
Volume xx (200y), Number z, pp. 1–11

Example-Driven Deformations Based on Discrete Shells

Stefan Fröhlich, Mario Botsch

Computer Graphics Group, Bielefeld University

Abstract
Despite the huge progress made in interactive physics-based mesh deformation, manipulating a geometrically
complex mesh or posing a detailed character is still a tedious and time-consuming task. Example-driven methods
significantly simplify the modeling process by incorporating structural or anatomical knowledge learned from
example poses. However, these approaches yield counter-intuitive, non-physical results as soon as the shape space
spanned by the example poses is left. In this paper we propose a modeling framework that is both example-driven
and physics-based and thereby overcomes the limitations of both approaches. Based on an extension of the discrete
shell energy we derive mesh deformation and mesh interpolation techniques that can be seamlessly combined into
a simple and flexible mesh-based inverse kinematics system.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.5]: Computational Geometry
and Object Modeling—Physically based modeling

1. Introduction

Mesh deformation is a fundamental and challenging topic
in digital geometry processing, with various applications in
as diverse fields as shape design, engineering, and com-
puter animation. As a consequence, a huge number of differ-
ent modeling approaches has been proposed over the years,
most of which can be classified as physics-based or physics-
inspired: They employ elastic energies that approximate (or
at least qualitatively mimic) the behavior of elastic objects
known from continuum mechanics. Despite the impressive
progress made in this field, manipulating geometrically com-
plex shapes, for instance a detailed character model, can still
be a time-consuming and tedious process even with state-of-
the-art modeling tools. This is mainly because no knowledge
about the semantic or anatomical structure of the model is
incorporated into the physics-based deformation energy.

In contrast, example-driven deformations, as pioneered
in the mesh-based inverse kinematics (MeshIK) system of
Sumner et al. [SZGP05], achieve natural shape manipula-
tions by a suitable blending of carefully designed example
poses. While the input poses now provide the previously
missing knowledge about the model’s deformation behav-
ior, existing example-driven methods are not physics-based:
When the modeling constraints cannot be represented within
the shape space spanned by the example poses (the example
space), the deformation might yield unnatural results.

In this paper we propose a novel mesh deformation ap-
proach that combines the strengths of example-driven and
physics-based techniques and thereby avoids their respective
limitations: Our method incorporates given example poses,
but gracefully falls back to physics-inspired deformations
when leaving the example space.

In a general example-driven deformation framework the
designer imposes modeling constraints and the system com-
putes the shape closest to the example space meeting these
constraints. Therefore such a framework conceptually con-
sists of two main components:

• An interpolation operator that blends between the given
input poses in order to find the mesh that best matches the
designer’s constraints within the example space.

• A deformation operator that deforms the interpolated
shape to exactly satisfy the modeling constraints, thereby
potentially deviating from the example space.

For instance, the interpolation and deformation operators
of the original MeshIK [SZGP05] are both based on defor-
mation gradients and linear Poisson systems. Linear defor-
mation gradients, however, were recently shown to yield ar-
tifacts in the context of mesh deformation [BS08] and mesh
interpolation [WDAH10], which consequently also lead to
problems for the MeshIK system they are employed for.

Preprint, final version to appear in COMPUTER GRAPHICS Forum.

2 S. Fröhlich and M. Botsch / Example-Driven Deformations Based on Discrete Shells

Inspired by MeshIK [SZGP05], our goal is to overcome
the limitations inherent to deformation gradients. To this
end, we base our modeling system on an extension of the
nonlinear discrete shell energy [GHDS03], which measures
stretching and bending as deviations of edge lengths and di-
hedral angles, respectively. This allows us to develop defor-
mation and interpolation operators that are free of the above
mentioned linearization artifacts.

Our deformation and interpolation techniques on its own
are on a par with (but not necessarily superior to) state-of-
the-art methods for these problems. The major strength of
our approach is the seamless integration of these two com-
ponents into a simple and elegant formulation for example-
based and physics-based deformations. We incorporate the
computation of the optimal interpolation weights, the inter-
polation itself, and the constrained mesh deformation into
a simple nonlinear energy, which can easily be minimized
through a straightforward Gauss-Newton method. We fur-
ther present a multiresolution optimization that enables the
editing of complex models at interactive rates. Our proposed
modeling framework overcomes several limitations of cur-
rent example-based approaches: It can interpolate large rota-
tions between example poses, is fully rotation invariant, and
falls back to physically-plausible deformations when leaving
the example space.

2. Related Work

In this section we discuss existing example-driven deforma-
tion approaches as well as mesh deformation and mesh in-
terpolation methods—since these two techniques are integral
components of our modeling framework.

Mesh Deformation

For the following discussion we focus on surface-based de-
formation techniques—in contrast to space deformations—
in order to enable the combination with a mesh interpola-
tion operator. Following [BS08], we further classify these
approaches into (i) shell-based techniques, which approx-
imate the elastic energy of thin shells [TPBF87], and (ii)
methods based on differential coordinates, which manipu-
late the shape through deformation gradients, Laplacians, or
local frames [Sor06].

Most of the earlier techniques simplify the underlying en-
ergies to yield a linear variational optimization. The inher-
ent drawbacks of this linearization have been analyzed in
[BS08]: Shell-based methods typically have problems with
large rotational deformations (e.g. [KCVS98, BK04]), and
methods based on differential coordinates or local frames
often are translation-insensitive (e.g. [YZX∗04, ZRKS05,
LSLC05, KG08]), which basically requires the user to pre-
scribe position and orientation of handle points and thereby
prevents a simple click-and-drag interaction.

Recent approaches employ nonlinear elastic ener-
gies to overcome these limitations, again being shell-
based [BPGK06,BMWG07] or based on differential coordi-
nates or frames [SK04,HSL∗06,SZT∗07,AFTCO07,SA07].
Compared to linear methods, the nonlinear optimization is
considerably more involved. Nonlinear approaches therefore
typically perform the optimization in a hierarchical, adap-
tive, or subspace manner.

