
Eurographics 2008 Full-Day Tutorial

Geometric Modeling Based on
Polygonal Meshes

Mario Botsch1 Mark Pauly1 Leif Kobbelt2 Pierre Alliez3 Bruno Lévy4

Stephan Bischoff2 Christian Rössl3

1ETH Zurich
2RWTH Aachen

3INRIA Sophia Antipolis - Méditerranée
4INRIA Nancy - Grand Est

Course Organizers

Dr. Mario Botsch
Lecturer and Senior Researcher
Computer Graphics Laboratory, ETH Zurich
botsch@inf.ethz.ch
http://graphics.ethz.ch/~mbotsch

Dr. Mark Pauly
Assistant Professor
Applied Geometry Group, ETH Zurich
pauly@inf.ethz.ch
http://graphics.ethz.ch/~pauly

Course Presenters

Dr. Pierre Alliez
Senior Researcher
INRIA Sophia Antipolis - Méditérranée BP 93 GEOMETRICA
pierre.alliez@sophia.inria.fr
http://www-sop.inria.fr/geometrica/team/Pierre.Alliez/

Dr. Mario Botsch
Lecturer and Senior Researcher
Computer Graphics Laboratory, ETH Zurich
botsch@inf.ethz.ch
http://graphics.ethz.ch/~mbotsch

Dr. Leif Kobbelt
Professor
Computer Graphics Group, RWTH Aachen
kobbelt@cs.rwth-aachen.de
http://www.rwth-graphics.de

Dr. Bruno Lévy
Senior Researcher
INRIA Nancy Grand Est ALICE
Bruno.Levy@inria.fr
http://www.loria.fr/~levy/

Dr. Mark Pauly
Assistant Professor
Applied Geometry Group, ETH Zurich
pauly@inf.ethz.ch
http://graphics.ethz.ch/~pauly

i

http://graphics.ethz.ch/~mbotsch
http://graphics.ethz.ch/~pauly
http://www-sop.inria.fr/geometrica/team/Pierre.Alliez/
http://graphics.ethz.ch/~mbotsch
http://www.rwth-graphics.de
http://www.loria.fr/~levy/
http://graphics.ethz.ch/~pauly

Course Syllabus

09:00–09:10 Introduction Botsch

09:10–09:50 Surface Representations Kobbelt
– Explicit / implicit surface representations
– Polygonal meshes

09:50–10:30 Mesh Repair Kobbelt
– Types of input data
– Surface-based vs. volumetric repair

11:00–11:50 Mesh Smoothing Pauly
– Discrete differential geometry
– Diffusion & curvature flow
– Energy minimization, fairing

11:50–12:30 Mesh Decimation Pauly
– Vertex clustering
– Incremental decimation

14:00–14:45 Remeshing Alliez
– Isotropic
– Quadrangle
– Error-driven

14:45–15:30 Mesh Parametrization Lévy
– Harmonic maps, conformal maps
– Free boundary maps
– Linear vs. non-linear methods

16:00–17:00 Mesh Editing Botsch
– Multiresolution editing
– Differential coordinates
– Numerics: Efficient linear system solvers
– Linear vs. non-linear methods

17:00–17:30 Wrap-Up All speakers
– Course summary
– Demo: Process one model through the whole pipeline
– Demonstration of code examples
– Q & A

ii

Contents

iii

Contents

iv

1 Introduction

In the last years triangle meshes have become increasingly
popular and are nowadays intensively used in many differ-
ent areas of computer graphics and geometry processing. In
classical CAGD irregular triangle meshes developed into a
valuable alternative to traditional spline surfaces, since their
conceptual simplicity allows for more flexible and highly ef-
ficient processing.

Moreover, the consequent use of triangle meshes as sur-
face representation avoids error-prone conversions, e.g., from
CAD surfaces to mesh-based input data of numerical sim-
ulations. Besides classical geometric modeling, other ma-
jor areas frequently employing triangle meshes are computer
games and movie production. In this context geometric mod-
els are often acquired by 3D scanning techniques and have to
undergo post-processing and shape optimization techniques
before being actually used in production.

This course discusses the whole geometry processing
pipeline based on triangle meshes. We will first introduce
general concepts of surface representations and point out the
advantageous properties of triangle meshes in Chapter ??,
and present efficient data structures for their implementa-
tion in Chapter ??.

The different sources of input data and types of geomet-
ric and topological degeneracies and inconsistencies are de-
scribed in Chapter ??, as well as techniques for their re-
moval, resulting in clean two-manifold meshes suitable for
further processing. Mesh quality criteria measuring geomet-
ric smoothness and element shape together with the corre-
sponding analysis techniques are presented in Chapter ??.

Mesh smoothing reduces noise in scanned surfaces by gen-
eralizing signal processing techniques to irregular triangle
meshes (Chapter ??). Similarly, the underlying concepts
from differential geometry are useful for surface parametriza-
tion as well (Chapter ??). Due to the enormous complexity
of meshes acquired by 3D scanning, mesh decimation tech-
niques are required for error-controlled simplification (Chap-
ter ??). The shape of triangles, which is important for the
robustness of numerical simulations, can be optimized by
general remeshing methods (Chapter ??).

1

1 Introduction

After optimizing meshes with respect to the different quality criteria, we finally present tech-
niques for intuitive and interactive shape deformation (Chapter ??). Since solving linear systems
is a commonly required component for many of the presented mesh processing algorithms, we
will discuss their efficient solution and compare several existing libraries in Chapter ??.

———
These notes supplement the Eurographics 2008 full day tutorial “Geometric Modeling Based
on Polygonal Meshes”, which was previously also held at SIGGRAPH 2007. The material is
partly based on the course notes of our previous tutorial “Geometric Modeling Based on Triangle
Meshes”, co-authored by Mario Botsch, Mark Pauly, Christian Rössl, Stephan Bischoff, and Leif
Kobbelt, which was held at SIGGRAPH 2006 and Eurographics 2006. The current document
therefore contains contributions of the 2008, 2007, and 2006 editions of the tutorial.

Mario Botsch & Mark Pauly
with Leif Kobbelt, Pierre Alliez, and Bruno Lévy
January 2008.

2

2 Surface Representations

The efficient processing of geometric objects requires — just like in any other field of computer
science — the design of suitable data structures. For each specific problem in geometry process-
ing we can identify a characteristic set of operations by which the computation is dominated and
hence we have to choose an appropriate data structure which supports the efficient implementa-
tion of these operators. From a high level point of view, there are two major classes of surface
representations: parametric representations and implicit representations.

Parametric surfaces are defined by a vector-valued parametrization function f : Ω → S, that
maps a two-dimensional parameter domain Ω ⊂ IR2 to the surface S = f (Ω) ⊂ IR3. In contrast,
an implicit (or volumetric) surface is defined to be the zero-set of a scalar-valued function F :
IR3 → IR, i.e., S = {x ∈ IR3 | F (x) = 0}. Analogously we can define curves in a parametric
fashion by functions f : Ω → S with Ω = [a, b] ⊂ IR. A corresponding implicit definition is
only available for planar curves, i.e., C = {x ∈ IR2 |F (x) = 0} with F : IR2 → IR. A simple
two-dimensional example is the unit circle, which can be defined by the range of a parametric
function:

f : [0, 2π]→ IR2 , t 7→
(

cos (t)
sin (t)

)
as well as by the kernel of the implicit function

F : IR2 → IR , (x, y) 7→
√
x2 + y2 − 1 .

For more complex shapes it is often not feasible to find an explicit formulation with a single
function which approximates the given shape sufficiently accurately. Hence the function domain
is usually split into smaller sub-regions and an individual function (surface patch) is defined for
each segment. In this piecewise definition, each function needs to approximate the given shape
only locally while the global approximation tolerance is controlled by the size and number of
the segments. The mathematical challenge is to guarantee a smooth transition from each patch
to its neighboring ones. The most common piecewise surface definition in the parametric case
is the segmentation of Ω into triangles or quadrilaterals. For implicit surface definitions, the
embedding space is usually split into cubical (voxels) or tetrahedral cells.

Both, parametric and implicit representations have their particular strengths and weaknesses,
such that for each geometric problem the better suited one should be chosen. In order to analyze
geometric operations and their requirements on the surface representation, one can classify them
into the following three categories [?]:

Evaluation: The sampling of the surface geometry or of other surface attributes, e.g., the
surface normal field. A typical application example is surface rendering.

Query: Spatial queries are used to determine whether or not a given point p ∈ IR3 is inside or
outside of the solid bounded by a surface S, which is a key component for solid modeling
operations. Another typical query is the computation of a point’s distance to a surface.

Modification: A surface can be modified either in terms of geometry (surface deformation),
or in terms of topology, e.g., when different parts of the surface are to be merged.

3

2 Surface Representations

We will see in the following that parametric and implicit surface representations have comple-
mentary advantages with respect to these three types of geometric operations, i.e., the strengths
of the one are often the drawbacks of the other. Hence, for each specific geometric problem
the more efficient representation should be chosen, which, in turn, requires efficient conversion
routines between the two representations (Section ??).

2.1 Surface Definition and Properties

The common definition of a surface in the context of computer graphics applications is that
of an orientable continuous two-dimensional manifold embedded in IR3. Intuitively, this can
be understood as the boundary surface of a non-degenerate three-dimensional solid where non-
degenerate means that the solid does not have any infinitely thin parts or features such that the
surface properly separates the “interior” and “exterior” of the solid. A (non-closed) surface with
boundaries is one that can be extended into a proper boundary surface by filling the holes.

Since in most applications the raw information about the input surface is obtained by discrete
sampling (i.e., evaluation if there already exists a digital representation, or probing if the input
comes from a real object), the first step in generating a mathematical surface representation is
to establish continuity. This requires to build a consistent neighborhood relation between the
samples.

While this so-called geodesic neighborhood relation (in contrast to spatial neighborhood) is
difficult to access in implicit representations, it is easy to extract from parametric representations
where two points on the surface are in geodesic proximity if the corresponding pre-images in Ω are
close to each other. From this observation we can derive an alternative characterization of local
manifoldness: A continuous parametric surface is locally manifold at a surface point p if for each
other surface point q within a sufficiently small sphere of radius δ around p the corresponding
pre-image is contained in a circle of some radius ε = O(δ) around the pre-image of p. A more
intuitive way to express this condition is that the surface patch which lies within a sufficiently
small δ-sphere around p is topologically equivalent (homeomorphic) to a disk. Since this second
definition does not require a parametrization, it applies to implicit representations as well.

When generating a continuous surface from a set of discrete samples, we can either require
this surface to interpolate the samples or to approximate them subject to a certain prescribed
tolerance. The latter case is considered more relevant in practical applications since samples are
usually affected by position noise and the surface inbetween the samples is an approximation
anyway. In the next section we will consider the issue of approximation in more detail.

Except for a well-defined set of sharp feature curves and corners, a surface should be smooth
in general. Mathematically this is measured by the number k of continuous derivatives that the
functions f or F have. Notice that this analytical definition of Ck smoothness coincides with
the intuitive geometrical understanding of smoothness only if the partial derivatives of f or the
gradient of F , respectively, do not vanish locally.

An even stricter requirement for surfaces is fairness where not only the continuity of the
derivatives but also their variation is considered. There is no general formal definition of fairness,
but a surface is usually considered fair if, e.g., the curvature or its variation is globally minimized
(see. Figure ??).

In Section ?? we will explain how the notion of curvature can be generalized to polygon meshes
such that properties like smoothness and fairness can be applied to meshes as well.

4

2.2 Approximation Power

Figure 2.1: This figure shows three examples of fair surfaces, which define a blend between two
cylinders. On the left there is a membrane surface which minimizes the surface area. In the
center, a thin-plate surface which minimizes curvature. On the right there is a surface which
minimizes the variation of mean curvature.

2.2 Approximation Power

The exact mathematical modeling of a real object or its boundary is usually intractable. Hence
a digital surface representation can only be an approximation in general. In order to simplify the
approximation tasks, the domain of the representation is often split into small segments and for
each segment a function (a patch) is defined which locally approximates that part of the input
that belongs to this segment.

Since our surface representations are supposed to support efficient processing, a natural choice
is to restrict functions to the class of polynomials because those can be evaluated by elementary
arithmetic operations. Another justification for the restriction to polynomials is the well-known
Weierstrass theorem which guarantees that each smooth function can be approximated by a
polynomial up to any desired precision.

From calculus we know that a C∞ function g with bounded derivatives can be approximated
over an interval of length h by a polynomial of degree p such that the approximation error behaves
like O(hp+1) (e.g., Taylor theorem, generalized mean value theorem). As a consequence there
are, in principle, two possibilities to improve the accuracy of an approximation with piecewise
polynomials. We can either raise the degree of the polynomial (p-methods) or we can reduce the
size of the individual segments and use more segments for the approximation (h-methods).

In geometry processing applications, h-methods are usually preferred over p-methods since for a
discretely sampled input surface we cannot make reasonable assumptions about the boundedness
of higher order derivatives. Moreover, for piecewise polynomials with higher degree, the Ck

smoothness conditions between segments are sometimes quite difficult to satisfy. Finally, with
today’s computer architectures, processing a large number of very simple objects is often much
more efficient than processing a smaller number of more complex ones. This is why the somewhat
extremal choice of C0 piecewise linear surface representations has become the widely established
standard in geometry processing.

While for parametric surfaces, the O(hp+1) approximation error estimate follows from the
mean value theorem in a straightforward manner, a more careful consideration is necessary for
implicit representations. The generalized mean value theorem states that if a sufficiently smooth

5

2 Surface Representations

function g over an interval [a, a+ h] is interpolated at the abscissae t0, . . . tp by a polynomial f
of degree p then the approximation error is bounded by

‖f(t)− g(t)‖ ≤ 1
(p+ 1)!

max f (p+1)

p∏
i=0

(ti − t) = O(hp+1) .

For an implicit representation G : IR3 → IR and the corresponding polynomial approximant F
this theorem is still valid but here the actual surface geometry is not defined by the function
values G(x), for which this theorem gives an error estimate, but by the zero level-set of G, i.e.,
by {x ∈ IR3 |G(x) = 0}.

Consider a point x on the implicit surface defined by the approximating polynomial F , i.e.,
F (x) = 0. We can find a corresponding point x + d on the implicit surface defined by G, i.e.,
G(x+d) = 0 by shooting a ray in normal direction to F , i.e., d = d∇F/‖∇F‖. For a sufficiently
small voxel size h, we obtain

|F (x + d)| ≈ |d| ‖∇F (x)‖ ⇒ |d| ≈ |F (x + d)|
‖∇F (x)‖

,

and from the mean value theorem

|F (x + d)−G(x + d)| = |F (x + d)| = O(hp+1) .

which yields |d| = O(hp+1) if the gradient ‖∇F‖ is bounded from below by some ε > 0. In
practice one tries to find an approximating polynomial F with low gradient variation in order to
have a uniform distribution of the approximation error.

2.3 Parametric Surface Representations

Parametric surface representations have the advantage that the function f : Ω → S enables the
reduction of several three-dimensional problems on the surface S to two-dimensional problems in
the parameter domain Ω. For instance, points on the surface can easily be generated by simple
function evaluations of f , which obviously allows for efficient evaluation operations. In a similar
manner, geodesic neighborhoods, i.e., neighborhoods on the surface S, can easily be found by
considering neighboring points in the parameter domain Ω. A simple composition of f with a
deformation function d : IR3 → IR3 results in an efficient modification of the surface geometry.

On the other hand, generating a parametric surface parameterization f can be very complex,
since the parameter domain Ω has to match the topological and metric structure of the surface
S (Chapter ??). When changing the shape of S, it might be necessary to update the parame-
terization accordingly in order to reflect the respective changes of the underlying geometry: A
low-distortion parameterization requires the metrics in S and Ω to be similar, and hence we have
to avoid or adapt to excessive stretching.

Since the surface S is defined as the range of the parameterization f , its topology is equivalent to
that of Ω if f is continuous and injective. This implies that changing the topology of a parametric
surface S can be extremely complicated, since not only the parameterization but also the domain
Ω has to be adjusted accordingly. The typical inside/outside or signed distance queries are in
general also very expensive on parametric surfaces. The same applies to the detection of self-
collisions (= non-injectivities). Hence, topological modification and spatial queries are definitely
the weak points of parametric surfaces.

6

2.3 Parametric Surface Representations

Figure 2.2: Subdivision surfaces are generated by an iterative refinement of a coarse control
mesh.

2.3.1 Spline Surfaces

Tensor-product spline surfaces are the standard surface representation of today’s CAD systems.
They are used for constructing high-quality surfaces from scratch as well as for later surface
deformation tasks. Spline surfaces can conveniently be described by the B-spline basis functions
Nn
i (·), for more detail see [?, ?, ?].

A tensor product spline surface f of degree n is a piecewise polynomial surface that is built by
connecting several polynomial patches in a smooth Cn−1 manner:

f : [0, 1]2 → IR3

(u, v) 7→
m∑
i=0

m∑
j=0

cijNn
i (u)Nn

j (v) .

The control points cij ∈ IR3 define the so-called control grid of the spline surface. Because
Nn
i (u) ≥ 0 and

∑
iN

n
i ≡ 1, each surface point f (u, v) is a convex combination of the control

points cij , i.e., the surface lies within the convex hull of the control grid. Due to the small
support of the basis functions, each control point has local influence only. These two properties
cause spline surfaces to closely follow the control grid, thereby providing a geometrically intuitive
metaphor for modeling surfaces by adjusting its control points.

A tensor-product surface — as the image of a rectangular domain under the parameterization f
— always represents a rectangular surface patch embedded in IR3. If shapes of more complicated
topological structure are to be represented by spline surfaces, the model has to be decomposed
into a large number of (possibly trimmed) tensor-product patches.

As a consequence of these topological constraints, typical CAD models consist of a huge col-
lection of surface patches. In order to represent a high quality, globally smooth surface, these
patches have to be connected in a smooth manner, leading to additional geometric constraints,
that have to be taken care of throughout all surface processing phases. The large number of
surface patches and the resulting topological and geometric constraints significantly complicate
surface construction and in particular the later surface modeling tasks.

2.3.2 Subdivision Surfaces

Subdivision surfaces [?] can be considered as a generalization of spline surfaces, since they are also
controlled by a coarse control mesh, but in contrast to spline surfaces they can represent surfaces
of arbitrary topology. Subdivision surfaces are generated by repeated refinement of control
meshes: After each topological refinement step, the positions of the (old and new) vertices are

7

2 Surface Representations

adjusted based on a set of local averaging rules. A careful analysis of these rules reveals that in
the limit this process results in a surface of provable smoothness (cf. Fig. ??).

As a consequence, subdivision surfaces are restricted neither by topological nor by geometric
constraints as spline surfaces are, and their inherent hierarchical structure allows for highly
efficient algorithms. However, subdivision techniques are restricted to surfaces with so-called
semi-regular subdivision connectivity, i.e., surface meshes whose triangulation is the result of
repeated refinement of a coarse control mesh. As this constraint is not met by arbitrary surfaces,
those would have to be remeshed to subdivision connectivity in a preprocessing step [?, ?, ?, ?].
But as this remeshing corresponds to a resampling of the surface, it usually leads to sampling
artifacts and loss of information. In order to avoid the restrictions caused by these connectivity
constraints, our goal is to work on arbitrary triangle meshes, as they provide higher flexibility
and also allow for efficient surface processing.

2.3.3 Triangle Meshes

In many geometry processing algorithms triangle meshes are considered as a collection of triangles
without any particular mathematical structure. In principle, however, each triangle defines, via
its barycentric parametrization, a linear segment of a piecewise linear surface representation.

Every point p in the interior of a triangle [a,b, c] can be written as a barycentric combination
of the corner points:

p = α a + β b + γ c

with
α+ β + γ = 1

By choosing an arbitrary triangle [u,v,w] in the parameter domain, we can define a linear
mapping f : IR2 → IR3 with

αu + β v + γw 7→ α a + β b + γ c (2.1)

In Chapter ?? we will discuss methods to choose the triangulation in the parameter domain such
that the distortion caused by the mapping from IR2 to IR3 is minimized.

A triangle meshM consists of a geometric and a topological component, where the latter can
be represented by a graph structure (simplicial complex) with a set of vertices

V = {v1, . . . , vV }

and a set of triangular faces connecting them

F = {f1, . . . , fF } , fi ∈ V × V × V .

However, as we will see in Chapter ??, it is sometimes more efficient to represent the connectivity
of a triangle mesh in terms of the edges of the respective graph

E = {e1, . . . , eE} , ei ∈ V × V .

The geometric embedding of a triangle mesh into IR3 is specified by associating a 3D position pi
to each vertex vi ∈ V:

P = {p1, . . . ,pV } , pi := p (vi) =

 x (vi)
y (vi)
z (vi)

 ∈ IR3 ,

8

2.3 Parametric Surface Representations

Figure 2.3: Each subdivision step halves the edge lengths, increases the number of faces by a
factor of 4, and reduces the error by a factor of 1

4 .

Figure 2.4: Two surface sheets meet at a non-manifold vertex (left). A non-manifold edge has
more than two incident faces (center). The right configuration, although being non-manifold in
the strict sense, can be handled by most data structures.

such that each face f ∈ F actually represents a triangle in 3-space specified by its three vertex
positions. Notice that even if the geometric embedding is defined by assigning 3D positions to
the (discrete) vertices, the resulting polygonal surface is still a continuous surface consisting of
triangular pieces with linear parametrization functions (??).

If a sufficiently smooth surface is approximated by such a piecewise linear function, the ap-
proximation error is of the order O(h2), with h denoting the maximum edge length. Due to this
quadratic approximation power, the error is reduced by a factor of 1/4 when halving the edge
lengths. As this refinement splits each triangle into four sub-triangles, it increases the number
of triangles from F to 4F (cf. Fig. ??). Hence, the approximation error of a triangle mesh is
inversely proportional to the number of its faces. The actual magnitude of the approximation
error depends on the second order terms of the Taylor expansion, i.e., on the curvature of the
underlying smooth surface. From this we can conclude that a sufficient approximation is possi-
ble with just a moderate mesh complexity: The vertex density has to be locally adapted to the
surface curvature, such that flat areas are sparsely sampled, while in curved regions the sampling
density is higher.

As stated before, an important topological quality of a surface is whether or not it is two-
manifold, which is the case if for each point the surface is locally homeomorphic to a disk (or
a half-disk at boundaries). A triangle mesh is two-manifold, if it does neither contain non-
manifold edges or non-manifold vertices, nor self-intersections. A non-manifold edge has more
than two incident triangles and a non-manifold vertex is generated by pinching two surface sheets
together at that vertex, such that the vertex is incident to two fans of triangles (cf. Fig. ??). Non-
manifold meshes are problematic for most algorithms, since around non-manifold configurations
there exists no well-defined local geodesic neighborhood.

9

2 Surface Representations

Figure 2.5: From left to right: sphere of genus 0, torus of genus 1, double-torus of genus 2.

The famous Euler formula [?] states an interesting relation between the numbers of vertices
V , edges E and faces/triangles F in a closed and connected (but otherwise unstructured) mesh:

V − E + F = 2(1− g) , (2.2)

where g is the genus of the surface and intuitively represents the number of handles of an object
(cf. Fig. ??). Since for typical meshes the genus is small compared to the numbers of elements,
the right-hand side of Eq. (??) can be assumed to be almost zero. Given this and the fact that
each triangle is bounded by three edges and that each (interior) edge is incident to two triangles,
one can derive the following mesh statistics:

• The number of triangles is twice the number of vertices: F ≈ 2V .

• The number of edges is three times the number of vertices: E ≈ 3V .

• The average vertex valence (number of incident edges) is 6.

These relations will become important when considering data structures or file formats for tri-
angle meshes in Chapter ??.

For piecewise (polynomial) surface definitions, the most difficult part is the construction of
smooth transitions between neighboring patches. Since for triangle meshes, we only require
C0 continuity, we only have to make sure that neighboring faces share a common edge (two
common vertices). This makes polygon meshes the most simple and flexible continuous surface
representation. Since the development of efficient algorithms for triangle meshes depends on the
availability of suitable data structures, we will discuss this topic in detail in Chapter ??.

2.4 Implicit Surface Representations

The basic concept of implicit or volumetric representations of geometric models is to characterize
the whole embedding space of an object by classifying each 3D point to lie either inside, outside,
or exactly on the surface S bounding a solid object.

There are different representations for implicit functions, like continuous algebraic surfaces,
radial basis functions, or discrete voxelizations. In any case, the surface S is defined to be the
zero-level iso-surface of a scalar-valued function F : IR3 → IR. By definition, negative function
values of F designate points inside the object and positive values points outside the object, such
that the zero-level iso-surface S separates the inside from the outside.

10

2.4 Implicit Surface Representations

+ - - =

Figure 2.6: A complex object constructed by boolean operations.

As a consequence, geometric inside/outside queries simplify to function evaluations of F and
checking the sign of the resulting value. This makes implicit representations well suited for
constructive solid geometry (CSG), where complex objects are constructed by boolean opera-
tions of simpler ones (cf. Fig. ??). The different boolean operations can easily be computed by
simple min and max combinations of the objects’ implicit functions. Hence, implicit surfaces
can easily change their topology. Moreover, since an implicit surface is a level-set of a potential
function, geometric self-intersections cannot occur, which will later be exploited for mesh repair
(Chapter ??).

The implicit function F for a given surface S is not uniquely determined, but the most common
and most natural representation is the so-called signed distance function, which maps each 3D
point to its signed distance from the surface S. In addition to inside/outside queries, this
representation also simplifies distance computations to simple function evaluations, which can
be used to compute and control the global error for mesh processing algorithms [?, ?].

On the other hand, enumerating points on an implicit surface, finding geodesic neighborhoods,
and even just rendering the surface is quite difficult. Moreover, implicit surfaces do not provide
any means of parameterization, which is why it is almost impossible to consistently paste textures
onto evolving implicit surfaces. Furthermore, boundaries cannot be represented.

2.4.1 Regular Grids

In order to efficiently process implicit representations, the continuous scalar field F is typically
discretized in some bounding box around the object using a sufficiently dense grid with nodes
gijk ∈ IR3. The most basic representation therefore is a uniform scalar grid of sampled values
Fijk := F (gijk), and function values within voxels are derived by tri-linear interpolation, thus
providing quadratic approximation order. However, the memory consumption of this naive data
structure grows cubically if the precision is increased by reducing the edge length of grid voxels.

2.4.2 Adaptive Data Structures

For better memory efficiecy the sampling density is often adapted to the local geometric signifi-
cance in the scalar field F : Since the signed distance values are most important in the vicinity
of the surface, a higher sampling rate can be used in these regions only. Instead of a uniform 3D
grid, a hierarchical octree is then used to store the sampled values [?]. The further refinement of
an octree cell lying completely inside or outside the object does not improve the approximation
of the surface S. Adaptively refining only those cells that are intersected by the surface yields a

11

2 Surface Representations

Figure 2.7: Different adaptive approximations of a signed distance field with the same accuracy:
3-color quadtree (left, 12040 cells), ADF [?] (center, 895 cells), and BSP tree [?] (right, 254 cells).

uniformly refined crust of leaf cells around the surface and reduces the storage complexity from
cubic to quadratic (cf. Fig. ??, left).

