Design, Implementation, and Evaluation
of the Surface mesh Data Structure

Daniel Sieger and Mario Botsch

Computer Graphics & Geometry Processing Group,
Bielefeld University, Germany
{dsieger,botsch}@techfak.uni-bielefeld.de

Summary. We present the design, implementation, and evaluation of an ef-
ficient and easy to use data structure for polygon surface meshes. The design
choices that arise during development are systematically investigated and de-
tailed reasons for choosing one alternative over another are given. We describe
our implementation and compare it to other contemporary mesh data struc-
tures in terms of usability, computational performance, and memory consump-
tion. Our evaluation demonstrates that our new Surface mesh data structure
is easier to use, offers higher performance, and consumes less memory than
several state-of-the-art mesh data structures.

1 Introduction

Polygon meshes, or the more specialized triangle or quad meshes, are the
standard discretization for two-manifold surfaces in 3D or solid structures
in 2D. The design and implementation of mesh data structures therefore is
of fundamental importance for research and development in as diverse fields
as mesh generation and optimization, finite element analysis, computational
geometry, computer graphics, and geometry processing.

Although the requirements on the mesh data structure vary from appli-
cation to application, a generally useful and hence widely applicable data
structure should be able to (i) represent vertices, edges, and triangular/quad-
rangular/polygonal faces, (ii) provide access to all incidence relations of these
simplices, (iii) allow for modification of geometry (vertex positions) and topol-
ogy (mesh connectivity), and (iv) allow to store any custom data with ver-
tices, edges, and faces. In addition, the data structure should be easy to use,
be computationally efficient, and have a low memory footprint.

Since it is hard to implement a mesh data structure that meets all these
goals, many researchers and developers in both academia and industry rely
on publicly available C++ libraries like CGAL [8] (computational geometry),
Mesquite [6] (mesh optimization), and OpenMesh [5] (computer graphics).

2 Daniel Sieger and Mario Botsch

However, even these highly successful data structures have their individual
deficits and limitations, as we experienced during several years of research and
teaching in geometry processing. In this paper we systematically derive the de-
sign choices for our new Surface_mesh data structure and provide an analysis
and comparison to the widely used mesh data structures of CGAL, Mesquite,
and OpenMesh. These comparisons demonstrate that Surface_mesh is easier
to use than these implementations, while at the same time being superior in
terms of computational performance and memory consumption.

2 Related Work

Due to their fundamental nature, a wide variety of data structures to rep-
resent polygon meshes have been proposed. Some are highly specialized to
only represent a certain type of polygons, such as triangles or quadrilateral
elements. Others are designed for specific applications, e.g. parallel process-
ing of huge data sets. In general, mesh data structures can be classified as
being either face-based or edge-based. We refer the reader to [18, 4] for a more
comprehensive overview of mesh data structures for geometry processing.

In its most basic form a face-based data structure consists of a list of
vertices and faces, where each face stores references to its defining vertices.
However, such a simple representation does not provide efficient access to
adjacency information of vertices or faces. Hence, many face-based approaches
additionally store the neighboring faces of each face and/or the incident faces
for each vertex. Examples for face-based mesh data structures include CGAL’s
2D triangulation data structure [8], Shewchuck’s Triangle [23], Mesquite [6],
and VCGLib [29].

In contrast to face-based approaches, edge-based data structures store the
main connectivity information in edges or halfedges [2, 13, 7, 20]. In general,
edges store references to incident vertices/faces as well as neighboring edges.
Kettner [18] gives a comparison of edge-based data structures and describes
the design of CGAL’s halfedge data structure. Botsch et al. [5] introduce
OpenMesh, a halfedge-based data structure widely used in computer graphics.
Alumbaugh and Jiao [1] describe a compact data structure for representing
surface and volume meshes by halfedges and half-faces.

Furthermore, a fairly large number of publications describe more special-
ized mesh representations. For instance, Blandford et al. [3] introduce a com-
pact and efficient representation of simplicial meshes containing triangles or
tetrahedra. Other works focus on data structures for non-manifold meshes [10,
11], highly compact representations of static triangle meshes [14, 15], or mesh
representations and databases for numerical simulation [12, 27, 22, 9].

Design, Implementation, and Evaluation of Surface_mesh 3

3 Design Decisions

While virtually all of the publications cited above describe the specific de-
sign decisions made for a particular implementation, a comprehensive and
systematic investigation of the design choices available is currently lacking.
We therefore try to provide such an analysis in this section.

As mentioned in the introduction, the typical design goals for mesh data
structures are computational performance, low memory consumption, high
flexibility and genericity, as well as ease of use. Since these criteria are partly
contradicting, one has to set priorities and make certain compromises.

Based on our experience in academic research and teaching as well as in
industrial cooperations, our primary design goal is ease of use. An easy-to-use
data structure is learned faster, allows to focus on the main problem (instead
of on the details of the data structure), and fosters code exchange between
academic or industrial research partners. The data structure should therefore
be just as flexible and generic as needed, but should otherwise be free of
unnecessary switches and parameters. At the same time, however, we have
to make sure not to compromise computational performance and memory
consumption. Otherwise the data structure would be easy to use, but not
useful, and hence would probably not be used at all.