In this paper we adapt the discrete shell energy [GHDS03]
for our mesh deformation operator. Thanks to this nonlin-
ear, physics-based energy our deformations are free of lin-
earization artifacts, and we can control the local surface stiff-
ness (similar to [PJS06, HZS∗06, KG08]) as well as the re-
lation of stretching and bending resistance. Note that while
PriMo [BPGK06] performs equally well for pure deforma-
tion, it cannot be easily combined with mesh interpolation.

Mesh Interpolation

In order to avoid the artifacts from linear interpolation of
vertex positions, several approaches interpolate per-triangle
affine transformations instead, i.e., per-face deformation gra-
dients [ACOL00, XZWB05, SZGP05]. In this case, per-face
rotations have to be interpolated in a nonlinear manner, typ-
ically through spherical linear interpolation. This interpola-
tion of deformation gradients can fail for per-face rotations
of more than 180◦, since then the shorter spherical interpola-
tion path is taken, which might not be the correct one. Baran
et al. [BVGP09] avoid large rotations by splitting the mesh
into patches and interpolating per-face rotations relative to
the patch rotation. An alternative is to replace the per-face
rotations between example poses by relative rotations be-
tween neighboring frames [LSLC05,KG08]. The three cited
methods successfully interpolate between meshes even in
the presence of large rotations. However, they have to solve
for rotations and vertex positions in sequence using two lin-
ear systems, which still is an efficient linear process, but can-
not be easily used as a component of a MeshIK system.

Kilian et al. [KMP07] and Chao et al. [CPSS10] inter-
polate models along geodesics in suitable shape spaces,
but their methods are either too complex [KMP07] or
work for solid models only [CPSS10]. Recently, Winkler et
al. [WDAH10] proposed to represent and interpolate meshes
in terms of edge lengths and dihedral angles. In order to find
the mesh that best matches the interpolated edge lengths and
angles they employ a rather complicated hierarchical shape
matching technique, which prevents their method from be-
ing directly used in a MeshIK system.

However, Winkler’s approach [WDAH10] uses exactly
the same local mesh properties (edge lengths and dihedral
angles) for mesh interpolation as discrete shells [GHDS03]
use for mesh deformation. Therefore these methods concep-
tually fit nicely together, and we develop a relatively simple
and efficient energy minimization that replaces the complex
hierarchical shape matching of [WDAH10].

Preprint, final version to appear in COMPUTER GRAPHICS Forum.

S. Fröhlich and M. Botsch / Example-Driven Deformations Based on Discrete Shells 3

Figure 1: Benchmark deformations from [BS08]: Translating the right border of a bumpy plane; twisting a bar by 135◦;
bending a cactus by 70◦; bending a cylinder by 120◦. The gray surface regions are fixed, the yellow regions are handle
constraints, the blue regions are unconstrained and determined by minimizing the energy (5).

Example-Based Deformation

Early approaches for example-based deformations were pro-
posed in the context of skeleton-controlled articulated mod-
els, first by pose-dependent corrections of vertex posi-
tions for linear interpolation skinning [LCF00]. Later ap-
proaches [WSLG07, WPP07] yield superior results by em-
ploying deformation gradients for skinning, example-based
corrections, and rotational regression. However, these meth-
ods require a skeleton to control the mesh.

Sumner et al. [SZGP05] were the first to propose a mesh-
based (in contrast to skeleton-based) inverse kinematics sys-
tem. Given a rest pose and several example poses, they ex-
tract per-face deformation gradients, which are used to in-
terpolate between examples. The interpolation weights are
determined automatically from the modeling constraints by
a nonlinear optimization. However, the reconstruction of a
mesh from the interpolated deformation gradients, which at
the same time acts as deformation operator for incorporating
the user’s constraints, was shown in [BSPG06] to be equiv-
alent to linear Poisson-based interpolation [XZWB05] and
deformation [YZX∗04]. As a consequence, MeshIK inherits
their linearization problems: It cannot handle per-face rota-
tions larger than 180◦ and yields unnatural deformation re-
sults when leaving the example space.

The highly efficient data-driven deformation method of
Feng et al. [FKY08] fits a set of abstract skeleton bones to
an animation sequence, from which it learns the local bone
transformations using canonical correlation analysis. At run-
time they derive the bone transformations from the modeling
constraints and solve a Poisson system for the final vertex
positions. It is this final linear step that again yields unnatu-
ral results when leaving the example space.

We are mostly inspired by the original MeshIK [SZGP05],
and improve it by replacing the interpolation and deforma-
tion operators by a nonlinear, rotation-invariant technique
based on the discrete shell energy. This allows us to han-
dle arbitrary large rotations between example poses and to
fall back to physically plausible deformations when leaving
the example space.

In the following we first explain our deformation and in-
terpolation operators (Sections 3 and 4), before combining
them into an example-driven deformation framework (Sec-
tion 5). The numerical minimization of the employed non-
linear energy using a Gauss-Newton method is described in
Section 6. For increased performance we propose a multires-
olution optimization in Section 7.

3. Mesh Deformation Operator

The elastic energy for our mesh deformation operator ex-
tends the discrete shell energy by a volume preservation
term. In the following we assume a mesh M with vertex
positions xi ∈ V , edges ei j ∈ E , and faces fi jk ∈ F .

Analogous to discrete shells [GHDS03] we measure
stretching and bending terms Es and Eb as (weighted)
squared deviations of current (lower-case) edge lengths le
and dihedral angles θe from their original (upper-case) val-
ues Le and Θe, respectively. To be able to extend the energy
later, we denote by l∗e and θ

∗
e the desired target edge lengths

and dihedral angles, which for now are just the initial values
we want to preserve (l∗e = Le and θ

∗
e = Θe):

Es =
1
2 ∑

e∈E

(
le− l∗e

)2 1
L 2

e
, (1)

Eb =
1
2 ∑

e∈E

(
θe−θ

∗
e
)2 L 2

e
Ae

. (2)

Ae denotes the sum of the areas of the two triangles sharing
the edge e. Note that we omit the deviations of triangle areas
from the original discrete shell energy, since that term did
not have a significant impact in our examples.

