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Abstract

This paper presents a novel method for real-time animation of highly-detailed facial expressions based on a
multi-scale decomposition of facial geometry into large-scale motion and fine-scale details, such as expression
wrinkles. Our hybrid animation is tailored to the specific characteristics of large- and fine-scale facial deforma-
tions: Large-scale deformations are computed with a fast linear shell model, which is intuitively and accurately
controlled through a sparse set of motion-capture markers or user-defined handle points. Fine-scale facial details
are incorporated using a novel pose-space deformation technique, which learns the correspondence of sparse
measurements of skin strain to wrinkle formation from a small set of example poses. Our hybrid method features
real-time animation of highly-detailed faces with realistic wrinkle formation, and allows both large-scale defor-
mations and fine-scale wrinkles to be edited intuitively. Furthermore, our pose-space representation enables the
transfer of facial details to novel expressions or other facial models.

1. Introduction

The face gathers the foremost relevant visual characteris-
tics of human identity and expression, and the quest for
realistic computer-generated characters has acknowledged
it over the years [NN99, PL06]. Sophisticated methods al-
low today the acquisition of detailed expressive facial de-
formations [ZSCS04, MHP∗07, BBA∗07], and high-quality
real-time rendering techniques [dLE07] lay some of the
components for highly-detailed facial animation for video
games [BMW∗06] or interaction with virtual avatars.

The complexity of facial tissue induces highly nonlinear
skin bulging and wrinkling effects under expressive facial
motion, which are extremely complex to model and com-
pute. Animators and artists, however, need high fidelity face
models that are easy and intuitive to control, a task for which
interactive performance is crucial.

Data-driven approaches therefore avoid complex com-
putations by blending example poses from a database
of facial expressions [PSS99, BV99, VBPP05]. However,
spanning the space of expressive motions requires a
large and complex-to-acquire database [For03], and deriv-
ing the blending weights becomes difficult and/or expen-
sive [JTDP03]. Facilitated by the steadily increasing CPU
performance, computational approaches are nowadays able
to realistically model facial details using complex nonlin-
ear deformation models [SNF05, BBA∗07], but are still tied

to high computational cost. Bickel et al. [BBA∗07] decom-
posed facial motion into large-scale global motion and fine-
scale details, such as expression wrinkles. While the first
can efficiently be computed using a linear shell deformation
model, their fine-scale wrinkle synthesis still requires a com-
putationally expensive nonlinear thin-shell model.

We propose a hybrid animation technique that combines
computational and data-driven approaches, and thereby
achieves detailed facial expressions that are intuitive to con-
trol as well as efficient to compute. Building on the two-
scale decomposition of [BBA∗07], we compute the large-
scale motion using the same linear shell deformation, but
in contrast employ a data-driven approach for learning fine-
scale facial details from a small set of example poses.

While skin wrinkling is a highly nonlinear effect, there
is a clear relationship to stretching and compression of the
underlying skin. We therefore propose a novel pose-space
deformation (PSD) technique, which in a preprocess learns
the correlation of wrinkle formation to sparsely measured
skin strain. At run-time, given an arbitrary facial expression,
it computes the skin strain and derives from it the necessary
fine-scale corrections for the large-scale deformation.

This hybrid animation technique has several advantages
over purely computational or purely data-driven approaches.
First, our technique is very accurate: The large-scale defor-
mation is driven by a sparse set of positional constraints,
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Figure 1: Interactive Editing of Highly-Detailed Faces.
The user intuitively edits a 1M-triangles face model by drag-
ging the handle points near the eyebrow. The face deforms
in real-time and produces realistic fine-scale wrinkles.

such as motion-capture (mocap) markers or user-defined
handle points, which are interpolated exactly and therefore
enable precise control. The relation of skin strain to fine-
scale wrinkles can be learned more efficiently than the re-
lation of marker positions to a nonlinearly deformed face.
As a consequence, our pose-space deformation works very
well even with just a few example poses, although arbitrary
accuracy can be obtained by adding more poses.