In the following we systematically analyze the typical design choices one is
faced with when designing a mesh data structure. Driven by our design goals
we argue for choosing one alternative over another for each individual design
criterion. We start with high-level design choices and successively focus on
more detailed questions.

3.1 Element Types

The most fundamental question is which types of elements or faces to support.
While in computer graphics and geometry processing triangle meshes still
are the predominant surface discretization [4], quad meshes are at least as
important as triangle meshes for structural mechanics. For many applications,
restricting to pure triangle or quad meshes is not an option, though. Polygonal
finite element methods [26] decompose their simulation domain into arbitrary
polygons. In discrete exterior calculus many computations are performed on
the dual mesh [16]. In computational geometry, computations on Voronoi
diagrams also need arbitrary polygon meshes [8]. Since we want our data
structure to be suitable for an as wide as possible range of applications we
choose to support arbitrary polygonal elements.

3.2 Connectivity Representation

As discussed in Section 2 there are two ways to represent the connectivity of
a polygon mesh: a face-based or an edge-based representation.

4 Daniel Sieger and Mario Botsch

AN

Fig. 1. Connectivity relations within a halfedge data structure.

Target vertex
Next halfedge
Previous halfedge
Opposite halfedge
Adjacent face

CU N

Face-based data structures store for each face the references to its defining
vertices. While this is sufficient for, e.g., visualization or setting up a stiffness
matrix, it is inefficient for mesh optimization, since vertex neighborhoods can-
not be accessed easily. Some implementations therefore additionally store all
incident faces per vertex (e.g., [6, 29]), but even then it is still inefficient to
enumerate all incident vertices of a center vertex—a query frequently required
for many algorithms, such as mesh smoothing, decimation, or remeshing. Fur-
thermore, since for a general polygon mesh the number of vertices per face
and the number of incident faces per vertex are not constant, they have to be
stored using dynamically allocated arrays or lists, which further complicates
the data structure. Edges are typically not represented at all.

In contrast, storing the main connectivity information in terms of edges
or halfedges naturally handles arbitrary polygon meshes. The data types for
vertices, (half-)edges, and faces all have constant size. The vertices and face-
neighbors of a face can be efficiently enumerated, as well as the vertices or faces
incident to a center vertex. Attaching additional data to vertices, halfedges,
and faces is simple, since all entities are explicitly represented. Finally, a
halfedge-based data structure allows for simple and efficient implementation of
connectivity modifications as required by modern approaches to interleaving
mesh generation and optimization [28, 25] or simulation [30]. We therefore
choose a halfedge data structure to store the connectivity of a polygon mesh.
The basic connectivity relations within a typical halfedge data structure are
shown in Figure 1.

3.3 Storage

On an implementation level one has to decide whether to store the mesh
entities in either doubly-linked lists or simple arrays.

Lists have the advantage that they allow for easy removal of individual ver-
tices, edges, or faces, which is required, e.g., when collapsing edges or removing
vertices in a mesh decimation algorithm. However, this flexibility comes at the
price of higher memory consumption and less coherent memory layout com-
pared to array-based storage, both resulting in considerable performance loss.
We evaluated this on the halfedge data structure [17] of CGAL [8], which al-
lows to switch between a list-based and an array-based implementation. Our

Design, Implementation, and Evaluation of Surface_mesh 5

benchmarks in Section 5 show the list-based implementation to be up to twice
as slow as the array-based version.

Array-based storage on the one hand is more compact and faster, but
on the other hand the removal of mesh entities is more difficult. Typically
mesh entities are first marked as deleted and later removed by some form
of garbage collection. However, the advantages in terms of performance and
memory consumption clearly outweigh the additional effort needed to support
removal. For these reasons we choose an array-based storage scheme.

3.4 Entity References

When using array-based storage for mesh entities, references (or handles) to
entities can be represented either as pointers or indices.

Pointers have three important drawbacks: First, they become invalid upon
a relocation of the array, which happens if the array has to allocate more mem-
ory (e.g., for refinement or subdivision algorithms). While the data structure
can automatically update all internally stored pointers, references that are
stored externally by the user will inevitably become invalid. Second, on 64-
bit architectures pointers consume twice as much memory as 32-bit indices.
For larger meshes, however, one has to use 64-bit addressing, since complex
meshes easily exceed the 2GB limit for 32-bit architectures. Finally, pointers
cannot be used to access additional properties of mesh entities that are stored
in additionally “property arrays” (see the next section). We therefore choose
indices as entity references.

3.5 Custom Properties

Additional information about the mesh entities can be stored either by ex-
tending the mesh entities themselves or by using additional arrays. For in-
stance, vertex normals can be incorporated either by adding a member variable
normal to the class Vertex, or by having an additional array vertex_normals
where the i’th entry is the normal of vertex i.

