This obviously prevents efficient parallelization. In or-
der to address a specific NVIDIA GPU the OpenGL
extension WGL_NV_gpu_affinity has to be used,
but this extension is only available for (expensive)
Quadro-GPUs.

In contrast, the ATI driver dispatches render com-
mands to just the one GPU responsible for the current
window, which is the GPU attached to the display the
window was created on. It therefore turned out to be
crucial to create the eight windows at the correct initial
position on the respective view. Creating all windows
on the first view and moving them to the proper posi-
tion afterward does not work. When taking this subtle
information into account, the ATI driver allows for ef-
ficient parallelization between different GPUs.

Table 1 compares the performance scalability of
NVIDIA GeForce 9800 GX2 GPUs (two outputs each)
and ATI Radeon HD 5770 GPUs (three outputs each)
with varying numbers of GPUs and varying numbers
of views per GPU. All experiments were performed
on a standard PC with an Intel Core i7 930 CPU and
running Windows 7.

Geometry Data Shader

[vertices]

o—[shader Node] [Shader Node]
T \

source

()
[IDonGPUO]
()
()

IDon GPU O

IDon GPU 1

()
[IDonGPU1]
()

[UBO Node] [UBO Node] [UBO Node]
IDon GPU 2 IDon GPU 2 * V *
[Mesh Node] [Mesh Node] [Mesh Node]

1 T T T

Figure 2: Scene graph nodes share data though shared
OpenGL contexts to reduce memory consumption.

It is clearly visible that the NVIDIA system scales
inversely proportional to the number of views: No
matter whether two views are driven by one GPU
or by two GPUs, the performance drops by a factor
of about two. This is an immediate consequence of
the NVIDIA driver sending OpenGL commands to all
available GPUs, as also described in [EMP09].

In contrast, the ATT system scales almost perfectly.
Rendering one view per GPU gives the same perfor-
mance on one, two, or three cards. When keeping the
number of GPUs fixed, the performance decreases al-
most linearly with the number of attached views per
GPU. Hence, the ATI system can fully exploit the par-
allelization between multiple GPUs. Because of these
reasons we decided for ATI Radeon HD 5770 GPUs
for our OCTAVIS rendering system, which have re-
cently been replaced by ATT Radeon HD 5850 cards.

3.2 Data Management

Thanks to our simple single-PC architecture we do not
have to distribute scene data or render states over the
network to individual render clients. However, in or-
der to render the scene in our multi-view application
each OpenGL context (i.e., each view) needs access to
the scene data, such as, e.g., geometry, textures, and
shaders. In order to minimize memory consumption,
we do not duplicate the scene data for each view, but
instead store one copy per GPU only, which is then
shared by all views attached to this GPU.

This behavior can easily be implemented by shared
OpenGL contexts. We incorporate this functionality
into a very simplistic scene graph with standard nodes
for shaders, shader uniforms, and triangle meshes.
Shader nodes, for instance, then store a reference to a
shader object only. The shader object in turn stores the
shader-data on each available GPU (but not for each

urn:nbn:de:0009-6-35119, ISSN 1860-2037

Journal of Virtual Reality and Broadcasting, Volume 9(2012), no. 6

| o s— |

GPU 1 GPU 2 GPU 3

i - 1

View 1 Shared | < View 7

Shared | < | View 4
Context
AN AN

Shared | <«
Context

AN
N\

Context

N

Figure 3: All views attached to the same GPU share a
render context and are drawn consecutively, while the
rendering is parallelized over the available GPUs.

individual view). See Figure 2 for an illustration. In
our case, where each GPU drives up to three views, the
memory consumption is reduced by a factor of three.