Our hybrid approach allows large-scale and fine-scale de-
formations to be solved as superposition of precomputed re-
sponse functions. Exploiting this, we derive a highly parallel
GPU implementation that achieves real-time animations of
detailed facial expressions. Those animations are controlled
through a set of marker positions, which in combination with
real-time performance yields an intuitive editing system for
realistic face animations (cf. Fig. 1).

Face models in games, virtual reality, or computer anima-
tion often appear unrealistic due to the lack of facial details.
Once learned from a set of example poses, our explicit pose-
space representation of fine-scale details allows us to easily
transfer them onto other animated faces, thereby enhancing
their visual plausibility without changing their overall mo-
tion. As such, our method provides a simple way to re-use
captured or manually modeled high-res face data.

2. Related Work

Modeling, acquisition, and animation of human faces are
topics largely explored in computer vision and computer
graphics [NN99,PL06]. Our target problem falls into the cat-
egory of facial animation, and our proposed method is kin-
dred to techniques in character skinning, hence we focus our
discussion of related work on those research areas.

One large family of methods in face animation employs
model blending. Blend shapes, dating back to the early work
of Parke [Par74] and commonly used in the industry today,

linearly combine several poses of the same face model, ei-
ther designed by an artist or acquired from a person. This
method suffers from two main drawbacks: It requires a large
number of poses for spanning the range of possible expres-
sions [For03], and blending controls are hard to tune. Blend
shapes have therefore been extended to automatic blend-
ing control [PSS99] and automatic segmentation [JTDP03],
but those methods require computationally expensive opti-
mizations. The FaceIK technique of [ZSCS04] allows for
interactive and local blending control when the number of
matched points is smaller than the number of blend shapes.
Morphable models [BV99] and their extension to multilinear
models [VBPP05] not only blend different expressions from
the same object, but also from a large database of different
subjects. The common drawback of blend shapes, however,
is that they typically do not allow for intuitive, precise, and
interactive control at the same time.

Another family of methods uses anatomical models ac-
tivated by controls with biomechanical meaning [KGC∗96,
EBDP96, SNF05]. They allow extending the range of mo-
tions beyond muscle-driven expressions by incorporating ex-
ternal forces. Essa et al. [EBDP96] learn muscle activations
for matching video-captured poses, and then interpolate the
learned poses. Sifakis et al. [SNF05] learn functions for
muscle activation in a more sophisticated tissue model. Fur-
thermore, several approaches focus on specific anatomical
models for wrinkle simulation [MTKL∗02, ZS05, VLR05].
Among those, Wu et al. [WKMT96] designed procedural
methods for wrinkle synthesis as a function of the strain
measured in an underlying tissue model. Those approaches
allow for realistic model behavior, but in turn require com-
plex parameter tuning and expensive computations.

The parameter-setting complexity of anatomical models
can be largely relaxed by adding user- or data-driven con-
straints to the deformation. Pighin et al. [PHL∗98] matched
corresponding vertices in a generic model to mocap mark-
ers, and then smoothly interpolated the deformation on the
rest of the face. Bickel et al. [BBA∗07] successfully decom-
posed face animations into two scales, computing the large-
scale motions by a fast linear shell model driven by mo-
cap markers, thus requiring an expensive nonlinear model
only for synthesizing fine-scale wrinkles. Furthermore, they
require spatial and temporal dense capturing of geometric
wrinkle constraints. In contrast, our hybrid framework ex-
ploits the quasi-static nature of fine-scale wrinkles by em-
ploying an example-based model for fine-scale skin correc-
tions, and thereby avoids spatio-temporal dense acquisition
and any expensive nonlinear optimizations at run-time.