The stretching and bending energies model two-
dimensional surfaces (thin shells). Hence, input meshes are
treated as hollow objects, even if they are intended to repre-
sent the boundary surface of a solid object. In that case, i.e.,
for closed surfaces without boundaries, we optionally add a
global volume preservation term (similar to [HSL∗06]):

Ev =
1
2
(
v− v∗

)2 1
V 2 . (3)

Preprint, final version to appear in COMPUTER GRAPHICS Forum.

4 S. Fröhlich and M. Botsch / Example-Driven Deformations Based on Discrete Shells

Figure 2: Global stiffness control: Bending a cylinder (left)
with either dominating bending stiffness (center) or stretch-
ing stiffness (right).

Again, v, V , and v∗ denote current, initial, and target volume,
respectively (with v∗ =V). As in [HSL∗06] we compute the
global volume v as the sum of per-face tetrahedral volumes

v =
1
6 ∑

fi, j,k∈F

(
xi×x j

)
·xk . (4)

We note that our volume preservation is just a heuristic: The
global volume preservation can compensate local volumes
changes of one part of the model in a completely different
surface region, thereby inducing strain. For a physically ac-
curate solution local volumes (e.g. of a tetrahedral mesh)
have to be preserved instead (see e.g. [CPSS10]).

The total elastic energy is the sum of stretching, bending,
and volume preservation terms, weighted by stiffness param-
eters λ, µ, and ν, respectively:

E = λEs +µEb +νEv . (5)

The weighting coefficients in (1), (2), and (3) are chosen to
account for irregular tessellations as well as to yield scale-
invariant energy terms. The stiffness parameters in (5) do not
have to be adjusted on a per model basis, but are typically set
to λ = 100, µ = 1, and ν = 1000 in our examples.

Mesh editing now amounts to a minimization of the en-
ergy (5), while satisfying the user’s modeling constraints
(prescribed positions for a selected set of vertices). We for-
mulate the energy minimization as a nonlinear least-squares
problem and employ a Gauss-Newton method, since this
technique requires first-order partial derivatives only and
still provides super-linear convergence (see Section 6).

Figure 1 provides a qualitative evaluation of our shell-
based deformation on the benchmark models of [BS08].
Comparing our results to Figure 10 of [BS08] reveals that
our approach is qualitatively equivalent to PriMo [BPGK06],
a state-of-the-art nonlinear approach. A quantitative compar-
ison (in terms of performance) is given in Section 6.

A further advantage of our physics-based energy is the
explicit control of stretching and bending stiffness (λ and
µ), which allows to vary the surface deformation behavior

Figure 3: Local stiffness control: Deriving per-edge stiff-
ness from the example poses of Figure 9 leads to more natu-
ral deformations (left) than uniform stiffness weights (right).

Figure 4: Stretching a cylinder (left) to 150% of its original
length without (top) and with volume preservation (bottom).
The volume error is 42% and 0.007%, respectively.

(Figure 2). Most approaches based on differential coordi-
nates can (be extended to) locally adjust the surface stiff-
ness, but cannot change the global deformation character-
istic. Note that these stiffness parameters, although chosen
constant in (5), can also be controlled on a per-edge basis. In
Figure 3 we derive per-edge stretching and bending values
from the example poses shown in Figure 9 (as described in
Appendix A). A pure deformation using these learned stiff-
ness values (without the MeshIK of Section 5) already yields
convincing results compared to uniform stiffness parame-
ters.

Figure 4 shows the effect of volume preservation on a
stretched cylinder, where the designer can choose (or contin-
uously blend) between a hollow or an (approximately) solid
deformation behavior.

4. Mesh Interpolation Operator

The second core component of our example-based deforma-
tion framework is the interpolation operator: Given a rest-
pose mesh M and a set of k compatibly tessellated exam-
ple posesM1, . . . ,Mk, we want to explore the shape space
spanned by these meshes through a geometrically meaning-
ful interpolation (and extrapolation) technique.

Following the idea of Winkler et al. [WDAH10] we in-
terpolate meshes in terms of edge lengths and dihedral an-
gles. However, we derive a simpler method for computing
the mesh that best matches the interpolated edge lengths and
angles, such that our interpolation operator can be combined
with the deformation technique of the previous section.

Preprint, final version to appear in COMPUTER GRAPHICS Forum.

S. Fröhlich and M. Botsch / Example-Driven Deformations Based on Discrete Shells 5

Figure 5: Interpolation and extrapolation of the yellow example poses. The blending weights are 0, 0.35, 0.65, 1.0, and 1.25.

Figure 6: Interpolation of an adaptively meshed and strongly twisted helix with blending weights 0, 0.25, 0.5, 0.75, 1.0.

Finding the best matching mesh (in a least squares man-
ner) requires to minimize an energy that penalizes the
squared deviations from prescribed target edge lengths l∗e
and dihedral angles θ

∗
e . Having the deformation operator of

the previous section at hand, all we need to do is to replace
the rest-pose lengths Le and angles Θe by the desired inter-
polated values. Similarly, we can also interpolate the global
volume V if the volume preservation is activated.

Given the rest-poseM and example posesM1, . . . ,Mk,
we denote by L(i)

e , Θ
(i)
e , and V (i) the edge lengths, dihedral

angles, and volume of meshMi, respectively. The target val-
ues for (1), (2), and (3) are then determined by linearly inter-
polating the differences ofMi’s values to those of the rest
poseM, controlled by interpolation weights α1, . . . ,αk:

l∗e = Le +
k

∑
i=1

αi

(
L(i)

e −Le

)
,

θ
∗
e = Θe +

k

∑
i=1

αi

(
Θ
(i)
e −Θe

)
,

v∗ = V +
k

∑
i=1

αi

(
V (i)−V

)
.

(6)

The same nonlinear minimization as used in Section 3 and
described in Section 6 then computes the interpolated mesh.