If the local refinement is additionally restricted to those cells where the tri-linear interpolant
deviates more than a prescribed tolerance from the actual distance field, the resulting approxima-
tion adapts to the locality of the surface as well as to its shape complexity [?] (cf. Fig. ??, center).
Since extreme refinement is only necessary in regions of high surface curvature, this approach
reduces the storage complexity even further and results in a memory consumption comparable
to explicit representations. Similarly, an adaptive space-decomposition with linear (instead of
tri-linear) interpolants at the leaves can be used [?]. Although the asymptotic complexity as well
as the approximation power are the same, the latter method provides slightly better memory
efficiency (cf. Fig. ??, right).

2.5 Conversion Methods

In order to exploit the specific advantages of explicit and implicit surface representations effi-
cient conversion methods between the different representations are necessary. However, notice
that both kinds of representations are usually finite samplings (triangle meshes in the explicit
case, uniform/adaptive grids in the implicit case) and that each conversion corresponds to a
re-sampling step. Hence, special care has to be taken in order to minimize loss of information
during these conversion routines.

2.5.1 Explicit to Implicit

The conversion of an explicit surface representation to an implicit one amounts to the computa-
tion or approximation of its signed distance field. This can be done very efficiently by voxelization
or 3D scan-conversion techniques [?], but the resulting approximation is piecewise constant only.
As a surface’s distance field is in general not smooth everywhere, a piecewise linear or piecewise
tri-linear approximation seems to be the best compromise between approximation accuracy and
computational efficiency. Since we focus on triangle meshes as explicit representation, the con-
version to an implicit representation basically requires the computation of signed distances to
the triangle mesh at the nodes of a (uniform or adaptive) 3D grid.

12

2.5 Conversion Methods

Computing the exact distance of a grid node to a given mesh amounts to computing the
distance to the closest triangle, which can be found efficiently by spatial data structures. Notice
that in order to compute a signed distance field, one additionally has to determine whether a
grid node lies inside or outside the object. If g denotes the grid node and c its closest point
on the surface, then the orientation can be derived from the angle between (g − c) and the
normal n(c): g is defined to be inside if (g − c)Tn(c) < 0. The robustness and reliability of
this test strongly depends on the way the normal n(c) is computed. Using barycentric normal
interpolation within triangles’ interiors and computing per-vertex normals using angle-weighted
averaging of face normals was shown to yield correct results [?].

Computing the distances on a whole grid can be accelerated by fast marching methods [?]. In
a first step, the exact signed distance values are computed for all grid nodes in the immediate
vicinity of the triangle mesh. After this initialization, the fast marching method propagates
distances to the unknown grid nodes in a breadth-first manner.

2.5.2 Implicit to Explicit

The conversion from an implicit or volumetric representation to an explicit triangle mesh, the
so-called isosurface extraction, occurs for instance in CSG modeling (cf. Fig. ??) and in medical
applications, e.g., to extract the skull surface from a CT head scan. The de-facto standard
algorithm for isosurface extraction is Marching Cubes [?]. This grid-based method samples the
implicit function on a regular grid and processes each cell of the discrete distance field separately,
thereby allowing for trivial parallelization. For each cell that is intersected by the iso-surface
S a surface patch is generated based on local criteria. The collection of all these small pieces
eventually yields a triangle mesh approximation of the complete iso-surface S.

For each edge intersecting the surface S the Marching Cubes algorithm computes a sample
point which approximates this intersection. In terms of the scalar field F this means that the
sign of F differs at the edge’s endpoints p1 and p2. Since the tri-linear approximation F is
actually linear along the grid edges, the intersection point s can be found by linear interpolation
of the distance values d1 := F (p1) and d2 := F (p2) at the edge’s endpoints:

s =
|d2|

|d1|+ |d2|
p1 +

|d1|
|d1|+ |d2|

p2 .

The resulting sample points of each cell are then connected to a triangulated surface patch
based on a triangulation look-up table holding all possible configurations of edge intersections
(cf. Fig. ??). Since the possible combinatorial configurations are determined by the signs at a
cell’s corners, their number is 28 = 256.

Notice that a few cell configuration are ambiguous, which might lead to cracks in the extracted
surface. A properly modified look-up table yields a simple and efficient solution, however, at the
price of sacrificing the symmetry w.r.t. sign inversion of F [?]. The resulting isosurfaces then are
watertight 2-manifolds, which is exploited by many mesh repair techniques (Chapter ??).

Notice that Marching Cubes computes intersection points on the edges of a regular grid only,
which causes sharp edges or corners to be “chopped of”. A faithful reconstruction of sharp
features would instead require additional sample points within the cells containing them. The
extended Marching Cubes [?] therefore examines the distance function’s gradient ∇F to detect
those cells and to find additional sample points by intersecting the tangent planes at the edge
intersection points. This principle is depicted in Fig. ??, and a 3D example of the well known

13

2 Surface Representations

Figure 2.8: The 15 base configurations of the Marching Cubes triangulation table. The other
cases can be found by rotation or symmetry.

fandisk dataset is shown in Fig. ??. An example implementation of the extended Marching
Cubes based on the OpenMesh data structure [?] can be downloaded from [?].

The high complexity of the extracted isosurfaces remains a major problem for Marching Cubes
like approaches. Instead of decimating the resulting meshes (Chapter ??), Ju et al. [?] proposed
the dual contouring approach, which allows to directly extract adaptive meshes from an octree.
Notice however that their approach yields non-manifold meshes for cell configurations containing
multiple surface sheets. A further promising approach is the cubical marching squares algorithm
[?], which also provides adaptive and feature-sensitive isosurface extractions.

Figure 2.9: By using point and normal information on both sides of the sharp feature one can
find a good estimate for the feature point at the intersection of the tangent elements. The dashed
line is the result the standard Marching Cubes algorithm would produce.

14

2.5 Conversion Methods

Figure 2.10: Two reconstructions of the “fandisk” dataset from a 65× 65× 65 sampling of its
signed distance field. The standard Marching Cubes algorithm leads to severe alias artifacts near
sharp features (top), whereas the feature-sensitive iso-surface extraction faithfully reconstructs
them (bottom).

15

2 Surface Representations

16

3 Mesh Data Structures

The efficiency of the geometric modeling algorithms presented in this tutorial crucially depends
on the underlying mesh data structures. A variety of data structures has been described in
the literature, and a number of different implementations are available. We refer to [?] for an
excellent overview and comparison of different mesh data structures and to [?, ?] for references
on data structures for representing non-manifold meshes.

In general, when choosing a data structure one has to take into account topological as well as
algorithmic considerations:

Topological requirements. Which kinds of meshes need to be represented by the data struc-
ture? Do we need boundaries or can we assume closed meshes? Do we need to represent complex
edges and singular vertices (see Chapter ??) or can we rely on a manifold mesh? Can we restrict
ourselves to pure triangle meshes or do we need to represent arbitrary polygonal meshes? Are
the meshes regular, semi-regular or irregular? Do we want to build up a hierarchy of differently
refined meshes or do we need only a flat data structure?

Algorithmic requirements. Which kinds of algorithms will be operating on the data structure?
Do we simply want to render the mesh? Do we need to modify only the geometry of the mesh,
or do we also have to modify the connectivity/topology? Do we need to associate additional
data with the vertices, edges or faces of the mesh? Do we need to have constant-time access to
the local neighborhoods of vertices, edges and faces? Can we assume the mesh to be globally
orientable?

The simplest representation for triangle meshes would just store a set of individual triangles.
Some data exchange formats use this representation as a common denominator (e.g., STL for-
mat). However, it is immediately clear that this is not sufficient for most requirements: connec-
tivity information cannot be accessed explicitly, and vertices and associated data are replicated.
The latter can be fixed by a shared vertex data structure, which stores a table of vertices and en-
codes triangles as triples of indices into this table. In fact this representation is used in many file
formats because it is simple and efficient in storage (assuming no mesh compression is applied).
Similarly, it is efficient for certain algorithms that assume static data, e.g., rendering. However,
without additional connectivity information this is still not efficient for most algorithms.

Before we go on, we want to identify some minimal set of operations that are frequently used
by most algorithms.

• Access of individual vertices, edges, faces. This includes enumeration of all elements (in
no particular order).

• Oriented traversal of edges of a face, which refers to finding the next edge in a face. (This
defines also degree of the face and the inverse operation for the previous halfedge. With
additional access to vertices, e.g., rendering of faces is enabled.)

17

3 Mesh Data Structures

• Access of the faces attached to an edge. Depending on orientation this is either the left or
right face in the manifold case. This enables access to neighboring faces and hence traversal
of faces (and boundaries as special case).

• Given an edge access its starting and/or end vertex.

• Given a vertex at least one attached face or edge must be accessible. Then (for manifold
meshes) all other elements in the one-ring neighborhood of a vertex can be enumerated,
i.e., incident faces, edges, or neighboring vertices.

These operations enable local and global traversal of the mesh. They relate vertices, edges and
faces by connectivity information (and orientation). We remark that all these operations are
possible even for a shared vertex representation, however, this requires expensive searches.

Several data structures have been developed which enable fast traversal of meshes. Well-known
are winged-edge [?], quad-edge [?], and half-edge [?] data structures in different flavors (see, e.g.,
[?]).

From our own experience, we have found two of these mesh data structures to be especially
suitable for geometry processing: halfedge data structure (Section ??) and directed edges struc-
ture [?] (Section ??) as a special case for triangle meshes. Both data structures allow for efficient
enumeration of neighborhoods of vertices and faces. This operation is frequently used in many
algorithms, e.g., in mesh smoothing and mesh decimation. The halfedge data structure is able to
represent arbitrary polygonal meshes that are subsets of a 2-manifold. The directed edges data
structure is more memory efficient, but it can only represent 2-manifold triangle meshes.

3.1 Halfedge Data Structure

One of the most convenient and flexible data structures in geometry processing is the halfedge
data structure [?, ?]. This structure is able to represent arbitrary polygonal meshes that are
subsets of orientable 2-manifolds. In this data structure each edge is split into two opposing
halfedges such that all halfedges are oriented consistently in counter-clockwise order around each
face and along the boundary, see Fig. ??. For each halfedge we store a reference to

• the vertex it points to

• its adjacent face (a zero pointer, if it is a boundary halfedge)

• the next halfedge of the face or boundary (in counter-clockwise direction)

• its inverse (or opposite) halfedge

• the previous half-edge in the face (optional for better performance)

Additionally we store references for each face to one of its adjacent halfedges and for each vertex
to one of its outgoing halfedges. Thus, a basic halfedge structure can be realized using the
following classes:

18

3.2 Directed Edges

struct Halfedge {
HalfedgeRef next halfedge;
HalfedgeRef opposite halfedge;
FaceRef face;
VertexRef to vertex;
};

struct Face {
HalfedgeRef halfedge;
};

struct Vertex {
HalfedgeRef outgoing halfedge;
};

This simple structure already enables us to enumerate for each element (i.e. vertex, edge, halfedge
or face) its adjacent elements. As an example, the following procedure enumerates all vertices
that are adjacent to a given center vertex (the so-called 1-ring)

enumerate 1 ring(Vertex * center)
{

HalfedgeRef h = outgoing halfedge(center);
HalfedgeRef hstop = h;
do {

VertexRef v = to vertex(h);
// do something with v
h = next halfedge(opposite halfedge(h));

} while (h != hstop);
}

The implementation of the references (e.g., HalfedgeRef) can be realized in different ways,
for instance using pointers or indices. In practice, index representations (see, e.g., Section ??)
are more flexible even though memory access is indirect: using indices into data arrays enables
efficient memory relocation (and simpler and more compact memory management) and all at-
tributes of a vertex (edge, face) are identified by the same index. As a side effect, use of indices
is platform compatible. More important in this context is the following observation: halfedges
always come in pairs. Thus when we actually implement a halfedge data structure we group
inverse halfedges pairwise in an array. This trick has two advantages: first, the opposite halfedge
is given implicitly by an addition modulo two so there is no need to explicitly store it. Second, we
obtain an explicit representation for “full” edges, which is important when we want to associate
data with edges rather than halfedges. (Note that this is generally also possible with a pointer
implementation.)

3.2 Directed Edges

The directed edges data structure [?] is a memory efficient variant of the halfedge data structure
designed for triangles meshes. It has the following restrictions:

• Only triangle meshes can be represented.

• There is no explicit representation of edges.

The main benefit of directed edges is memory efficiency while they can represent all triangle
meshes which can be represented by the general halfedge data structure. In addition some

19

3 Mesh Data Structures

to_vertex
next_halfedge
opposite_halfedge
face

Figure 3.1: This figure shows the references stored with each halfedge. Note that the next halfedge
references enable traversing the boundary loop.

atomic operations are more efficient than for general halfedges. However, traversing boundary
loops is more expensive as there is no atomic operation to enumerate the next boundary edge.

The directed edges data structure is based on indices as references to each element (vertex,
face, halfedge). The indexing is not arbitrary but follows certain rules that implicitly encode
some of the connectivity information of the triangle mesh. Instead of pairing opposite halfedges
(see above), this data structure groups the three halfedges belonging to a common triangle. To
be more precise, let f be the index of a face, then the indices of its three halfedges are given as

halfedge(f, i) = 3f + i, i = 0, 1, 2

Now let h be the index of a halfedge. Then the index of its adjacent face and its index within
that face are simply given by

face(h) = h/3

Not surprisingly, we can also compute the index of h’s next halfedge as (h + 1) mod 3. The
remaining parts of the connectivity have to be stored explicitly in arrays. Thus for each vertex
we store the index of an outgoing halfedge. For each halfedge, we store the index of its opposite
halfedge and the index of the vertex, the halfedge points to.

Notes

• The directed edge data structure handles boundaries by special (e.g., negative) indices
indicating that the inverse edge is invalid. This leads to a non-uniform treatment of the
connectivity encoding and some special cases.

• We have described the directed edges data structure for pure triangle meshes. An adaption
to pure quad meshes is straightforward. However, it is not possible to mix triangles and
quads, which severely limits this extension to regular settings.

3.3 Mesh Libraries: CGAL and OpenMesh

Although the description of a halfedge data structure is straightforward, its implementation is
not. Programming a basic mesh data structure might thus be a good exercise for an undergrad-
uate course in geometric modeling, but designing and implementing a full-fledged mesh library

20

3.3 Mesh Libraries: CGAL and OpenMesh

that is memory- and time-efficient, robust and easy to use and that is possibly equipped with a
number of standard operations and algorithms is an advanced and time consuming task. Among
others the following issues have to be taken into account:

• Access: How can we conveniently access vertices, edges and faces? How can we conveniently
enumerate neighborhoods or navigate along mesh boundaries?

• Modification: How can a mesh be modified by the user? How can vertices and faces be
added or deleted? How can we guarantee that after a modification the data structure is
still consistent?

• Composed operations: How can high level operations like halfedge-collapses, face-splits etc.
be implemented efficiently?

• Parameterization: How can arbitrary additional data efficiently be with the vertices, edges
and faces of the mesh? What kind of memory management is efficient?

• Input and output: How to read and write data from different file formats? How to build
up a halfedge-structure from an indexed face set?

Taking all these issues into account and coping with the often subtle problems when modifying
the data structure, we strongly recommend to use one of full featured, publicly available mesh
libraries. We refer the interested programmer to the following C++ libraries.

CGAL, the Computational Geometry Algorithms Library, is a generic C++ library for geo-
metric computing. It provides basic geometric primitives and operations, as well as a collection
of standard data structures and geometric algorithms, including 3D polyhedral surfaces with a
halfedge data structure and a rich set of 2D and 3D triangulations. CGAL is specifically designed
to provide reliable solutions to efficiency and robustness issues which are of crucial importance
in geometric algorithms. Robustness and scalability of the algorithms are achieved by isolating a
minimal number of predicates and constructors, and by the use of templated kernels. The CGAL
library is available at http://www.cgal.org.

OpenMesh provides efficient halfedge data structures for polygonal meshes, their input/output
and several standard geometry processing algorithms. OpenMesh is available at
http://www.openmesh.org.

Comparing objectives and functionalities of these two libraries, CGAL is much more ambitious.
Its rich foundation of algorithms is strongly biased by computational geometry with focus on
robust and exact algorithms. CGAL has a wide user base and a number of research institutions
actively contribute to its development. A major difference in data structures is the support for
tetrahedral meshes. In contrast, OpenMesh is highly specialized on efficient processing of surface
meshes based solely on halfedge data structures. It takes over some concepts of CGAL which
provided one of the first publicly available halfedge data structures. It is much more focused
on requirements of modeling with polygonal meshes and provides a set of standard geometry
processing algorithms, like mesh smoothing, decimation, etc. We note that both libraries have
different licensing policies.

As some authors of this tutorial were actively involved in the design and implementation of
OpenMesh, we will describe this library in more detail here. Note that the same functionality is
available in CGAL, however, the code reads differently.

21

http://www.cgal.org
http://www.openmesh.org

3 Mesh Data Structures

• Access: Vertices, edges, halfedges and faces are all explicitly represented in OpenMesh
and can easily be accessed through iterators or through handles (which replace indices
as references). OpenMesh also provides so-called circulators that allow to enumerate the
neighborhoods of each element. The following example shows how to compute the barycen-
ter of the 1-ring of each vertex in a mesh:

TriangleMesh mymesh;

(...) // Read a mesh

// A VertexIter is an STL-compliant iterator to enumerate all vertices of a mesh
for (VertexIter vi = mymesh.vertices begin(); vi != mymesh.vertices end(); ++vi)
{

int cnt = 0;
Point cog(0,0,0);

// A VertexVertexIter is a circulator that enumerates the 1-ring of a vertex
for (VertexVertexIter vvi = mymesh.vv iter(vi); vvi; ++vvi)
{

cnt += 1;
cog += mymesh.point(vvi);

}
cog /= cnt;
// Now cog equals the center of gravity of vi’s neighbors

}

• Modification: OpenMesh provides functions to add and remove vertices and faces to and
from a mesh. These operations are guaranteed to preserve a consistent state of the mesh.
The following example shows how to add a triangle to a mesh:

TriangleMesh mymesh;

// Add three vertices to the mesh
VertexHandle v0 = mymesh.add vertex(Point(0, 0, 0));
VertexHandle v1 = mymesh.add vertex(Point(0, 1, 0));
VertexHandle v2 = mymesh.add vertex(Point(3, 0, 2));

// Connect the vertices by a triangle
FaceHandle f = mymesh.add face(v0, v1, v2);

// Remove the face
mymesh.delete face(f);

• Composed operations: OpenMesh provides a number of high-level operations, among them
halfedge-collapse, vertex-split, face-split, edge-split and edge-flip. It also provides functions
that test whether a certain operation is legal or not. The following snippet of code tries to
collapse all edges that are shorter than a given threshold:

TriangleMesh mymesh;

(...)

for (HalfedgeIter hi = mymesh.halfedges begin(); hi != mymesh.halfedges end(); ++hi)
if (! mymesh.status(hi).is deleted())
{

Point a = mymesh.point(mymesh.from vertex handle(hi));
Point b = mymesh.point(mymesh.to vertex handle(hi));

22

3.4 Summary

if ((b-a).norm() < epsilon && mymesh.is collapse ok(hi))
mymesh.collapse(hi);

}
mymesh.garbage collection();

• Parameterization: Arbitrary additional data can be associated with the vertices, edges,
halfedges or faces of a mesh via OpenMesh’s property mechanism. This mechanism allows
to assign and remove data from the mesh at runtime. Thus it is for example possible to
temporarily assign to each edge a weight:

TriangleMesh mymesh;

(...)

// Add a property (in this case a float) to each edge of mymesh
EdgePropertyHandle< float > weight;
mymesh.add property(weight);

// Assign values to the properties
for (EdgeIter ei = mymesh.edges begin(); ei != mymesh.edges end(); ++ei)

mymesh.propery(weight, ei) = some value;
(...)

// Do something with the properties
for (EdgeIter ei = mymesh.edges begin(); ei != mymesh.edges end(); ++ei)

do something with(mymesh.propery(weight, ei));

(...)

// If the weights are not needed anymore, remove them to free some memory
mymesh.remove property(weight);

• Input and output: OpenMesh reads and writes stl (ASCII and Binary), off and obj files.
Handlers for other file types can easily be added by the user.

TriangleMesh mymesh;

read mesh(mymesh, ”a filename.off”);
(...)

write mesh(mymesh, ”another filename.stl”);

• Standard algorithms: OpenMesh provides a set of standard algorithms that can easily be
customized to different needs. Among these algorithms are: smoothing (Chapter ??),
decimation (Chapter ??) and subdivision (see also Chapter ??).

3.4 Summary

Efficient data structures are crucial for geometry processing based on polygonal meshes. We
recommend halfedge data structures (or directed edges as a special case for triangle meshes), for
which full-featured and publicly available implementations already exist, e.g., CGAL or Open-
Mesh.

23

3 Mesh Data Structures

24

4 Model Repair

In short, model repair is the task of removing artifacts from a geometric model to produce
an output model that is suitable for further processing by downstream applications that have
certain quality requirements on their input. Although this definition is most often too general, it
nonetheless captures the essence of model repair: the definition of what we mean by a “model”,
of what exactly constitutes an “artifact” and what is meant by “suitable for further processing”
is highly dependent on the problem at hand and there generally is no single algorithm which is
be applicable in all situations.

Model repair is a necessity in a wide range of applications. As an example, consider the design
cycle in automotive CAD/CAE/CAM: Car models are typically manually designed in CAD
systems that use trimmed NURBS surfaces as the underlying data structure for representing
geometry. However, downstream applications like numerical fluid simulations cannot handle
NURBS patches but need a watertight, manifold triangle mesh as input. Thus there is a need for
an intermediate stage that converts the NURBS model into a triangle mesh. Unfortunately, this
conversion process often produces artifacts that cannot be handled by downstream applications.
Thus, the converted model has to be repaired — often in a manual and tedious post-process.

The goal of this tutorial is to give a practical view on the typical types of artifacts that
occur in geometric models and to introduce the most common algorithms that address these
artifacts. After giving a short overview on the common types of artifacts in Section ??, we start
out in Section ?? by classifying repair algorithms on whether they explicitly identify and resolve
artifacts or on whether they rely on an intermediate volumetric representation that automatically
enforces certain consistency constraints. This classification already gives a hint on the strengths
and weaknesses of a particular algorithm and on the quality that can be expected from its
output. In Section ?? we then give an overview on the different types of input models that
are encountered in practice. We describe the specific artifacts and problems of each model and
explain their origin. We also give references to algorithms that are designed to resolve these
artifacts. Finally, we present some of the common model repair algorithms in more detail in
Section ??. We give a short description on how each algorithm works and to which models it
is applicable. We hope that this provides a deeper understanding of the often subtle problems
that occur in model repair and of ways to address these problems. Some of these algorithms are
relatively straightforward, while others are more involved such that we can only show their basic
mechanisms.

4.1 Artifact Chart

The chart in Fig. ?? shows the most common types of artifacts that occur in typical input models.
Note that this chart is by no means complete and in particular in CAD models one encounters
further artifacts like self-intersecting curves, points that do not lie on their defining planes and
so on. While some of these artifacts, e.g., complex edges, have a precise meaning, others, like
the distinction between small scale and large scale overlaps, are described intuitively rather than
by strict definitions.

25

4 Model Repair

singular
vertex

holes and
isles

large scale overlap

inconsistent
orientation

gaps and
small overlaps

handle

intersection

complex
edges

Figure 4.1: Artifact chart

26

4.2 Types of Repair Algorithms

4.2 Types of Repair Algorithms

Most model repair algorithms can roughly be classified as being either surface oriented or volu-
metric. Understanding these concepts already helps to evaluate the strengths and weaknesses of
a given algorithm and the quality that can be expected of its output.

Surface oriented algorithms operate directly on the input data and try to explicitly identify
and resolve artifacts on the surface. For example, gaps could be removed by snapping boundary
elements (vertices and edges) onto each other or by stitching triangle strips in between the gap.
Holes can be closed by a triangulation that minimizes a certain error term. Intersections could
be located and resolved by explicitly splitting edges and triangles.

Surface oriented repair algorithms only minimally perturb the input model and are able to
preserve the model structure in areas that are away from artifacts. In particular, structure that
is encoded in the connectivity of the input (e.g. curvature lines) or material properties that are
associated with triangles or vertices are usually well preserved. Furthermore, these algorithms
introduce only a limited number of additional triangles.

To guarantee a valid output, surface oriented repair algorithms usually require that the in-
put model already satisfies certain quality requirements (error tolerances). These requirements
cannot be guaranteed or even be checked automatically, so these algorithms are rarely fully au-
tomatic but need user interaction and manual post-processing. Furthermore, due to numerical
inaccuracies, certain types of artifacts (like intersections or large overlaps) cannot be resolved
robustly. Other artifacts, like gaps between two closed connected components of the input model
that are geometrically close to each other, cannot even be identified.

Volumetric algorithms convert the input model into an intermediate volumetric representation
from which the output model is then extracted. Here, a volumetric representation is any kind
of partitioning of space into cells such that each cell can be classified as either being inside or
outside. Examples of volumetric representations that have been used in model repair include
regular Cartesian grids, adaptive octrees, kd-trees, BSP-trees and Delaunay triangulations, see
also Chapter ??. The interface between inside and outside cells then defines the topology and
the geometry of the reconstructed model. Due to their very nature, volumetric representations
do not allow for artifacts like intersections, holes, gaps or overlaps or inconsistent normal orien-
tations. Depending on the type of the extraction algorithm, one can often also guarantee the
absence of complex edges and singular vertices. Handles, however, might still be present in the
reconstruction.

Volumetric algorithms are typically fully automatic and produce watertight models (Sec-
tion ??). Depending on the type of volume, they can often be implemented very robustly.
In particular, the discrete neighborhood relation of cells allows to reliably extract a consistent
topology of the restored model. Furthermore, well-known morphological operators can be used
to robustly remove handles from the volume.

On the downside, the conversion to and from a volume leads to a resampling of the model. It
often introduces aliasing artifacts, loss of model features and destroys any structure that might
have been present in the connectivity of the input model. The number of triangles in the output
of a volumetric algorithm is usually much higher than that of the input model and thus has to
be decimated in a post-processing step. Also the quality of the output triangles often degrades
and has to be improved afterwards (see also Fig. ??). Finally, volumetric representations are
quite memory intensive so it is hard to run them at high resolutions.

27

4 Model Repair

4.3 Types of Input

In this section we list the most common types of input models that occur in practice. For each
type we describe its typical artifacts (see also Section ??) and give references to algorithms that
can be used to remove them.

Registered Range Scans are a set of patches (usually triangle meshes)
that represent overlapping parts of the surface S of a scanned object. While
large overlaps are a distinct advantage in registering the scans, they pose
severe problems when these patches are to be fused into a single consistent
triangle mesh. The main geometric problem in this setup are the potentially
very large overlaps of the scans such that a point x on S is often described by
multiple patches that do not necessarily agree on x’s position. Furthermore,
each patch has its own connectivity that is usually not compatible to the
connectivity of the other patches. This is in particular a problem for surface
oriented repair algorithms.