Example-based skin correction models have been suc-
cessfully used for modeling arms [LCF00] or hands [KJP02,
KM04]. They typically combine a fast, linear skeletal sub-
space deformation (SSD) [MTLT88] with a nonlinear pose-
space deformation (PSD) [LCF00] that interpolates correc-
tion vectors among example poses. PSD was extended to
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support weighted (i.e., per-vertex) pose space deformation
(WPSD) [KM04, RLN06], which largely reduces the num-
ber of required example poses. Similar in spirit to PSD, the
EigenSkin method [KJP02] performs corrections to SSD,
but derives a reduced basis from a PCA of the input exam-
ples. The recently presented method of [MA07] is related to
our work in the sense that it computes high-resolution defor-
mations from a few handle vertices, but it focuses on the se-
lection of handles given a large training dataset. Other recent
methods [WPP07, WSLG07] learn example-based correc-
tions on sparse points and assume that these corrections can
be smoothly interpolated. In general, any pose-space method
requires the definition of a suitable pose space, which for
SSD can easily be defined using bone transformations. In
the context of face models, we define a novel pose space
based on local skin strain and derive corresponding PSD and
WPSD techniques for fine-scale skin correction.

Several previous approaches address the transfer of whole
face animations from one subject onto other faces [DM00,
NN01, BBPV03, CXH03, SP04]. In contrast, our pose-space
representation allows to transfer only the fine-scale details
from one character onto another, which can be used to add
realistic wrinkles to existing models and face animations.

3. Overview

We start with an overview of the input data and the workflow
of our hybrid face animation pipeline, depicted in Fig. 2,
before describing the large-scale and fine-scale deformations
in more detail in the following sections.

In contrast to blend shapes, which linearly combine sev-
eral facial poses, we use a single high-resolution face mesh
F of the rest pose (≈ 1M triangles), and generate all frames
of the animation by deforming F from its rest pose. Fol-
lowing [BBA∗07], we compute the large-scale facial motion
using a linear thin shell model (Section 4). Its deformation is
controlled through a set of H ≈ 100 handle vertices, which
may correspond to a set of face points tracked during an ac-
tor’s performance, or may be interactively controlled by an
animator. The resulting large-scale deformation successfully
captures the overall facial expression, but lacks fine-scale fa-
cial details such as expression wrinkles (Fig. 2, left).

The nonlinear behavior that goes beyond the linear large-
scale motion is learned in a preprocess from a set of P
example poses. These examples are represented by high-
resolution triangle meshes in full vertex correspondence
with the rest pose F . In practice, example poses can for
instance be created manually by an artist, by capturing
an actor’s face with a high-resolution scanner [ZSCS04,
MHP∗07], or by reconstructing a detailed face mesh with ex-
pression wrinkles [BBA∗07]. Given the example poses, the
corresponding fine-scale details are extracted as the differ-
ence between the examples and the results of the large-scale
deformation for the same poses, and are stored per-vertex in
local tangent frames.

Rest Pose Handle Vertices Feature Graph Examples

Large-Scale
Linear Deformation

Fine-Scale
Pose Space Deformation

Figure 2: Our hybrid face animation pipeline computes the
large-scale facial motion from a linear deformation model,
and adds fine-scale details using a pose-space deformation
that learns skin corrections from a set of example poses.

In order to interpolate the fine-scale corrections of the ex-
amples onto other poses, we define a novel pose space for
facial expressions based on skin strain, and learn the forma-
tion of skin bulges and wrinkles in this space. To this end,
we construct a feature graph from the H handle vertices,
following approximately the contour of the face, but with-
out the need to produce a consistent mesh (e.g., edges may
cross each other). The feature graph’s edges constitute the
locations where skin strain is measured (Section 5.1). For
each new pose in an animation, we compute the skin strain
according to the deformed feature graph, and use this infor-
mation for a pose-space correction of fine-scale facial details
(Fig. 2, right, Sections 5.2 and 5.3).