Although in general a mesh with prescribed edge lengths
and dihedral angles does not exist, our least squares ap-

proximation leads to physically meaningful interpolated
shapes. In Figure 5 we show the same elephant interpola-
tion/extrapolation sequence as used in Figure 1 of [KMP07]
and Figure 11 of [WDAH10]. Moreover, Figure 6 basically
reproduces Figure 6 of [WDAH10] and demonstrates that
large rotations and varying mesh resolution are naturally
handled by our approach.

These results show our interpolation technique to be qual-
itatively on a par with the recent state-of-the-art approaches
[KMP07,WDAH10]. Since we use the same target objective
as Winkler et al. [WDAH10], we basically reproduce their
results. However, while they compute the interpolated mesh
by a hierarchical shape matching procedure, our method re-
quires a comparatively straightforward energy minimization
only, which is the key to combining the deformation and
interpolation operators into the example-driven deformation
framework described in the next section.

5. Example-Driven Deformation Framework

After introducing the deformation and interpolation opera-
tors, we are now ready to derive our example-driven frame-
work. Like in the case of mesh interpolation, the input is a
set of example posesM,M1, . . . ,Mk. However, instead of
just interpolating between the examples, the system should
now “learn” the deformation behavior of the rest pose M
from the examples, such that a simple click-and-drag mod-
eling metaphor leads to natural and meaningful results.

Preprint, final version to appear in COMPUTER GRAPHICS Forum.

6 S. Fröhlich and M. Botsch / Example-Driven Deformations Based on Discrete Shells

[SZGP05]ours

Figure 7: Given a set of input poses (left) the user can drag handle points (yellow spheres) and the example-based deformation
produces a meaningful result by finding the optimal interpolation weights for the input examples. While our rotation-invariant
method makes use of the bottom example pose in a rotated fashion, the original MeshIK approach leads to artifacts.

Figure 8: The original MeshIK yields unwanted shears
when leaving the example space (left), whereas our tech-
nique still provides physically plausible results (right).

Instead of preserving original edge lengths and dihedral
angles (as for mesh deformation), or prescribing interpolated
lengths and angles (as for mesh interpolation), we now have
to optimize for the interpolation weights αi of (6), such that
the interpolated mesh best fits the modeling constraints.

One particular strength of our approach is that this opti-
mization of the interpolation weights, the interpolation oper-
ator, and the deformation operator can all seamlessly be in-
tegrated into one nonlinear energy formulation: We simply
use the interpolated target values (6) in the elastic energy (5)
(as for mesh interpolation) and furthermore extend the set of
unknowns to include both the free vertex positions x1, . . . ,xn
and the interpolation weights α1, . . . ,αk.

Since the number k of examples typically is very small
compared to the number n of free vertices, and since the
derivatives of the target objectives w.r.t. the weights αi are
trivial to compute, incorporating examples poses does not
lead to a noticeable performance overhead compared to pure
mesh deformation or interpolation (see Section 6).

If we compare the results of our example-driven deforma-
tion to that of existing example-based approaches [SZGP05,
FKY08] we can identify three important advantages: First,
our deformation and interpolation operators employ the

physics-based discrete shell energy. As a consequence, even
when leaving the space of example poses our method still
yields physically meaningful results, as shown in Figure 8.
This is in contrast to purely example-driven techniques,
which lead to undesired shears when deviating too much
from the examples (compare to Figure 15 of [FKY08] and
Figure 5 of [SZGP05]).

Second, since our interpolation method can deal with
large rotations between example poses, our MeshIK system
can do as well. The original MeshIK [SZGP05] is based on
linear deformation gradients and therefore might yield arti-
facts for rotations of more than 180◦ (compare Figure 5.2
of [Sum05] to Figure 6 and our accompanying video).

Third, our method is rotation-invariant, since examples
are represented by (changes of) edge lengths and dihedral
angles—instead of by per-face affine world-space transfor-
mations from the rest pose to the example poses (deforma-
tion gradients). As an immediate consequence, our method
can use example poses in arbitrary orientations, e.g., to sim-
plify rotation modeling of example poses (see Figure 7 and
the accompanying video). In contrast, the original MeshIK
cannot deal with rotated (i.e., mis-aligned) poses.

While this particular problem can potentially be fixed
by including per-example rotations in MeshIK’s opti-
mization process, a similar problem can occur when
combining rotations of example poses (see Figure 9).
The reason for the failure of the
original MeshIK is depicted on
the right. In their case, the com-
bined deformation “shoulder + el-
bow” (i.e. α1 = α2 = 1) first rotates
the shoulder around the global y-
axis, followed by a rotation of the
forearms around the global x-axis,
leading to a forearm twist. In con-
trast, our rotation-invariant frame-
work yields the expected combined
deformation, as reproduced by our IK system in Figure 9.

Preprint, final version to appear in COMPUTER GRAPHICS Forum.

S. Fröhlich and M. Botsch / Example-Driven Deformations Based on Discrete Shells 7

[SZGP05]ours

Figure 9: Using three input poses (left) we fix the legs and drag the handle on the right wrist. Our MeshIK system successfully
combines both example deformations, whereas the world-space deformation gradients of the original MeshIK lead to artifacts.

6. Numerical Minimization

We have shown how to formulate the mesh deformation
and mesh interpolation operators, as well as the complete
example-driven deformation technique as a nonlinear energy
minimization. The simplicity of our energy (5) enables the
analytic computation of its gradients, such that we can em-
ploy an efficient Gauss-Newton minimization [MNT04].

6.1. Gauss-Newton Minimization

We start by formulating the energy minimization as a nonlin-
ear least-squares problem. For a system with n unconstrained
vertices x1, . . . ,xn, m unconstrained edges, and k example
poses, we set up a residual function f that maps the vector
x = (x1,y1,z1, . . . ,xn,yn,zn,α1, . . . ,αk)

T of unknown vertex
positions and interpolation weights to the residuals of edge
lengths, dihedral angles, and global volume:

f :



x1
y1
z1
...

xn

yn

zn

α1
...