4 Low-Level Optimizations

In order to optimize rendering performance one has to
identify and eliminate the typical performance bottle-
necks: CPU load, data transfer from CPU to GPU, and
GPU load. In a multi-view multi-GPU environment,
even more attention has to be paid to these issues.
Rendering geometry in immediate mode quickly
makes the application CPU-bound due to the massive
amount of glVertex () function calls. We there-
fore store vertex positions and triangle indices in ver-
tex arrays (VA), which allows to render meshes with
a single function call and thereby eliminates the CPU
bottleneck. However, in our multi-view setup the data
has to be transferred from main memory to the GPU
eight times (for each view) in each frame, such that
data transfer immediately becomes the bottleneck.
Data transfer can be eliminated by storing the vertex
arrays in vertex buffer objects (VBO) on the GPU. This
turned out to be absolutely crucial in our multi-view
setting. The respective data storage follows the same
shared context paradigm as described in the previous
section. With VBOs the bottleneck is no longer data
transfer, but the per-vertex computations of the GPU.
This GPU load can be reduced by caching compu-
tations performed for individual vertices. If a triangle
is rendered and one of its vertices has been processed
before and is still in the cache, these computations can
be re-used. To maximize cache-hits we re-order the
individual vertices and triangles of the mesh using the

[GPUs [Views/GPU | Views [FPS VA [FPSVBO | FPSRO
1 1 1 38.8 2143 3442
2 1 2 223 214.6 344.8
3 1 3 142 214.7 344.7
1 2 2 19.2 107.7 1713
2 2 4 10.2 107.5 171.2
3 2 6 7.0 107.5 171.1
1 3 3 12.7 71.6 113.6
2 3 6 72 714 1135
3 3 9 47 713 1133

Table 2: Frame rates for different optimizations (ver-
tex arrays, vertex buffer objects, cache-friendly re-
ordering), using ATT Radeon HD 5770 GPUs.

method described in [YLPMOS5], which (depending on
the model) yields a significant performance gain.

Finally, in order to optimally exploit all available
GPUs, the render traversal is parallelized: Each GPU
is served by a dedicated render thread that processes
all views attached to that GPU in a serial manner. Par-
allelizing over the (two or three) views on the same
GPU did not increase performance. Figure 3 gives an
overview of the rendering process.

Table 2 compares the different optimization tech-
niques using three ATI Radeon HD 5770 GPUs. For
this experiment we used an early version of our VR su-
permarket, consisting of about 1.7M triangles. In this
scene all instances of a particular object (typically sev-
eral copies of one shopping item in a shelf) are merged
into a single triangle mesh. This results in 75 meshes
in total, which are stored either in vertex arrays or ver-
tex buffer objects, respectively.

When the geometry is stored in vertex arrays, but
not in VBOs, the geometry data is transferred to the
GPU for each active view. Consequently, the perfor-
mance drops with each additional view, even when
they are attached to different GPUs. Storing the ge-
ometry in VBOs eliminates the transfer costs, which
then yields the convincing scaling behavior discussed
above. After re-ordering vertices and triangles for each
individual VBO, our rendering architecture is able to
visualize the 1.7M triangle scene on nine displays at a
rate of more than 100 frames per second.

5 High-Level Optimizations

The performance optimizations described in the previ-
ous section were sufficient for the virtual supermar-
ket consisting of 1.7M triangles. However, in or-
der to further increase the realism and the immer-

urn:nbn:de:0009-6-35119, ISSN 1860-2037

Journal of Virtual Reality and Broadcasting, Volume 9(2012), no. 6

Wiy | ey ey

gy ey eyt

Figure 4: Eight views of the VR supermarket (4M triangles), corresponding to an “unfolded octagon”. This
model was used for the optimizations described in Sections 5.2 and 5.3.

sion in the CITmed project, we switched to a more
detailed VR supermarket. The new model was con-
structed from 680 individual objects (furniture, shop-
ping items), from which 94k instances were created,
eventually resulting in 4M triangles (see Figure 4).