The first approach, as e.g. chosen by CGAL, is more elegant from an
object-oriented point of view, but has the following drawbacks: Since the class
types of mesh entities are extended at compile-time, all custom properties are
allocated over the whole running time of the application, even if the properties
are used for a short time only. This does not only waste memory, it also slows
down the algorithms due to a less compact memory layout: Just adding vertex
and face normals to the CGAL mesh by extending the Vertex and Facet types
slowed down our benchmarks (Section 5) by about 25% on average. This can
be a significant drawback for larger mesh processing applications, where many
individual algorithms need some custom data at some point in time.

In contrast, additional arrays can be dynamically allocated at run-time,
such that custom properties are just allocated when needed and deleted af-
terwards (as implemented in OpenMesh and Mesquite). Keeping all property

6 Daniel Sieger and Mario Botsch

arrays synchronized upon resize and swap operations can easily be imple-
mented. Furthermore, computations on the property arrays are also more
cache-friendly, thereby increasing performance compared to extended mesh
entities. Finally, if the model is meant to be visualized in an interactive appli-
cation, property arrays can also be used in conjunction with OpenGL vertex
arrays (normals, colors, texture coordinates), which speeds up rendering per-
formance considerably. We therefore store custom properties in additional
synchronized arrays.

3.6 Ease of Use

Up to this point, our previous mesh data structure OpenMesh [5], at least in
its current version [21], follows most of the design decisions made so far. From
our experience in research and teaching, however, the level of genericity offered
by OpenMesh is not needed in practice. For instance, custom properties can be
allocated both by extending mesh entities as well as using additional arrays,
where due to the former the mesh entities (and hence the whole mesh) become
template classes. Furthermore, the large (template-parametrized) inheritance
hierarchy makes the code unnecessarily hard to document and understand. In
terms of C++ sophistication, the polyhedral data structure of CGAL requires
an even higher level of template expertise, which makes it hard to use this
data structure with students or inexperienced programmers, too.

To reduce the negative effect that heavy use of templates and complicated
inheritance hierarchies have on the ease of use of the data structure, we made
our design as simple as possible while maintaining maximum applicability.

4 Implementation

In the following we highlight the most important aspects of our implementa-
tion. We first describe the fundamental organization of our new data structure
and successively proceed to higher-level functionality.

Since OpenMesh already satisfies all design choices except simplicity, we
started our implementation from a massively stripped-down and simplified
version of OpenMesh. In contrast to other implementations, ours is con-
centrated within a single class, namely Surface mesh. While the core of
Surface mesh (without file I/O) is implemented in three files using about
2250 lines of code, the part of OpenMesh that implements the same func-
tionality requires 41 files or 8400 lines of code. In contrast to CGAL and
OpenMesh, Surface_mesh is not a class template, i.e., it does not require so-
called traits classes as template parameters. However, the fundamental types
Scalar and Point can still be defined by simple typedefs.

Surface mesh implements an array-based halfedge data structure. The
basic entities of the mesh, i.e., vertices, (half-)edges, and faces are represented
by the types Vertex, Halfedge, Edge, and Face, respectively, all of which are

Design, Implementation, and Evaluation of Surface_mesh 7

Surface_mesh mesh;

// allocate property storing a point per edge
Surface_mesh::Edge_property<Point> edge_points
= mesh.add_edge_property<Point>("property-name");

// access the edge property like an array
Surface_mesh::Edge e;
edge_points[e] = Point(x,y,z);

// remove property and free memory
mesh.remove_edge_property (edge_points);

Listing 1. Working with a custom edge property.

basically 32-bit indices. Edges are represented implicitly, since two opposite
halfedges (laid out consecutively in memory) build an edge.

The connectivity information is stored in form of custom properties (i.e.,
synchronized arrays) of vertices, faces, and halfedges: Each vertex stores an
outgoing halfedge, each face an incident halfedge. Each halfedge stores its in-
cident face, its target vertex, and its previous and next halfedges within the
face. Since opposite halfedges are laid out consecutively in memory, the oppo-
site halfedge can be accessed by simple modulo operations on the Halfedge
indices and therefore does not have to be stored explicitly.

Managing internal mesh data as well as dynamically allocated user-defined
properties within the same framework for synchronized arrays on the one
hand simplifies implementing and maintaining the data structure. On the
other hand the performance of the data structure then crucially depends on
efficient access to these properties. Our property mechanism deviates from
Mesquite and OpenMesh in that it (i) avoids inefficient virtual function calls,
(ii) does not require error-prone casting of void-pointers, (iii) avoids unnec-
essary indirections, and (iv) offers a cleaner interface. From a user’s point of
view, working with a custom property is as simple as shown in Listing 1.

In addition to access to all incidence relations and custom properties,
Surface mesh also offers higher-level topological operations, such as adding
vertices and faces, performing edge flips, edge splits, face splits, or halfedge
collapses. Based on these methods typical geometry processing algorithms
(smoothing, decimation, subdivision, remeshing) can be implemented conve-
niently. Since Surface mesh uses an array-based storage special care has to
be taken when removing items from the mesh. Such operations do not delete
mesh entities immediately, but instead mark them as being to be deleted.
The function garbage_collection() eventually deletes those items from the
arrays, while preserving the integrity of the data structure.