4. Large-Scale Deformation

For the large-scale face deformations we employ the method
of [BBA∗07], which demonstrates that the displacements of
a set of sparse handle vertices provide sufficient geomet-
ric constraints for capturing the large-scale facial motion
in a plausible way. Given as input constraints the 3D dis-
placements uH ∈ IRH×3 of the H handle vertices, the large-
scale deformation u is computed by minimizing a simplified,
quadratic thin shell energy. This amounts to solving the cor-
responding Euler-Lagrange equations

−ks ∆u + kb ∆
2u = 0 , (1)
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under the constraints uH imposed by handle vertices. In
this equation, ks and kb denote the stiffness for surface
stretching and bending, respectively, and ∆ is the Laplace-
Beltrami operator. Discretizing the latter using the cotangent
weights [MDSB03] yields the linear system(

A AH
)( u

uH

)
= 0 ,

to be solved for the unknown displacements u ∈ IR(V−H)×3

of the (V −H) free vertices.

In contrast to [BBA∗07], who solved this system for each
frame using a sparse Cholesky factorization [TCR], we pre-
compute the “basis function” matrix B = −A−1AH , which
depends only on the rest-pose mesh F and the selection of
handle vertices. After factorizing A once, each column of
B is computed by solving a sparse linear system involving
A and the corresponding column of AH . At run-time, the
large-scale deformation u is obtained from the handle dis-
placement uH by the matrix product u = B ·uH , which can
efficiently be computed in a parallel GPU implementation.

5. Fine-Scale Deformation in Pose Space

The linear deformation model described in the last section
approximates the facial motion well at a large-scale. How-
ever, nonlinear fine-scale effects, such as the bulging pro-
duced by expression wrinkles, cannot be reproduced. These
fine-scale deformations are highly nonlinear with respect
to the positions of the handle vertices. However, they vary
smoothly as a function of facial pose, hence we have opted
for learning, as a preprocess, the fine-scale displacement d
from a set of example poses, and then at run-time compute
it by interpolation in a suitable facial pose space.

We first define a facial pose space based on a rotation-
invariant feature vector of skin strain (Section 5.1), and for-
mulate the learning problem as scattered-data interpolation
in this pose-space (Section 5.2). We extend the basic method
to weighted pose-space deformation (Section 5.3), thereby
allowing for a more compact basis. Based on our explicit
pose-space representation we describe the transfer of fine-
scale details onto novel faces and animations (Section 5.4).

5.1. Definition of the Feature Vector

At each animation frame, the raw input data describing a
pose consists of the positions of the handle vertices. This
data is not invariant under rigid transformations, hence it
does not constitute an effective pose descriptor, which, how-
ever, is required for the pose-space deformation method de-
scribed in the next section. Bulging effects of wrinkles ap-
pear due to lateral compression of skin patches [WKMT96].
Exploiting this correlation, we suggest a feature vector that
measures skin strain at various points across the face.

Based on the feature graph connecting the handle points
using F edges (Fig. 2), we define the F-dimensional feature

Figure 3: Wrinkle Formation and Skin Strain. Close-up
of the forehead for three input examples (top) and the corre-
sponding strain on the feature edges (bottom), showing the
correlation of lateral skin strain and wrinkle formation.

vector f = [ f1, . . . , fF ]T of a pose containing in fi the relative
stretch of the i’th feature edge, which can be regarded as
a measure of strain. Specifically, given the positions of the
endpoints pi,1 and pi,2, and the rest length li, we define

fi =
(∥∥pi,1−pi,2

∥∥− li
)
/li .

This feature vector is invariant under rigid body transforma-
tions, and the feature distance

∥∥f− f j
∥∥ corresponds to the

Euclidean norm of relative edge stretch from the j’th ex-
ample pose to the input pose. Fig. 3 shows the correlation
between the feature vector and wrinkle formation. Alterna-
tively, a per-vertex strain tensor could be used, but in practice
our discrete strain approximation turned out to be sufficient.

5.2. Pose-Space Deformation

In order to exploit the connection of skin strain to wrin-
kle formation we want to learn their functional relation in
a pose-space deformation (PSD) framework. To this end, we
represent each facial expression by its rotation-invariant fea-
ture vector f as described in the last section. Hence, each
facial expression corresponds to a point in an F-dimensional
pose space, which constitutes the domain of the function we
want to learn. Its range is the fine-scale detail correction d,
represented as well in a rotation-invariant manner by storing
them in per-vertex local frames.