Furthermore, it should be possible to interact with
each individual object instance, for example, in order
to buy individual products by simply picking them.
Note that this is not possible when storing all instances
of a particular product within a single VBO, since
then individual instances cannot easily be turned off
after having been bought. Representing each object
instance by a separate scene graph node, i.e., splitting
the scene from 680 objects into 94k objects, allows for
simple interaction with object instances, but reduces
the performance to about 1 fps due to CPU load.

At this point we apply three high-level optimiza-
tions to achieve our goals: Geometry instancing allows
naturally to handle scenes with many duplicated ob-
jects (Section 5.1), view-frustum culling (Section 5.2)
and multi-GPU load balancing (Section 5.3) further
increase performance. All experiments shown in this
section have been performed using three ATI Radeon
HD 5850 GPUs.

5.1 Geometry Instancing

Recent versions of OpenGL provide hardware-
accelerated geometry instancing, which allows to ren-
der multiple instances of a single object with a sin-
gle function call. This technique needs two data
streams, one supplying the object data (geometry,
textures, shaders) and the other providing the posi-
tions/orientations of the individual instances. For each
instance a shader transforms the geometry according
to the given instance transformation. Like this geom-
etry and texture data have to be stored once per object
only, instead of once per instance.

For maximum performance, both the object data and
the instance data have to be stored on the GPU, since
otherwise the data transfer immediately becomes the
bottleneck. We therefore store all instance transforma-
tions within a single Uniform Buffer Object (UBO) on
the GPU. Another UBO holds binary on/off informa-
tion for each object instance, which we use for turning
off objects once they have been bought.

Geometry instancing allows for conceptually clean
and efficient handling of object instances. In terms of
performance, however, geometry instancing does not
make a difference for the high resolution supermarket
of 4M triangles. Storing all object instances in 680
VBOs or employing geometry instancing both yields
25 fps. The main advantages of geometry instancing
are therefore (i) the ability to interact with individual
object instances (pick or buy each single product) and
(ii) the largely reduced consumption of GPU memory.
Geometry instancing reduces GPU storage from 243
MB per GPU for single VBOs down to 8 MB per GPU
(2 MB mesh data, 6 MB instance data). This signif-
icant reduction is mainly due to our highly repetitive
supermarket scene with a ratio of 680 objects to 94k
object instances.

5.2 View-Frustum Culling

To achieve real-time performance even for the more
complex supermarket model of 4M triangles, we ex-
ploit the fact that all object instances are arranged spa-
tially close to each other, namely in the same prod-
uct shelf. This allows us to compute a bounding box
around each group of instances and to perform view-
frustum culling during scene graph traversal for each
of the eight views. We compared CPU-based view-
frustum culling to GPU-based occlusion culling, and
for our ATT GPUs the former turned out to be slightly
more efficient than the latter.

urn:nbn:de:0009-6-35119, ISSN 1860-2037

Journal of Virtual Reality and Broadcasting, Volume 9(2012), no. 6

Figure 5: Top-view of the supermarket scene, showing
neighboring view configuration (top) and interleaved
view configuration (bottom).

For the 4M-triangle supermarket our CPU-based
view-frustum culling increases the performance from
68 fps to 205 fps for single-view single-GPU render-
ing, and from 25 fps to 56 fps for eight views rendered
using three GPUs.

5.3 Load-Balancing

View-frustum culling can lead to a considerable per-
formance gain—depending on how much of the scene
is outside the frustum and therefore is culled. Since
this proportion varies with camera position and view-
ing direction, frustum culling inevitably leads to an
unbalanced load distribution for the eight individual
views of our multi-view setup. For instance, at a lo-
cation close to a wall in our supermarket some views
mainly have to render the wall, while others have to
process almost the whole scene. For due to view syn-
chronization the slowest GPU determines the frame
rate of the overall rendering, some kind of load bal-
ancing should be employed.