In order to sequentially access mesh entities we provide iterators for each
entity type, namely Vertex_iterator, Halfedge_iterator, Edge_iterator
and Face_iterator. Each iterator stores a reference to the current entity
and to the mesh. The latter is used to automatically detect and skip deleted

8 Daniel Sieger and Mario Botsch

Fig. 2. Traversal of one-ring neighbors of a center vertex. From left to right: 1. Start
from center vertex. 2. Select outgoing halfedge (and access its target vertex). 3. Move
to previous halfedge. 4. Move to opposite halfedge (access its target vertex). Steps 1
and 2 correspond to the initialization of a Vertex_around vertex_circulator using
mesh.vertices(Vertex), steps 3 and 4 to the ++-operator of the circulator.

entities, for instance when the user collapsed some edges but did not yet
clean-up using garbage_collection(). We decided for these “safe iterators”
despite their small performance penalty, since “unsafe” iterators turned out
to be a frequent source of errors for novice OpenMesh users.

Similar to iterators, we also provide circulators for the ordered enumeration
of all incident vertices, halfedges, or faces around a given face or vertex. Since
there is no clear begin- and end-circulator, we follow the CGAL convention and
use do-while loops for circulators. The traversal of the one-ring neighborhood
of a vertex—which corresponds to a Vertex_around_vertex_circulator—is
shown in Figure 2. An example usage of iterators and circulators is demon-
strated in the smoothing example in Listing 2.

5 Evaluation and Comparison

In this section we evaluate our mesh data structure and compare it to three
other widely used data structures: OpenMesh, CGAL, and Mesquite. Our
evaluation criteria are ease of use, run-time performance, and memory usage.

All tests were performed on a Dell T7500 workstation with an Intel Xeon
E5645 2.4 GHz CPU and 6GB RAM running Ubuntu Linux 10.04 x86_64. All
libraries and tests were compiled with gcc version 4.4.3, optimization turned
on (using -03) and debugging checks disabled (-DNDEBUG).

For each of the mesh libraries in our comparison we used the latest version
available, i.e., OpenMesh 2.0.1, CGAL 3.8, and Mesquite 2.1.4. To achieve
comparable results, we chose double-precision floating point values for scalars,
vertex coordinates, and normal vectors for all benchmarks and data structures.
Since one benchmark requires vertex and face normals, all data structures
allocate these properties, either by extending vertex and face types (CGAL)
or using property arrays (Mesquite, OpenMesh, Surface mesh).

Note that regarding CGAL we compare to both the list-based and the
vector-based version of the Polyhedron_3 mesh data structure, denoted as
CGAL.ist and CGAL_vector, respectively. Furthermore, following [24], we

Design, Implementation, and Evaluation of Surface_mesh 9

#include <Surface_mesh.h>

int main(int argc, charx*x argv)
{

Surface_mesh mesh;

// read mesh from file
mesh.read (argv [1]);

// get (pre-defined) property storing vertex positions
Surface_mesh::Vertex_property<Point> points
= mesh.get_vertex_property<Point>("v:point");

// iterators and circulators
Surface_mesh::Vertex_iterator vit, vend = mesh.vertices_end();
Surface_mesh::Vertex_around_vertex_circulator vc, vc_end;

// loop over all vertices
for (vit = mesh.vertices_begin(); vit != vend; ++vit)
{
if (!mesh.is_boundary (*vit))
{
// move vertex to barycenter of its neighbors
Point p(0,0,0);
Scalar c(0);
vc = vc_end = mesh.vertices (xvit);
do
{
p += points[*vcl;
++c;
}
while (++vc != vc_end);
points [*vit]l = p / c;

}

// write mesh to file
mesh.write (argv[2]);

Listing 2. A simple smoothing program implemented using Surface_mesh.

removed the storage for the plane equation from face entities in order to
increase performance.

In contrast to CGAL, OpenMesh, and Surface_mesh, which are all halfedge
data structures, Mesquite employs a face-based data structure that stores both
downward adjacency (vertices of a face) and upward adjacency (all incident
faces of a vertex).

5.1 Ease of Use

Being our primary design goal, we begin our evaluation by comparing the ease
of use of Surface mesh to the other libraries.

Simplicity

As already outlined in Section 3.6, simplicity is a key criterion for the ease
of use of a software library. By design, Surface mesh is as simple as possible

10 Daniel Sieger and Mario Botsch

typedef CGAL::Simple_cartesian<double> Kernel;
typedef Kermnel::Point_3 Point_3;

template <class Refs>
struct My_halfedge : public CGAL::HalfedgeDS_halfedge_base<Refs>
{
Point_3 halfedge_point;
};

class Items : public CGAL::Polyhedron_items_3
{
public:
template <class Refs, class Traits>
struct Halfedge_wrapper
{
typedef My_halfedge<Refs> Halfedge;

};

typedef CGAL::Polyhedron_3<Kernel, Items> Mesh;

Listing 3. Declaring a custom halfedge property in CGAL.

while maintaining high applicability. In contrast, both OpenMesh and CGAL
offer a higher level of genericity. While this enables the customization of the
mesh data structure for specialized applications, it also makes the library less
accessible for students and inexperienced programmers.