There are only a few surface oriented algorithms for fusing range images,
e.g., Turk et al.’s mesh zippering algorithm [?]. The most well-known
volumetric method is due to Curless and Levoy [?].

Fused Range Scans Fused range images are manifold meshes with bound-
aries, i.e., holes and isles. These artifacts are either due to obstructions in
the line of sight of the scanner or result from bad surface properties of the
scanned model such as transparency or glossiness. The goal is to identify
and fill these holes. In the simplest case, the filling is a patch that minimizes
some bending energy and joins smoothly to the boundary of the hole. Ad-
vanced algorithms synthesize new geometric detail that resembles the detail
that is present in a local neighborhood of the hole or transplant geometry
from other parts of the model in order to increase the realism of the recon-
struction. The main obstacles in hole filling are the incorporation of isles
into the reconstruction and the avoidance of self-intersections.

Kliencsek proposes an algorithm based on dynamic programming for find-
ing minimum weight triangulations of planar polygons [?]. This algorithm
is a key ingredient in a number of other model repair algorithms. Liepa
proposes a surface oriented method to smoothly fill holes such that the ver-
tex densities around the hole are interpolated [?]. Podolak et al. cast hole
filling as a graph-cut problem and report an algorithm that is guaranteed
to produce non-intersecting patches [?]. Davis et al. propose a volumetric
method that diffuses a signed distance function into empty regions of the
volume [?]. Pauly et al. use a database of geometric priors from which they
select shapes to fill in regions of missing data [?].

Triangle Soups are mere sets of triangles with no or only little connectivity information. They
most often arise in CAD models that are manually created in a boundary representation where
users typically assemble predefined elements (taken from a library) without bothering about
consistency constraints. Due to the manual layout, these models typically are made of only a

28

4.3 Types of Input

few thousands of triangles, but they may contain all kinds of artifacts. Thus triangle soups are
well suited for visualization, but cannot be used in most downstream application.

Intersecting triangles are one of the most
common type of artifact in triangle soups,
as the detection and in particular the resolu-
tion of intersecting geometry would be much
too time-consuming and numerically unsta-
ble. Complex edges and singular vertices are
often intentionally created in order to avoid
the duplication of vertices and the subsequent
need to keep these duplicate vertices consis-
tent. Other artifacts include inconsistent nor-
mal orientations, small gaps and excess inte-
rior geometry.

Surface oriented methods that are able to automatically repair triangle soups are not known.
However, there are a number of volumetric methods that can be applied to triangle soups:
Murali et al. produce a BSP tree from the triangle soup and automatically compute for each leaf
a solidity [?]. Nooruddin et al. use ray-casting and filtering to convert the triangle soup into a
volumetric representation from which they then extract a consistent, watertight model [?]. Shen
et al. create an implicit representation by generalizing the moving least squares approach from
point sets to triangle soups [?]. Bischoff and Kobbelt scan convert the soup into a binary grid,
use morphological operators to determine inside/outside information and then invoke a feature-
sensitive extraction algorithm [?]. Gress and Klein use a kd-tree to improve the geometric fidelity
of the volumetric reconstruction [?].

Tringulated NURBS Patches typically are
a set of triangle patches that contain gaps
and small overlaps. These artifacts arise when
triangulating two or more trimmed NURBS
patches that join at a common boundary
curve. Usually, each patch is triangulated sep-
arately, thus the common boundary is sam-
pled differently from each side. Other arti-
facts present in such models include intersect-
ing patches and inconsistent normal orienta-
tions. Triangulated NURBS patches are usu-
ally repaired using surface oriented methods.
These methods first try to establish a consis-
tent orientation of the input patches. Then
they identify corresponding parts of the boundary and snap these parts onto each other. Thus
any structure that might be present in the triangulation (like iso-lines, curvature lines, etc.) is
preserved.

Barequet and Sharir use a geometric hashing technique to identify and bridge boundary parts
that have a similar shape [?]. Barequet and Kumar describe an algorithm that identifies geo-
metrically close edges and snaps them onto each other [?]. Borodin and Klein generalize the
vertex-contraction operator to a vertex-edge contraction operator and thus are able to progres-
sively close gaps [?]. Bischoff and Kobbelt use a volumetric repair method locally around the

29

4 Model Repair

artifacts and stitch the resulting patches into the remaining mesh [?]. Borodin et al. propose an
algorithm to consistently orient the normals which takes visibility information into account [?].

Contoured Meshes are meshes that have been extracted
from a volumetric dataset by Marching Cubes, Dual Con-
touring or other extraction algorithms. Provided that the
correct triangulation look-up tables are used, contoured
meshes are always guaranteed to be watertight and manifold
(Section ??). However, these meshes often contain topolog-
ical artifacts, such as small handles.

Volumetric data arises most often in medical imaging (CT,
MRI,. . .), as an intermediate representation when fusing reg-
istered range scans or in constructive solid geometry (CSG).
In a volumetric dataset, each voxel is classified as being either
inside or outside the object. Unfortunately, due to the finite
resolution of the underlying grid, voxels are often classified

wrongly (so-called partial volume effect). This leads to topological artifacts in the reconstruc-
tion, like handles, holes, or disconnected components, that are not consistent with the model
that should be represented by the volume. A famous example are MRI datasets of the brain:
It is well known that the surface of the brain is homeomorphic to a sphere, but all too often a
model of higher genus is extracted.

While disconnected components and small holes can easily be detected and removed from the
main part of the model, handles are more problematic. Due to the simple connectivity of the
underlying Cartesian grid, it is usually easiest to remove them from the volume dataset before
applying the contouring algorithm or to identify and resolve them during reconstruction [?].
Guskov and Wood presented one of the few surface oriented algorithms to remove handles from
an input mesh [?].

Badly Meshed Manifolds contain degenerate ele-
ments like triangles with zero area, caps, needles and
triangle flips. These meshes result from the tessellation
of CAD models or are the output of marching cubes
like algorithms, in particular if they are enhanced by
feature-preserving techniques. Although badly meshed
manifolds are in fact manifold and even often water-
tight, the degenerate shape of the elements prevents
further processing, e.g., in finite element meshers, and
leads to instabilities in numerical simulations. The re-
pair of such meshes is called remeshing, and we discuss
this issue in depth in Chapter ??.

4.4 Surface Oriented Algorithms

In this section we describe some of the most common surface oriented repair algorithms. These
algorithms work directly on the input surface and try to remove artifacts by explicitly modifying
the geometry and the connectivity of the input.

30

4.4 Surface Oriented Algorithms

4.4.1 Consistent Normal Orientation

Consistently orientating the normals of an input model is part of most surface oriented repair
algorithms and can even improve the performance of volumetric algorithms. Usually the orienta-
tion of the normals is propagated along a minimum spanning tree between neighboring patches
either in a preprocessing step or implicitly during traversal of the input. Borodin et al. describe
a more sophisticated algorithm that additionally takes visibility information into account [?].

The input is a set of arbitrarily oriented polygons. In a preprocessing phase the polygons
are assembled into larger, manifold patches (possibly with boundary) as described in Section ??.
The algorithm then builds up a connectivity graph of neighboring patches where the label of each
edge encodes the normal coherence of the two patches. Furthermore, for each side of each patch
a visibility coefficient is computed that describes how much of the patch is visible when viewed
from the outside. Finally, a globally consistent orientation is computed by a greedy optimization
algorithm: If the coherence of two patches is high, normal consistency is favoured over front-face
visibility and vice versa.

4.4.2 Surface Based Hole Filling

In this section we describe an algorithm for computing a fair triangulation of a hole. The
algorithm was proposed by Liepa [?] and builds on work of Klincsek [?] and Barequet and
Sharir [?]. It is a basic building block of many other repair algorithms.

The goal is to produce a triangulation of a polygon p0, . . . ,pn−1 that minimizes some given
weight function. In the context of mesh repair, this weight function typically measures the
fairness of the triangulation, e.g., its area or the variation of the triangle normals (see also
Chapter ??).

i
0 n-1

m

j

Let φ(i, j, k) be a weight function that is defined on the
set of all triangles (pi,pj ,pk) that could possibly appear
during construction of the triangulation and let wi,j be the
minimum total weight that can be achieved in triangulating
the polygon pi, . . . ,pj , 0 ≤ i < j < n. Then wi,j can be
computed recursively as

wi,j = min
i<m<j

wi,m + wm,j + φ(i,m, j) .

The triangulation that minimizes w0,n−1 is computed by a
dynamic programming algorithm that caches the intermedi-
ate values wi,j .

Liepa suggests a weight function φ that is designed to take into account the dihedral angles
between neighboring triangles as well as triangle area. It produces tuples

φ(i, j, k) = (α,A) ,

where α is the maximum of the dihedral angles to the neighbors of (pi,pj ,pk) and A is its area.
Note that this weight function in particular penalizes fold-overs. When comparing different
values of ω, a low normal variation is favored over a low area:

(α1, A1) < (α2, A2) :⇔ (α1 < α2) ∨ (α1 = α2 ∧A1 < A2)

31

4 Model Repair

Note that when evaluating ω one has to take into account that the neighboring triangles can
either belong to the mesh that surrounds the hole or to the patch that is currently being created.
A triangulation of a hole that is produced using this weight function is shown in Fig. ??.

Figure 4.2: A hole triangulation that minimizes normal variation and total area.

To produce a fair hole filling, Liepa suggests to produce a tangent continuous fill-in of minimal
thin plate energy: First the holes are identified and filled by a coarse triangulation as described
above. These patches are then refined such that their vertex densities and edge lengths match
that of the area surrounding the holes, see Chapter ??. Finally, the patch is smoothed such as
to blend with the geometry of the surrounding mesh, see Chapter ??.

Discussion The algorithm reliably closes holes in models with smooth patches. The density of
the vertices matches that of the surrounding surface, see Fig. ??. The complexity of building the
initial triangulation is O(n3), which is sufficient for most holes that occur in practice. However,
the algorithm does not check or avoid self intersections and does not detect or incorporate isles
into the filling.

4.4.3 Conversion to Manifolds

Gueziec et al. propose a method to remove complex edges and singular vertices from non-manifold
input models [?]. The output is guaranteed to be a manifold triangle mesh, possibly with
boundaries. As the algorithm operates solely on the connectivity of the input model, it does
not suffer from numerical robustness issues. In a preprocessing phase all complex edges and
singular vertices are identified. The input is then cut along these complex edges into manifold
patches (usually with boundaries). Finally, pairs of matching edges (i.e., edges that have the
same endpoints) are identified and – if possible – merged.

In the preprocessing phase the input is split into separate faces and all complex edges are
identified by counting the number of adjacent faces: edges with one, two, or more than two
adjacent faces are boundary, regular interior or complex respectively. Then the input model is

32

4.4 Surface Oriented Algorithms

Figure 4.3: Liepa’s hole filling algorithm. Note that the point density of the fill-in matches that
of the surrounding area.

separated into manifold patches along the complex edges by stitching the two adjacent faces of
each interior regular edge. This method implicitly handles stand-alone and singular vertices.

Gueziec et al. propose two different strategies for stitching further edges: pinching and snap-
ping. The pinching strategy only stitches along edges that belong to the same connected compo-
nent. Thus small erroneous connected components are separated from the main part of the model
and can be easily detected and removed in a post-processing step. The algorithm iterates once
over all boundary vertices. Let v be a boundary vertex, vp its predecessor and vn its successor
along the boundary. If vp = vn the two edges (vp, v) and (v, vn) are merged.

In contrast to pinching, the snapping strategy reduces the number of connected components
of the model. The basic idea is to locate candidate pairs of boundary edges and to stitch them if
a certain stitchability criterion is met. This criterion asserts that after stitching, the model does
not contain new complex edges or singular vertices. The snapping strategy can be extended to
also allow the stitching of edges that are geometrically close to each other.

Discussion The scope of this algorithm is limited to the removal of complex edges and singular
vertices. This, however, is done efficiently and robustly.

4.4.4 Gap Closing

A number of surface oriented algorithms have been proposed to close the gaps and small overlaps
that are typical for triangulated NURBS models.

Barequet and Sharir proposed one of the first algorithms to fill gaps and remove small over-
laps [?]. The algorithm identifies matching parts of the boundaries by a geometric hashing
technique and fills the gaps by patching them with triangle strips or by the technique presented
in Section ??.

33

4 Model Repair

Figure 4.4: Left and middle left: The Happy Buddha model contains more than 100 handles.
Middle right: A non-separating closed cycle along a handle. Right: The handle was removed by
cutting along the non-separating cycle and closing the holes with triangle patches.

Barequet and Kumar propse an algorithm to repair CAD models that identifies and merges
pairs of boundary edges [?]. For each pair of boundary edges the area between the two edges
normalized by the edge lengths is computed. This score measures the geometric error that would
be introduced by merging the two edges. Pairs of boundary edges are then iteratively merged in
order of increasing score.

Borodin et al. [?] propose an algorithm that snaps boundary vertices to nearby boundary edges.
The algorithm is based on a standard mesh-decimation technique, but replaces the vertex-vertex
contraction operator by a vertex-edge contraction operator, that operates on boundary vertices
v and boundary edges e: Let c be the closest point to v on e. If c is an interior point of e, c is
inserted into e by splitting the adjacent triangle in two. Finally, v and c are merged. The cost
of a vertex-edge collapse is defined as the distance of v to c. The algorithm maintains a priority
queue of vertex/edge pairs and snaps them in order of increasing distance.

Discussion The semantics of these surface oriented algorithms is well defined and they are
typically easy to implement. If the input data is well-behaved and the user parameters are
chosen in accordance with the error that was accepted during triangulation, they also produce
satisfying results. However, there are no guarantees on the quality of the output. Due to the
simple heuristics, many artifacts remain unresolved. Therefore, these algorithms are usually run
in an interactive loop that allows designers to override the decisions made by the algorithms or
to steer the algorithms in a certain direction.

4.4.5 Topology Simplification

Guskov and Wood proposed an algorithm that detects and resolves all handles up to a given size ε
in a manifold triangle mesh [?]. Handles are removed by cutting the input along a non-separating
closed path and sealing the two resulting holes by triangle patches, see Fig. ??.

Given a seed triangle s, the algorithm conquers a geodesic region Rε(s) around s in the order
that is given by Dijkstra’s algorithm on the dual graph of the input meshM. Note that Dijkstra’s
algorithm not only computes the length of a shortest path from each triangle t to the seed s, but
it also produces a parent p(t) such that t, p(t), p2(t), . . . , s actually is a shortest path from t to s.

The boundary of Rε(s) consists of one or more boundary loops. Whenever a boundary loop
touches itself along an edge, it is split into two new loops and the algorithm proceeds. However,
when two different loops touch along a common edge, a handle is detected. Let t1 and t2 be the

34

4.5 Volumetric Repair Algorithms

two triangles that are adjacent to the common edge and pn1(t1) = pn2(t2) a common ancestor of
t1 and t2. The closed path

pn1(t1), . . . , p(t1), t1, t2, p(t2), . . . , pn2(t2)

is then a cycle of adjacent triangles that stretches around the handle. The input model is cut
along this triangle strip and the two boundary loops that are created by this cut are then sealed,
e.g., by the method presented in Section ??.

To detect all handles of M, one has to perform the region growing for all triangles s ∈ M.
Guskov and Wood describe a method to considerably reduce the necessary number of seed
triangles and thus are able to significantly speed up the algorithm.

Discussion The proposed method reliably detects small handles up to a user-prescribed size
and removes them. However, the algorithm is slow, it does not detect long, thin handles and it
cannot guarantee that no self-intersections are created when a handle is removed.

4.5 Volumetric Repair Algorithms

This section presents recent repair algorithms that use an intermediate volumetric representation
to implicitly remove the artifacts of a model. This volumetric representation might be as simple
as a regular Cartesian grid or as complex as a binary space partition.

4.5.1 Volumetric Repair on Regular Grids

Nooruddin and Turk proposed one of the first volumetric techniques to repair arbitrary models
that contain gaps, overlaps and intersections [?]. Additionally they employed morphological
operators to resolve topological artifacts like holes and handles.

First, the model is converted into a Cartesian voxel grid: A set of projection directions {di} is
produced, e.g., by subdividing an octahedron or icosahedron. Then the model is projected along
these directions onto an orthogonal planar grid. For each grid point x, the algorithm records
the first and last intersection point of the ray x + λdi and the input model. A voxel is classified
by such a ray to be inside, if it lies between these two extreme depth samples, otherwise it is
classified as outside. The final classification of each voxel is derived from the majority vote of all
the rays passing through that voxel. A Marching Cubes algorithm is then used to extract the
surface between inside and outside voxels.

In an optional second step, thin handles and holes are removed from the volume by applying
morphological operators that are also known from image processing [?]. The dilation operator
dε computes the distance from each outside voxel to the inside component. All voxels that are
within a distance of ε to the inside are also set to inside. Thus the dilation operator closes small
handles and bridges small gaps. The erosion operator eε works exactly the other way round and
removes thin bridges and handles. Usually, dilation and erosion are used in conjunction, eε ◦ dε
to avoid expansion or shrinkage of the model.

Discussion The classification of inside and outside voxels is rather heuristic and often not
reliable. Furthermore, the algorithm is not feature-sensitive.

35

4 Model Repair

Figure 4.5: Reconstruction (green) of a triangle soup (blue). Left: Visually there is no difference
between the triangle soup and the reconstruction. Middle: The reconstruction is a watertight
mesh that is refined near the model features. Right: The volumetric approach allows to reliably
detect and remove excess interior geometry from the input.

4.5.2 Volumetric Repair on Adaptive Grids

Bischoff et al. [?] propose an improved volumetric technique to repair arbitrary triangle soups.
The user provides an error tolerance ε and a maximum diameter ρ up to which gaps should be
closed. The algorithm first creates an adaptive octree representation of the input model where
each cell stores the triangles intersecting with it. From these triangles a feature-sensitive sample
point can be computed for each cell. Then a sequence of morphological operations is applied to
the octree to determine the topology of the model. Finally, the connectivity and geometry of the
reconstruction are derived from the octree structure and samples, respectively.

Let us assume that the triangle soup is scaled to fit into the root cell of the octree. We set
the maximum depth of the octree cells such that the diameter of the finest level cells is smaller
than ε. Each cell stores references to the triangles that intersect it and initially all triangles are
associated with the root cell. Then cells that are not yet on maximum depth are recursively split
if they either contain a boundary edge or if the triangles within the cell deviate too much from a
common supporting plane. Whenever a cell is split, its triangles are distributed to its children.
The result is a memory-efficient octree with large cells in planar or empty regions and fine cells
along the features and boundaries of the input model (see Fig. ??).

In the second phase, each leaf cell of the octree is classified as being either inside or outside.
First, all cells that contain a boundary of the model are dilated by n := ρ/ε layers of voxels such
that all gaps of diameter ≤ ρ are closed. A flood fill algorithm then propagates the outside label
from the boundary of the octree into its interior. Finally, the outside component is dilated again
by n layers to avoid an expansion of the model.

A Dual Contouring algorithm then reconstructs the interface between the outside and the inside
cells by connecting sample points. These sample points are the minimizers of the squared dis-
tances to their supporting triangle planes, thus features like edges and corners are well preserved
(see also Chapter ?? on quadric error metrics). If no such planes are available (e.g., because

36

4.5 Volumetric Repair Algorithms

Figure 4.6: Left: Adaptive octree, boundary cells are marked red. Center left: Dilated boundary
(green) and outside component (orange). Center right: Outside component dilated back into the
boundary cells. Right: Final reconstruction

the cell was one of the dilated boundary cells), the corresponding sample point is smoothed in a
post-processing step (Chapter ??).

Discussion As this algorithm is based on a volumetric representation, it produces guaranteed
manifold output (Fig. ??). Features are also well preserved. However, despite the adaptive
octree, the resolution of the reconstruction is limited.

4.5.3 Volumetric Repair with BSP Trees

BSP

solidity coefficients

reconstruction

A unique method for converting triangle soups to manifold surfaces was
presented by Murali and Funkhouser [?]. The polygon soup is first con-
verted into a BSP tree, the supporting planes of the input polygons serve
as splitting planes for the space partition. The leaves of the tree thus corre-
spond to closed convex spatial regions Ci. For each Ci a solidity coefficient
si ∈ [−1, 1] is computed. Negative solidity coefficients designate empty
regions, while positive coefficients designate solid regions.

All unbounded cells naturally lie outside the object and thus are assigned
a solidity value of−1. Let Ci be a bounded cell and letN (i) be the indices of
all its face neighbors. Thus for each j ∈ N (i) the intersection Pij = Ci∩Cj
is a planar polygon that might be partially covered by the input geometry.
For each j ∈ N (i) let tij be the transparent area, oij the opaque area and
aij the total area of Pij . The solidity si is then related to the solidities sj
of its face neighbors by

si =
1
Ai

∑
j∈N (i)

(tij − oij)sj , (4.1)

where Ai =
∑
aij is the total area of the boundary of Ci. Note the two

extreme cases: If Pij is fully transparent, tij − oij = aij > 0 the correlation
of si and sj is positive, indicating that both cells should be solid or both
cells should be empty. If, on the other hand, Pij is fully opaque, tij − oij =
−aij < 0, the negative correlation indicates that one cell should be solid
and the other empty. Collecting all equations Eq. (??) leads to a sparse
linear system

M[s1, . . . , sn]T = b ,

37

4 Model Repair

which can be solved efficiently using an iterative solver (Chapter ??). It can be shown that M is
always invertible and that the solidity coefficients of the solution in fact lie in the range [−1, 1].

Finally, the surface of the solid cells is extracted by enumerating all neighboring pairs of leaf
cells (Ci, Cj). If one of them is empty and the other is solid, the corresponding (triangulated)
boundary polygon Pij is added to the reconstruction.

Discussion This method does not need (but also cannot incorporate) any user parameters to
automatically produce watertight models. The output might contain complex edges and singular
vertices, but these can be removed using the algorithm presented in Section ??. Unfortunately, a
robust and efficient computation of the combinatoric structure of the BSP is hard to accomplish.

4.5.4 Volumetric Repair on the Dual Grid

Input

Face set

Patches

Reconstruction

Ju proposes an interesting volumetric algorithm to repair arbitrary triangle
soups [?]. While the boundary loops are explicitly traced and filled, the
overall scheme is volumetric.

The algorithm first approximates the input model by a subset F of the
faces of a Cartesian grid. For memory efficiency, these faces are stored in
an adaptive octree. Additionally, a sample point (and possibly a normal)
from the input model are associated with each face, to allow for a more
accurate reconstruction. The boundary ∂F of F is defined to be the subset
of the grid edges that are incident to an odd number of faces in F . Note
that if G is another face set, such that ∂G = ∂F , then ∂(F 	 G) = ∅.
Here, the symmetric difference (xor) of two sets A and B is defined as
A 	 B = (A ∪ B) \ (A ∩ B). Also, if ∂F = ∅ then the grid voxels can be
two-colored by inside and outside labels such that two adjacent voxels have
the same label, while two voxels that are separated by a face of F have
different labels.

For each boundary loop Bi of F , the algorithm constructs a minimal face
set Gi such that ∂Gi = Bi. Then F is replaced by

F ′ = F 	 G1 	 · · · 	 Gn,

thus ∂F ′ = ∅. As voxels at the corners of the bounding box are known
to be outside, they are used as seeds for propagating the inside/outside
information over the grid. The interface between inside and outside voxels
is then extracted using either a Marching Cubes or a Dual Contouring
algorithm.

Discussion Ju’s algorithm uses a volumetric representation and thus pro-
duces guaranteed manifold output. The algorithm is memory-less, i.e.,
insensitive to the size of the input and thus can process arbitrarily large
meshes out-of-core. On the other hand, the algorithm has problems han-
dling thin structures. In particular, if the discrete approximation that is
used in the hole filling step overlaps with the input geometry, this part of
the mesh may disappear or be shattered into many pieces. Due to the vol-
umetric representation the whole input model is resampled and the output
might become arbitrarily large for fine resolutions.

38

4.5 Volumetric Repair Algorithms

4.5.5 Extending MLS to Triangle Soups

Shen et al. propose a volumetric repair algorithm that operates on arbitrary triangle soups [?].
It is a generalization of the moving least squares approach that can for instance be used for
reconstructing geometry from point clouds. Instead of approximating positional information only,
they also incorporate normal constraints into the reconstruction and thus avoid an oscillating
solution. The details of this algorithm are involved and we restrict ourselves to the basic ideas.

Let t1, . . . , tN be a set of triangles and let n1, . . . ,nN be their normals. The goal is to generate
a function s : IR3 → IR whose zero level-set matches t1, . . . , tN as close as possible. An arbitrary
contouring algorithm can then be used to extract a reconstruction of t1, . . . , tN from s. For a
single triangle tk, the corresponding function sk is of course linear

sk(x) = nTk (x− qk)

where qk is an arbitrary point on tk.

The function s is expressed as a linear combination of a set b(x) = [b1(x), . . . , bM (x)]T of basis
functions, thus

s(x) = b(x)T c (4.2)

for some vector c. So-called radial basis functions are a common choice for b(x), but they lead
to a large linear system that is hard to solve efficiently. Instead, Chen et al. follow an approach
that is known as Moving Least Squares (MLS), see [?] and references therein.

The idea of MLS is to only use a very limited set of basis functions, typically b(x, y, z) =
[1, x, y, z]T . To compensate the limited degrees of freedom in choosing a small number of basis
functions, Eq. (??) is made dependent on the point x0 at which one plans to evaluate and
triangles that are close to x0 are given a greater weight than those that are far away. Thus, for
a fixed point x0 one seeks to minimize∑

k

∫
tk

wx0(x)2
(
b(x)T cx0 − sk(x)

)2
dx (4.3)

with respect to cx0 where the weight function wx0(x) is chosen as

wx0(x) =
1

||x− x0||2 + ε2

Setting the derivative of Eq. (??) w.r.t. cx0 to zero leads to a 4× 4 linear system∑
k

Akcx0 =
∑
k

ak

where

Ak =
∫
tk

wx0(x)2b(x)b(x)T dx and ak =
∫
tk

wx0(x)2b(x)T sk(x)dx

Thus, the function s is given as s(x0) = b(x0)T cx0 .

The integrands that appear in Ak and ak are rational polynomials and Chen et al. devise a
suitable numerical integration scheme to evaluate them. They also propose a method to speed
up the evaluation.

39

4 Model Repair

Discussion This algorithm produces watertight models and automatically bridges gaps in an
intuitive way. The method can be modified to produce hulls of a different geometric complexities
that enclose the input model. These hulls can then be used, e.g., for fast collision detection
tests. Unfortunately, the algorithm does not cope well with models that contain interior excess
geometry.

40

5 Discrete Curvatures

This section introduces differential properties of 2-manifold surfaces and discusses the corre-
sponding approximations on arbitrary triangle meshes. These discrete differential operators play
a central role in many mesh processing applications such as surface smoothing (Chapter ??),
parameterization (Chapter ??), or mesh deformation (Chapter ??).

5.1 Differential Geometry

We provide a brief review of important concepts from differential geometry that form the basis
of the definition of the discrete operators on triangle meshes. For an in-depth discussion we refer
to standard textbooks such as [?].