Since each GPU has to render two or three views,
we can try to counter-balance the varying load per
view on the level of GPUs. The most straightfor-
ward assignment of views to GPUs is the one shown
in Figure 1, where each GPU is responsible for a set
of neighboring views. Assigning the views in an inter-
leaved manner (Figure 5), however, results (in general)
in a much better load balancing.

| View Configuration | GPUO | GPU 1 | GPU 2 |

Neighboring 205 56 109
Interleaved 91 74 154

Table 3: Frame rates of each individual GPUs for dif-
ferent GPU/view configurations.

Table 3 compares the rendering performance for the
two view configurations show in Figure 5, with cam-
era positions being randomly positioned in the scene.
The timings are taken separately for each of the three
GPUs, where the slowest GPU (in this case GPU 1)
determines the overall frame rate. This experiment
clearly shows the interleaved view configuration to
yield better load balancing, resulting in a performance
gain from 56 fps to 74 fps. Note that this result is al-
most independent of the location in the supermarket,
leading to a general performance improvement.

6 User Study

To evaluate our OCTAVIS setup the Department of
Psychology at Bielefeld University conducted an em-
pirical within-subject study [PK10]. Comparing our
platform to a single-screen desktop with mouse-
keyboard interaction they measured the subject’s sense
of presence during several consecutive search tasks.
To this end, the participants filled out the Witmer and
Singer questionnaire [WS98] after the experiment.
The exact procedure was as follows. After a short
time of customization to the navigation concept the
subject was asked to perform the following six actions:

1. “Go to the meat counter and count the sausages”
2. “Go to the cheese counter and count the cheese”
3. “Go to the cereal shelf”

4. “Position yourself in front of the egg shelf”

5. “Go to the whiskey shelf”

6. “Leave the supermarket”

After each subtask the participant stopped and re-
ported his success to the advisor before he was allowed
to proceed. These assignments had to be accomplished
in both setups. The order in which the setups were
tested by the same person was randomized.

urn:nbn:de:0009-6-35119, ISSN 1860-2037

Journal of Virtual Reality and Broadcasting, Volume 9(2012), no. 6

Figure 6: Some example views of the high-detail supermarket, consisting of about 94k object instances and
4M triangles. Each row shows several views for different viewing positions in the scene.

urn:nbn:de:0009-6-35119, ISSN 1860-2037

Journal of Virtual Reality and Broadcasting, Volume 9(2012), no. 6

27 subjects in the age of 18-35 were tested in to-
tal. The results show a significantly higher sense of
presence in the OCTAVIS-condition (Z = —4.37, p <
.0001). The mean values for the presence score are
M = 130.52 (sd = 17.36) in the OCTAVIS-condition
and M = 104.26 (sd = 15.2) in the single-screen
condition.

Due to our use of touch screen displays we could not
employ seamless displays, resulting in clearly visible
seams between the eight screens. Particularly asked
about the effect of these seams in an additional cus-
tom questionnaire, 21 subjects stated them to be not
disturbing at all, 3 were disturbed slightly, and 3 were
confused by them.

7 Discussion

Our low-level and high-level optimizations result in a
multi-view rendering system that is capable of visual-
izing a complex 4M triangle scene on eight displays
at a rate of 74 fps, which corresponds to 2.4G trian-
gles/second. At the same time, our system allows for
fast interactions on an object instance level. Figure 6
shows some impressions of our current model.

As mentioned in Section 2, we experimented with
the two popular scene graph libraries OpenScene-
Graph [Opel0a] and OpenSG [OpelOb], but did not
achieve a comparable performance, mainly due to the
following reasons:

OpenSG is specialized to distributed rendering,
therefore our implementation used eight local render
server processes to drive the eight displays. Since
each render server requires a full scene copy, this con-
sumes significantly more memory than our shared con-
texts and therefore does not allow for highly complex
scenes. Moreover, due to sub-optimal window cre-
ation and setup (see Section 3.1) OpenGL commands
are dispatched to all GPUs, which slows down the ren-
dering to about 1 fps.