αk


7→



ws,1 (l1− l∗1)
...

ws,m (lm− l∗m)

wb,1 (θ1−θ
∗
1)

...
wb,m (θm−θ

∗
m)

wv (v− v∗)


. (7)

The target values l∗i , θ
∗
i , and v∗ are again determined by in-

terpolating the respective values of the example poses using
the weights αi as in (6). The weighting factors are chosen as

ws,e =

√
λ

1
L2

e
, wb,e =

√
µ

L2
e

Ae
, wv =

√
ν

1
V 2 , (8)

such that the energy (5) becomes E(x) = 1
2 f(x)T f(x).

In each Gauss-Newton iteration we compute new ver-
tex positions and interpolation weights by solving a linear

least squares system for an update direction δ, which is then
scaled by a step-size h and used to update x:

J(x)T J(x) δ = −J(x)T f(x) , (9)

x ← x+hδ. (10)

In the above equation J denotes the (2m+1)×(3n+k) Jaco-
bian matrix of f. It is built from first-order partial derivatives
of the components of f with respect to the vertex positions xi
or interpolation weights αi. For all derivatives simple ana-
lytical expressions exist, which are given in Appendix B.

The step-size h is determined by simple bisection search:
Starting with h = 1 we successively halve h until the scaled
step decreases the energy, i.e., E(x+ hδ) < E(x). We stop
the iteration if even a minimum step-size of hmin = 10−10

does not lead to a further decrease of the energy.

Note that this minimization procedure can be used for
pure mesh deformation (no examples, no interpolation
weights), pure mesh interpolation (k examples, interpolation
weights known), as well as the full example-based frame-
work (k examples, interpolation weights unknown).

6.2. Volume Preservation

A closer look at the linear system (9) reveals a challenging
problem caused by the volume preservation. In each row the
Jacobian J contains the partial derivatives of the correspond-
ing residual with respect to the components of x. For an edge
length constraint this leads to 2 ·3 = 6 non-zeros per row, for
a dihedral angle with four involved vertices we get 12 non-
zeros. The volume v, however, depends on all vertex posi-
tions, such that the bottom row of J is completely filled. As a
consequence, the system matrix JT J is dense, such that effi-
cient sparse solvers cannot be applied. In [HSL∗06], volume
constraints were treated as hard constraints using Lagrange
multipliers. Our soft volume constraint with a controllable
stiffness parameter requires a different approach.

Preprint, final version to appear in COMPUTER GRAPHICS Forum.

8 S. Fröhlich and M. Botsch / Example-Driven Deformations Based on Discrete Shells

We propose to exploit the Sherman-Morrison for-
mula [GL89] to efficiently solve the system (9). To this end,
we denote by u the (dense) bottom row of J, which yields

J =

[
J̃

uT

]
⇒ JT J = J̃T J̃+uuT =: A+uuT .

Hence, the system matrix JT J can be written as a rank-one
update of A = J̃T J̃. The Sherman-Morrison formula states
how to update a matrix inverse after such an update:(

A+uuT
)−1

= A−1 − A−1uuT A−1

1+uT A−1u
.

The solution of (A+uuT)δ = b with b =−JT f becomes

δ = A−1b − A−1uuT A−1b
1+uT A−1u

.

We can therefore compute the solution of (9) by an efficient
three step procedure:

(i). Compute y by solving Ay = b.
(ii). Compute z by solving Az = u.

(iii). Compute δ = y− z(uT y)/(1+uT z).

Note that A = J̃T J̃ is sparse, since J̃ does not contain the
volume constraint. Furthermore, because J̃ includes 2m≈ 6n
constraints, J̃ has full rank and A is symmetric positive defi-
nite. We can therefore use a sparse Cholesky solver [DH05]
for steps (i) and (ii). Since the rather expensive matrix fac-
torization of (i) can be re-used in step (ii), our three-step
procedure comes at a negligible additional cost compared to
an optimization without volume constraints.

Note that this technique can not only be used for the effi-
cient computation of volume constraints. It can also be em-
ployed for other constraints that depend on a large number
of mesh vertices, such as, for instance, constraining the area
of a large surface patch in the framework of [EP09]. We re-
mark that there are several ways to compute a factorization
of a matrix with dense rows through matrix updates. For in-
stance, a general method based on updating a QR factoriza-
tion is presented in [Sun95]. Our proposed solution has the
advantage that it is straightforward to implement with any of
the commonly employed sparse Cholesky solvers, such as
for instance CHOLMOD [DH05].

6.3. Performance & Robustness

Compared to linear deformation methods, nonlinear ap-
proaches are computationally more expensive, might get
stuck in local minima, and are in general numerically more
sensitive to “bad” input data. Extremely short edges, large
dihedral angles (fold-overs), or other kinds of degenerate tri-
angles can cause the minimization to stall or even to fail.
However, in this respect our method is not more or less sen-
sitive than most other nonlinear deformation techniques.

For instance, the synthetic examples shown in Section 3
converged in just a few iterations, starting from the initial

Figure 10: Even from this bad initial configuration our non-
linear deformation method converges in 9 iterations.

pose. For a more demanding test we compare to the dragon
example of PriMo [BPGK06]. As shown in Figure 10, even
for this complex model (50k vertices) and a bad starting con-
figuration our minimization converges in just 9 iterations,
which took 52s in total on a MacBookPro 2.53 GHz Intel
Core 2 Duo. In comparison, PriMo requires 6 iterations and
45s on the same machine (on the original mesh resolution,
i.e., without hierarchical optimization). Since our interpola-
tion and MeshIK techniques are basically equivalent in terms
of computations, their robustness and performance are com-
parable to those of the mesh deformation.

Input meshes that contain local fold-overs in joint regions
are problematic for our method, such as, e.g., the Lion and
Goblin poses of Figures 7 and 9, which have been produced
by low quality skinning methods. The “hinge-like” fold-
overs constitute local minima where the optimization might
get stuck. However, these configurations are easy to detect
and surprisingly easy to handle: As soon as the dihedral an-
gle of an edge e changes by more than 180◦ between the
rest poseM and some example poseMi, we deactivate that
edge by setting its bending stiffness µe to zero. This simple
heuristic solved the fold-over problem for all our examples.