Let a continuous surface S ⊂ IR3 be given in parametric form as

x(u, v) =

 x(u, v)
y(u, v)
z(u, v)

 , (u, v) ∈ IR2,

where x, y, z are (sufficiently often) differentiable functions in u and v. The partial derivatives xu
and xv span the tangent plane to S at x. Assuming a regular parameterization, i.e., xu×xv 6= 0,
the normal vector is given as n = (xu × xv)/‖xu × xv‖.

The first fundamental form of x is given by the matrix

I =
[
E F
F G

]
:=
[

xTuxu xTuxv
xTuxv xTv xv

]
, (5.1)

which defines an inner product on the tangent space of S. The corresponding arc element ds is
given as

ds2 = Edu2 + 2Fdudv +Gdv2.

The area element can be derived as

dA =
√
EG− F 2dudv.

The second fundamental form is defined as

II =
[
e f
f g

]
:=
[

xTuun xTuvn
xTuvn xTvvn

]
. (5.2)

Alternatively, II can be expressed using the identities xTuun = −xTunu, xTuvn = xTvun = − 1
2 (xTunv+

xTv nu), and xTvvn = −xTv nv.

The symmetric bilinear first and second fundamental forms allow to measure length, angles,
area, and curvatures on the surface.

41

5 Discrete Curvatures

Let t = axu + bxv be a unit vector in the tangent plane at p, represented as t̄ = (a, b)T in the
local coordinate system. The normal curvature κn(t̄) is the curvature of the planar curve that
results from intersecting S with the plane through p spanned by n and t. The normal curvature
in direction t̄ can be expressed in terms of the fundamental forms as

κn(t̄) =
t̄T II t̄

t̄T I t̄
=

ea2 + 2fab+ gb2

Ea2 + 2Fab+Gb2

The minimal normal curvature κ1 and the maximal normal curvature κ2 are called principal
curvatures. The associated tangent vectors t1 and t2 are called principal directions and are
always perpendicular to each other.

The principal curvatures are also obtained as eigenvalues of the Weingarten curvature matrix
(or second fundamental tensor)

W :=
1

EG− F 2

[
eG− fF fG− gF
fE − eF gE − fF

]
. (5.3)

W represents the Weingarten map or shape operator, which measures the directional derivative

of the normal, i.e. Wt̄ =
∂

∂t̄
n. This allows the normal curvature to be expressed as

κn(t̄) = t̄TWt̄ .

With a local coordinate system defined by the principal directions t1 and t2, W is a diagonal
matrix, or in general

W =
[

t̄1 t̄2

] [κ1 0
0 κ2

] [
t̄1 t̄2

]−1
. (5.4)

Then the normal curvature can also be written as

κn(t̄) = κn(φ) = κ1 cos2 φ+ κ2 sin2 φ, (5.5)

where φ is the angle between t̄ and t̄1 (Euler’s theorem).

The curvature tensor T is expressed as a symmetric 3 × 3 matrix with the eigenvalues κ1,
κ2, 0 and the corresponding eigenvectors t1, t2, n. The tensor T measures the change of the
unit normal with respect to a tangent vector t independently of the parameterization. It can be
constructed as

T = PDP−1 ,

with P = [t1, t2,n] and D = diag(κ1, κ2, 0).

The Gaussian curvature K is defined as the product of the principal curvatures, i.e.,

K = κ1κ2 = det(W), (5.6)

the mean curvature H as the average of the principal curvatures, i.e.,

H =
κ1 + κ2

2
=

1
2

trace(W). (5.7)

The mean curvature can alternatively be expressed as the (continuous) average of the normal
curvatures

H =
1

2π

∫ 2π

0

κn(φ)dφ . (5.8)

42

5.2 Discrete Differential Operators

In differential geometry, properties that only depend on the first fundamental form are called
intrinsic. Intuitively, the intrinsic geometry of a surface can be perceived by 2D creatures that
live on the surface without knowledge of the third dimension. Examples include length and angles
of curves on the surface. Gauss’ famous Theorema Egregium states that the Gaussian curvature
is invariant under local isometries and as such also intrinsic to the surface [?]. Note that the
term “intrinsic” is often also used to denote independence of a particular parametrization.

Laplace Operator. The following sections will make extensive use of the Laplace operator ∆,
resp., the Laplace-Beltrami operator ∆S . In general, the Laplace operator is defined as the
divergence of the gradient, i.e. ∆ = ∇2 = ∇·∇. In Euclidean space this second order differential
operator can be written as the sum of second partial derivatives

∆f = div∇f =
∑
i

∂2f

∂x2
i

(5.9)

with Cartesian coordinates xi. The Laplace-Beltrami operator extends this concept to functions
defined on surfaces. For a given function f defined on a manifold surface S the Laplace-Beltrami
is defined as

∆Sf = divS ∇Sf,

which requires a suitable definition of the divergence and gradient operators on manifolds (see [?]
for details). Applied to the coordinate function x of the surface the Laplace-Beltrami operator
evaluates to the mean curvature normal

∆S x = −2Hn.

Note that the Laplace-Beltrami operator is an intrinsic property that only depends on the metric
tensor of the surface and is thus independent of a specific parameterization.

5.2 Discrete Differential Operators

The differential properties defined in the previous section require a surface to be sufficiently
often differentiable, e.g., the definition of the curvature tensor requires the existence of second
derivatives. Since polygonal meshes are piecewise linear surfaces, the concepts introduced above
cannot be applied directly. The following definitions of discrete differential operators are thus
based on the assumption that meshes can be interpreted as piecewise linear approximations of
smooth surfaces. The goal is then to compute approximations of the differential properties of
this underlying surface directly from the mesh data. Different approaches have been proposed
in recent years and we will provide a brief overview and comparison of the different techniques.
For details we refer to the references given throughout the text and to the survey [?].

The general idea of the techniques described below is to compute discrete differential properties
as spatial averages over a local neighborhood N (x) of a point x on the mesh. Often x coincides
with a mesh vertex vi, and n-ring neighborhoods Nn (v) or local geodesic balls are used as the
averaging domain. The size of the local neighborhood critically affects the stability and accuracy
of the discrete operators. The bigger the neighborhoods the more smoothing is introduced by
the averaging operation, which makes the computations more stable in the presence of noise.
For clean data sets, small neighborhoods, e.g., one-rings, are typically preferable, as they more
accurately capture fine-scale variations of differential properties.

43

5 Discrete Curvatures

In order to estimate the curvature tensor at a vertex, a certain neighborhood of this vertex is
considered, typically its one-ring. A common approach is to first discretize the normal curvature
along edges. Given an edge (vi, vj), vertex positions pi, pj , and the normal ni,

κij = 2
(pj − pi)ni
‖pj − pi‖2

(5.10)

provides an approximation of the normal curvature at pi in the tangent direction that results from
projecting pi and pj into the tangent plane defined by ni. This expression can be interpreted
geometrically as fitting the osculating circle interpolating pi and pj with normal ni at pi (cf.
[?]). Alternatively, the equation can be derived from discretizing the curvature of a smooth
planar curve (see [?]). With estimates κij of the normal curvature for all edges incident to vertex
vi, Euler’s theorem (??) can be applied to relate the κij to the unknown principal curvatures
(and principal directions). Then approximations to the principal curvatures can be obtained
either directly as functions of the eigenvalues of a symmetric matrix ([?, ?]) or from solving
a least-squares problem ([?, ?]). Alternatively, [?] apply the trapezoid rule to get a discrete
approximation of (??), which provides the mean curvature H, the Gaussian curvature K is
obtained from a similar integral over κ2

n, and the principal curvatures are then obtained from
equations (??), (??). Exact quadrature formulas for curvature estimation are provided in [?].

A straightforward approach to estimating local surface properties uses a local higher-order
reconstruction of the surface, followed by analytical evaluation of the desired properties on the
reconstructed surface patch. Local surface patches, typically bivariate polynomials of low degree,
are fitted to sample points [?, ?, ?] and possibly normals [?] within a local neighborhood. Special
care is required to ensure good conditioning of the arising local least-squares problems which
depend on local parameterization. A (rather expensive) global fitting of an implcit surface is
applied in [?].

Taubin [?] proposed the uniform discretization of the Laplace-Beltrami operator

∆unif (v) :=
1

|N1 (v)|
∑

vi∈N1(v)

(f (vi)− f (v)) , (5.11)

where the sum is taken over all one-ring neighbors vi ∈ N1 (v) (cf. Fig. ??). This discretization
does not take any local geometry of the domain mesh (edge lengths or angles) into account
and hence cannot give a sufficient approximation for irregular tessellations. For example, when
smoothing a planar (and hence perfectly smooth) triangulation, this operator may still shift
vertices within the surface by moving each vertex to the barycenter of its neighbors. Although
this leads to an improvement of the triangle shapes, it is a bad approximation to the Laplace-
Beltrami of the surface (which should be parallel to the surface normal: ∆Sp = −2Hn). A
better (and the current standard) discretization was proposed in [?, ?, ?]:

∆Sf (v) :=
2

A (v)

∑
vi∈N1(v)

(cotαi + cotβi) (f (vi)− f (v)) , (5.12)

where αi = 6 (p (v) ,p (vi−1) ,p (vi)), βi = 6 (p (v) ,p (vi+1) ,p (vi)), and A (v) denotes the
Voronoi area around the vertex v as shown in Fig. ?? (for an exact definition of the Voronoi
region area see [?]). The same approach yields a discrete estimate for Gaussian curvature as

K(v) =
1

A(v)

2π −
∑

vi∈N1(v)

θi

 , (5.13)

44

5.2 Discrete Differential Operators

v
A(v)

v2

v

vi
βi

αi

vi+1

vi-1

v1

v3

v4
v5

v6

Figure 5.1: The Laplace-Beltrami ∆Sf (v) of a vertex v ∈ V is computed by a linear combination
of its function value f (v) and those of its one-ring neighbors f (vi). The corresponding weights
are given by the cotangent values of αi and βi and the Voronoi area A (v).

where the angles of the incident triangles at vertex v are denoted by θi. This formula is a
direct consequence of the Gauss-Bonnet theorem. Given the mean curvature normal as defined
in (??) and the approximation of the Gaussian curvature of (??), the principal curvatures can
be computed from (??) and (??) as

κ1,2(v) = H(v)±
√
H(v)2 −K(v)

where H(v) = 1
2‖∆Sp(v)‖.

Eq. (??) is probably the most widely used discretization of the Laplace-Beltrami for trian-
gle meshes and is typically applied for various geometry processing operations, such as surface
smoothing (Chapter ??), parameterization (Chapter ??), and shape modeling (Chapter ??).
However, there are some disadvantages of the cotangent formula of (??):

• The cotangent weights ωi = cotαi + cotβi become negative if αi + βi > π. This is well-
known and can lead to flipped triangles in certain applications, e.g., when computing a
parameterization (see Chapter ??).

• The definition of the Laplace-Beltrami is not purely intrinsic, i.e., its evaluation can lead
to different results even for two isometric surfaces, if their triangulation is different (see
[?]).

The first point can possibly be fixed by using different weights. In [?] the positive mean value
coordinates [?] are interpreted as an alternative, less accurate discretization of the Laplace-
Beltrami operator where integration over the Voronoi area is replaced by integration over circle
areas.

Bobenko and Springborn [?] propose an alternative definition that addresses these shortcom-
ings for the case of piecewise flat surfaces, i.e., 2-dimensional manifolds that are equipped with
a metric that is flat except at isolated points. The resulting formula is the same as (??), but
with respect to an intrinsic Delaunay triangulation of the simplicial surface. For a piecewise flat
surface, this triangulation is unique, which makes the evaluation of the discrete Laplace-Beltrami
operator independent of the specific tessellation of the mesh. In addition, the Delaunay property
guarantees positive weights by construction. Computing the intrinsic Laplace-Beltrami requires
to first compute the restricted Delaunay triangulation using an edge flipping algorithm, which

45

5 Discrete Curvatures

is guaranteed to converge. Thus this approach is computationally more involved, in particular
for applications that iteratively modify the vertex positions, e.g., curvature flow (Chapter ??),
where the re-tessellation is required after each time step.

Rusinkiewicz proposed a scheme that approximates the curvature tensor using finite differences
of vertex normals [?]. As discussed above, the curvature tensor measures the change of the normal
along the tangent directions. For a given triangle three such directions are given by the triangle
edges. The change of normals along each of these edges can be approximated from the difference
of the normals of the corresponding vertices. The resulting set of linear constraints on the
elements of the curvature tensor can be used in a least-squares optimization to obtain a per-
face estimate. The approximation of the curvature tensor for a vertex is then computed using
weighted averaging of all per-face estimates of the one-ring based on an appropriate coordinate
transformation as discussed in [?]. The paper also shows how this approach can be extended
to higher order derivatives. Since the per-face estimates depend on vertex normals that are
computed by standard weighted averaging of one-ring face normals, the averaging domain of
this method is the two-ring neighborhood. As such, the results produced by this method are
somewhat more stable for noisy data. The computation is efficient, however, since it can be
performed using two passes over the one-rings of the mesh.

In [?] the piecewise linear surface is considered together with a piecewise linear normal field.
Their discrete derivatives define the Weingarten map (??) and hence the tensor of curvature.
The precomputed normal field replaces the second order derivatives, which are not available for
piecewise linear functions. This idea is motivated by Phong-shading, and similarly the inherent
inconsistencies lead to artifacts — the Weingarten matrix is not symmetric anymore — and hence
approximation errors. However, [?] show convergence to curvatures of smooth surfaces and the
errors are small enough to be competitive with other methods. The method yields a piecewise
function for the curvature tensor which varies across faces as normals are interpolated. Gaussian
and mean curvatures can be written as simple expressions of certain determinants. Evaluation
is purely local and efficient, as curvature estimates at vertices are obtained by averaging.

Cohen-Steiner and Morvan [?] (see also [?] and [?]) propose a method for estimating the
curvature tensor by averaging a line density of tensors defined on each edge of the mesh. This
method is derived from the concept of normal cycles, which has been introduced to provide a
unified way to define curvature for both smooth and polygonal surfaces. It includes a proof of
convergence under certain sampling conditions based on measure theory. Intuitively, a curvature
tensor can be defined for an edge by assigning a minimum curvature along the edge and a
maximum curvature across the edge. Averaging over the local neighborhood region N (v) yields
a simple summation formula over the edges intersecting N (v):

C(v) =
1

|N (v)|
∑

e∈N (v)

β (e) ‖e ∩N (v)‖ ē ēT ,

where |N (v)| denotes the surface area of the local neighborhood around v, β(e) is the signed
dihedral angle between the normals of the two incident faces, ‖e ∩N (v)‖ is the length of the
part of the edge e that is contained in N (v), and ē = e/‖e‖. The local neighborhood N (v) is
typically chosen to be the one- or two-ring of the vertex v, but can also be computed as a local
geodesic disk, i.e., all points on the mesh that are within a certain (geodesic) distance d from
v. This can be more appropriate for non-uniformly tessellated surface, where the size of n-ring
neighborhoods Nn (v) can vary significantly over the mesh. As noted in [?], tensor averaging can
yield inaccurate results for low-valence vertices and small, e.g., one-ring, neighborhoods.

Wardetzky and collegues [?] classify the most common discrete Laplace operators according
to a set of desirable properties derived from the smooth setting. They show that the discrete

46

5.2 Discrete Differential Operators

operators cannot simultaneously satisfy all of the identified properties of symmetry, locality,
linear precision and positivity. For example, the cotan formula of Eq. (??) satisfies the first three
properties, but not the fourth, since edge weights can assume negative values. The choice of
discretization thus depends on the specific application.

47

5 Discrete Curvatures

48

6 Mesh Quality

This section provides a brief overview of methods used to interactively evaluate the quality of
triangle meshes. The techniques discussed here are adapted from smooth free-form surfaces (e.g.
NURBS), and are mainly used to visualize surface quality in order to detect surface defects.
Different applications may require different quality criteria. We distinguish between smoothness
and fairness. While the former denotes the continuous differentiability (Ck) of a surface, e.g.,
C2 for cubic splines, the latter is a more abstract concept required for high-quality surface
design. Note that smoothness and fairness are not always used consistently. For example, surface
smoothing typically denotes the process of improving the fairness of a surface (see Chapter ??).

A surface may be smooth in a mathematical sense but still unsatisfactory from an aesthetical
point of view. Fairness is an aesthetic measure of “well-shapedness” and therefore more difficult
to define in technical terms than smoothness (distribution vs. variation of curvature) [?]. An
important rule is the so called principle of simplest shape that is derived from fine arts. A surface
is said to be well-shaped, if it is simple in design and free of unessential features. So a fair surface
meets the mathematically defined goals (e.g. interpolation, continuity), while obeying this design
principle. The most common measures for fairness are motivated by physical models like the
strain energy of a thin plate ∫

S
κ2

1 + κ2
2 dA,

or are defined in terms of differential geometry, like the variation of curvature∫
S

(
∂κ1

∂t1

)2

+
(
∂κ2

∂t2

)2

dA,

with principal curvatures κi and principal directions ti (see Chapter ??). In general, some
surface energy is defined that quantifies surface fairness, and curvature is used to express these
terms as it is independent of the special parameterization of a surface. A fair surface is then
designed by minimizing these energies (cf. Chapter ??). Our current goal is not to improve, but
to check surface quality, so we need to visualize these energies. Note that there are also different
characterizations of fairness, such as aesthetical shape of isophotes/reflection lines [?].

Another important aspect of mesh quality is triangle shape. Some applications require “well
shaped” triangles, e.g., simulations using Finite Element Methods (FEM). This requires con-
straints on shape parameters such as angles and area, which will also be discussed in Chapter ??.

6.1 Visualizing smoothness

In order to interactively visualize surface quality, graphics hardware support should be exploited
whenever possible. A given surface is tessellated into a set of triangles for rendering (in contrast
to more involved rendering techniques like ray-tracing). Since a mesh can be interpreted as an
accurate tessellation of, e.g., a set of NURBS patches, the same techniques for quality control
can be used that are applied for smooth surfaces [?].

49

6 Mesh Quality

0

1

0.7

0.7

0.7

light

1D texture

0.3

0.2

0.9

Figure 6.1: Isophotes. The center part of the surface was blended between the three tubes using
C1 boundary conditions. The discontinuities of the curvature at the joints are hard to detect
from the flat shaded image (left), but clearly visualized by isophotes (middle) since C1 blends
cause C0 isophotes. The right image sketches the rendering of isophotes with a 1D-texture: The
illumination values are calculated for the vertices of a triangle from vertex normals and the light
direction. These values are used as texture coordinates. The texel denoting the iso-value is
colored black. Iso-lines are interpolated within the triangle.

Specular shading The simplest visualization technique is to use standard lighting and shading
(Phong illumination model, flat- or Gouraud shading) as provided by the graphics subsystem.
The local illumination of a vertex depends on the position of the light sources, on the surface
normal, and on the view point/direction. This approach to surface interrogation is the most
straightforward one, but it is difficult to find minor perturbations of a surface (cf. Fig. ??, left).

Isophotes Isophotes are lines of constant illumination on a surface. For a Lambertian surface
with purely diffuse reflection, isophotes are independent of the view point. When using a single,
infinitely distant point light source, the illumination Ip of a surface point p is given by

Ip = max
{〈

n L
〉
, 0
}
,

where n is the surface normal at p and L is the direction of light. Both vectors are normalized,
so the value of Ip is in the interval [0, 1]. Now some values Ic,j ∈ [0, 1] = const (e.g., Ic,j =
j
n , j = 0, . . . , n) are chosen and the isophotes/iso-curves I = Ic,j are rendered.

The resulting image makes it easier to detect irregularities on the surface compared to standard
shading. The user can visually trace the lines, rate their smoothness and transfer these obser-
vations to the surface: If the surface is Ck continuous then the isophotes are Ck−1 continuous,
since they depend on normals, i.e., on first derivatives (cf. Fig. ??).

There are two main approaches to render iso-curves, such as isophotes: The first approach
is to explicitly extract the curves or curve segments and then display them as lines. Here, in
principle the same algorithms as for extracting iso-surfaces can be applied (Section ??), reduced
to the setting of extracting a curve on a surface.

The second approach takes advantage of the graphics hardware and allows direct rendering of
isophotes from illumination values at the vertices of a triangle mesh: A one-dimensional texture is
initialized with a default color C. Illumination values Ip are now treated as texture coordinates,
and for the isophote values Ic,j the corresponding texels are set to a color Cj 6= C. With

50

6.2 Visualizing curvature and fairness

this setup the graphics subsystem will linearly interpolate the 1D texture within the triangles
resulting in a rendered image of the isophotes (colors Cj) that are drawn onto the surface (color
C) (cf. Fig. ??). The 1D texture approach benefits more from the graphics hardware in contrast
to explicitly calculating line segments. A drawback is that the width of the curves varies due to
texture interpolation.

Reflection lines In contrast to isophotes, rendering of reflection lines assumes a specular surface.
As a consequence reflection lines change when the point of view is modified and when the object
is rotated or translated. The light source consists of a set of “light-lines” that are placed in
3-space space. Normally, the light-lines are parallel lines (cf. Fig. ??).

Traditionally, reflection lines have been used in the process of designing cars. An arrangement
of parallel fluorescent tubes is placed above the car model to survey the surface and its reflection
properties.

eye

light sources

lines
reflection

Figure 6.2: Reflection lines. The light source consists of parallel lines that are reflected by the
surface. The reflection property requires that angles of incidence (light,normal) are equal to
angles of emission (viewing direction,normal).

Under the assumption that the light source is infinitely far away from the object, environment
mapping can be used to display reflection lines in real-time. A texture for environment mapping
is generated once by ray-tracing the light sources over a sphere. The graphics subsystem will
then automatically generate appropriate texture coordinates for every vertex depending on its
relative position and normal.

Reflection lines are an effective and intuitive tool for surface interrogation. If the surface is
Ck continuous then the reflection lines are Ck−1 continuous. Just like isophotes, they can be
efficiently rendered by taking advantage of graphics hardware and they are also sensitive to small
surface perturbations. In addition, the concept that a real-world process is simulated makes their
application very intuitive even for unexperienced users. Fig. ?? shows reflection lines for C0, C1

and C2 surfaces.

6.2 Visualizing curvature and fairness

If fairness is expressed in terms of curvature, the techniques described in Chapter ?? can be used
for visualization. Gaussian curvature K = κ1κ2 indicates the local shape of the surface (elliptic
for K > 0, hyperbolic for K < 0 and parabolic for K = 0∧H 6= 0 resp. flat for K = 0∧H = 0).

51

6 Mesh Quality

Figure 6.3: Reflection lines on C0, C1 and C2 surfaces. One clearly sees that the differentiability
of the reflection lines is one order lower, i.e., C−1, C0 and C1 respectively.

A local change of the sign of K may denote a (even very small) perturbation of the surface.
Additionally, mean curvature, principal curvatures, and total curvature κ2

1 + κ2
2 can be used.

These scalar values are typically visualized using color-coding as shown in Fig. ??

Figure 6.4: Color coding curvature values, mean curvature (left) and Gaussian curvature (right).

Iso-curvature lines Iso-curvature lines are lines of constant curvature on a surface. They can be
displayed similarly to isophotes, where instead of illumination values, curvature values are used.
If the surface is Ck continuous, then the iso-curvature lines are Ck−2 continuous, so iso-curvature
lines are even more sensitive to discontinuities than isophotes or reflection lines.

A problem when rendering iso-curvature lines with 1D-textures may be a wide range of cur-
vature values that may not map appropriately to the [0, 1] interval of texture coordinates or the
actual texels. One solution is to clamp the curvature values to a suitable interval, the other
solution is to explicitly extract the curves and draw them as lines.

Lines of curvature Besides the scalar principal curvatures, the principal directions also carry
information on the local surface properties. They define discrete direction fields in the tangent
space of the surface. By linearly interpolating principal directions computed at the mesh vertices
over triangles using barycentric coordinates, a continuous field can be defined. Lines of curvature
can then be traced on this direction field using Euler integration (see Section ?? for more details).

52

6.3 The shape of triangles

Figure 6.5: Lines of curvature. Lines of curvature are superimposed on a flat shaded image of a
VW Beetle model.

Fig. ?? shows lines of curvature that provide very good and intuitive impression of the surface.
Alternatively texture based techniques like line integral convolution (LIC)[?] can also be used
on triangle meshes. However, tracing and constructing a large number of lines of curvature is
rather expensive compared to the other techniques.

6.3 The shape of triangles

Figure 6.6: Triangle mesh optimized for smooth appearance, leading to skinny triangles (left),
and for triangle shape, leading to rendering artifacts (right).

Some applications need “well-shaped”, round triangles in order to prevent them from running
into numerical problems, e.g., numerical simulations based on FEM. For this purpose, “round”
triangles are needed, e.g., the ratio of the radius of the circumcircle to the shortest edge should
be as small as possible [?] (cf. Fig. ??).

The most common way to inspect the quality of triangles is to view a wireframe or hidden-line
rendered image. This may not be an option for very complex meshes, however. A straightforward
solution is a color coding criterion based on triangle shapes. This helps to identify even single
“badly shaped” triangles (see also Chapter ??).

53

6 Mesh Quality

54

7 Mesh Smoothing

Mesh smoothing is a central tool in geometry processing with many applications such as denoising
of acquired data, surface blending and hole-filling, or design of high-quality surfaces. In addition,
smoothing techniques constitute foundations for geometric filtering or signal processing used in
multi-resolution shape editing and mesh deformation methods as will be discussed in Chapter ??.

Many different techniques for mesh smoothing have been developed within the last decade.
In this section, we will concentrate mainly on linear methods, namely Laplacian smoothing and
(isotropic) mean curvature flow. Their main application is denoising and generation of fair
surfaces as required in multi-resolution modeling.

7.1 General Goals

We distinguish two different goals of smoothing methods: The first is denoising of measured
data. For instance meshes acquired by range scanners typically show high frequency noise, i.e.,
small perturbations in the vertex positions, which do not correspond to shape features. Fig. ??
shows a typical example. Here, the goal is to smooth out these artifacts in such a way that
the global shape, or the low frequency components, is preserved. In signal processing this is
called low-pass filtering, well-known, e.g., in image processing. Denoising algorithms must be
able to handle fairly huge data sets efficiently, as they may be applied directly after acquisition
and before simplification (Chapter ??). This fact renders linear methods, i.e., those which only
require numerical solution of a linear system, especially attractive. An additional requirement is
often the preservation of certain surface features like sharp edges and corners, which should not
be “blurred”. However, this leads to non-linear methods.

A second goal is the design of high-quality, fair surfaces. This process is called fairing, and
the resulting surfaces must satisfy certain aesthetic requirements. In order to find appropriate
mathematical models these requirements are put essentially as principle of the simplest shape [?],
meaning that an aesthetic surface is free of unnecessary detail such as noise or oscillations. Fig. ??
shows an example of fair surface design from boundary conditions. Mathematical formulations of
this principle lead to the minimization of certain energy functionals, see Chapter ??, which are
often inspired by physical processes such as spanning a membrane or bending a thin plate. The
energy functionals are typically formulated in terms of intrinsic shape properties, i.e., quantities
that do not depend on the particular parameterization (or triangulation in the discrete setting),
such as curvatures (see Chapter ??). Hence the associated optimization problems are non-
linear, and their numerical solution is more involved. Applications of fairing are for instance
shape optimization or hole filling (see Chapter ??). For the latter, the hole is first filled with
a template mesh, which is then subject to fairing while the transition at the hole boundary is
required to be smooth.