The differences in complexity are demonstrated best by example. Listing 3
shows how to declare a custom halfedge property in CGAL, which is roughly
equivalent to Listing 1 showing the usage of properties in Surface mesh.

Compared to OpenMesh, our increased simplicity (and decreased generic-
ity) is due to the definition of basic types (e.g., use float or double as scalar
type, 2D or 3D vertex coordinates) through typedefs instead of through tem-
plate parameters. While this allows Surface mesh not to be a class template,
it restricts each application to use a single Surface mesh definition. In con-
trast, OpenMesh and CGAL allow for several custom-tailored template in-
stances in a single application.

Properties

Comparing Listings 1 and 3 not only serves as an example for evaluating sim-
plicity, but also demonstrates the differences between CGAL’s extended enti-
ties and and Surface_mesh’s synchronized arrays for property handling. While
the declaration of the former is rather involved and bound to compile-time
properties, the latter is easy to use and dynamically allocated at run-time.
Both OpenMesh and Mesquite also support dynamic property arrays. In case
of OpenMesh however, the interface is slightly more complicated. Mesquite’s
implementation of properties relies on casting void-pointers, a practice gen-
erally discouraged and also relevant to our next evaluation criterion.

Design, Implementation, and Evaluation of Surface_mesh 11

Mesquite 157 30 250 245 b B Mesquite
CGAL_list 2.83 23 B CGAL list
CGAL_vector | 2.75 15 CGAL_vector
OpenMesh 3.37 08 [l OpenMesh
Surface_mesh | 1.13 o B Surface_mesh

Table 1. Compilation times (in seconds) of our benchmark program for the different
mesh data structures. The chart shows timings relative to Surface_mesh.

Safety

Especially for inexperienced programmers protection against common sources
of errors is a crucial aspect of usability. The use of void pointers in Mesquite
mentioned above can be considered harmful in this context, since this practice
essentially circumvents the static type-safety of the programming language.
The use of pointers as entity references for CGAL’s array-based mesh data
structure is prone to errors, since the pointers (and iterators) become invalid
upon resizing. While OpenMesh uses safe, index-based entity references, its it-
erators by default do not skip deleted items, which turned out to be a common
source of errors. In contrast, Surface mesh’s implementation of safe iterators
protects the user from iterating over deleted entities.

Compilation Time

Finally, compilation time is a usability factor frequently overlooked. While the
times to compile the individual programs in our test suite are relatively short,
compilation time becomes a significant factor for the speed and efficiency
of the development process in more complex projects. As can be seen from
Table 5.1, Surface mesh offers the fastest compilation times, mostly due to
minimizing the use of templates.

User Study

We evaluated the usability of Surface mesh in a user study among the partici-
pants of a two-day course of mesh processing (involving lectures and program-
ming exercises) held at the Symposium on Geometry Processing 2011. The
attendees had a varying degree of programming experience and exposure to
other mesh libraries. After the two-days the participants were asked anony-
mously if Surface mesh was easy to use and understand for them. Out of
18 participants seven strongly agreed to this statement (5/5 points), another
seven agreed (4/5 points). On average, Surface mesh received 4.1/5 points.
While this is not a representative survey, the results are still encouraging.

12 Daniel Sieger and Mario Botsch
5.2 Performance

In order to compare the efficiency of our implementation with other mesh data
structures we designed several benchmarks, which either evaluate a fundamen-
tal functionality of a data structure (e.g., iterators or adjacency queries) or
test the performance in common application domains (e.g., mesh smoothing or
subdivision). The benchmark tests are described below and their pseudo-code
is shown in Algorithms 1-6:

1. Circulator Test: For each vertex enumerate its incident faces. For each
face enumerate its vertices. This test measures the efficiency of iterators
and circulators.

2. Barycenter Test: Center the mesh at the origin by first computing the
barycenter of all vertex positions and then subtracting it from each vertex.
This test evaluates the performance of iterators and of the access to and
basic computations on the vertex coordinates.

3. Normal Test: First compute (and store) face normals, then compute vertex
normals as the average of the incident faces’ normals. This test measures
the performance of iterators, circulators, vertex computations, and custom
properties (storing face and vertex normals).

4. Smoothing Test: Perform Laplacian smoothing by moving each (non-
boundary) vertex to the barycenter of its neighboring vertices. This test
requires (and evaluates) the enumeration of incident vertices of a vertex.

5. Subdivision Test: Perform one step of v/3-subdivision [19] by first splitting
all faces at their centers, smoothing the old vertices, and then flipping all
the old edges. This test mainly evaluates the performance of the face split
and edge flip operators.

6. Edge Collapse Test: First split all faces at their center and then col-
lapse each newly introduced vertex into one of its (old) neighbors, thereby
restoring the original connectivity. This test evaluates the operators face
split and halfedge collapse.