OpenSceneGraph correctly creates and initializes
windows, supports for shared OpenGL contexts, and
allows for precise control of VBOs. However, its ren-
dering performance is still only about 70% of ours,
which we assume is due to the higher overall complex-
ity of this scene graph system.

8 Conclusions

Our experiments clearly demonstrate the potential of
a multi-view rendering system based on a single PC
equipped with multiple GPUs. However, the results
also indicate that the multi-GPU performance can cru-
cially depend on a few seemingly minor implementa-
tion details, on optimization techniques, and on GPU
drivers and operating systems.

This paper tries to provide a recipe for circumvent-
ing common pitfalls and instead achieving a high per-
formance multi-GPU system. In terms of hardware,
our proposed OCTAVIS system is cheap and easy to
maintain. In terms of software, the rendering architec-
ture scales almost perfectly thanks to few but carefully
done performance optimizations.

Future work includes more detailed geometric mod-
els and more realistic rendering, for instance by us-
ing screen-space ambient occlusion or other real-time
global illumination techniques. Further performance
optimizations might result from deferred shading or
more sophisticated spatial data structures and sorting.

Acknowledgments

The authors are grateful to Christian Frohlich and
Bernhard Briining for their support with the initial
OpenSG-based version of the rendering system. Mario
Botsch is supported by the Deutsche Forschungsge-
meinschaft (Center of Excellence in “Cognitive In-
teraction Technology”, CITEC). Eugen Dyck, Hol-
ger Schmidt, and Martina Piefke are supported by the
EFRE project “CITmed: Cognitive Interaction Tech-
nologies for Medical Applications”.
EUROPAISCHE UNION
* Investition in unsere Zukunft

* Europaischer Fonds
fur regionale Entwicklung

* X %
*
*

*

* x X

urn:nbn:de:0009-6-35119, ISSN 1860-2037

Journal of Virtual Reality and Broadcasting, Volume 9(2012), no. 6

References

[DSB10]

[EMPO09]

[HHNT02]

[Opel0a]

[Ope10b]

[PK10]

[RFLO7]

[WS98]

Eugen Dyck, Holger Schmidt, and Mario
Botsch, OCTAVIS: A Simple and Efficient
Multi-View Rendering System, Proceed-
ings of GI VR/AR Workshop (2010), 1-8.

Stefan Eilemann, Maxim Makhinya, and
Renato Pajarola, Equalizer: A Scalable
Parallel Rendering Framework, 1EEE
Transactions on Visualization and Com-
puter Graphics 15 (2009), no. 3, 436452,
ISSN 1077-2626.

Greg Humphreys, Mike Houston, Ren
Ng, Randall Frank, Sean Ahern, Pe-
ter Kirchner, and James T. Klosowski,
Chromium: a stream-processing frame-
work for interactive rendering on clusters,
ACM Transactions on Graphics (SIG-
GRAPH) 21 (2002), no. 3, 693-702, 1SSN
0730-0301.

OpenSceneGraph, OpenSceneGraph,
http://www.openscenegraph.
com, 2010.

OpenSG, OpenSG,
opensg.org, 2010.

http://www.

Martina Piefke and Sina Kiihnel, Empirie-
und Beobachtungspraktikum: Physiolo-
gische Psychologie, Departement of Psy-
chology, Bielefeld University, Winter
Term 2009/2010.

Felix Rabe, Christian Frohlich, and
Marc Erich Latoschik, Low-Cost Image
Generation for Immersive Multi-Screen
Environments, Workshop of the GI VR &
AR special interest group, 2007, pp. 65—
76.