Each of the P example poses corresponds to a feature vec-
tor fi with its associated fine-scale displacement di. Then,
PSD corresponds to a scattered data interpolation problem,
for which we employ radial basis functions (RBFs). Hence,
the function d : IRF → IR3V , mapping a facial pose to 3D
fine-scale displacement, has the form

d(f) =
P

∑
j=1

w j ·ϕ
(∥∥f− f j

∥∥) , (2)

where ϕ is a scalar basis function, and w j ∈ IR3V and f j
are the weight and feature vector for the j’th example pose.
We employ the biharmonic RBF kernel ϕ(r) = r, since it
allows for smoother interpolation of sparsely scattered ex-
ample poses than locally supported kernels [CBC∗01].
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As a preprocess we compute the RBF weights w j in one
of two possible ways. If the training dataset of examples con-
sists of only a small number P of extreme poses (e.g., mod-
eled by an artist), we form the basis with all P poses, and
compute the weights w j such that the displacements of the
example poses are interpolated exactly, i.e., d(fi) = di. This
reduces to solving 3V linear P×P systems, which differ in
their right-hand side only.

If the training dataset consists of a large number of exam-
ple poses with redundant information (e.g., captured from
an actor’s performance), we select a compact basis of P
poses, and compute the weights w j that fit all T examples
in a least-squares manner. This again amounts to solving
3V linear P×P systems. We select the poses for the basis
in a greedy manner [CBC∗01]: Starting with the rest-pose,
we incrementally add the pose with largest error and recom-
pute the weights. This pose selection is fully automatic, can
achieve arbitrary accuracy, and allows to intuitively specify
an approximation threshold.

5.3. Weighted Pose-Space Deformation

In our basic definition of PSD in Section 5.2, every input ex-
ample influences all vertices of the face mesh in the same
manner, since we compute a single feature distance

∥∥f− f j
∥∥

per example pose j. As a consequence, the basis of exam-
ple poses is required to grow exponentially to sufficiently
sample the combinations of independent deformations (e.g.,
raising both eyebrows versus raising just one eyebrow). As
an answer to this problem, we adopt a weighted pose-space
deformation (WPSD) scheme [KM04].

This requires to redefine (2) to compute feature dis-
tances in a per-vertex manner, replacing the Euclidean met-
ric
∥∥f− f j

∥∥ with a weighted distance metric per vertex v:

∥∥f− f j
∥∥

v :=

(
F

∑
i=1

αv,i
(

fi− f j,i
)2
)1/2

, (3)

where f j,i is the strain of the i’th feature edge in the j’th
pose. We exploit the fact that the components of our feature
vector (i.e., relative stretch of feature edges) measure local
properties for assigning weights αv,i based on proximity to
the feature edges. Specifically, for a vertex v we define the
weight of the i’th feature edge as

αv,i =
ᾱv,i

∑i ᾱv,i
, with ᾱv,i = e−β(Lv,i−li) , (4)

where li is the rest length of the
feature edge, and Lv,i is the sum
of rest-pose distances from vertex v
to the edge endpoints. This weight
kernel is 1 on the edge, and de-
cays smoothly everywhere else, as
shown in the adjacent figure. The
parameter β can be used to control

the degree of decay, based on the local density of handle ver-
tices. In our experiments we discard weights ᾱ < 0.025, and
set β such that a vertex is influenced by at most 16 edges.

For WPSD, the computation of RBF weights slightly dif-
fers from PSD as described in Section 5.2. With function

dv(fi) :=
P

∑
j=1

wv, j ·ϕ
(∥∥f− f j

∥∥
v

)
, (5)

the interpolation problem is dv(fi) = dv,i, ∀v∀i, i.e., for each
vertex v the function dv should interpolate v’s displacements
in the given example poses. Nevertheless, the weight com-
putation still involves solving 3V linear P×P systems, but
the matrix describing the linear system is different for each
vertex v. Equivalently to PSD, the WPSD method also yields
3P weights to be stored per vertex.