These benchmarks were performed on the Imp model, consisting of 300k
vertices and 600k triangles, and the Dual Dragon model, a dualized triangle
mesh consisting of 100k vertices and 50k polygonal faces. The models are
shown in Figure 3. All tests were iterated sufficiently many times in order to
get more reliable accumulated timings. The results are listed in Tables 2 and 3.
Note that we also performed the tests with other models and setups (CPU,
compiler version, and operating system). While the results quantitatively vary
to a certain extent, they were qualitatively equivalent to the ones shown here.

It can be observed that for some tests the performance varies significantly
between different libraries. While it is hard to track down the reasons in detail,
we point out the most important issues we identified.

For Mesquite, a significant performance penalty comes from the large num-
ber of virtual functions (e.g., to access incidences or vertex coordinates), as
well as from memory fragmentation due to dynamically allocated arrays for

Design, Implementation, and Evaluation of Surface_mesh 13

Imp Model
300k vertices, 600k triangles

Lucy Model
10M vertices, 20M triangles

Dual Dragon Model
100k vertices, 50k polygons

Fig. 3. The three models used in the evaluation.

Algorithm 1: Circulator Test

Initialize counter = 0;

for each vertex v do

for each face f incident to v do
| counter = counter + 1;

end

end

for each face f do

for each vertex v incident to f do
| counter = counter — 1;

end

end

Algorithm 2: Barycenter Test

Initialize p = (0, 0, 0);
for each vertex v do

| p=p+point(v);
end
P = p/number_of vertices();
for each vertex v do

| point(v) = point(v) — p;
end

Algorithm 3: Normal Test

Algorithm 4: Smoothing Test

for each face f do
| Compute the face normal of f;
end
for each vertex v do
n = (0,0,0);
for each face f incident to v do
| n=n+ facenormal(f);
end
vertex_normal(v) = normalize(n);
end

for each vertex v do
if v is not a boundary vertex then
p= (07 0, 0)7
c=0;
for each vertex w incident to
v do
P = p + point(w);
c=c+1;
end
point(v) = p/c;
end

end

Algorithm 5: Subdivision Test

for each face f do
Compute centroid c;
Split f at centroid c;
end
for each old vertex v do
‘ Smooth vertex position;
end
for each old edge e do
| Flip e;
end

Algorithm 6: Collapse Test

for each face f do
‘ Split f;
end
for each new vertex v do
‘ Collapse v into one of its neighbors;
end

Fig. 4. The six benchmark tests used to evaluate and compare the run-time per-
formance of Surface mesh to Mesquite, CGAL, and OpenMesh.

14 Daniel Sieger and Mario Botsch
7.76 12.94
7
5.25
3.5
1.75
0
Circulator Barycenter Normals Smoothing Subdivision Collapse
B Mesquite [CGAL_list CGAL_vector [l OpenMesh [Surface_mesh
Circulator | Barycenter | Normals | Smoothing | Subdivision | Collapse
Mesquite 3479.57 15039.9 | 11406.4 | 23228.9 — —
CGAL.list 5329.89 7298.91 | 6642.29 | 4976.79 506.158 1582.94
CGAL._vector| 2358.51 3879.86 | 5064.38 | 2467.66 312.607 —
OpenMesh 2359.36 2443.59 | 5356.68 | 2071.79 423.925 1987.44
Surface_mesh | 1673.34 1412.28 | 4181.92 | 1757.07 294.24 1547.53

Table 2. Timings for performing Algorithms 1-6 on the Imp model of 300k vertices
and 600k triangles. The table lists timings in milliseconds, the chart visualizes the
performance relative to Surface mesh.

14.14

32

Normals

211

1.67

lI11e1221

Circulator

1.10 116 4

Barycenter
Il Mesquite [CGAL_list

105 1 1.03 120

Smoothing Collapse

CGAL_vector [l OpenMesh [l Surface_mesh

0

Circulator | Barycenter | Normals | Smoothing | Collapse
Mesquite 650.47 4632.11 2234.09 5554.18 —
CGAL. st 804.118 1381.48 1403.99 1070.94 74.376
CGAL_vector | 460.168 718.312 1057.46 636.868 —
OpenMesh 475.175 760.832 830.638 410.626 86.358
Surface_mesh 388.47 655.341 690.949 392.901 71.888

Table 3. Timings for performing Algorithms 1-4 and 6 on the Dual Dragon model
consisting of 100k vertices and 50k arbitrary polygonal faces. The table lists timings
in milliseconds, the chart visualizes the performance relative to Surface mesh.

Design, Implementation, and Evaluation of Surface_mesh 15

Imp | Dragon | Lucy
Mesquite 88M 16M | 2.8G
CGAL.list 172M 30M | 5.5G
CGAL._vector | 106M 19M | 3.4G
OpenMesh 67M 14M | 2.2G

Surface_mesh | 60M| 12M | 1.9G Imp Lucy Dual Dragon

B Mesquite [CGAL list CGAL_vector
Bl OpenMesh M Surface_mesh

Table 4. Memory usage for the Imp, Lucy, and Dual Dragon models. The table lists
resident size memory usage after reading the meshes, without performing any further
tests or processing. The chart visualizes the relative difference to Surface mesh.

storing per-vertex and per-face incidences. Moreover, enumerating incident
vertices of a center vertex is not directly supported by this face-based data
structure and therefore has to be implemented less efficiently by looping over
the vertices of the incident faces. Since Mesquite does not support connectivity
modifications, the subdivision and collapse test were not implemented.