Bob G. Witmer and Michael J. Singer,
Measuring Presence in Virtual Environ-

[YLPMOS]

Citation

Eugen Dyck, Holger Schmidt, Martina Pietke, Mario

Botsch: OCTAVIS: Optimization Techniques for Multi-
GPU Multi-View Rendering, Journal of Virtual Reality

and Broadcasting, 9(2012), no. 6, November 2012,
urn:nbn:de:0009-6-35119, ISSN 1860-2037.

ments: A Presence Questionnaire, Pres-
ence: Teleoperators and Virtual Environ-
ments 7 (1998), no. 3, 225-240, ISSN
1054-7460.

Sung-Eui Yoon, Peter Lindstrom, Valerio
Pascucci, and Dinesh Manocha, Cache-
Oblivious Mesh Layouts, ACM Trans-
actions on Graphics (SIGGRAPH) 24
(2005), no. 3, 886-893, 1ssN 0730-0301.

urn:nbn:de:0009-6-35119, ISSN 1860-2037

http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Dyck&aufirst=Eugen&title=&atitle=+OctaVis+A+Simple+and+Efficient+Multi-View+Rendering+System&date=2010
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Dyck&aufirst=Eugen&title=&atitle=+OctaVis+A+Simple+and+Efficient+Multi-View+Rendering+System&date=2010
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Eilemann&aufirst=Stefan&title=&atitle=Equalizer+A+Scalable+Parallel+Rendering+Framework&issn=1077-2626&date=2009&volume=1&number=3
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Eilemann&aufirst=Stefan&title=&atitle=Equalizer+A+Scalable+Parallel+Rendering+Framework&issn=1077-2626&date=2009&volume=1&number=3
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Humphreys&aufirst=Greg&title=&atitle=Chromium+a+stream-processing+framework+for+interactive+rendering+on+clusters&issn=0730-0301&date=2002&volume=2&number=3
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Humphreys&aufirst=Greg&title=&atitle=Chromium+a+stream-processing+framework+for+interactive+rendering+on+clusters&issn=0730-0301&date=2002&volume=2&number=3
http://www.openscenegraph.com
http://www.openscenegraph.com
http://www.opensg.org
http://www.opensg.org
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Piefke&aufirst=Martina&title=&atitle=Empirie-+und+Beobachtungspraktikum&date=2010
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Piefke&aufirst=Martina&title=&atitle=Empirie-+und+Beobachtungspraktikum&date=2010
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Piefke&aufirst=Martina&title=&atitle=Empirie-+und+Beobachtungspraktikum&date=2010
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Piefke&aufirst=Martina&title=&atitle=Empirie-+und+Beobachtungspraktikum&date=2010
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Rabe&aufirst=Felix&atitle=Low-Cost+Image+Generation+for+Immersive+Multi-Screen+Environmentsp&date=2007
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Rabe&aufirst=Felix&atitle=Low-Cost+Image+Generation+for+Immersive+Multi-Screen+Environmentsp&date=2007
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Rabe&aufirst=Felix&atitle=Low-Cost+Image+Generation+for+Immersive+Multi-Screen+Environmentsp&date=2007
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Witmer&aufirst=Bob&title=&atitle=Measuring+Presence+in+Virtual+Environments+A+Presence+Questionnaire&issn=1054-7460&date=1998&volume=7&number=3
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Witmer&aufirst=Bob&title=&atitle=Measuring+Presence+in+Virtual+Environments+A+Presence+Questionnaire&issn=1054-7460&date=1998&volume=7&number=3
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Yoon&aufirst=Sung-Eui&title=&atitle=Cache-Oblivious+Mesh+Layouts&issn=0730-0301&date=2005&volume=2&number=3
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Yoon&aufirst=Sung-Eui&title=&atitle=Cache-Oblivious+Mesh+Layouts&issn=0730-0301&date=2005&volume=2&number=3

	Introduction
	Related Work
	Rendering Architecture
	Distributing OpenGL Commands
	Data Management

	Low-Level Optimizations
	High-Level Optimizations
	Geometry Instancing
	View-Frustum Culling
	Load-Balancing

	User Study
	Discussion
	Conclusions