Finally, smoothing is often applied in order to make triangulations more regular. This is a well-
known technique to ensure numerical robustness of finite element methods (usually for planar
domains in bivariate settings). For surfaces this means that the distribution of vertices over the

55

7 Mesh Smoothing

Figure 7.1: This scan of a statue’s face contains typical measurement noise, which can be
removed by low-pass filtering the surface geometry. The bottom row shows selective smoothing,
for better visualization only the eye region is considered. Mean curvature is superimposed as
color-code in the right column.

mesh is optimized. This process is part of (isotropic) remeshing described in Chapter ??. In the
following we review general approaches to mesh smoothing, their intuition and motivation.

7.2 Spectral Analysis and Filter Design

It is well-known from signal processing theory that Fourier transformation is a valuable tool for
both, filter design and efficient implementation. For instance, every univariate signal function
f(t) is assumed to be a linear combination of periodic functions eiϕt (i.e., scaled and shifted
sine waves) of different frequencies ϕ. Instead of observing the signal in the spatial domain,
one considers its spectrum in the frequency domain. Assuming that noise is associated with
high frequencies, an ideal denoising filter would cut off such high frequencies prior to the inverse
Fourier transform to the spatial domain. This is called a low-pass filter.

We will see that a similar notion of geometric frequencies can be established for surfaces
and used for filter design. (We refer also to multi-scale techniques for surface deformation in
Chapter ??.) However, contrary to image processing, analysis in the frequency domain will only
serve as a theoretical tool and does not yield efficient implementations in general.

Let us for a moment consider the univariate case. The Fourier transform F (ϕ) of a signal f(t)
is defined as

F (ϕ) =
1

2π

∫ ∞
−∞

f(t)e−iϕtdt .

A low-pass filter would damp (or ideally cut off) high frequencies ϕ of F prior to the inverse
transform, e.g., by multiplying F with a Gaussian. For (discrete) surfaces the situation is more

56

7.2 Spectral Analysis and Filter Design

difficult, we require some generalization of the basis functions of type eiϕt. Considering the
identity

∂2

∂t2 e
iϕt = ∆eiϕt = −ϕ2 eiϕt ,

it follows immediately that eiϕt are eigenfunctions of the Laplace operator ∆ with eigenvalues
−ϕ2. Therefore, it seems natural to use eigenfunctions of the Laplace operator as basis also in
the bivariate setting and for surfaces of arbitrary topology. As we know how to discretize the
Laplacian on triangles meshes, this will provide the generalization of Fourier transformation for
filter design.

7.2.1 The Discrete Setting: Spectral Graph Theory

The discrete Laplacian operator (see also Chapter ??) on a piecewise linear surface, i.e., a triangle
mesh, is expressed as

∆pi =
∑

vj∈N1(vi)

ωij(pj − pi) , (7.1)

where for all vertices vi weights are normalized such that∑
vj∈N1(vi)

ωij = 1 . (7.2)

(Note that normalization and symmetry are not generally necessary for smoothing. In contrast,
possibly required area terms destroy these properties, see also Chapter ?? and Chapter ??.) We
can now write the discrete Laplacian operator as a matrix L with non-zero entries

Lij =

{
−1 , i = j

wij , vj ∈ N1(vi)

L is generally sparse, the number of non-zeros in each row is one plus the valence of the asso-
ciated vertex. For the uniform discretization ∆uni we choose weights ωij = 1

#N1(vi)
, i.e., the

Laplacian depends only on the mesh connectivity. Then L is symmetric and has real eigenvalues
and eigenvectors.

The eigenvectors of L form an orthogonal basis of IRn, where n denotes the number of vertices,
and the associated eigenvalues are commonly interpreted as frequencies. The projections of the
coordinates px,py,pz ∈ IRn into this basis is called spectrum of the geometry. Given eigenvectors
ei, the x-components px of the mesh geometry can now be expressed as

px =
n∑
i=1

αxi ei ,

where the coefficients αxi = eTi px, and similar for py,pz. It shows that the eigenvectors associated
with the first eigenvalues 0 ≤ λ1 ≤ · · · ≤ λn correspond to low-frequency components: in other
words, cancelling coefficients α·i associated with high-frequency components yields a smoothed
version of the shape. Fig. ?? visualizes some eigenvectors on a model together with a synthesis
using only very few low frequency components.

This is well-known from spectral graph theory [?]: the projection into the linear space spanned
by the eigenvectors provides a generalization of the Discrete Fourier Transform. This can also

57

7 Mesh Smoothing

Figure 7.2: Spectral analysis of a gargoyle model. The first 20 of 10k eigenvectors were computed.
Left: The 2nd and 10th eigenvector of the associated discrete Laplace operator are visualized by
the color codes. (Values are uniformly scaled). Right: Reconstruction of the model using only
the first 10 and 20 eigenvectors, respectively. (Reconstructions are rescaled.)

be seen immediately for the discrete univariate setting: here, the decomposition is equivalent to
the discrete cosine transform (see, e.g., [?]).

For general surface meshes, their spectral decomposition defines a natural frequency domain.
Taubin [?, ?] uses this fact to motivate geometric signal processing and to define low-pass filters
for smoothing meshes (see also [?]). In [?, ?] spectral analysis is applied for mesh compression,
taking advantage of low-pass and high-pass filter properties, respectively.

Although the matrix L is generally sparse it is in practice not feasible to explicitly compute
eigenvalues and eigenvectors even for moderately sized meshes: computational costs are too high
and one has to pay close attention to numerical robustness. (In practice, the computation of
some eigenvalues in a specified range is possible, as shown in Fig. ??.) Therefore, in [?] meshes
are partitioned without enforcing smoothness across patch boundaries, whereas in [?, ?], spectral
analysis is applied as a theoretical tool. However, recent works [?, ?] propose respectively to use
multiresolution methods and algebraic transforms to make spectral mesh processing usable in
practice.

Ideal low-pass filters are often too costly even in image processing. Instead of strictly truncat-
ing the frequency band, high frequencies are often damped, e.g., by weighting with an appropriate
Gaussian kernel (often called Gaussian blurring). In a continuous setting, the Fourier transfor-
mation of a Gaussian kernel yields again a Gaussian. Therefore, in the spatial domain this
corresponds to convolution with a Gaussian or more general to some weighted averaging. The
situation is similar for mesh filtering.

7.2.2 The Continuous Setting: Manifold Harmonics

As shown in the previous subsection, the eigenvectors of the discrete combinatorial Laplacian L
have interesting properties (orthogonality and spectral locality), that make them similar to the
function basis used by the Fourier transform. However, this analogy is no-longer valid when the
mesh presents poorly shaped triangles (see Chapter ??). The obtained result is similar to Figure
??b, whereas the result predicted by theory should look like Figure ??d.

In fact, the analogy can be explained as follows: the discrete combinatorial Laplacian L is an
approximation of the Laplace-Beltrami operator, and its eigenvectors are an approximation of its
eigenfunctions. Note that for a 2D square, the eigenfunctions of the Laplace-Beltrami operator

58

7.2 Spectral Analysis and Filter Design

Figure 7.3: Some of the elements of the MHB (Manifold Harmonic Basis) of the Gargoyle
dataset. In a certain sense, the MHB generalizes Spherical Harmonics to arbitrary geometry and
topology.

Figure 7.4: Reconstructions obtained with an increasing number of Manifold Harmonics. Since
Manifold Harmonics take the geometry into account, no shrinking effect is observed.

Figure 7.5: Once the MHB (Manifold Harmonics Basis) and MHT (Manifold Harmonic Trans-
form) is computed, general convolution filtering can be performed in real time (left: low-pass,
center: high-pass, right: enhancement).

59

7 Mesh Smoothing

correspond to the DCT function basis (used by the JPEG format), and for a sphere, they cor-
respond to Spherical Harmonics. Thus, we understand that the eigenfunctions generalize these
notions to arbitrary manifolds. Therefore, they are called Manifold Harmonics (or shape har-
monics). Motivated by the very interesting results obtained by using the spectrum (eigenvalues)
for shape classification [?], and obtained by using a single eigenvector for quad-remeshing [?],
the idea of Manifold Harmonics was first experimented in [?], with a simple “symmetrization”
of the matrix to preserve the orthogonality of the function basis. A more careful analysis of the
discretization was conducted in [?], based on the Finite Element formalism, to compute both
mesh-independent and orthogonal manifold harmonics. In addition, they proposed an efficient
numerical solution mechanism to make spectral geometry processing usable in practice. Figure
?? shows some elements of the MHB (Manifold Harmonic Basis). Similar to the SHT (Spherical
Harmonic Transform), one can define the MHT (Manifold Harmonic Transform), that converts
the geometry into frequency space and computes MH coefficients. Figure ?? shows the geometry
reconstructed with an increasing number of MH coefficients. Finally, using the MHB and MHT,
as with the Fourier transform, it is easy to perform general convolution filtering in real-time, as
shown in Figure ??.

We illustrated the theoretical framework for ideal low-pass filtering and convolution filtering on
meshes. Unfortunately this approach is generally too expensive to be practical in all applications.
Therefore, we will now focus on two major techniques to mesh smoothing: diffusion flow and
energy minimization. Note that although different in motivation for particular instances, these
two approaches are closely related, and they can be justified by the above observations.

7.3 Diffusion Flow

Diffusion processes constitute a powerful and well-understood tool for smoothing signals. They
often arise as physical processes in the real world, which makes them intuitive to understand.
A common example is heat distribution in an object, where the local differences in temperature
are equilibrated under conservation of energy. Let x(u, t) denote the temperature at position u
inside an object at time t, then the heat flow is given as f = −µ∇x. Here, the diffusion constant
µ > 0 specifies the material conductivity. (Instead of a scalar in the isotropic case, we may set a
positive definite symmetric matrix as diffusion tensor in general, see Section ??.) Furthermore,
due to conservation of energy the continuity equation ∂x

∂t = −div f applies (assuming no heat
injection). Then the heat equation is expressed as the linear diffusion equation

∂

∂t
x = divµ∇x . (7.3)

In the following we will consider this type of diffusion equation for mesh smoothing: the vertex
positions are subject to diffusion such that small differences, i.e., noise, are equilibrated. For the
steady state we have zero flow ∂x

∂t = 0 and hence ∆x = 0. We remark that for appropriate
settings the solution x(u, t) to the diffusion equation is a convolution of the initial value x(u, 0)
with a Gaussian kernel depending on the time step t.

In the following, we review discrete solutions of linear diffusion equations for smoothing triangle
meshes. Particular approaches differ in the differential operator and its particular discretization,
and different numerical integration schemes can be applied.

60

7.3 Diffusion Flow

7.3.1 Laplacian Smoothing

Laplacian smoothing is a simple and very effective technique based on linear diffusion of vertex
positions ∂p

∂t = µ∆p. Obviously, for triangle meshes this method depends on the discretization
of the Laplace operator (see Chapter ??). The straightforward choice is a uniform discretization
based on finite differences assuming a uniform triangulation.
Note that the uniform discretization smoothness geometry (shape) and triangulation, i.e., vertices
move in normal direction as well as in their respective tangent planes.

7.3.2 Curvature Flow

Curvature is an intrinsic property of the surface that does not depend on parameterization
(see Chapter ??). Such independence of the particular triangulation of a shape is favorable for
smoothing: only the geometry of the shape is supposed to be smoothed while at the same time
the shape of each individual triangle should be preserved as much as possible. This means that
vertices should be displaced only in normal direction rather than in the associated tangent plane.
Tangential drift occurs indeed for the uniform discretization of the Laplacian (see above), and
in most applications it is regarded as an undesirable artifact.

Mean curvature flow [?] considers the flow equation

∂p
∂t

= − µHn . (7.4)

For smoothing, vertex positions p move along the surface normal n with speed proportional to
the mean curvature H = 1

2 (κ1 + κ2). As H = div n, speed is reduced if the normal field spreads
out less in a local region, and in the extreme case vertices stay in place for zero curvature. Using
the identity ∆Sp = −2Hn, we replace the right hand side of (??) and apply the well-known
discretization of the Laplace-Beltrami operator ∆S (see Chapter ??). This way, we can also
interpret the mean curvature flow as diffusion using a more appropriate discretization of the
Laplace operator on the surface (w.r.t. the initial mesh as parameter domain). The resulting
linear diffusion equation reads as ∂p

∂t = µ∆Sp. We remark that curvature flow has also been
used in combination with parameterization regularization [?].

7.3.3 Higher Order Flows

Higher order flows based on ∆k (or ∆k
S) are used due to better low-pass properties (see, e.g,

[?]). In practice, bi-Laplacian smoothing (k = 2) is a good trade-off between efficiency and
quality: In the frequency domain higher orders of the Laplace operator yield better truncation
(damping) of high frequencies. However, the associated discrete linear operator is less sparse
(see also Chapter ??). Note that higher order flows require (and are able to satisfy) higher order
boundary conditions. This is similar to energy minimization methods discussed below.

7.3.4 Integration

A straightforward method for the numerical solution of the linear diffusion equations is explicit
(or forward) Euler integration. This leads to an iterative algorithm using, e.g., the update rule

p′i = pi + µdt∆pi (7.5)

61

7 Mesh Smoothing

on all vertex positions pi for Laplacian smoothing. Updates can be applied simultaneously or
sequentially [?] in iterative algorithms of Jacobi or Gauss-Seidel type, respectively. In practice,
direct solvers (see Chapter ??) in combination with implicit integration (see below) show superior
efficiency and stability for most settings.

The above formula depends on the parameter µdt, which can be interpreted as time step and
here should satisfy 0 < µdt < 1 for stability reasons.

The explicit integration (??) of the (discrete) diffusion equation can be written in matrix form
as

p′ = (I + µdtL) p ,

where µdt < 1 is required. Desbrun et al. [?] propose the use of a backward Euler method for
implicit smoothing, which is unconditionally stable without limitations on the time step. Such
implicit integration reads as

(I− µdtL) p′ = p

and requires the solution of a (sparse) linear system for the unknowns p′ (see Chapter ??). The
value of µdt can be chosen arbitrarily, and it roughly corresponds to the number of explicit
integration steps.

7.4 Energy Minimization

Methods based on energy minimization frequently appear in mesh fairing and fair surface design
(see, e.g., [?, ?, ?, ?, ?]). The idea is to penalize unaesthetic behavior of the shape. For this
purpose different fairness functionals have been proposed. Ideally such functionals depend only
on intrinsic surface properties, such as curvature, and not on a particular parameterization. For
the discrete setting one can then expect the same geometric shape of the solution regardless of
the initial triangulation.

Best known in this context is the total curvature of a surface S∫
S
κ2

1 + κ2
2 dA , (7.6)

expressed as the area integral of the sum of squared principal curvatures (see, e.g., [?] and
Chapter ??).

Parameter independence has a price, however: minimization problems are non-linear and the
numerical computation of solutions (see, e.g., [?]) is generally too expensive to be practical for
large meshes. For isometric parameterizations x : Ω → IR3, minimizing (??) is equivalent to
minimizing ∫∫

Ω

‖xuu‖2 + 2 ‖xuv‖2 + ‖xvv‖2du dv . (7.7)

This energy has a physical interpretation: it expresses the bending energy of a thin plate spanned
across a domain Ω.

Generally, such approaches linearize curvature terms by higher order derivatives for the sake
of giving up parameter independence. Still, ad hoc minimization of (??) is rather involved.
Fortunately, for some fairness functionals the minimizers are characterized by solutions of linear
systems. In this case applying variational calculus [?] yields the minimizer as solution of the
associated Euler-Lagrange equation

∆2x = 0 ,

62

7.4 Energy Minimization

Figure 7.6: The order k of the energy functional and of the corresponding Euler-Lagrange PDE
∆k
S x = 0 defines the stiffness of the surface in the support region and the maximum smoothness

Ck−1 of the boundary conditions. From left to right: membrane surface (k = 1), thin-plate
surface (k = 2), minimum variation surface (k = 3).

subject to appropriate boundary conditions [?]. Note that this equation also characterizes the
equilibrium of the linear diffusion ∂x

∂t = −µ∆2x [?], and its discretization leads to a linear system.
In Chapter ?? we discuss efficient solvers for such systems.

Similarly, minimizing the membrane energy (??)∫∫
Ω

‖xu‖2 + ‖xv‖2du dv , (7.8)

which captures the energy of a membrane spanned across a domain Ω, leads to solving ∆x = 0.

For achieving higher order fairness the following well-known functional is minimized

∫
S

(
∂κ1

∂e1

)2

+
(
∂κ2

∂e2

)2

dA (7.9)

to penalize variation of curvature, yielding minimum variation surfaces [?]. Giving up parameter
independence corresponds to solving the sixth-order PDE ∆3x = 0.

The Euler-Lagrange equations associated with minimizers of various fairing functionals show
their relation to steady state solutions of diffusion flow (and hence signal processing and low-pass
filters). It follows that fairing indeed refers to designing fair surfaces that ideally depend only
on the given boundary conditions: for surfaces derived from ∆kx = 0, boundary constraints of
order Ck−1 are interpolated. Fig. ?? illustrates the application of different fairing functionals
with appropriate boundary conditions for a simple cylindrical shape. This is in contrast to
denoising which is usually far from the steady state. Note that for the solution of the arising
linear systems appropriate boundary conditions have to be applied to guarantee the existence of
solutions. (The Laplacian matrix does not have full rank.)

Fig. ?? shows the effect of different discretizations of the Laplace-Beltrami operator (see Chap-
ter ??) when minimizing the thin-plate energy of an irregular mesh by solving the Euler-Lagrange
equation ∆2

Sp = 0. Both the uniform Laplacian and the cotangent Laplacian without the area
term yield artifacts in regions of high vertex density. The cotangent discretization including the
per-vertex normalization clearly gives the best results.

63

7 Mesh Smoothing

(a) (b) (c) (d)

Figure 7.7: Comparison of different Laplace-Beltrami discretizations when solving ∆2
Sp = 0.

(a) irregular triangulation of the input mesh, (b) uniform Laplacian, (c) cotangent Laplacian
without the area term, (d)cotangent discretization including the per-vertex normalization. The
small images shows the respective mean curvatures.

7.5 Extensions and Alternative Methods

We classified smoothing schemes into two categories depending on whether they are based on
diffusion flow or energy minimization. Both categories lead to PDE discretization, and both are
tightly connected as we focus on linear methods and the required simplifications. In the following
we briefly review some (non-linear) extensions and alternative methods.

7.5.1 Anisotropic Diffusion

Denoising is supposed to smooth out small perturbations in a surface or outliers from measure-
ments. The techniques discussed so far assume smooth surfaces and are not aware of surface
features, i.e., sharp edges or creases and corners. However, most shapes are only piecewise smooth
and denoising will also blur features as these are also represented by high-frequency components
similar to what is assumed for noise.

This problem has been well-studied in image processing and a common approach to feature-
preserving filtering is anisotropic diffusion [?] (see also [?]). The basic idea is to consider the
diffusion equation (??) and to replace the scalar diffusion constant µ by a data dependent dif-
fusion tensor D. This modification renders the equation non-linear and guides the directional
(i.e., anisotropic) diffusion. A natural choice for D is the curvature tensor (in combination with
an appropriate transfer function), which enables feature preservation or even enhancement: the
speed of the flow is reduced in directions of high normal curvature, e.g., across sharp edges. There
are various related approaches to feature preserving smoothing as for instance in [?, ?, ?, ?].

7.5.2 Normal Filtering

The basic idea of normal filtering methods is as follows: instead of filtering the spatial coordinates,
the normal field of the surface is smoothed. The resulting normals are then integrated in order
to reconstruct a smooth surface. Hence, in contrast to smoothing surfaces, or vertex positions,
directly, their derivatives are subject to smoothing. This is usually achieved by a diffusion
process [?, ?, ?, ?, ?]. We remark that normal smoothing is commonly applied as a preprocess
for stabilization (mollification) in order to get reliable estimates for other methods (see, e.g., [?]).

64

7.5 Extensions and Alternative Methods

Figure 7.8: Six circles with C1 boundary-conditions are used to design a “tetra thing”. Due
to the symmetry the final solution is actually G2 continuous in this case, which is indicated by
the smooth reflection lines (see Chapter ??). Surfaces are constructed using the intrinsic fairing
method [?] based on solving ∆SH = 0, hence the solution is independent of the triangulation
(or parameterization, respectively).

7.5.3 Statistical Methods

Smoothing can also seen from a statistical point of view: signal and noise are assumed to be
stochastic processes with known spectral characteristics or known autocorrelation and cross-
correlation. The Wiener filter is a well-known example from image processing. Local adaptive
Wiener filtering has been adapted to denoising discrete surfaces [?, ?, ?]. Also the following
bilateral filtering relies on robust statistical estimations.

7.5.4 Bilateral Filtering

Bilateral filtering of images [?] (see also [?] for relation to nonlinear diffusion) is a powerful
feature-preserving filtering technique. The central idea is to consider both, the image domain
(as for classical filtering) and its range: each pixel becomes a weighted average of similar pixels
in the neighborhood, where “similar” is defined in terms of spatial distance and intensity.

In [?, ?] bilateral filtering is adapted to denoising surface meshes, where spatial distance
and local variation of normals is taken into account. In [?] the normal displacement of vertex
positions for smoothing is computed based on weighted averages of these measured. The non-
iterative approach in [?] does not require explicit connectivity information and applies (mollified)
normals to predict vertex positions, which are used for weighting. The rationale behind this is
that prediction fails near shape features, i.e., distances to such predicted points are larger.

7.5.5 Approaches based on non-linear PDEs

Such methods should depend exclusively on intrinsic properties, i.e., be independent of the
parameterization. In [?] a PDE-based method was developed for design of fair surfaces. The
method enables G1 boundary constraints (prescribed as vertices and unit normals), such that

65

7 Mesh Smoothing

Original
scan

Laplacian
smoothing

Bilateral
curvature filter Original Curvature clamping

-23 -5 11-23 -5 11

Figure 7.9: Curvature-domain shape processing. The scan on the left has been smoothed using
a bilateral filter on the principal curvatures. The fandisk model on the right has been processed
by clamping the negative curvatures to obtain smooth fillets for concave corners. The histograms
show the distribution of the minimum signed curvature on a logarithmic scale before and after
the optimization.

the resulting shape is independent of the particular triangulation. This particular approach is
based on solving the fourth-order non-linear PDE

∆SH = 0, (7.10)

i.e., it depends purely on intrinsic properties. This can be interpreted as one possible nonlinear
analogon to thin plate splines minimizing (??), and the equation characterizes the equilibrium of
the Laplacian of curvature flow [?]. Due to the mean value property of the Laplacian the extremal
mean curvatures are obtained at the boundaries. As a consequence there are no local extrema in
the interior [?], and thus the principle of simplest shape requirement is satisfied. Notice that the
numeric solution of the PDE requires high-quality discretization of the mean curvature (following
[?], see Chapter ??). For efficiency reasons the fourth order PDE is factored into two second
order problems. Bobenko and Schröder [?] used discrete Willmore flow for denoising and fair
surface design. The minimizer of the associated energy functional also minimizes (??) for certain
settings.

7.5.6 Curvature-Domain Shape Processing

Eigensatz and co-workers [?] propose a framework for 3D geometry processing that provides
direct access to surface curvature to facilitate advanced shape editing, filtering, and synthesis
algorithms. The central idea is to map a given surface to the curvature domain by evaluating
its principle curvatures, apply filtering and editing operations to the curvature distribution, and
reconstruct the resulting surface using an optimization approach. Their method allows the user to
prescribe arbitrary principle curvature values anywhere on the surface. The optimization solves a
nonlinear least-squares problem to find the surface that best matches the desired target curvatures
while preserving important properties of the original shape. Figure ?? shows applications of this
approach for anisotropic smoothing.

66

7.6 Summary

7.6 Summary

We gave a brief overview of mesh smoothing techniques with focus on linear methods based
on diffusion flow and energy minimization, revealing relations between the two approaches and
relations to spectral analysis. These techniques are linear and hence very efficient and well-
understood, see also Chapter ?? for efficient numerical solvers and overview of computational
costs. They constitute basic tools for further geometry processing steps, e.g., for shape defor-
mation Chapter ??. We listed several alternative techniques and summarized their main ideas.
In conclusion we remark that there are several other aspects in smoothing that were not dis-
cussed here, such as volume preservation or existence of solutions (which is still unknown for
minimization of many standard non-linear functionals).

67

7 Mesh Smoothing

68

8 Mesh Parameterization

This chapter aims at giving an intuition of the notion of parameterization and its implementation
in the geometry processing setting. A more detailed version of this section (with the proofs of
theorems and formula) is also available in SIGGRAPH 2007 Mesh Parameterization, Theory
and Practice course notes (http://www2.in.tu-clausthal.de/~hormann/parameterization/
index.html). See also the following surveys:

• M. S. Floater and K. Hormann. Surface Parameterization: a Tutorial and Survey. In
Advances in Multiresolution for Geometric Modelling, Springer, 2005.

• A. Sheffer, E. Praun, K. Rose, Mesh Parameterization Methods and their Applications,
Foundations and Trends in Computer Graphics and Vision, to appear.

• Some source code is also available from http://alice.loria.fr/software.

As we have seen in Chapter ??, many different representations are used to encode the geome-
try of 3D objects. The choice of a representation depends on the acquisition process upstream,
and on the application downstream. Unfortunately, the representations that are the easiest to
reconstruct are in most cases not optimum for the applications.

In this chapter, we will review several methods that construct a parameterization of a trian-
gulated mesh. Intuitively, this means attaching a “geometric coordinate system” to the object.
This facilitates converting from one representation to another. For instance, it is possible to
convert a mesh model into a piecewise bi-cubic surface, much easier to manipulate in Computer
Aided Design packages. In a certain sense, this retrieves an “equation” of the geometry. One can
also say that this constructs an abstraction of the geometry: Once the geometry is abstracted,
re-instancing it into alternative representations is made easier. Before entering the heart of the
matter, we list some important applications of mesh parameterization.

The abstract representation constructed by parameterization algorithms has many possible
applications. Historically, the main application domain of mesh parameterization was texture
mapping1. Figure ?? shows an example of the LSCM method [?] implemented in the Blender
open-source modeler. The parameterization is used to put the surface into one-to-one correspon-
dence with an image, stored in the 2D domain. It is possible to either map an existing image
and deform it onto the model, or use the parameter space to paint onto the model, with a 3D
paint system.

With the advent of programmable texture mapping hardware, texture mapping can be used
to map more complex attributes onto surfaces. The example shown in Figure ?? demonstrates a
technique referred to as normal mapping (see, e.g., [?]). The initial object (shown on the left) is
replaced with a decimated version (center). Its appearance is preserved by keeping the normals

1with the exception of Floater’s seminal paper [?], about surface approximation.