At run-time, given the feature vector f of the current pose,
we evaluate for every vertex the weighted feature distance to
each basis pose according to (3) and compute the fine-scale
displacement vector according to (5), accumulating the con-
tributions of the precomputed RBF weights. The computa-
tions can be easily parallelized over all vertices, allowing for
a highly efficient GPU implementation.

5.4. Transfer of Fine-Scale Details

Our representation of fine-scale details furthermore allows to
transfer facial details onto new faces and animations. As ac-
quiring or manually modeling high-resolution face geometry
is often tedious and expensive, this provides a simple alter-
native for enhancing otherwise unnaturally smooth looking
face models by reusing available fine-scale data.

Due to the fact that the fine-scale deformation is already
defined in pose-space, controlled by local skin strain and
measured in per-vertex local coordinate frames as described
in Section 5.2, its transfer reduces to establishing dense cor-
respondence with the target face model.

We establish correspondence by manually marking ap-
prox. 40 feature points on the rest-pose of the source face and
the target face. After a rigid pre-alignment, the source face
is deformed using the large-scale deformation method de-
scribed in Section 4 to approximately fit the target face, and
is then projected onto the target face, similar to [VBPP05].
Note that this is only necessary for a single frame and
any other algorithm yielding dense correspondence could be
used as well. As source and target model might not have the
same mesh topology, we map each vertex of the target mesh
to its enclosing triangle on the deformed source mesh using
barycentric vertex weights.

Based on the dense correspondence of the source and
target rest-pose, the feature graph with its F edges can be
mapped in a straightforward manner to the target model. The
nodes of the feature graph and the handle vertices on the tar-
get model do not have to match. During the animation we
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Figure 4: L2 Error Vs. Size of the Basis. Comparison of
our implementation of local blend shapes, PSD from Sec-
tion 5.2, and our novel WPSD from Section 5.3, both with
interpolation of poses and with least-squares fit (LSq), mea-
suring error over a training sequence of 100 frames.

first compute the large-scale deformation and hence obtain
the necessary feature graph nodes. In case of an existing an-
imation, we do not require the large-scale deformation and
instead directly map the feature graph onto the meshes.

The per-vertex RBF weights w j of the source face model
are transferred to the target model by linear interpolation
using the barycentric coordinates of the corresponding tri-
angle. The resulting displacements in their local coordinate
frame on the target animation are obtained by evaluating (5).

6. Results and Implementation

This section presents an evaluation and performance analysis
of our hybrid face animation method, as well as application
experiments, such as animation from mocap data, interac-
tive editing, and transfer of fine-scale details. Please see the
accompanying video for the full model performance.

6.1. Evaluation and Comparisons

For comparisons, we have used as input 200 frames of an ac-
tor’s performance, with high-resolution surface details cap-
tured with the method of [BBA∗07] (See the top row of
Fig. 6 for some input poses). We use as training dataset the
first 100 frames, and the other 100 as ground-truth compari-
son data. In the training sequence the actor performs roughly
5 expressions. For the comparisons, we implemented two
versions of blend shape animation. These methods use a set
of blend shapes (key facial expressions) to define a linear
space of facial expressions [Par74].

Global blend shapes use a single weight for each blend
shape. We use our feature distance metric explained in Sec-
tion 5.1 to find a convex combination of blend shapes that
matches the motion capture marker positions of the actor’s
performance. This naive weighting scheme cannot produce
expressions outside the convex combination and requires an
exhaustive set of blend shapes.

Locally controlled blend shapes typically are based on
a segmentation of the face into individual regions, which al-
lows to blend regions separately and thereby alleviates the
shortcomings of global blend shapes. We achieve an equiv-
alent behavior using the locally supported, smoothly vary-
ing feature distance metric (3). This metric allows to locally
interpolate blend shapes and can be evaluated in real-time.
Other more sophisticated non-real time weight controls are
possible [PSS99, JTDP03]. However, blend shapes in gen-
eral suffer from inaccuracy problems as soon as the desired
pose is not in the convex space of the example poses.