7. Multiresolution Optimization

The above results demonstrate our nonlinear optimization
to work reliably, but its performance is clearly too slow
for interactive applications. Since this is a standard prob-
lem for nonlinear editing or interpolation approaches, sev-
eral techniques have been proposed to increase performance
(and further improve robustness): performing the optimiza-
tion on a reduced model [DSP06, FKY08] or in a suitable
subspace [HSL∗06], or computing it in a hierarchical man-
ner [BPGK06, SZT∗07, KMP07, WDAH10].

The cage-based subspace technique [HSL∗06], while be-
ing an elegant formulation, is not directly applicable to our
setting, since building compatible cages for all example
poses is a challenging problem by itself. We instead follow
the approach of Kilian et al. [KMP07] and concurrently dec-
imate all input meshes to a complexity of about 1000 ver-

Preprint, final version to appear in COMPUTER GRAPHICS Forum.

S. Fröhlich and M. Botsch / Example-Driven Deformations Based on Discrete Shells 9

M M�

B�B

C C�

Figure 11: The different meshes involved in our multires-
olution optimization: Original resolution (top), smooth base
surface (middle), coarse simulation mesh (bottom), all in ini-
tial (left) and deformed configuration (right).

tices, where we use the sum of per-mesh quadric error met-
rics [GH97] to prioritize halfedge collapses.

The nonlinear optimization is then performed on the re-
duced meshes exactly as described in the previous sections.
One Gauss-Newton iteration on the coarse mesh takes about
30ms only, which allows for real-time mesh editing (since
we initialize the Gauss-Newton optimization with the pre-
vious frame’s result it typically converges in less than five
iterations). However, an obvious limitation is that modeling
constraints can only be placed on coarse mesh vertices.

In order to transfer the coarse solution to the original,
high-resolution mesh, we adapt the multiresolution model-
ing approach proposed in [BSPG06]. The main idea is to
interpret the coarse mesh’s vertices as modeling constraints
(anchors) on the high-resolution mesh. After decimating the
input meshes, we pre-compute a high-resolution but low-
frequency base surface B by minimizing the thin-plate en-
ergy of the original meshM with the anchors as constraints.
This amounts to solving a bi-Laplacian linear system. Af-
ter deforming the coarse mesh C into C′, we compute the
deformed base surface B′ by updating the anchor positions
and again minimizing the thin-plate energy. The resulting
base surface deformation B 7→ B′ is finally applied to the

Model |V| G.-N. B&C B′&M′

Helix 612 18
Lion 5k 250 377 23
Elephant 40k 3100 4110 271
Dragon 50k 3700 5300 323
Armadillo 166k 21000 1278

Table 1: Performance statistics, with times given in mil-
liseconds, measured on a MacPro 2.66GHz Intel Xeon. From
left to right: number of vertices; time for one Gauss-Newton
iteration on the original resolution, for multiresolution pre-
processing (computing C and B), and for reconstructing B′
and M′ from C′. On the coarse mesh, one Gauss-Newton
step takes about 30ms. On the original Armadillo model, the
Gauss-Newton step failed due to memory restrictions.

Blending weight Elephant Dragon
0.25 0.23% 0.49%
0.35 0.29%
0.50 0.34% 0.77%
0.65 0.39%
0.75 0.40% 0.69%

Table 2: Hausdorff distance (in percent of the bounding box
diagonal) between the result of the multiresolution optimiza-
tion and the full high-resolution optimization.

original meshM by deformation transfer [SP04], resulting
in the deformed high-resolution and detailed meshM′. This
process is depicted in Figure 11.

It is important to note that this multiresolution reconstruc-
tion is also rotation-invariant: If a rotation R is applied to the
coarse mesh, i.e., C′ = R(C), then the mesh fairing with ro-
tated anchors will reproduce this rotation,B′ =R(B), as will
the deformation transfer, such thatM′ = R(M).

In our interactive modeling system, the nonlinear defor-
mation can be performed in real-time on the coarse mesh
C, and as soon as the mouse is released, the multiresolution
reconstruction computes the deformed mesh M′. Table 1
gives performance statistics and compares the nonlinear op-
timization on the fine mesh (Section 6) to the proposed mul-
tiresolution optimization.

An important question is how much the results of the mul-
tiresolution optimization deviate from the results of the full
high-resolution optimization. We analyzed this difference
for interpolation sequences of the Elephant model (Figure 5)
and the Dragon model (Figure 10). Table 2 shows that the
Hausdorff distance between the two optimizations is always
below 1% of the bounding box diagonal, which proves our
multiresolution optimization to be a good approximation. If
needed, the more accurate high-resolution result can easily
be obtained in 2–3 Gauss-Newton iterations starting from
the fine meshM′.

Preprint, final version to appear in COMPUTER GRAPHICS Forum.

10 S. Fröhlich and M. Botsch / Example-Driven Deformations Based on Discrete Shells

In addition to the figures shown in the paper, the accompa-
nying video also demonstrates the proposed example-based
deformation system for a few modeling sessions.

8. Conclusion

We presented a framework for combined physics-based and
example-driven mesh deformations. Thanks to our fully non-
linear formulation, we can perform large-scale shape manip-
ulations in a high quality, rotation-invariant manner.

The interpolation and deformation operators by them-
selves deliver comparable results to established methods in
terms of both quality and speed. Compared to purely ge-
ometric or purely physics-based approaches, incorporating
example poses into the deformation process leads to more
natural results for models with non-trivial deformation be-
havior. In contrast to purely example-driven approaches,
our system provides physically meaningful deformations
even when leaving the space spanned by the input poses.
In addition to mesh deformations, our system also features
nonlinear mesh interpolation and deformation transfer in a
rotation-invariant manner.

Investigating subspace optimizations will be an interest-
ing direction for future work, since this would lead to an
even better preservation of target values, and hence to physi-
cally more accurate results. In terms of performance a paral-
lelization or GPU-implementation of the muliresolution re-
construction would allow to interact with the high-resolution
model, while still computing on the coarse simulation mesh.