69

http://www2.in.tu-clausthal.de/~hormann/parameterization/index.html
http://www2.in.tu-clausthal.de/~hormann/parameterization/index.html
http://alice.loria.fr/software

8 Mesh Parameterization

in a texture (right), and a fragment program computes the lighting model. The model shown
here was first made homeomorphic to a disc [?], then parameterized using ABF++ [?], and
decimated (see Chapter ??). As can be seen, a much lighter version of the object can be used,
while preserving its overall visual appearance. Since “pixels cost less than triangles”, replacing
triangles with pixels is an important benefit, especially for real-time rendering.

Another important class of applications concerns re-meshing algorithms. This aspect is de-
tailed in Chapter ??. Finally, the abstraction realized by the parameterization facilitates con-
verting from a mesh representation into an alternative one. This is of paramount importance
for modeling and simulation tasks, that use representations that are completely different from
the dense triangulated meshes constructed by 3D scanners and the companion reconstruction
software. More specifically, these applications require parametric representations (see Chapter
?? for an introduction about surface representations). For instance, Figure ?? shows how a mesh
can be transformed into a parametric representation, using a global parameterization method [?].
This fills the gap between acquisition and CAD / Finite Element simulations.

To summarize, formally, a parameterization of a 3D surface is a function putting this surface in
one-to-one correspondence with a 2D domain. This notion plays an important role in geometry
processing, since it makes it possible to transform complex 3D problems into a 2D space where
they are simpler to solve. The next section gives a simple example of a parameterization, to let
the reader grasp the basic concepts.

70

Figure 8.1: Application of parameterization: texture mapping (Least Squares Conformal Maps
implemented in the Open-Source Blender modeler).

Figure 8.2: Application of parameterization: appearance-preserving simplification. All the de-
tails are encoded in a normal map, applied onto a dramatically simplified version of the model
(1.5% of the original size).

Figure 8.3: A global parameterization realizes an abstraction of the initial geometry. This
abstraction can then be re-instantiated into alternative shape representations.

71

8 Mesh Parameterization

Figure 8.4: Cut me a meridian, and I will unfold the world !

8.1 World Map and Spherical Coordinates

Let us consider the problem of drawing a map of the world. As shown in Figure ??, the problem
is to find a way to ‘unfold’ the surface of the world, in order to obtain a flat 2D surface. Since
the surface of the world is closed, to unfold it, it is necessary to cut it. For instance, it can be
cut along a meridian, i.e., a curve joining the two poles. In the unfolding process, note that the
two poles are stretched and become two curves. The North pole is transformed into the [A−C]
segment, and the south pole into the [B−D] segment2. It can also be noticed that the meridian
along which the sphere has been cut corresponds to two different curves: the [A − B] and the
[C−D] segments. In other world, if a city is located exactly on this meridian, it appears on the
map twice.

As shown in Figure ??, it is possible to provide each point of the map with two coordinates
(θ, φ). In the mapping shown in Figure ??, the (x, y, z) coordinates in 3D space and the (θ, φ)
coordinates in the map are linked by the following equation, referred to as a parametric equation
of a sphere:

θ ∈ [0 . . . 2.π],
φ ∈ [−π . . . π] 7→

 x(θ, φ) = R cos(θ). cos(φ)
y(θ, φ) = R sin(θ). cos(φ)
z(θ, φ) = R sin(φ)

, (8.1)

where R denotes the radius of the sphere. Note that this equation is different from the implicit
equation of the sphere x2 + y2 + z2 = R2. The implicit equation provides a mean of testing
whether a given point is on the sphere, whereas the parametric equation describes a way of
transforming the [0 . . . 2.π]× [−π . . . π] rectangle into a sphere (see also Section ??).
2Note that this can be different in a real world map. In our example, we have used a mapping having a simple

equation, i.e., corresponding to a simpler parameterization than in a real world map.

72

8.2 Distortion Analysis, Anisotropy

θ
φ

θ

φ

0

2π
−π

π

Figure 8.5: Spherical coordinates

Concerning the parametric equation, the following definitions can be given:

• The coordinates (θ, φ) at a point p = (x, y, z) are referred to as the spherical coordinates
at p.

• Each vertical line in the map, defined by θ = Constant, corresponds to a curve on the 3D
surface, referred to as an iso-θ. In our case, the iso-θ curves are circles traversing the two
poles of the sphere (the meridians of the globe).

• Each horizontal line in the map, defined by φ = Constant corresponds to an iso-φ curve.
In our case, the iso-φ curves are the parallels of the globe, and the iso-φ corresponding to
φ = 0 is the equator.

As can be seen in Figure ??, drawing the iso-θ and the iso-φ curves helps understanding how
the map is distorted when applied onto the surface. In the map, the iso-θ and iso-φ curves
are respectively vertical and horizontal lines, forming a regular grid. Visualizing what this
grid becomes when the map is applied onto the surface makes it possible to see the distortions
occurring near the poles. Near the poles, the squares of the grid are highly distorted. We will
see further how to measure the corresponding distortions.

To sum-up, the parametric equation of the sphere explains how to construct a sphere, whereas
the usual (implicit) equation makes it possible to test whether a given point belongs to the
sphere. Each point of the sphere has unique θ and φ coordinates, therefore, the parameterization
defines a (curvilinear) coordinate system on the sphere. Note that even if a point of the sphere
has three (x, y, z) coordinates, two coordinates (θ, φ) are sufficient to refer to it. A surface of the
3D space is in fact a 2D object, which can be revealed by expressing a parameterization. The
parameter space may be seen as a ‘map’ of the surface.

8.2 Distortion Analysis, Anisotropy

The previous section has shown a simple example of parameterization. This section now considers
that a parameterization of a given surface is known, and describes means of quantifying how much
the parameter space is distorted when transformed into the surface.

73

8 Mesh Parameterization

u

v

ΩRI 2 RI 3

S

∂x
∂u

∂x
∂v

dudv

x(u,v)

w
w’

Cu

Cv

Cw

v0

u0

Figure 8.6: Elementary displacements from a point (u, v) of Ω along the u and the v axes are
transformed into the tangent vectors to the iso-u and iso-v curves passing through the point
x(u, v)

The Jacobian matrix and the 1st fundamental form

The first derivatives of the parameterization are involved in distortion analysis, it is then neces-
sary to have an intuition of their geometric meaning. In physics, material point mechanics studies
the movement of an object, approximated by a point p, when forces are applied to it. The tra-
jectory is the curve described by the point p when t varies from t0 to t1, where t denotes time.
The function putting a given time t in correspondence with the position p(t) = {x(t), y(t), z(t)}
of the point p is a parameterization of the trajectory, i.e., a parameterization of a curve.

It is well known that the vector of the derivatives v(t) = ∂p/∂t = {∂x/∂t, ∂y/∂t, ∂z/∂t} cor-
responds to the speed of p at time t.

As shown in Figure ??, we consider now a function x : (u, v) 7→ (x, y, z), putting a sub-
space Ω of IR2 into one-to-one correspondence with a surface S ⊂ IR3. The scalars (u, v) are
the coordinates in parameter space3. In the case of a curve parameterization, the curve is
described by a single parameter t. In contrast, in our case, we consider a surface parameteri-
zation x(u, v) = {x(u, v), y(u, v), z(u, v)}, and there are two parameters, u and v. Therefore,
at a given point (u0, v0) of the parameter space Ω, there are two “speed” vectors to consider:
xu(u0, v0) = (∂x/∂u)(u0, v0) and xv(u0, v0) = (∂x/∂v)(u0, v0). It is easy to check that xu(u0, v0)
is the “speed” vector of the curve Cu : t 7→ x(u0 + t, v0) at x(u0, v0) and that xv(u0, v0) is the
“speed” vector of the curve Cv : t 7→ x(u0, v0 + t). The curve Cu (resp. Cv) is the iso-u (resp. the
iso-v) curve passing through x(u0, v0), i.e., the image through x of the line of equation u = u0

(resp. v = v0).

At that point, one may think that the information provided by the two vectors xu(u0, v0) and
xv(u0, v0) is not sufficient to characterize the distortions between Ω and S in the neighborhood of
(u0, v0) and x(u0, v0). In fact, they can be used to compute how an arbitrary vector w = (a, b)
in parameter space is transformed into a vector w′ in the neighborhood of (u0, v0). In other
words, we want to compute the “speed” vector w′ = ∂x(u0 + t · a, v0 + t · b)/∂t of the curve

3 Since the names θ and φ used in the previous section for the parameters evoke angles, which is not always
appropriate in the general case, the more neutral u and v names are used from now.

74

8.2 Distortion Analysis, Anisotropy

corresponding to the image of the straight line (u, v) = (u0, v0) + t · w. The vector w′, i.e., the
tangent to the curve Cw, can be simply computed by applying the chain rule, and one can check
that it can be computed from the derivatives of x as follows: w′ = axu(u0, v0) + bxv(u0, v0).
The vector w′ is referred to as the directional derivative of x at (u0, v0) relative to the direction w.

In matrix form, w′ is obtained by w′ = J(u0, v0)w, where J(u0, v0) is the matrix of all the
partial derivatives of x:

J(u0, v0) =

∂x
∂u (u0, v0) ∂x

∂v (u0, v0)

∂y
∂u (u0, v0) ∂y

∂v (u0, v0)

∂z
∂u (u0, v0) ∂z

∂v (u0, v0)

 = [xu(u0, v0) , xv(u0, v0)] , (8.2)

The matrix J(u0, v0) is referred to as the Jacobian matrix of x at (u0, v0).

The notion of directional derivative makes it possible to know what an elementary displacement
w from a point (u0, v0) in parameter space becomes when it is transformed by the function x.
The Jacobian matrix helps also computing dot products and vector norms onto the surface S.
This can be done using the matrix JTJ, referred to as the 1st fundamental form of x, also
described in the differential geometry section (Chapter ??). This matrix is denoted by I, and
defined by:

I(u0, v0) = JTJ =

 xTuxu xTuxv

xTv xu xTv xv

 , (8.3)

The 1st fundamental form I(u0, v0) is also referred to as the metric tensor of x, since it makes
it possible to measure how distances and angles are transformed in the neighborhood of (u0, v0).
The squared norm of the image w′ of a vector w is given by ||w′||2 = wT Iw, and the dot product
w′T1 w′2 = wT

1 Iw2 determines how the angle between w1 and w2 is transformed. The next section
gives a geometric interpretation of the 1st fundamental form and its eigenvalues.

The anisotropy ellipse

The previous section has studied how an elementary displacement from a parameter-space lo-
cation (u0, v0) is transformed through the parameterization x. As shown in Figure ??, further
characterization is obtained by seeing that an elementary circle becomes an elementary ellipse.
Considering the eigenvectors e1 and e2 of the metric tensor, and the associated eigenvalues λ1, λ2,
one can show that:

• The axes of the anisotropy ellipse are Je1 and Je2;

• The lengths of the axes are
√
λ1 and

√
λ2.

Note that the lengths of the axes
√
λ1 and

√
λ2 also correspond to the singular values of the

Jacobian matrix J.

75

8 Mesh Parameterization

x(u,v)

u

v

ΩRI 2 RI 3

S

du
dv

∂x
∂u

∂x
∂v

Figure 8.7: Anisotropy: an elementary circle is transformed into an elementary ellipse.

8.3 Triangulated Surfaces

A triangulated surface is a set V of vertices vi with positions pi, i = 1 . . . n, connected by a set F
of triangles. Each triangle is defined by the triplet (i, j, k) that denotes the indices of its vertices.
It is also sometimes useful to introduce the set E of all the edges (i, j) of the mesh. Thus, a
triangulated surface is defined by the triplet M = (V, E ,F) of vertices V, edges E and triangles
(or facets) F . More details on data structures for meshes are given in Chapter ??.

A natural idea to define a parameterization of a triangulated surface consists in using piecewise
linear functions (the pieces correspond to the triangles of the surface). Thus, it is possible to
represent the parameterization by the set of all (ui, vi) coordinates associated with each vertex
(xi, yi, zi). Figure ?? shows an example of a parameterized triangulated surface in 3D space and
in parametric (u, v) space.

Note that the previous section considered an existing parameterization, whereas this section
considers the problem of constructing a parameterization for an existing surface. For this reason,
in contrast with the conventions of differential geometry that we used in the previous section, it
is more natural to place the 3D space (known) to the left of the figures, and the 2D parametric
space (unknown) to the right of the figures. We will see more fundamental implications of this
“swapping”, when we will explain the formulation and behavior of classical methods.

At a given point (u, v) of the parametric space Ω, the parameterization x is given by:

x(u, v) = λ1pi + λ2pj + λ3pk ,

where (i, j, k) denotes the index triplet such that the triangle (ui, vi), (uj , vj), (uk, vk) in param-
eter space contains the point (u, v). The triplet (λ1, λ2, λ3) denotes the barycentric coordinates
at point (u, v) in that triangle.

To summarize, constructing a parameterization of a triangulated surface means finding a set
of couples (ui, vi), associated with each vertex i. Moreover, these coordinates need to be such
that the image of the surface in parameter space does not self-intersect. We will see in what
follows several methods to compute these coordinates.

76

8.3 Triangulated Surfaces

Figure 8.8: A parameterization of a triangulated surface can be defined as a piecewise linear
function, determined by the coordinates (ui, vi) at each vertex (xi, yi, zi).

8.3.1 Gradient in a Triangle

Distortion analysis, introduced in the previous section, involves the computation of the gradients
of the parameterization as a function of the parameters u and v. In the case of a triangulated
surface, the parameterization is a piecewise linear function. Therefore, the gradients are constant
in each triangle.

Before studying the computation of these gradients, we need to mention that our setting is
slightly different from the previous section. In our case, as previously mentioned, the 3D surface
is given, and our goal is to construct the parameterization. In this setting, it seems more natural
to characterize the inverse of the parameterization, i.e., the function that goes from the 3D
surface (known) to the parametric space (unknown). This function is also piecewise linear. To
port distortion analysis to this setting, it is possible to provide each triangle with an orthonormal
basis X,Y , as shown in Figure ?? (and we can use one of the vertices pi of the triangle as the
origin). In this basis, we can study the inverse of the parameterization, that is to say the function
that maps a point (X,Y) of the triangle to a point (u, v) in parameter space. The gradients of
this function are given by:

∇u =

(
∂u/∂X

∂u/∂Y

)
= MT

uiuj
uk

 =
1

2|T |

(
Yj − Yk Yk − Yi Yi − Yj
Xk −Xj Xi −Xk Xj −Xi

)uiuj
uk

 , (8.4)

where the matrix MT is constant over triangle T , and |T | denotes the area of T . Note that
these gradients are different (but strongly related with) the gradients of the inverse function,
manipulated in the previous section. The gradient of u (resp. v) intersects the iso-us (resp. the

77

8 Mesh Parameterization

Figure 8.9: Local X,Y basis in a triangle.

iso-vs) with a right angle (instead of being tangent to them), and its norm is the inverse of the
one computed in the previous section.

8.3.2 Piecewise Linear Distortion Analysis

Using this expression of the gradient, we can now conduct distortion analysis in a triangle. To
do so, we first compute the first fundamental form IT , that is constant in triangle T :

IT = JTJ =
(
E F
F G

)
. (8.5)

As we have seen in the previous section, the lengths σ1 and σ2 of the axes of the anisotropy
ellipse correspond to the singular values of J, or to the square root of the eigenvalues of IT .
Their expression can be found by computing the square roots of the zeros of the characteristic
polynomial det(IT − σ Id), where Id denotes the identity matrix:

σ1 =
√

1/2(E +G) +
√

(E −G)2 + 4F 2

σ2 =
√

1/2(E +G)−
√

(E −G)2 + 4F 2
. (8.6)

Before studying how to use these eigenvalues to minimize distortions, we will see a classical
parameterization method.

8.4 Barycentric Maps

Barycentric maps are one of the most widely used methods to construct a parameterization of a
triangulated surface. This methods is based on Tutte’s barycentric mapping theorem [?], from
graph theory, that states:

Given a triangulated surface homeomorphic to a disc, if the (u, v) coordinates at the boundary
vertices are on a convex polygon, and if the coordinates of the internal vertices are a barycentric

78

8.4 Barycentric Maps

Figure 8.10: Parameterization with Floater’s method. The parametric coordinates on the bound-
ary of the surface are fixed on a convex polygon, and the interior ones are obtained by solving a
linear system.

combination of their neighbors, then the (u, v) coordinates form a valid parameterization (without
self-intersections). In formula, the second condition can be written as :

∀i : −ai,i
(
ui
vi

)
=
∑
j∈Ni

ai,j

(
uj
vj

)
,

where Ni denotes the set of vertices connected to vertex i by an edge, and where the coefficients
ai,j satisfy:

∀i internal vertex :

ai,j > 0 if i 6= j

ai,i = −
∑
j 6=i

ai,j
. (8.7)

Michael Floater [?] had the idea to use this theorem – that characterizes a family of valid
parameterizations – as a method to construct a parameterization. The idea consists in first
fixing the vertices of the boundary on a convex polygon. Then, the coordinates at the internal
vertices are found by solving Equation ??. This means solving two linear systems Au = u0

and Av = v0, where the vectors u and v gather all the u (resp. v) coordinates at the internal
vertices, and where the right hand side u0 (resp. v0) contains the coordinates at the vertices
on the boundary. Figure ?? shows an example of a parameterization computed by this method
(using weights ai,j given further).

The initial proof by Tutte uses sophisticated graph theory tools [?]. More recently, a simpler
proof was established by Colin de Verdire [?]. Finally, a proof based on the notion of discrete
one form was discovered [?]. Since it simply uses simple counting arguments, this latter proof is
accessible without requiring the important graph theory background involved in the two other
ones.

79

8 Mesh Parameterization

Figure 8.11: A: a mesh cut in a way that makes it homeomorphic to a disk, using the seamster
algorithm [?]; B: Tutte-Floater parameterization obtained by fixing the boundary on a square;
C: parameterization obtained with a free-boundary parameterization [?].

A possible valid choice for the coefficients ai,j is given by ai,j = 1 if i 6= j and ai,i = −|Ni|,
where |Ni| denotes the number of neighbors of vertex i. However, this choice introduces distor-
tions, that most applications need to avoid. For this reason, the next subsection introduces a
means of choosing these weights that minimizes the distortions.

8.4.1 Discrete Laplacian

The Laplacian, or Laplace operator, is a generalization of the second order derivative for multi-
variate functions. In flat 2D space, this operator is defined by:

∆f =
∂2f

∂x2
+
∂2f

∂y2
.

Intuitively, the Laplacian measures the regularity (or the irregularity) of a function. For instance,
for a linear function, the Laplacian is equal to zero. The Laplacian can be generalized to curved
surfaces, and the generalized form is called the Laplace-Beltrami operator. Chapter ?? reviews
several discrete versions of this operator. A so-defined discrete Laplacian is a matrix (ai,j)
whose non-zero pattern corresponds to the connectivity of the mesh, and that satisfies ai,i =
−
∑
i 6=j ai,j . It is then possible to use the discrete Laplacian to define the coefficients ai,j used

in Floater’s method. We will elaborate further on the link between the discrete Laplacian and
parameterization in Section ??.

However, it should be noticed that for some meshes with obtuse angles, the coefficients of the
discrete Laplacian may become negative. This violates the requirements of Tutte’s theorem, such
that the validity of the mapping can no longer be guaranteed. More recently, Floater discovered
another definition of weights (Mean Value Coordinates) [?] that does not suffer from this problem
(the coefficients are always positive).

Therefore, Tutte’s theorem combined with mean value weights provides a provably correct
way of constructing a valid parameterization for a disk-like surface. However, for some surfaces,
the necessity to fix the boundary on a convex polygon may be problematic (cf. Figure ??),
for the following reasons: (1) in general, it is difficult to find a “natural” way of fixing the

80

8.5 Setting the Boundary Free

p

q q

q

1
2

3 p

q...
q...

q...

q...

q...

Figure 8.12: Left: to avoid triangle flips, each vertex p is constrained to remain in the kernel of
the polygon defined by its neighbors qi; Right: the kernel of a polygon (white) is defined by the
intersection of the half-planes defined by the support lines of its edges (dashed).

boundary on a convex polygon, and (2) for some surfaces, the shape of the boundary is far from
convex. Therefore the obtained parameterization shows high distortions. Even if one can imagine
different ways of improving the result shown in the Figure, the so-obtained parameterization will
be probably not as good as the one shown in Figure ??-C, that better matches what a tanner
would expect for such a mesh. For these reasons, the next section studies the methods that can
construct parameterizations with free boundaries.

8.5 Setting the Boundary Free

In the second half of the 90’s, Floater’s method [?], based on Tutte’s theorem [?], was well known
by the community and applied to a wide class of problems. The advantages of this method are
its strong theoretical guarantees and its ease of implementation. However, the necessity to
constrain the boundary on a convex polygon limits the efficiency of some applications. For this
reason, the community started to investigate methods that do not suffer from this limitation,
and that minimize the distortions in a similar way. This section reviews these methods, using
the formalism introduced in Section ??. However, before going further, we need to warn the
reader about a possible source of confusion:

• Half of the methods study the function that goes from the surface to the parametric space
(as in the previous section). This is justified by the fact that the (u, v) coordinates are
unknown. Therefore, it is more natural to go from the known world (the surface) to the
unknown world (the parameter space).

• The other half of the methods use the inverse convention, and study the function that goes
from parameter space to the surface (as in Section ??). This is justified by the fact that
it makes the formalism compatible with classical differential geometry books [?] that use
this convention.

Armed with the definition of distortion analysis, we can now proceed to review several methods,
and express them in a common formalism. Note that in the literature, one needs to take care

81

8 Mesh Parameterization

of identifying whether the surface → parametric-space function or parametric-space → surface
function is used. Before evoking these methods, we give two more precisions:

• To avoid triangle flips, some of the methods constrain each vertex p to remain in the
kernel of the polygon defined by its neighbors qi. This notion is illustrated in Figure ??.
To compute the kernel of a polygon, it is for instance possible to apply Sutherland and
Hogdman’s re-entrant polygon clipping algorithm to the polygon (clipped by itself). The
algorithm is described in most general computer graphics books [?];

• Since they are based on the eigenvalues of the first fundamental form, the objective func-
tions involved in distortion analysis are often non-linear, and therefore difficult to minimize
in an efficient way. To accelerate the computations, a commonly used technique consists in
representing the surface in a multi-resolution manner, based on Hoppe’s Progressive Mesh
data structure [?]. The algorithm starts by optimizing a simplified version of the object,
then introduces the additional vertices and optimizes them by iterative refinements.

Now that we have seen the general notions related with distortion analysis and the particular
aspects that concern the optimization of objective functions involved in distortion analysis, we
can review several classical methods that belong to this category.

8.5.1 Green-Lagrange Deformation Tensor

Historically, to minimize the distortions of a parameterization, one of the first methods was
developed by Maillot, Yahia, and Verroust [?]. The main idea behind their approach consists in
minimizing a matrix norm of the Green-Lagrange deformation tensor. This notion comes from
mechanics, and measures the deformation of a material. Intuitively, we know that if the metric
tensor I is equal to the identity matrix Id, then we have an isometric parameterization. The
Green-Lagrange deformation tensor is given by L = I− Id and measures the “non-isometry” of
the parameterization.

8.5.2 MIPS

Hormann and Greiner’s MIPS (Most Isometric Parameterization of Surfaces) method [?] was to
our knowledge the first mesh parameterization method that computes a natural boundary. This
method is based on the minimization of the ratio between the two lengths of the axes of the
anisotropy ellipse. This corresponds to the 2-norm of the Jacobian matrix:

K2(JT) = ‖JT ‖2‖J−1
T ‖2 = σ1/σ2 .

Since minimizing this energy is a difficult numerical problem, Hormann and Greiner have
replaced the 2-norm ‖.‖2 by the Frobenius norm ‖.‖F , i.e., the square root of the sum of the
squared singular values:

KF (JT) = ‖JT ‖F ‖J−1
T ‖F =

trace(IT)
det(JT)

.

As can be seen, fortunate cancellations of terms yield a simple expression in the end. The final
expression corresponds to the ratio between the trace of the metric tensor and the determinant
of the Jacobian matrix. As indicated in the original article, this value can also be interpreted as

82

8.5 Setting the Boundary Free

Figure 8.13: Some results computed by stretch L2 minimization (parameterized models courtesy
of Pedro Sander and Alla Sheffer).

the Dirichlet energy per parameter-space area: the term trace(IT) corresponds to the Dirichlet
energy, and the Jacobian det(JT) to the ratio between triangle’s area in 3D and in parameter
space.

8.5.3 Stretch Minimization

Motivated by texture mapping applications, Sander et al. [?] studied the way a signal stored
in parameter space is distorted when it is texture-mapped onto the surface (by applying the
parameterization). For this reason, their formalism uses the inverse function, that maps the
parametric space onto the surface. However, it is easy to check that this simply means replacing
σ1 with 1/σ2 (resp. σ2 with 1/σ1) in the computations.

A possible way of characterizing the distortions of a texture is to consider a point and a
direction in parameter space and analyze how the texture is deformed along that direction.
Sander et al. called this value the “stretch”. This exactly corresponds to the notion of directional
derivative, which we introduced in Section ??. For a triangle T , they defined two energies that
correspond to the average value of the stretch for all directions (stretch L2(T)):

L2(T) =
√

((1/σ1)2 + (1/σ2)2) /2 .

The local energies of each triangle T are combined into a global energy L2(S) defined by:

L2(S) =

√∑
T |T |L2(T)∑

T |T |
.

Figure ?? shows some results computed with this approach. This formalism is particularly well
suited for texture mapping applications, since it minimizes the distortions that are responsible of
the visual artifacts that this type of application wants to avoid. Moreover, a simple modification
of this method allows the contents of the texture to be taken into account, and therefore to define
a signal-adapted parameterization [?].

83

8 Mesh Parameterization

u

v

Ω

S

du

dv

∂x
∂u

∂x
∂v

Figure 8.14: A conformal parameterization transforms an elementary circle into an elementary
circle.

8.5.4 Conformal Methods

Conformal methods are related with the formalism of complex analysis. The involved conformal-
ity condition defines a criterion with sufficient “rigidity” to offer good extrapolation capabilities,
that can compute natural boundaries. The reader interested with this formalism may read the
excellent book by Stanley Needham [?].

As seen in this section, distortion analysis, introduced in Section ??, plays a central role in
the definition of (non-distorted) parameterization methods. We now focus on a particular family
of methods, for which the anisotropy ellipse is a circle for all point of the surface. As shown in
Figure ??, this also means that the two gradient vectors xu and xv are orthogonal and have the
same norm. The condition can also be written as xv = n × xu, where n denotes the normal
vector. Interestingly, if a parameterization is conformal, this is also the case for the inverse
function (since the Jacobian matrix of the inverse is equal to the inverse of the Jacobian matrix).
Intuitively, if the iso-u,v curves are orthogonal, it is also the case of their normal vectors in
the tangent plane. Finally, conformality also means that the Jacobian matrix is composed of a
rotation and a scaling (in other words, a similarity transform). Therefore, conformal mappings
locally correspond to similarities. We now review different methods that compute a conformal
parameterization.

LSCM

In contrast with the exposition of the initial paper [?], we will present the method in terms
of simple geometric relations between the gradients. We will then elaborate with the complex
analysis formalism, and establish the relation with other methods.