We compare the blend shape implementation with our
PSD approach introduced in Section 5.2, and our WPSD
method described in Section 5.3, based on both exact inter-
polation of P poses and on least-squares fitting to T poses.

Fig. 4 shows the decay of L2 error for the training se-
quence T as more examples are added to P. PSD and WPSD
achieve a significantly lower error because, in contrast to
blend shapes, our face animation method splits facial geom-
etry into large and fine-scale components, guaranteeing that
marker positions of the large-scale component are always
exactly interpolated.

Fig. 5 illustrates this for an input pose not present in the
training dataset (P = 6 poses). Global and local blend shapes
suffer from regions of large interpolation error (red arrows).
On the other hand, global blend shapes and PSD are affected
by incorrect fine-scale details due to lack of local support
(blue arrows). Our WPSD model reproduces the input pose
best, due to the accuracy of the linear deformation model and
local support for synthesizing fine-scale details.

6.2. Performance

Compared to the nonlinear method of [BBA∗07], which re-
quired approximately 20min per frame for synthesizing fa-
cial details, we obtain a performance of 4sec/frame using a
pure CPU implementation on a similar machine and for the
same mesh complexity, which corresponds to a speed-up of
a factor of about 300.

Moreover, our method allows for efficient parallel GPU-
implementation with CUDA [NVI]. The basis matrix B,
RBF weights wv, j, and feature edge weights αv,i are stored in
device memory on the GPU. Hence, we need to transfer only
the feature vector f and the displacements of the handle ver-
tices uH at run-time. To reduce memory space and access,
αv,i is represented as a sparse matrix.

We tested the performance for a mesh of V = 530k ver-
tices and more than 1M triangles, with P = 6 example poses,
H = 89 handle vertices, and F = 243 feature edges. These
settings require storing 137 floats and 24 integers per ver-
tex. We obtain an overall performance of about 30fps on a
Nvidia 8800 GTX graphics card, including large-scale defor-
mation (4ms/frame), fine-scale deformation (13ms/frame),
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blend shapes local blend shapes PSD WPSD input

Figure 5: Comparison of Methods. Input pose (right) not present in the training data, approximated with various methods
from 6 examples (See top row of Fig. 6). Arrows highlight large-scale (red) and fine-scale (blue) errors.

two normal vector updates (2× 5ms/frame), and rendering
(4ms/frame). With additional real-time subsurface scatter-
ing [dLE07] (36ms/frame) we obtain about 15fps. Compared
to [BBA∗07] this provides a very significant speed-up of 4
orders of magnitude.

6.3. Application Experiments

Animation from Mocap. Given a few poses P, our face
animation method allows for high-resolution real-time per-
formance replay from mocap markers, as shown in Fig. 6.
We defined the basis for our example-based fine-scale de-
formation method using 6 poses from the training dataset as
described in the previous section (See top row of Fig. 6).
Then, the same actor performed a different sequence of
expressions, captured using only mocap markers, and our
method produced a high-quality performance replay in real-
time (See side-by-side comparison in the video). The large-
scale animation by constrained deformation provides good
approximation quality of the overall face, while the fine-
scale example-based correction adds high-resolution details.

Interactive Editing. The computational performance and
intuitive control by handle vertices allow for interactive edit-
ing of face deformations, as shown in Fig. 1. This might
especially be helpful for an artist to fine-tune a mocap se-
quence. With our pose-space representation of fine-scale de-
tails, nonlinear wrinkling effects are produced interactively
on complex faces simply by dragging the handle points.

Wrinkle Editing. Our face animation method also allows
for very simple and intuitive editing of fine-scale details,
thanks to the compact pose-space representation of details
using very few example poses. Fig. 7 shows wrinkle edit-
ing of an actress’ performance. We used a basis with P = 4
poses, and modeled artificial wrinkles on 2 of them. With
our hybrid face animation method, these added wrinkles are
interpolated in pose-space, and seamlessly blend during the
complete performance, in real-time.