Acknowledgements:

The authors are grateful to Martin Kilian for the elephant
model of Figure 5, to Tim Winkler for the helix of Fig-
ure 6, and to Bob Sumner for the lion model of Fig-
ure 7 and an executable of the original MeshIK [SZGP05].
The Armadillo and Dragon models are courtesy of the
Stanford 3D Scanning Repository. The authors thank Pe-
ter Schröder and Eitan Grinspun for helpful discussions
about discrete shells, and Migual Otaduy for pointing us to
the Sherman-Morrison update. Both authors are supported
by the Deutsche Forschungsgemeinschaft (Center of Excel-
lence in “Cognitive Interaction Technology”, CITEC).

Appendix A: Deriving Stiffness Values from Examples

Similar to [PJS06], we derive per-edge stretching stiffness λe
and bending stiffness µe by linearly mapping the stretching
and bending between the k example poses to stiffness values:

λ̃e = max
i=1,...,k

∣∣∣L(i)
e −Le

∣∣∣ , λe = 1− λ̃e

maxe λ̃e + ε
,

µ̃e = max
i=1,...,k

∣∣∣Θ(i)
e −Θe

∣∣∣ , µe = 1− µ̃e

maxe µ̃e + ε
.

Appendix B: Partial Derivatives for Constructing J

x1

x2

x3

x4
n1

n2

e

Here we give the partial
derivatives of the individual
components of the residual
function f from (7) required
to build the Jacobian J. The
local mesh configuration is
shown to the right.

We define the the following vectors

e = x2−x1 ,

n1 = (x3−x2)× (x3−x1) ,

n2 = (x4−x1)× (x4−x2) .

The derivative of the length constraint for edge (x1,x2) is
simply the normalized edge direction

∂

∂x1
w
(
‖e‖− l∗

)
= w

−e
‖e‖ .

The partial derivatives for constraining the dihedral angle
θ = ∠(n1,n2) are surprisingly simple (see [BMF03]):

∂

∂x1
w
(
θ−θ

∗) = w

[
(x3−x2)

T e
‖e‖ ‖n1‖2 n1 +

(x4−x2)
T e

‖e‖ ‖n2‖2 n2

]
,

∂

∂x3
w
(
θ−θ

∗) = w
‖e‖
‖n1‖2 n1 .

The derivative of the volume constraint with respect to a
vertex position xk is computed by summing over xk’s inci-
dent faces fi jk ∈N (xk) (see (4)):

∂

∂xk
w
(
v− v∗

)
= w ∑

fi jk∈N (xk)

(
xi×x j

)
.

Finally, the derivative of a constraint (e.g. edge length)
with respect to an interpolation weight is (see (6))

∂

∂αi
w
(
l− l∗

)
= −w

(
L (i)−L

)
.

References

[ACOL00] ALEXA M., COHEN-OR D., LEVIN D.: As-rigid-
as-possible shape interpolation. In Proc. of ACM SIGGRAPH
(2000), pp. 157–164. 2

[AFTCO07] AU O. K.-C., FU H., TAI C.-L., COHEN-OR D.:
Handle-aware isolines for scalable shape editing. ACM Transac-
tions on Graphics 26, 3 (2007). 2

[BK04] BOTSCH M., KOBBELT L.: An intuitive framework for
real-time freeform modeling. ACM Transactions on Graphics 23,
3 (2004), 630–634. 2

[BMF03] BRIDSON R., MARINO S., FEDKIW R.: Simula-
tion of clothing with folds and wrinkles. In Proc. of ACM
SIGGRAPH/Eurographics symposium on Computer animation
(2003), pp. 28–36. 10

Preprint, final version to appear in COMPUTER GRAPHICS Forum.

S. Fröhlich and M. Botsch / Example-Driven Deformations Based on Discrete Shells 11

[BMWG07] BERGOU M., MATHUR S., WARDETZKY M.,
GRINSPUN E.: TRACKS: toward directable thin shells. ACM
Transactions on Graphics 26, 3 (2007). 2

[BPGK06] BOTSCH M., PAULY M., GROSS M., KOBBELT L.:
PriMo: Coupled prisms for intuitive surface modeling. In Proc.
of Eurographics symposium on Geometry processing (2006),
pp. 11–20. 2, 4, 8

[BS08] BOTSCH M., SORKINE O.: On linear variational surface
deformation methods. IEEE Transactions on Visualization and
Computer Graphics 14, 1 (2008), 213–230. 1, 2, 3, 4

[BSPG06] BOTSCH M., SUMNER R., PAULY M., GROSS M.:
Deformation transfer for detail-preserving surface editing. In
Proc. of Vision, Modeling, and Visualization (2006), pp. 357–
364. 3, 9

[BVGP09] BARAN I., VLASIC D., GRINSPUN E., POPOVIĆ J.:
Semantic deformation transfer. ACM Transactions on Graphics
28, 3 (2009), 36:1–36:6. 2

[CPSS10] CHAO I., PINKALL U., SANAN P., SCHRÖDER P.: A
simple geometric model for elastic deformations. ACM Transac-
tions on Graphics 29, 4 (2010), 38:1–38:6. 2, 4

[DH05] DAVIS T. A., HAGER W.: CHOLMOD: su-
pernodal sparse cholesky factorization and update/downdate.
http://www.cise.ufl.edu/research/sparse/cholmod, 2005. 8

[DSP06] DER K. G., SUMNER R. W., POPOVIĆ J.: Inverse kine-
matics for reduced deformable models. ACM Transactions on
Graphics 25, 3 (2006), 1174–1179. 8

[EP09] EIGENSATZ M., PAULY M.: Positional, metric, and cur-
vature control for constraint-based surface deformation. Com-
puter Graphics Forum 28, 2 (2009), 551–558. 8