The LSCM method (Least Squares Conformal Maps) simply expresses the conformality con-
dition of the functions that maps the surface to parameter space. We now consider one of the

84

8.5 Setting the Boundary Free

triangles of the surface, provided with an orthonormal basis (X,Y) of its support plane. In this
context, conformality can be written as :

∇v = rot90(∇u) =
(

0 −1
1 0

)
∇u , (8.8)

where rot90 denotes the counter-clockwise rotation of 90 degrees.

Using the expression of the gradient in a triangle (derived at the end of Section ??), Equa-
tion ??, which characterizes piecewise linear conformal maps, becomes :

MT

vivj
vk

− (0 −1
1 0

)
MT

uiuj
uk

 =
(

0
0

)
,

where MT is given by Equation ??.

In the continuous setting, Riemann proved that any surface admits a conformal parameter-
ization. However, in our specific case of piecewise linear functions, only developable surfaces
admit a conformal parameterization. For a general (non-developable) surface, LSCM minimizes
an energy ELSCM that corresponds to the “non-conformality” of the application, and called the
discrete conformal energy :

ELSCM =
∑

T=(i,j,k)

|T |

∥∥∥∥∥∥MT

vivj
vk

− (0 −1
1 0

)
MT

uiuj
uk

∥∥∥∥∥∥
2

. (8.9)

We have considered conformal maps from the point of view of the gradients. In the next section,
we exhibit relations between conformal maps and harmonic functions. This also shows some
connections with Floater’s barycentric mapping method and with its more recent generalizations.

Conformal maps and harmonic maps

Conformal maps play a particular role in complex analysis and Riemannian geometry. The
following system of equations characterizes conformal maps:

∂v
∂x = −∂u∂y ,

∂v
∂y = ∂u

∂x .

This system of equations is known as Cauchy-Riemann equations They play a central role in
complex analysis, since they characterize differentiable complex functions (also called analytic
functions).

Another interesting property of complex differentiable functions is that their order-1 differen-
tiability makes them differentiable at any order. We can then use the Cauchy-Riemann equations
to compute the order 2 derivatives of u and v, and establish interesting relations with the Lapla-
cian (see Section ??):

∆u = ∂2u
∂x2 + ∂2u

∂y2 = 0 ,

∆v = ∂2v
∂x2 + ∂2v

∂y2 = 0 .

85

8 Mesh Parameterization

In other words, the real part and the imaginary part of a conformal map are two harmonic
functions (i.e., two functions with zero Laplacian). This justifies the idea of using the discrete
Laplacian to define Floater’s weights, mentioned in the previous section. This is the point of
view adopted by Desbrun et al. to develop their conformal parameterization method [?], nearly
equivalent to LSCM. Thus, Desbrun et al. compute two harmonic functions while letting the
boundary evolve. On the boundary, a set of constraints enforce the conformality of the parame-
terization, and introduce a coupling term between the u’s and the v’s.

Another way of considering both approaches, mentioned by Pinkall and Polthier [?], and
probably at the origin of Desbrun et al.’s intuition, is given by Plateau’s problem [?, ?]. Given a
closed curve, this problem concerns the existence of a surface with minimum area, such that its
boundary matches the closed curve. To minimize the area of a surface, Douglas [?] and Rado [?],
and later Courant [?] considered Dirichlet’s energy (i.e., the integral of the squared norm of the
gradients), easier to manipulate. A discretization of this energy was proposed by Pinkall and
Polthier [?], with the aim of giving a practical solution to Plateau’s problem in the discrete case.
Dirichlet’s energy differs from the area of the surface. The difference is a term that depends on
the parameterization, called the conformal energy. The conformal energy is equal to zero if the
parameterization is conformal. The relation between these three quantities is explained below:∫

S

det(J)ds︸ ︷︷ ︸
area of the surface

=
1
2

∫
S

‖xu‖2 + ‖xv‖2ds︸ ︷︷ ︸
Dirichlet’s energy

− 1
2

∫
S

‖xv − rot90(xu)‖2︸ ︷︷ ︸
conformal energy

.

This relation is easy to prove, by expanding the integrated terms. Therefore, LSCM mini-
mizes the conformal energy, and Desbrun et.al ’s method minimize Dirichlet’s energy. Since the
difference between these two quantities corresponds to the (constant) area of the surface, both
methods are equivalent.

All the methods mentioned above are based on relations between the gradients, the Jacobian
or the first fundamental form of the parameterization. We also refer the reader to [?], that
provides another way of “setting the boundary free”, by separating computations into several
steps involving simpler (linear) computations. The notion of derivative and its connection with
geometry (or differential geometry) play a central role in the methods mentioned above. For this
reason, they can be qualified as analytical methods. In the next section, we focus on geometric
methods, that consider the shape of the triangles.

8.5.5 Geometric Methods

The ease of implementation of analytical methods (especially the quadratic ones) favored their
diffusion, in both the scientific community and the industrial word. However, the non-linear
methods need a progressive mesh, that makes them quite delicate to tune, and the quadratic
methods, with their two pinned vertices, may generate results that are unbalanced in terms of
distortions (Figure ??), if the input surface has high Gaussian curvature. For this reason, we
focus on geometric methods, that do not suffer from these problems. We will review ABF (Angle
Based Flattening). Note that one may also classify in this category circle packings [?] and circle
patterns [?], not covered here. We also cite a very recent result [?], that gives a deep under-
standing of how angular defect and deformations relate.

86

8.5 Setting the Boundary Free

Figure 8.15: For surfaces that have a high Gaussian curvature, conformal methods may generate
highly distorted results, different from what the user might expect (A). The ABF method and
its derivatives better balances the distortions, and gives better results (B).

The ABF method (Angle Based Flattening), developed by Sheffer et al. [?], is based on the
following observation: the parameter space is a 2D triangulation, uniquely defined by all the
angles at the corners of the triangles (modulo a similarity in parameter space). This simple
remark made the authors reformulate the parameterization problem – finding (ui, vi) coordinates
– in terms of angles, that is finding the angles αti, where αti denotes the angle at the corner of
triangle t incident to vertex i.

The energy minimized by ABF is given by :

E(α) =
∑
t∈T

3∑
k=1

1
wtk

(αtk − βtk)2 , (8.10)

where the αtk’s are the unknown 2D angles, and where the βtk’s denote the “optimal” angles,
measured on the 3D mesh. The weights wtk are set to (βtk)−2 to measure a relative angular
distortions rather than an absolute one.

To ensure that the 2D angles define a valid triangulation, a set of constraints needs to be
satisfied. These constraints are introduced in the formulation using the Lagrange method:

• Validity of the triangles (for each triangle t):

∀t ∈ T, CTri(t) = αt1 + αt2 + αt3 − π = 0 . (8.11)

• Planarity (for each internal vertex v):

∀v ∈ Vint, CPlan(v) =
∑

(t,k)∈v∗
αtk − 2π = 0 , (8.12)

87

8 Mesh Parameterization

Figure 8.16: A,B: Parameterization methods for disk-topology combined with segmentation
algorithms can create a texture atlas from a shape of arbitrary topology. However, the large
number of discontinuities can be problematic for the applications. C: Global parameterization
algorithms do not suffer from this problem. (Data courtesy of the Digital Michelangelo Project,

Stanford).

where Vint denotes the set of internal vertices, and where v∗ denotes the set of angles
incident to vertex v.

• Reconstruction (for each internal vertex) — this constraints ensures that the edge shared
by a pair of triangles has the same length:

∀v ∈ Vint, CLen(v) =
∏

(t,k)∈v∗
sinαtk⊕1 −

∏
(t,k)∈v∗

sinαtk	1 = 0 . (8.13)

The indices k ⊕ 1 and k 	 1 denote the next and previous angle in the triangle. Intuitively,
note that the product sinαtk⊕1 sinαtk	1 corresponds to the product of the ratio between the
lengths of two consecutive edges around vertex k. If they do not match, it is the possible
to “turn around” vertex k without “landing” on the starting point.

Sheffer and de Sturler [?] compute a stationary point of the Lagrangian of the constrained
quadratic optimization problem by using Newton’s method. An improvement of the numerical
solution mechanism was proposed [?]. More rencently, Zayer et.al proposed a linearized approx-
imation [?], that solves for the approximation error. The dual formulation leads to a least-norm
problem, that simply means solving a linear system.

8.6 Global Parameterization

As seen in the previous section, parameterization methods can put a 3D shape with disk topology
in one-to-one correspondence with a 2D domain. For a shape with arbitrary topology, it is pos-
sible to decompose the shape into a set of charts, using a segmentation algorithm (e.g. VSA [?]).

88

8.6 Global Parameterization

Figure 8.17: The MAPS method and its derivatives compute a global parameterization by de-
composing the initial surface (A) into a set of triangular charts (B) and regularly re-samples the
geometry in the parameter space of these charts (C).

Each chart is then parameterized (see Figure ??-A,B). Even if this solution works, it is not com-
pletely satisfactory: why one should “damage” the surface just to define a coordinate system on
it? From the application point of view, chart boundaries are difficult to handle in re-meshing
algorithms, and introduce artifacts in texture mapping applications. For this reason, we focus in
this section on global parameterization algorithms, that do not require segmenting the surface.
(Figure ??-C). Since they play a central role in remeshing algorithms, global parameterization
method are also described in Chapter ??.

8.6.1 Base Complex

To compute such a global parameterization, the geometry processing community first developed
methods that operate by segmenting / parameterizing / and resampling the object. To our
knowledge, this idea was first developed in the MAPS method [?] (Multiresolution Adaptive
Parameterization of Surfaces). As shown in Figure ??, this method starts by partitioning the
initial object (Figure ??-A) into a set of triangular charts, called the base complex (Figure ??-
C). Then, a parameterization of each chart is computed, and the object is regularly re-sampled
in parametric space (Figure ??-C). Further refinements of the method improved the inter-chart
continuity [?], formalized by the notion of transition function, explained further in this section.
This representation facilitates defining hierarchical representations and implementing multireso-
lution processing tools on top of it [?].

This family of methods use a set of triangular charts to define the base complex. For some
applications, such as texture mapping, or surface approximation with tensor-product splines, it is
preferred to use a base complex composed of quadrilaterals. The difference seems subtle at first
sight, but automatically constructing a good quadrilateral base complex is still an open problem.
A variant of the MIPS [?] method, applied to a quadrilateral base complex, was proposed [?].
The method lets the user interactively define the base complex. More recently, advances to au-
tomate the process were made, as shown further in this section.

89

8 Mesh Parameterization

Figure 8.18: The method developed by Gu and Yau to construct a differential manifold first
computes a homology basis (A), then deduces a co-homology basis and finds the (unique) har-
monic one form in each co-homology class (B). Finally, the u and v potentials are obtained by
integrating these harmonic one-forms (C), that together define a holomorphic function (D) (data

courtesy of Stanford, parameterization courtesy of X. Gu)

8.6.2 Methods Based on Co-homology

As shown in Figure ??, Gu and Yau used notions from exterior calculus to compute a global
conformal parameterization on a surface of arbitrary genus [?, ?]. To do so, they compute a
holomorphic function (i.e., the generalization of conformal functions mentioned in Section ??),
based on an important theorem that states that each co-homology class contains a unique har-
monic one-form. We have already seen that the coordinates of a conformal map are two harmonic
functions. Similarly, a holomorphic function is composed of two conjugate (i.e., orthogonal) har-
monic one-forms. Then, their method operates as follows: they first compute a homology basis
of the surface (using for instance Erickson’s method [?]) (A), then they deduce a co-homology
basis, and find a pair of conjugate harmonic one-forms (B). Finally, they integrate the one-forms
to find the parameterization (C).

Some authors have proposed methods that directly compute the parameterization, based on
modified Floater conditions. For instance, Steiner and Fischer have proposed to make the object
equivalent to a disk using a cut graph, and insert translation vectors in Tutte’s conditions related
to the vertices located on the cut graph [?]. Tong et.al developed independently the same idea [?],
using the formalism of exterior calculus, and introducing singularities of fractional index. Such
singularities of fractional index can be elegantly taken into account by a structure called quad-
cover [?]. See also Chapter ?? for examples of these latter two methods.

90

8.6 Global Parameterization

Figure 8.19: From a triangulated mesh (left), the Periodic Global Parameterization method
starts by smoothing a vector field (center) and then computes a parameterization such that the
gradient vectors are aligned with the vector field (right).

8.6.3 Periodic Global Parameterization

The Periodic Global Parameterization method [?], shown in Figure ??, aims at letting the sin-
gularities naturally emerge from the optimization of the parameterization. As a consequence,
it is not possible to determine the homology basis in advance. As in Alliez et al.’s anisotropic
remeshing method [?], the method first computes a guidance vector field by smoothing the prin-
cipal directions of curvature. Then the difficulty is to allow the coordinates to wind around the
features of the object. To do so, the method uses the natural periodicity of the sine and cosine
function. The complete optimization problem is restated in terms of new variables, that corre-
spond to the sine and cosine of the actual coordinates. The main difficulty is that the method
generates invalid vertices, edges and triangles around the singularities. Therefore it requires a
post-processing step. At this point, we can either use methods based on co-homology (but they
require manual intervention), or PGP (but it requires an inelegant post-processing to fix the
singularities). However, another category of methods, based on eigenvector computations, seem
a promising research avenue to define both automatic and simple methods.

8.6.4 Spectral Methods

Spectral methods study the eigenfunctions of operators (or eigenvectors of matrices in the discrete
setting). Several reviews on this topic are available [?, ?], and we also give some web references
on the following webpage http://alice.loria.fr/publications. Spectral methods are also
mentioned in Chapter ?? of these course notes, that deals with mesh smoothing.

We focus on the Laplace operator, that plays a fundamental role in conformal mesh parame-
terization, as shown in Section ??.

Before elaborating on the eigenfunctions, we give more details about the Laplacian and its
generalizations. The Laplacian plays a fundamental role in physics and mathematics. In IRn, it
is defined as the divergence of the gradient:

∆ = div grad = ∇ · ∇ =
∑
i

∂2

∂x2
i

.

Intuitively, the Laplacian generalizes the second order derivative to higher dimensions, and is a
characteristic of the irregularity of a function as ∆f(x) measures the difference between f(x)

91

http://alice.loria.fr/publications

8 Mesh Parameterization

Figure 8.20: Some of the eigenfunctions of the Laplace operators.

and its average in a small neighborhood of x. Generalizing the Laplacian to curved surfaces re-
quire complex calculations, that can be greatly simplified by a mathematical tool called exterior
calculus (EC). See the course notes [?] for more details about exterior calculus.

The eigenfunctions and eigenvalues of the Laplacian on a (manifold) surface S, are all the
pairs (Hk, λk) that satisfy −∆Hk = λkH

k. The “−” sign is here required for the eigenvalues to
be positive. On a closed curve, the eigenfunctions of the Laplace operator define the function
basis (sines and cosines) of Fourier analysis4. On a square, they correspond to the function basis
of the DCT (Discrete Cosine Transform), used for instance by the JPEG image format. Finally,
the eigenfunctions of the Laplace-Beltrami operator on a sphere define the Spherical Harmon-
ics basis. Figure ?? shows how they look like for a more general object. Since it generalizes
spherical harmonics to arbitrary manifolds, this function basis is naturally called the Manifold
Harmonics Basis (MHB) [?]. This tech-report gives their formal definition using the finite ele-
ment formalism, and explains how to efficiently compute the MHB. In the discrete setting, one
can approximate the eigenfunctions by computing the eigenvectors of a discrete Laplacian (see
Section ??). In some cases, it is even possible to replace it with a combinatorial Laplacian, that
only takes graph connectivity into account [?].

In the context of data analysis, the MDS method (multidimensional scaling) [?] was intro-
duced, to compute an embedding that best approximates given distances between the vertices
of a graph. Multidimensional scaling simply minimizes an objective function that measures the
deviation between the geodesic distances in the initial space and the Euclidean distances in the
embedding space (GDD for Geodesic Distance Deviation), by computing the eigenvectors of
the matrix D = (di,j) where di,j denotes the geodesic distance between vertex i and vertex j.
Isomaps and Multidimensional scaling were used to define parameterization algorithms in [?],
and more recently in the ISO-charts method [?], used in Microsoft’s DirectX combined with the
packing algorithm presented in [?]. Interestingly, the ISO-charts method uses MDS for both seg-
menting the model and parameterizing the charts. This provides a nice and coherent theoretical
framework, that can be relatively easily translated into efficient implementations.

However, the spectral parameterization methods listed above still need to partition the mesh
into charts. More recently, Dong et al. used the Laplacian to decompose a mesh into quadri-
laterals [?, ?], in a way that facilitates constructing a globally smooth parameterization. As
shown in Figure ??, their method first computes one eigenfunction of the Laplacian (the 38th in
this example), then extract the Morse complex of this function, filters and smooths the Morse

4This is easy to check by noticing that in 1D, the Laplace operator corresponds to the standard second order
derivative. The eigenfunctions are simply sin(ωt) (resp. cos) associated with the eigenvalues −ω2.

92

8.7 Open Issues

Figure 8.21: Spectral Surface Quadrangulation first computes a Laplace eigenfunction (A), then
extracts its Morse complex (B), smooths it (C) and uses it to partition the mesh into quads, that
can be parameterized (D).

complex, and uses it to partition the mesh into quads. These quads are parameterized, and
inter-chart smoothness can be further optimized using global relaxation [?, ?].

8.7 Open Issues

To conclude this section on mesh parameterization, we list some open issues. After Floater’s
initial article in 1995, time and effort was devoted to the very specific issue of mesh parameteri-
zation. However, the “mesh parameterization” story is still unfinished, since important problems
still remain open:

• Singularities Automatically placing the singularities in global parameterization methods
is still an open issue;

• Negative cotangents The possibly negative cotangents obtained with the discretization
of the Laplacian are still a problem for some parameterization methods. A deeper under-
standing of what we loose in the discretization may help solving this issue;

• Real-world meshes (1) Most meshes manipulated in the industry are quite different
from the scanning repositories used by academic research (AIM@SHAPE, Stanford). Most
of them have creases. For this reason, methods based on differential geometry cannot be
directly applied, since the differential quantities they estimate are undefined on the creases;

• Real-world meshes (2) Moreover, those meshes often have invalid topology (holes, du-
plicated surfaces . . .) and/or ill-shaped triangles. Designing numerically robust methods
is also an issue of paramount importance for the industrial applications;

• 3D hexahedral meshing This is the natural generalization of quad-remeshing to 3D
volumes. Exterior calculus (discrete or continuous) may be the right formalism to tackle
this difficult issue. In particular, not only singular points may appear, but one may also
encounter singular curves and singular plates.

93

8 Mesh Parameterization

94

9 Mesh Decimation

Mesh decimation describes a class of algorithms that transform a given polygonal mesh into
another mesh with fewer faces, edges and vertices [?]. The decimation procedure is usually
controlled by user defined quality criteria which prefer meshes that preserve specific properties of
the original data as well as possible. Typical criteria include geometric distance (e.g. Hausdorff-
distance) or visual appearance (e.g. color difference, feature preservation, ...) [?].

There are many applications for decimation algorithms. First, they obviously can be used to
adjust the complexity of a geometric data set. This makes geometry processing a scalable task
where differently complex models can be used on computers with varying computing performance.
Second, since many decimation schemes work iteratively, i.e. they decimate a mesh by removing
one vertex at a time, they usually can be inverted. Running a decimation scheme backwards
means to reconstruct the original data from a decimated version by inserting more and more
detail information. This inverse decimation can be used for progressive transmission of geometry
data [?]. Obviously, in order to make progressive transmission effective we have to use decimation
operators whose inverse can be encoded compactly (cf. Fig. ??).

There are several different conceptual approaches to mesh decimation. In principle we can
think of the complexity reduction as a one step operation or as an iterative procedure. The
vertex positions of the decimated mesh can be obtained as a subset of the original set of vertex
positions, as a set of weighted averages of original vertex positions, or by resampling the original
piecewise linear surface. In the literature the different approaches are classified into

• Vertex clustering algorithms

• Incremental decimation algorithms

• Resampling algorithms

The first class of algorithms is usually very efficient and robust. The computational complexity
is typically linear in the number of vertices. However, the quality of the resulting meshes is not
always satisfactory. Incremental algorithms in most cases lead to higher quality meshes. The
iterative decimation procedure can take arbitrary user-defined criteria into account, according to
which the next removal operation is chosen. However, their total computation complexity in the
average case is O(n log n) and can go up to O(n2) in the worst case, especially when a global error
threshold is to be respected. Finally, resampling techniques are the most general approach to
mesh decimation. Here, new samples are more or less freely distributed over the original piecewise
linear surface geometry. By connecting these samples a completely new mesh is constructed. The
major motivation for resampling techniques is that they can enforce the decimated mesh to have
a special connectivity structure, i.e. subdivision connectivity (or semi-regular connectivity). By
this they can be used in a straight forward manner to build multiresolution representations based
on subdivision basis functions and their corresponding (pseudo-) wavelets [?]. The most serious
disadvantage of resampling, however, is that alias errors can occur if the sampling pattern is not
perfectly aligned to features in the original geometry. To avoid alias effects, many resampling

95

9 Mesh Decimation

schemes to some degree require manual pre-segmentation of the data for reliable feature detection.
Resampling techniques will be discussed in detail in Chapter ??.

In the following sections we will explain the different approaches to mesh decimation in more
detail. Usually there are many choices for the different ingredients and sub-procedures in each
algorithm and we will point out the advantages and disadvantages for each class (see also [?] for
a comparison of different decimation techniques for point-sampled surfaces).

9.1 Vertex Clustering

The basic idea of vertex clustering is quite simple: for a given approximation tolerance ε we
partition the bounding space around the given object into cells with diameter smaller than that
tolerance. For each cell we compute a representative vertex position, which we assign to all the
vertices that fall into that cell. By this clustering step, original faces degenerate if two or three
of their corners lie in the same cell and consequently are mapped to the same position. The
decimated mesh is eventually obtained by removing all those degenerate faces [?].

The remaining faces correspond to those original triangles whose corners all lie in different
cells. Stated otherwise: if p is the representative vertex for the vertices p0, ...,pn in the cluster
P and q is the representative for the vertices q0...,qm in the cluster Q then p and q are connected
in the decimated mesh if and only if at least one pair of vertices (pi,qj) was connected in the
original mesh.

One immediately obvious draw-back of vertex clustering is that the resulting mesh might no
longer be 2-manifold even if the original mesh was. Topological changes occur when the part
of a surface that collapses into a single point is not homeomorphic to a disc, i.e., when two
different sheets of the surface pass through a single ε-cell. However, this disadvantage can also
be considered as an advantage. Since the scheme is able to change the topology of the given model
we can reduce the object complexity very effectively. Consider, e.g., applying mesh decimation
to a 3D-model of a sponge. Here, any decimation scheme that preserves the surface topology
cannot reduce the mesh complexity significantly since all the small holes have to be preserved.

The computational efficiency of vertex clustering is determined by the effort it takes to map
the mesh vertices to clusters. For simple uniform spatial grids this can be achieved in linear time
with small constants. Then for each cell a representative has to be found which might require
fairly complicated computations but the number of clusters is usually much smaller than the
number of vertices.

Another apparently nice aspect of vertex clustering is that it automatically guarantees a global
approximation tolerance by defining the clusters accordingly. However, in practice it turns out
that the actual approximation error of the decimated mesh is usually much smaller than the radius
of the clusters. This indicates that for a given error threshold, vertex clustering algorithms do
not achieve optimal complexity reduction. Consider, as an extreme example, a very fine planar
mesh. Here decimation down to a single triangle without any approximation error would be
possible. The result of vertex clustering instead will always keep one vertex for every ε-cell.

96

9.1 Vertex Clustering

Figure 9.1: Different choices for the representative vertex when decimating a mesh using clus-
tering. From left to right: Original, average, median, quadric-based.

9.1.1 Computing Cluster Representatives

The way in which vertex clustering algorithms differ is mainly in how they compute the represen-
tative. Simply taking the center of each cell, the straight average, or the median of its members
are obvious choices which, however, rarely lead to satisfying results (cf. Fig. ??).

A more reasonable choice is based on finding the optimal vertex position in the least squares
sense. For this we exploit the fact that for sufficiently small ε the polygonal surface patch that
lies within one ε-cell is expected to be piecewise flat, i.e., either the associated normal cone has
a small opening angle (totally flat) or the patch can be split into a small number of sectors for
which the normal cone has a small opening angle.

The optimal representative vertex position should have a minimum deviation from all the
(regression) tangent planes that correspond to these sectors. If these approximate tangent planes
do not intersect in a single point, we have to compute a solution in the least squares sense.

Consider one triangle ti belonging to a specific cell, i.e., whose corner vertices lie in the same
cell. The quadratic distance of an arbitrary point x from the supporting plane of that triangle
can be computed by

(nTi x− di)2 ,

where ni is the normal vector of ti and di is the scalar product of ni times one of ti’s corner
vertices. The sum of the quadratic distances to all the triangle planes within one cell is given by

E(x) =
∑
i

(nTi x− di)2 . (9.1)

The iso-contours of this error functional are ellipsoids and consequently the resulting error mea-
sure is called quadric error metric (QEM) [?, ?]. The point position where the quadric error is
minimized is given by the solution of(∑

i

ni nTi

)
x =

(∑
i

ni di

)
. (9.2)

If the matrix has full rank, i.e. if the normal vectors of the patch do not lie in a plane, then the
above equation could be solved directly. However, to avoid special case handling and to make
the solution more robust, a pseudo-inverse based on a singular value decomposition should be
used.

97

9 Mesh Decimation

Figure 9.2: Decimation of the dragon mesh consisting of 577.512 triangles (top left) to simplified
version with 10%, 1%, and 0.1% of the original triangle count.

9.2 Incremental Mesh Decimation

Incremental algorithms remove one mesh vertex at a time (see Fig. ??). In each step, the best
candidate for removal is determined based on user-specified criteria. Those criteria can be binary
(= removal is allowed or not) or continuous (= rate the quality of the mesh after the removal
between 0 and 1). Binary criteria usually refer to the global approximation tolerance or to other
minimum requirements, e.g., minimum aspect ratio of triangles. Continuous criteria measure
the fairness of the mesh in some sense, e.g., “round” triangles are better than thin ones, small
normal jumps between neighboring triangles are better than large normal jumps.

Every time a removal has been executed, the surface geometry in the vicinity changes. There-
fore, the quality criteria have to be re-evaluated. During the iterative procedure, this re-
evaluation is the computationally most expensive part. To preserve the order of the candidates,
they are usually kept in a heap data structure with the best removal operation on top. Whenever
removal candidates have to be re-evaluated, they are deleted from the heap and re-inserted with
their new value. By this, the complexity of the update-step increases only like O(log n) for large
meshes if the criteria evaluation itself has constant complexity.

9.2.1 Topological operations

There are several different choices for the basic removal operation. The major design goal is
to keep the operation as simple as possible. In particular this means that we do not want to
remove large parts of the original mesh at once but rather remove a single vertex at a time.
Strong decimation is then achieved by applying many simple decimation step instead of a few

98

9.2 Incremental Mesh Decimation

Vertex Insertion

Vertex Removal

Edge Split

Edge Collapse

Half Edge Collapse

Restricted Vertex Split

Figure 9.3: Euler-operations for incremental mesh decimation and their inverses: vertex removal,
full edge collapse, and half-edge collapse.

complicated ones. If mesh consistency, i.e., topological correctness matters, the decimation
operator has to be an Euler-operator (derived from the Euler formula for graphs) [?].