The performance difference between CGAL_list and CGAL_vector is due
to the higher memory consumption and memory fragmentation of the list-
based version. Both CGAL mesh data structures store 64-bit references, vertex
positions, and normal vectors in extended mesh entities, leading to a less
compact memory layout, which in turn results in performance penalties. Note
that the array-based version does not support removal of entities, so that the
collapse test could be implemented with the slower list-based version only.

Since OpenMesh is closest to Surface mesh in terms of design and imple-
mentation, it also is close in terms of performance. The differences of about
20%-30% are due to our more efficient mechanism for accessing custom prop-
erties, which requires fewer indirections. Furthermore, our do—while circula-
tors are slightly more efficient than the for circulators of OpenMesh, which
use a rather complex test for detecting the end of the loop.

The results clearly demonstrate the performance of Surface mesh to be
(in most cases) superior to or at least on par with the other data structures.

5.3 Memory Efficiency

Besides run-time performance, memory consumption is a key criterion to mea-
sure the efficiency of a library, especially when it comes to applications dealing
with highly complex data sets. We compare the memory consumption of the
data structures on three different models: the Imp model (300k vertices, 600k
triangles) and the Dual Dragon (100k vertices, 50k polygons) already used in
the performance comparison and the complex Lucy model (10M vertices, 20M
triangles). The results are shown in Table 4.

Although a face-based data structure in general consumes less mem-
ory than a halfedge data structure, Mesquite requires more memory than

16 Daniel Sieger and Mario Botsch

Surface_mesh because (i) of the overhead of the dynamic arrays used to store
incidences, (ii) the use of 64-bit references, and (iii) the storage of several
helper data per face and vertex.

In addition to the memory overhead due to the doubly-linked of the CGAL
list-kernel, both CGAL data structures use 64-bit pointers as references, which
consume twice as much memory than the 32-bit indices employed by Open-
Mesh and Surface mesh.

Our slight performance advantage with respect to OpenMesh comes from
the different storage of the information whether a vertex, edge, or face is
deleted. We store this information in custom bool property arrays, which
in a std: :vector<bool> require approximately 1 bit per entity. In contrast,
OpenMesh uses one status byte per entity, similar to Mesquite.

These results show that Surface_mesh is superior to the other data struc-
tures in terms of memory consumption.

6 Conclusion and Future Work

Our results show that the design decisions made during the development of
a mesh data structure have a crucial impact on both the usability and the
efficiency of the library. By systematically analyzing the design questions we
derived design decisions that—if carefully implemented—result in a mesh data
structure that is more usable, offers higher performance and consumes less
memory than several other mesh data structures publicly available.

Considering the sometimes drastic differences in performance and memory
consumption between the individual libraries, it is important to keep in mind
that some of them have originally been designed and implemented with a
strong focus on a given application domain, such as computational geometry
in case of CGAL and mesh optimization in case of Mesquite. As a consequence,
both libraries provide significantly more functionality that goes beyond a pure
surface mesh data structure. For example, Mesquite supports the optimization
of surface and volume meshes within a single framework.

While we are confident with the tests and results achieved thus far, we feel
that our benchmark tests should be expanded to a wider variety of different
setups (i.e. different hardware, operating systems, compilers and mesh mod-
els). Furthermore, additional algorithms and additional mesh data structures,
for instance VCGLib, could be included in future evaluations.

Our performance and memory benchmarks can be a first step towards a
general benchmark for mesh data structures. We will therefore make the source
code and the results of the benchmarks publicly available. Furthermore, in
order to facilitate wide adoption of our new data structure, we will also make
Surface_mesh freely available under an Open Source license allowing for both
academic and commercial usage.

Design, Implementation, and Evaluation of Surface_mesh 17

While our current work is focused on surface meshes only, we are aware
that applications such as physical simulations often require volumetric meshes.
We feel that a systematic approach as presented in this paper might also
be beneficial for the design and implementation of a volumetric mesh data
structure. In particular, design decisions such as array-based storage, indices
as entity references and custom properties as synchronized arrays should carry
over to such a data structure seamlessly.

Acknowledgments

The authors are grateful to Pierre Alliez and Christian Rossl for helpful discus-
sions and to the participants of the SGP 2011 graduate school for their valu-
able feedback. Daniel Sieger and Mario Botsch are supported by the Deutsche
Forschungsgemeinschaft (Center of Excellence in “Cognitive Interaction Tech-
nology”, CITEC). The Lucy and Dragon models are courtesy of the Stanford
University Computer Graphics Laboratory.

References

1. T. Alumbaugh and X. Jiao. Compact array-based mesh data structures. In
Proceedings of the 14th International Meshing Roundtable, pages 485-504, 2005.

2. B. G. Baumgart. Winged-edge polyhedron representation. Technical Report
STAN-CS320, Computer Science Department, Stanford University, 1972.