[FKY08] FENG W.-W., KIM B.-U., YU Y.: Real-time data-
driven deformation using kernel canonical correlation analysis.
ACM Transactions on Graphics 27, 3 (2008), 91:1–91:9. 3, 6, 8

[GH97] GARLAND M., HECKBERT P.: Surface simplification us-
ing quadric error metrics. In Proc. of ACM SIGGRAPH (1997),
pp. 209–216. 9

[GHDS03] GRINSPUN E., HIRANI A. N., DESBRUN M.,
SCHRÖDER P.: Discrete shells. In Proc. of ACM
SIGGRAPH/Eurographics symposium on Computer animation
(2003), pp. 62–67. 2, 3

[GL89] GOLUB G. H., LOAN C. F. V.: Matrix Computations.
1989. 8

[HSL∗06] HUANG J., SHI X., LIU X., ZHOU K., WEI L.-Y.,
TENG S., BAO H., GUO B., SHUM H.-Y.: Subspace gradient
domain mesh deformation. ACM Transactions on Graphics 25, 3
(2006), 1126–1134. 2, 3, 4, 7, 8

[HZS∗06] HUANG J., ZHANG H., SHI X., LIU X., BAO H.: In-
teractive mesh deformation with pseudo material effects. Com-
puter Animation and Virtual Worlds 17, 3-4 (2006), 383–392. 2

[KCVS98] KOBBELT L., CAMPAGNA S., VORSATZ J., SEIDEL
H.-P.: Interactive multi-resolution modeling on arbitrary meshes.
In Proc. of ACM SIGGRAPH (1998), pp. 105–114. 2

[KG08] KIRCHER S., GARLAND M.: Free-form motion process-
ing. ACM Transactions on Graphics 27, 2 (2008), 12:1–12:13.
2

[KMP07] KILIAN M., MITRA N. J., POTTMANN H.: Geometric
modeling in shape space. ACM Transactions on Graphics 26, 3
(2007). 2, 5, 8

[LCF00] LEWIS J. P., CORDNER M., FONG N.: Pose space
deformation: a unified approach to shape interpolation and
skeleton-driven deformation. In Proc. of ACM SIGGRAPH
(2000), pp. 165–172. 3

[LSLC05] LIPMAN Y., SORKINE O., LEVIN D., COHEN-OR D.:
Linear rotation-invariant coordinates for meshes. ACM Transac-
tions on Graphics 24, 3 (2005), 479–487. 2

[MNT04] MADSEN K., NIELSON H. B., TINGLEFF O.: Methods
for Non-Linear Least Squares Problems (2nd ed.). Tech. rep.,
Informatics and Mathematical Modelling, Technical University
of Denmark, DTU, 2004. 7

[PJS06] POPA T., JULIUS D., SHEFFER A.: Material-aware mesh
deformations. In Proc. of IEEE International Conference on
Shape Modeling and Applications (2006), pp. 141–152. 2, 10

[SA07] SORKINE O., ALEXA M.: As-rigid-as-possible surface
modeling. In Proc. of Eurographics symposium on Geometry
processing (2007), pp. 109–116. 2

[SK04] SHEFFER A., KRAEVOY V.: Pyramid coordinates for
morphing and deformation. In Proc. of Symp. on 3D Data Pro-
cessing, Visualization and Transmission (2004), pp. 68–75. 2

[Sor06] SORKINE O.: Differential representations for mesh pro-
cessing. Computer Graphics Forum 25, 4 (2006), 789–807. 2

[SP04] SUMNER R. W., POPOVIĆ J.: Deformation transfer for
triangle meshes. ACM Transactions on Graphics 23, 3 (2004),
399–405. 9

[Sum05] SUMNER R. W.: Mesh Modification Using Deformation
Gradients. PhD thesis, Massachusetts Institute of Technology,
2005. 6

[Sun95] SUN C.: Dealing with Dense Rows in the Solution of
Sparse Linear Least Squares Problems. Tech. rep., Cornell Uni-
versity, 1995. 8

[SZGP05] SUMNER R. W., ZWICKER M., GOTSMAN C.,
POPOVIĆ J.: Mesh-based inverse kinematics. ACM Transactions
on Graphics 24, 3 (2005), 488–495. 1, 2, 3, 6, 10

[SZT∗07] SHI X., ZHOU K., TONG Y., DESBRUN M., BAO H.,
GUO B.: Mesh puppetry: cascading optimization of mesh defor-
mation with inverse kinematics. ACM Transactions on Graphics
26, 3 (2007). 2, 8

[TPBF87] TERZOPOULOS D., PLATT J., BARR A., FLEISCHER
K.: Elastically deformable models. In Proc. of ACM SIGGRAPH
(1987), pp. 205–214. 2

[WDAH10] WINKLER T., DRIESEBERG J., ALEXA M., HOR-
MANN K.: Multi-scale geometry interpolation. Computer Graph-
ics Forum 29, 2 (2010), 309–318. 1, 2, 4, 5, 8

[WPP07] WANG R. Y., PULLI K., POPOVIĆ J.: Real-time
enveloping with rotational regression. ACM Transactions on
Graphics 26, 3 (2007). 3

[WSLG07] WEBER O., SORKINE O., LIPMAN Y., GOTSMAN
C.: Context-aware skeletal shape deformation. Computer Graph-
ics Forum 26, 3 (2007), 265–273. 3

[XZWB05] XU D., ZHANG H., WANG Q., BAO H.: Poisson
shape interpolation. In Proc. of ACM symposium on Solid and
Physical Modeling (2005), pp. 267–274. 2, 3

[YZX∗04] YU Y., ZHOU K., XU D., SHI X., BAO H., GUO B.,
SHUM H.-Y.: Mesh editing with Poisson-based gradient field
manipulation. ACM Transactions on Graphics 23, 3 (2004), 644–
651. 2, 3

[ZRKS05] ZAYER R., RÖSSL C., KARNI Z., SEIDEL H.-P.:
Harmonic guidance for surface deformation. Computer Graphics
Forum 24, 3 (2005), 601–609. 2

Preprint, final version to appear in COMPUTER GRAPHICS Forum.