Fine-Scale Transfer. Face models in games, virtual reality,
or computer vision often look unrealistically smooth because
high-resolution acquisition or manual modeling can be te-
dious and expensive [GMP∗06]. Our method allows simple
transfer of facial details on novel, animated faces, enhanc-
ing their visual plausibility. In Fig. 8 and the accompanying
video, we show that it can be applied to a wide range of in-
put data by transferring the acquired wrinkles of the subject
shown in Fig. 6 to a female face performance captured using
only sparse motion capture data, a manually designed hu-
man face rigged in Maya, and a publicly available cartoonish
character rigged in Blender.

7. Discussion

We have presented a face animation method able to pro-
duce complex wrinkling effects on high-resolution meshes
in real-time. Its power stems from a two-scale representation
of facial deformations, and tailored approaches for comput-
ing the deformation at each scale. A constrained deformation
approach allows for overall good approximation of facial ex-
pressions by smoothly interpolating a sparse set of handles.
On the other hand, an example-based deformation approach
allows for real-time correction of expressive details.

Along with its hybrid nature, another strength of our solu-
tion to face animation lies on the strain-based feature vector
for pose representation. Wu et al. [WKMT96] already re-
lated wrinkle formation to underlying lateral skin strain, and
we learn the relationship in our PSD model, but it would
be interesting to further study its nonlinearity and the range
of support. Our definition of feature vector has even proved
competitive for very fast blend shape control.

Another advantage of our model is the simple fine-scale
transfer to novel face models and animations that lack facial
details. As future work, it would be interesting to build up a
database of skin details across different gender, age, and skin
types, that allows fast and intuitive visual enhancements of
face animations. Furthermore, our method should theoret-
ically be directly applicable to even higher-resolution data
that contains very small wrinkles and pores.
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Figure 6: Real-Time Face Animation from Mocap. First row: example poses taken from a different sequence; Second row:
large-scale deformation interpolating the mocap markers, and full result after example-based fine-scale correction. Third and
forth rows: more comparison results, with asymmetric deformations not present in the input examples.

However, the method also presents some limitations. The
most important one, common to all face animation meth-
ods driven by handles (e.g., mocap markers) is that the face
model cannot react to forces, only to position constraints.

Anatomical models can be a solution to this problem, as they
react to external forces and can produce realistic deforma-
tions beyond facial expressions; however, to date they do not
provide detailed deformations in real-time. A related benefit
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Figure 7: Wrinkle Editing on an Actress’ Performance. Given an example pose without wrinkles (left), we created wrinkles
under the eyes and on the cheeks (center-left). The added wrinkles blend seamlessly during the rest of the performance, as
shown in the two rightmost images and the accompanying video.

Figure 8: Fine-Scale Transfer. Given the example poses shown in the first row of Fig. 6, its details are transferred to a manually
modeled human character (left), and a publicly available cartoonish character rigged in Blender (right).

of anatomical models is the possibility to handle collisions
naturally. Our model could suffer from self-intersections, es-
pecially if the user edits the handles to arbitrary locations,
but we did not encounter such problems when the motions
are restricted to facial expressions.

Anatomical accuracy would also require the addition of
other important facial features like hair, teeth, or the eyes,
which are outside the scope of skin deformation, but play a
key role in the realism of the full face animation.

Our face animation method trades computational com-
plexity by memory requirements, as each face vertex needs
to store handle responses and learned pose displacements.
Similar to recent work [MA07], we plan to investigate more
compact representations, including methods for finding op-
timal sets of examples and handles.
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Face transfer with multilinear models. ACM Trans. Graph. (Proc.
SIGGRAPH) 24, 3 (2005), 426–433.

[VLR05] VENKATARAMAN K., LODHA S., RAGHAVAN R.: A
kinematic-variational model for animating skin with wrinkles.
Computers & Graphics 29, 5 (2005), 756–770.

[WKMT96] WU Y., KALRA P., MAGNENAT-THALMANN N.:
Simulation of static and dynamic wrinkles of skin. In Proc. of
Computer Animation (1996), pp. 90–97.

[WPP07] WANG R. Y., PULLI K., POPOVIĆ J.: Real-time en-
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