3. D. Blandford, G. Blelloch, D. Cardoze, and C. Kadow. Compact representations
of simplicial meshes in two and three dimensions. In Proceedings of the 12th
International Meshing Roundtable, pages 135—146, 2003.

4. M. Botsch, L. Kobbelt, M. Pauly, P. Alliez, and B. Levy. Polygon Mesh Pro-
cessing. AK Peters, 2010.

5. M. Botsch, S. Steinberg, S. Bischoff, and L. Kobbelt. Openmesh: A generic and
efficient polygon mesh data structure. In Proc. of OpenSG Symposium, 2002.

6. M. Brewer, L. Freitag Diachin, P. Knupp, T. Leurent, and D. Melander. The
Mesquite mesh quality improvement toolkit. In Proceedings of the 12th Inter-
national Meshing Roundtable, pages 239-250, 2003.

7. S. Campagna, L. Kobbelt, and H.-P. Seidel. Directed edges: A scalable rep-
resentation for triangle meshes. Journal of Graphics, GPU, and Game Tools,
3(4):1-12, 1998.

8. CGAL. Computational Geometry Algorithms Library. http://www.cgal.org,
2011.

9. H. C. Edwards, A. B. Williams, G. D. Sjaardema, D. G. Baur, and W. K.
Cochran. SIERRA toolkit computational mesh conceptual model. Technical
Report SAND2010-1192, Sandia National Laboratories, 2010.

10. L. De Floriani and A. Hui. Data structures for simplicial complexes: An analysis
and a comparison. In Proc. of Eurographics Symposium on Geometry Processing,
pages 119-28, Berlin, 2005.

11. L. De Floriani, A. Hui, D. Panozzo, and D. Canino. A dimension-independent
data structure for simplicial complexes. In Proceedings of the 19th International
Meshing Roundtable, pages 403—-420, 2010.

18

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.
30.

Daniel Sieger and Mario Botsch

. R. Garimella. MSTK - a flexible infrastructure library for developing mesh based
applications. In Proceedings of the 13th International Meshing Roundtable, pages
203-212, 2004.

L. Guibas and J. Stolfi. Primitives for the manipulation of general subdivisions
and computation of Voronoi diagrams. ACM Transaction on Graphics, 4(2):74—
123, 1985.

T. Gurung, D. Laney, P. Lindstrom, and J. Rossignac. SQuad: Compact repre-
sentation for triangle meshes. Computer Graphics Forum, 30(355-364), 2011.
T. Gurung, M. Luffel, P. Lindstrom, and J. Rossignac. LR: Compact connec-
tivity representation for triangle meshes. ACM Trans. Graph., 30(3), 2011.

A. N. Hirani. Discrete Exterior Calculus. PhD thesis, California Institute of
Technology, 2003.

L. Kettner. Designing a data structure for polyhedral surfaces. In Proceedings
of 14th Symposium on Computational Geometry, pages 146154, 1998.

L. Kettner. Using generic programming for designing a data structure for poly-
hedral surfaces. Computational Geometry — Theory and Applications, 13(1):65—
90, 1999.

L. Kobbelt. /3 subdivision. In Proceedings of ACM SIGGRAPH 2000, pages
103-112, 2000.

M. Mantyla. An Introduction to Solid Modeling. Computer Science Press, New
York, 1988.

OpenMesh. http://www.openmesh.org, 2011.

E. Seegyoung Seol and M. S. Shephard. Efficient distributed mesh data struc-
ture for parallel automated adaptive analysis. Engineering with Computers,
22(3):197-213, 2006.

J. R. Shewchuk. Triangle: Engineering a 2D Quality Mesh Generator and De-
launay Triangulator. In Applied Computational Geometry: Towards Geometric
Engineering, volume 1148, pages 203-222. 1996.

Le-Jeng Shiue, Pierre Alliez, Radu Ursu, and Lutz Kettner. A tutorial on
CGAL Polyhedron for subdivision algorithms. In Symp. on Geometry Processing
Course Notes, 2004.

D. Sieger, P. Alliez, and M. Botsch. Optimizing Voronoi diagrams for polygonal
finite element computations. In Proceedings of the 19th International Meshing
Roundtable, pages 335-350, 2010.

N. Sukumar and E. A. Malsch. Recent advances in the construction of polygonal
finite element interpolants. Archives of Computational Methods in Engineering,
13(1):129-163, 2006.

T. J. Tautges, R. Meyers, K. Merkley, C. Stimpson, and C. Ernst. MOAB: A
mesh-oriented database. Technical Report SAND2004-1592, Sandia National
Laboratories, 2004.

J. Tournois, P. Alliez, and O. Devillers. Interleaving Delaunay refinement and
optimization for 2D triangle mesh generation. In Proceedings of the 16th Inter-
national Meshing Roundtable, pages 83-101, 2007.

VCGLib. http://vcg.sourceforge.net/, 2011.

M. Wicke, D. Ritchie, B. M. Klingner, S. Burke, J. R. Shewchuk, and J. F.
O’Brien. Dynamic local remeshing for elastoplastic simulation. ACM Transac-
tion on Graphics, 29:49:1-49:11, 2010.