The first operator one might think of deletes one vertex plus its adjacent triangles. For a vertex
with valence k this leaves a k-sided hole. This hole can be fixed by any polygon triangulation
algorithm [?]. Although there are several combinatorial degrees of freedom, the number of
triangles will always be k − 2. Hence the removal operation decreases the number of vertices by
one and the number of triangles by two (cf. Fig. ??, top).

Another decimation operator takes two adjacent vertices p, q and collapses the edge between
them, i.e., both vertices are moved to the same new position r [?] (cf. Fig. ??, middle). By this
two adjacent triangles degenerate and can be removed from the mesh. In total this operator
also removes one vertex and two triangles. The degrees of freedom in this edge collapse operator
emerge from the freedom to choose the new position r.

Both operators that we discussed so far are not unique. In either case there is some optimization
involved to find the best local triangulation or the best vertex position. Conceptually this is not
well-designed since it mixes the global optimization (which candidate is best according to the
sorting criteria for the heap) with local optimization.

A possible way out is the so-called half-edge collapse operation: for an ordered pair (p, q) of
adjacent vertices, p is moved to q’s position [?] (cf. Fig. ??, bottom). This can be considered as
a special case of edge collapsing where the new vertex position r coincides with q. On the other
hand, it can also be considered as a special case of vertex deletion where the triangulation of the
k-sided hole is generated by connecting all neighboring vertices with vertex q.

The half-edge collapse has no degrees of freedom. Notice that (p → q) and (q → p) are
treated as independent removal operations which both have to be evaluated and stored in the
candidate heap. Since half-edge collapsing is a special case of the other two removal operations,
one might expect an inferior quality of the decimated mesh. In fact, half-edge collapsing merely
sub-samples the set of original vertices while the full edge collapse can act as a low-pass filter

99

9 Mesh Decimation

where new vertex positions are computed, e.g., by averaging original vertex positions. However,
in practice this effect becomes noticeable only for extremely strong decimation where the exact
location of individual vertices really matters.

The big advantage of half-edge collapsing is that for moderate decimation, the global opti-
mization (i.e., candidate selection based on user specified criteria) is completely separated from
the decimation operator which makes the design of mesh decimation schemes more orthogonal.

All the above removal operations preserve the mesh consistency and consequently the topology
of the underlying surface. No holes in the original mesh can be closed, no handles can be
eliminated completely. If a decimation scheme should be able to also simplify the topology of
the input model, we have to use non-Euler removal operators. The most common operator in
this class is the vertex contraction where two vertices p and q can be contracted into one new
vertex r even if they are not connected by an edge [?, ?]. This operation reduces the number
of vertices by one but it does keep the number of triangles constant. The implementation of
mesh decimation based on vertex contraction requires flexible data structures that are able to
represent non-manifold meshes since the surface patch around vertex r after the contraction
might no longer be homeomorphic to a (half-)disc.

9.2.2 Distance measures

Guaranteeing an approximation tolerance during decimation is the most important requirement
for most applications. Usually an upper bound ε is prescribed and the decimation scheme looks
for the mesh with the least number of triangles that stays within ε to the original mesh. However,
exactly computing the geometric distance between two polygonal mesh models is computationally
expensive [?, ?] and hence conservative approximations are used that can be evaluated quickly.

The generic situation during mesh decimation is that each triangle ti in the decimated mesh
is associated with a sub-patch Si of the original mesh. Distance measures have to be computed
between each triangle ti and either the vertices or faces of Si. Depending on the application, we
have to take the maximum distance or we can average the distance over the patch.

The simplest technique is error accumulation [?]. For example each edge collapse operation
modifies the adjacent triangles ti by shifting one of their corner vertices from p or q to r. Hence
the distance of r to ti is an upper bound for the approximation error introduced in this step.
Error accumulation means that we store an error value for each triangle and simply add the
new error contribution for every decimation step. The error accumulation can be done based on
scalar distance values or on distance vectors. Vector addition takes the effect into account that
approximation error estimates in opposite directions can cancel each other.

Another distance measure assigns distance values to the vertices pj of the decimated mesh. It
is based on estimating the squared average of the distances of pj from all the supporting planes
of triangles in the patches Si which are associated with the triangles ti surrounding pj . This is,
in fact, what the quadric error metric does [?].

Initially we compute the error quadric Ej for each original vertex pj according to (??) by
summing over all triangles which are directly adjacent to pj . Since we are interested in the
average squared distance, Ej has to be normalized by dividing through the valence of pj Then,
whenever the edge between two vertices p and q is collapsed, the error quadric for the new vertex
r is found by Er = (Ep + Eq)/2.

The quadric error metric is evaluated by computing Ej(pj). Hence when collapsing p and
q into r, the optimal position for r is given by the solution of (??). Notice that due to the

100

9.2 Incremental Mesh Decimation

averaging step the quadric error metric does neither give a strict upper nor a strict lower bound
on the true geometric error.

Finally, the most expensive but also the sharpest distance error estimate is the Hausdorff-
distance [?]. This distance measure is defined to be the maximum minimum distance, i.e., if
we have two sets A and B then H(A,B) is found by computing the minimum distance d(p,B)
for each point p ∈ A and then taking the maximum of those values. Notice that in general
H(A,B) 6= H(B,A) and hence the symmetric Hausdorff-distance is the maximum of both values.

If we assume that the vertices of the original mesh represent sample points measured on some
original geometry then the faces have been generated by some triangulation pre-process and
should be considered as piecewise linear approximations to the original shape. From this point
of view, the correct error estimate for the decimated mesh would be the one-sided Hausdorff-
distance H(A,B) from the original sample points A to the decimated mesh B.

To efficiently compute the Hausdorff-distance we have to keep track of the assignment of
original vertices to the triangles of the decimated mesh. Whenever an edge collapse operation
is performed, the removed vertices p and q (or p alone in the case of a half-edge collapse)
are assigned to the nearest triangle in a local vicinity. In addition, since the edge collapse
changes the shape of the adjacent triangles, the data points that previously have been assigned
to these triangles, must be re-distributed. By this, every triangle ti of the decimated mesh at
any time maintains a list of original vertices belonging to the currently associated patch Si. The
Hausdorff-distance is then evaluated by finding the most distant point in this list.

A special technique for exact distance computation is suggested in [?], where two offset surfaces
to the original mesh are computed to bound the space where the decimated mesh has to stay in.

9.2.3 Fairness criteria

The distance measures can be used to decide which removal operation among the candidates is
legal and which is not (because it violates the global error threshold ε). In an incremental mesh
decimation scheme we have to provide an additional criterion which ranks all the legal removal
operations. This criterion determines the ordering of the candidates in the heap.

One straightforward solution is to use the distance measure for the ordering as well. This
implies that the decimation algorithm will always remove that vertex in the next step that
increases the approximation error least. While this is a reasonable heuristic in general, we can
use other criteria to optimize the resulting mesh for special application dependent requirements.

For example, we might prefer triangle meshes with faces that are as close as possible to
equilateral. In this case we can measure the quality of a vertex removal operation, e.g., by the
longest edge to inner circle radius ratio of the triangles after the removal.

If we prefer visually smooth meshes, we can use the maximum or average normal jump between
adjacent triangles after the removal as a sorting criterion. Other criteria might include color
deviation or texture distortion if the input data does not consist of pure geometry but also has
color and texture attributes attached [?, ?, ?].

All these different criteria for sorting vertex removal operations are called fairness criteria
since they rate the quality of the mesh beyond the mere approximation tolerance. If we keep
the fairness criterion separate from the other modules in an implementation of incremental mesh
decimation, we can adapt the algorithm to arbitrary user requirement by simply exchanging that

101

9 Mesh Decimation

one procedure. This gives rise to a flexible tool-box for building custom tailored mesh decimation
schemes [?].

9.3 Out-of-core Methods

Mesh decimation is frequently applied to very large data sets that are too complex to fit into main
memory. To avoid severe performance degradation due to virtual memory swapping, out-of-core
algorithms have been proposed that allow an efficient decimation of polygonal meshes without
requiring the entire data set to be present in main memory. The challenge here is to design
suitable data structures that avoid random access to parts of the mesh during the simplification.

Lindstrom [?] presented an approach based on vertex clustering combined with quadric error
metrics for computing the cluster representatives (see Section ??). This algorithm only requires
limited connectivity information and processes meshes stored as a triangle soup, where each
triangle is represented as a triplet of vertex coordinates. Using a single pass over the mesh data
an in-core representation of the simplified mesh is build incrementally. A dynamic hash table is
used for fast localization and quadrics associated with a cluster are aggregated until all triangles
have been processed. The final simplified mesh is then produced by computing a representative
from the per-cluster quadrics and the corresponding connectivity information as described above.

Lindstrom and Silva [?] improve on this approach by removing the requirement for the output
model to fit into main memory by using a multi-pass approach. Their method only requires a
constant amount of memory that is independent of the size of the input and output data. This
improvement is achieved by a careful use of (slower, but cheaper) disk space, which typically leads
to performance overheads between a factor of two and five as compared to [?]. To avoid storing
the list of occupied clusters and associated quadrics in main memory, the required information
from each triangle to compute the quadrics is stored to disk. This file is then sorted according to
the grid locations using an external sort algorithm. Finally, quadrics and final vertex positions
are computed in a single linear sweep over the sorted file. The authors also apply a scheme
similar to the one proposed in [?] to better preserve boundary edges.

Wu and Kobbelt [?] proposed an streaming approach to out-of-core mesh decimation based
edge collapse operations in connection with quadric error metric. Their method uses a fixed-size
active working set and is independent of the input and output model complexity. In contrast
to the previous two approaches for out-of-core decimation, their method allows to prescribe
the size of the output mesh exactly and supports explicit control over the topology during the
simplification. The basic idea is to sequentially stream the mesh data and incrementally apply
decimation operations on an active working set that is kept in main memory. Assuming that the
geometry stream is approximately pre-sorted, e.g., by one coordinate, the spatial coherency then
guarantees that the working set can be small as compared to the total model size (see Fig. ??)
For decimation they apply randomized multiple choice optimization, which has been shown to
produce results of similar quality than the standard greedy optimization. The idea is to select
a small random set of candidate edges for contraction and only collapse the edge with smallest
quadric error. This significantly reduces computation costs, since no global heap data structure
has to be maintained during the simplification process. In order to avoid inconsistencies during
the simplification, edges can only be collapsed, if they are not part of the boundary between
the active working set and the parts of the mesh that are held out-of-core. Since no global
connectivity information is available, this boundary cannot be distinguished from the actual
mesh boundary of the input model. Thus the latter can only be simplified after the entire mesh
has been processed, which can be problematic for meshes with large boundaries.

102

9.3 Out-of-core Methods

Figure 9.4: This snapshot of a stream decimation shows the yet unprocessed part of the input
data (left), the current in-core portion (middle) and the already decimated output (right). The
data in the original file happened to be pre-sorted from right to left (from [?]).

Isenburg et al. introduces mesh processing sequences, which represent a mesh as a fixed in-
terleaved sequence of indexed vertices and triangles [?]. Processing sequences can be used to
improve the out-of-core decimation algorithms described above. Both memory efficiency and
mesh quality are improved for the vertex clustering method of [?], while increased coherency and
explicit boundary information help to reduce the size of the active working set in [?].

Shaffer and Garland [?] proposed a scheme that combines an out-of-core vertex clustering step
with an in-core iterative decimation step. The central observation, which is also the rationale
behind the randomized multiple choice optimization, is that the exact ordering of edge collapses
is only relevant for very coarse approximations. Thus the decimation process can be simplified
by combining many edge collapse operations into single vertex clustering operations to obtain an
intermediate mesh, which then serves as input for the standard greedy decimation (Section ??).
Shaffer and Garland use quadric error metrics for both types of decimation and couple the
two simplification steps by passing the quadrics computed during clustering to the subsequent
iterative edge collapse pass. This coupling achieves significantly improvements when compared
to simply applying the two operations in succession.

103

9 Mesh Decimation

104

10 Remeshing

Remeshing is a key technique for mesh quality improvement in many geometric modeling al-
gorithms, e.g., shape editing, animation, morphing, and numerical simulation. As such, it has
received considerable attention in recent years and a wealth of remeshing algorithms have been
developed. The first goal of remeshing is to reduce the complexity of an input mesh subject
to certain quality criteria. This process is commonly referred to as mesh decimation or mesh
simplification, a topic that is covered in Chapter ?? in more detail. The second goal of remeshing
is to improve the quality of a mesh, such that it can be used as input for various downstream
applications. Different applications, of course, imply different quality criteria and requirements.
For a more complete coverage of the topic we refer the reader to a survey [?]. The latter pro-
poses the following basic definition for remeshing: Given a 3D mesh, compute another mesh
whose elements satisfy some quality requirements, while approximating well the input. Here the
term approximation can be understood with respect to locations as well as to normals or higher
order differential properties.

In contrast to general mesh repair (see Chapter ??), the input of remeshing algorithms is
usually assumed to already be a manifold triangle mesh or part of it. The term mesh quality
thus refers to non-topological properties, such as sampling density, regularity, size, alignment,
and shape of the mesh elements. This chapter in particular deals with these latter aspects of
remeshing and presents various methods that achieve this goal. We begin our discussion by
structuring the different types of remeshing algorithms and by clarifying some concepts that are
commonly used in the remeshing literature. In the following sections we discuss several remeshing
methods in more detail, focusing on the key paradigms behind each of them.

Local Structure The local structure of a mesh is described by the type, shape, orientation, and
distribution of the mesh elements.

• Element type: The most common target element types in remeshing are triangles and quad-
rangles. Triangle meshes are usually easier to produce, while in quadrangular remeshing
one often has to content oneself with results that are only quad-dominant. Note that in
principle any quadrangle mesh can be converted trivially into a triangle mesh by inserting
a diagonal into each quadrangle. Converting a triangle mesh into a quadrangle mesh can
be performed either trivially by barycentric subdivision (splitting each triangle into three
quadrangles by inserting its barycenter and linking it to edge midpoints), or by splitting
each triangle at its barycenter into three new triangles (1-to-3 split) and discarding the
original mesh edges.

• Element shape: Elements can be classified as being either isotropic or anisotropic. The
shape of isotropic elements is locally uniform in all directions. Ideally, it is close to circular,
thus a triangle/quadrangle is isotropic if it is close to equilateral/square. For triangles this
“roundness” can be measured by dividing the length of the shortest edge by the circumcircle
radius, see [?]. Isotropic elements are favored in numerical applications (FEM or geometry

105

10 Remeshing

processing), as the local uniform shape of their elements often leads to a better conditioning
of the resulting systems, see [?] for a more detailed discussion. The shape of anisotropic
elements locally varies according to the orientation on the surface. Anisotropic meshes are
preferred for shape approximation as they usually need fewer elements than their isotropic
pendants to achieve the same approximation quality. Anisotropic elements are commonly
aligned with the principal curvature directions of the surface (see Chapter ??). Furthermore
anisotropic elements are shown to better express the structure of geometric primitives
(plane, cylinders, spheres, ...) inherent in many technical models.

Isotropy

low high

• Element density: In a uniform distribution, the mesh elements are evenly spread across the
entire model. In a non-uniform or adaptive distribution, the number of elements varies,
e.g., smaller elements are assigned to areas with small local feature size. When carefully
designed, adaptive meshes need significantly fewer elements to achieve an approximation
quality that is comparable to that of uniform meshes.

• Element alignment: Converting a piecewise smooth input surface into a (re-)mesh corre-
sponds to a (re-)sampling process. Hence sharp features may be affected by alias-artifacts.
In order to prevent this, elements should be aligned to sharp features such that they prop-
erly represent tangent discontinuities.

Global Structure A vertex in a triangle mesh is called regular, if its valence (i.e., number of
neighboring vertices) is 6 for interior vertices or 4 for boundary vertices. In quadrangle meshes,
the regular valences are 4 and 3, respectively. Vertices that are not regular are called irregular,
singular, or extraordinary.

The global structure of a remesh can be classified as being either completely regular, semi-
regular, highly regular, or irregular, see Fig. ??.

• In a completely regular mesh all vertices are regular. A regular mesh can compactly be
stored in a two-dimensional array which can be used to speed up the visualization (a
so-called geometry image), see [?, ?, ?].

• Semi-regular meshes are produced by regular subdivision of a coarse initial mesh. Thus the
number of extraordinary vertices in a semi-regular mesh is small and constant [?, ?, ?, ?]
under uniform refinement.

• In highly regular meshes most vertices are regular. In contrast to semi-regular meshes,
highly regular meshes need not be the result of a subdivision process [?, ?, ?, ?].

• Irregular meshes do not exhibit any kind of regularities in their connectivity.

Besides this topological characterization, the suitability of a remeshing algorithm usually de-
pends on its ability to capture the global structure of the input geometry by aligning groups of

106

Figure 10.1: Meshes: Irregular, semi-regular and regular.

elements to the dominant geometric features. Since this corresponds to the alignment of entire
submeshes, e.g., to global curvature lines of geometric primitives, it is strongly related to mesh
segmentation techniques [?].

Fully regular meshes can be generated only for a very limited number of input models, namely
those that topologically are (part of) a torus. All other models have to be cut into one or
more topological disks before processing (and then the global regularity is broken at the seams).
Furthermore, special care has to be taken to correctly identify and handle the seams that result
from the cutting. Semi-regular meshes are in particular suitable for multi-resolution analysis and
modeling [?, ?]. They define a natural parameterization of a model over a coarse base mesh.
Thus, some algorithms for semi-regular remeshing are described in Chapter ??. Highly regular
meshes require different techniques for multi-resolution analysis, but still they are well-suited for
numerical simulations. In particular, mesh compression algorithms can take advantage of the
mostly uniform valence distribution and produce a very efficient connectivity encoding [?, ?, ?].

Correspondences All remeshing algorithms compute point locations on or near the original
surface. Most algorithms furthermore iteratively relocate sample points in order to improve the
quality of the mesh. Thus, a key issue in all remeshing algorithms is to compute or to maintain
correspondences between sample points p on the remesh and their counterparts φ(p) on the
input mesh. There are a number of approaches to address this problem:

• Global parameterization: The input model is globally parameterized onto a 2D domain.
Sample points can then be easily distributed and relocated in the 2D domain and later be
“lifted” to 3D.

• Local parameterization: The algorithm maintains a parameterization of a local geodesic
neighborhood around φ(p). When the sample leaves this neighborhood, a new neighbor-
hood has to be computed.

• Projection: The sample point is directly projected to the nearest element (point or triangle)
on the input model.

Global parameterization is in general expensive and may suffer from parametric distortion.
Naive direct projection may produce local and global fold overs if the points are too far away

107

10 Remeshing

from the surface. However, in practice the projection operator can be stabilized by constraining
the movement of the sample points to their tangent planes. Although no theoretical guarantees
can be provided, this makes sure that the samples do not move away too far from the surface,
such that the projection can safely be evaluated. The local parameterization approach is stable
and produces currently the best results, however, it needs expensive book keeping to track, cache,
and re-parameterize the local neighborhoods.

10.1 Isotropic

In an isotropic mesh all triangles are well-shaped, i.e., ideally equilateral. One may further re-
quire a globally uniform vertex density or allow a smooth change in the triangle sizes, i.e., a
smooth gradation. There are a number of algorithms for isotropic remeshing of triangle meshes,
see [?]. In this section we describe three different paradigms commonly employed for isotropic
remeshing, then describe three representative algorithms for these paradigms.

Existing algorithms could be roughly classified as being greedy, variational, or pliant. Greedy
algorithms commonly perform one local change at a time, such as vertex insertion, until the initial
stated goal is satisfied. Variational techniques cast the initial problem into the one of minimizing
an energy functional such that low levels of this energy correspond to good solutions for this
problem (reaching a global optimum is in general elusive). A minimizer for this energy commonly
performs global relaxation, i.e., vertex relocations and re-triangulation until convergence. Finally,
an algorithm is pliant when it combines both refinement and decimation, possibly interleaved
with a relaxation procedure (see [?]).

10.1.1 Greedy

The greedy surface meshing algorithm described in [?] is flexible enough to be used for isotropic
surface remeshing. The core principle behind this algorithm relies on refining and filtering a
3D Delaunay triangulation. At each refinement step one point taken on the input surface is
inserted to the 3D triangulation. The point location is chosen among the intersections of the
input surface S with the Voronoi edges of the triangulation. The filtering process consists of
selecting a subset of the 3D Delaunay facets, whose dual edges intersect S. After refinement, the
resulting subcomplex, called Delaunay triangulation restricted to S, enjoys several guarantees.

Guarantees Although remarkably simple in principle, the algorithm summarized above is shown
to terminate after a finite number of refinement steps. Moreover, the number of vertices added
is asymptotically within a constant factor of the optimal. Upon termination, the output of the
algorithm (i.e., the piecewise linear interpolation derived from the restricted Delaunay triangu-
lation), is shown to enjoy both approximation guarantees in terms of topology and geometry,
and quality guarantees in terms of shape of the mesh elements. More precisely, the restricted
Delaunay triangulation is homeomorphic to the input surface S and approximates it in terms of
Hausdorff distance, normals, curvature, and area. All angles of the triangles are bounded, which
provides us with a mesh quality amenable to reliable mesh processing operations and faithful
simulations. Further theoretical developments for this approach have been presented in [?].

108

10.1 Isotropic

Figure 10.2: Remeshing by Delaunay refinement and filtering. The input mesh (left) is the
output of a marching cubes algorithm over an octree.

Flexibility The elementary operation of the meshing process reduces to the insertion of a new
vertex into the 3D Delaunay triangulation which interpolates the input surface. The only assump-
tion made is that the input surface representation is amenable to simple geometric computations,
namely its intersection with a line. In other words, the shape to be discretized is only known
through an Oracle which provides answers to intersection predicates. The input shape can thus
be represented as a surface mesh, hence its use for remeshing, see examples Fig. ?? and Fig. ??.
Furthermore, the input shape can be a surface reconstructed from another representation such
as a point set or a set of slices.

Figure 10.3: Isotropic remeshing by Delaunay refinement and filtering. The input mesh (left) is
the output of an interpolatory surface reconstruction algorithm.

Discussion The main advantages of such greedy algorithm are its guaranteed properties. It
is also quite robust as it does not resort to any local or global parameterization technique but
constructs a 3D tetrahedral mesh instead. The following questions may arise: Can we construct
a mesh of higher quality? With fewer vertices while satisfying the same set of constraints? These
questions are partially addressed by some variational techniques.

109

10 Remeshing

10.1.2 Variational

When high quality meshes are sought after, it may be desirable to resort to an optimization
procedure. Two questions now arise: Which criterion should we optimize? By exploiting which
degrees of freedom? The optimized criterion can be directly related to the shape and size of the
triangles, but we will describe next how other criteria achieve satisfactory results as well. As
the number of degrees of freedom are both continuous and discrete (vertex positions and mesh
connectivity), there is a need for narrowing the space of possible triangulations.

Mesh optimization, also commonly referred to as mesh smoothing in the meshing community,
has addressed parts of these questions, although some work remains to be done in order to spe-
cialize these technique to remeshing of surfaces. We refer the reader to a comprehensive survey
of mesh optimization techniques [?].

Designing a variational algorithm requires defining an energy to minimize, and a minimizer
for this energy. Ideally, the minimizer is fast, robust, and converges to a global optimum. In
practice however, the space of possible solutions is so vast that reaching a global optimum is a
mirage, even more so when the notion of “best possible mesh” is not uniquely defined. The zoo
of criteria used for the optimization (see e.g., [?]) reveals the difficulty of choosing one criterion
to optimize: Should we optimize over the triangle angles? The edge lengths? The compactness of
the triangles? Although one optimization technique has been specifically designed for optimizing
the shape of the triangles [?], a class of mesh smoothing techniques rely on the observation that
isotropic 2D point samplings lead to well-shaped triangles [?]. Note that in 3D this observation
does not hold anymore as sliver tetrahedra can occur. Isotropic remeshing can therefore be
casted into the problem of isotropic point sampling, which amounts to distribute a set of points
on the input mesh in as even a manner as possible.

One approach to evenly distribute a set of points in 2D is to construct a centroidal Voronoi
tessellation [?]. Given a density function defined over a bounded domain Ω, a centroidal Voronoi
tessellation (denoted CVT) of Ω is a class of Voronoi tessellations, where each site coincides with
the centroid (i.e., center of mass) of its Voronoi region. The centroid ci of a Voronoi region Vi is
calculated as:

ci =

∫
Vi

x · ρ(x) dx∫
Vi
ρ(x) dx

, (10.1)

where ρ(x) is the density function of Vi. This structure turns out to have a surprisingly broad
range of applications for numerical analysis, location optimization, optimal repartition of re-
sources, cell growth, vector quantization, etc. This follows from the mathematical importance of
its relationship with the energy function

E(z, V) =
n∑
i=1

∫
Vi

ρ(x) ‖x− zi‖2 dx , (10.2)

where V ∈ Ω and z ∈ V . We can show that (i) the energy function is minimized at the mass
centroid of a given region, and (ii) for a given set of centers Z = {zi}, the energy function
E(Z, V) is minimized when V is a Voronoi tessellation.

110

10.1 Isotropic

Figure 10.4: Left: ordinary Voronoi tessellation. Middle left: Voronoi tessellation after one
Lloyd iteration. Middle right: Voronoi tessellation after three Lloyd iterations. Right: centroidal
Voronoi tessellation obtained after convergence of the Lloyd iteration. Each generator coincides
with the centroid (center of mass) of its Voronoi cell.

One way to build a centroidal Voronoi tessellation is to use Lloyd’s relaxation method. The
Lloyd algorithm is a deterministic, fixed point iteration [?]. Given a density function and an
initial set of n sites, it consists of the following three steps (see Fig. ??):

1. Construct the Voronoi tessellation corresponding to the n sites;

2. Compute the centroids of the n Voronoi regions with respect to the density function, and
move the n sites to their respective centroids;

3. Repeat steps 1 and 2 until satisfactory convergence is achieved.

Alliez et al. [?] propose a surface remeshing technique based on Lloyd relaxation. It uses a
global conformal planar parameterization and then applies relaxation in the parameter space us-
ing a density function designed to compensate for the area distortion due to flattening (see Fig. ??).

To alleviate the numerical issues for high isoperimetric distortion, as well as the artificial
cuts required for closed or models with non-trivial topology, Surazhsky et al. apply the Lloyd
relaxation procedure on a set of local overlapping parameterizations, see Fig. ??. The Lloyd-based
isotropic remeshing approach has been later extended in two directions: One uses the geodesic
distance on triangle meshes to generate a centroidal geodesic-based Voronoi diagram [?], while
the other is an efficient discrete analog of the Lloyd relaxation applied onto the input mesh
triangles [?].

10.1.3 Pliant

In this section we present an efficient remeshing algorithm that produces isotropic triangle
meshes. The algorithm was presented in [?] and is a simplified version of [?] and an exten-
sion to [?]. It produces results that are comparable to the ones by the original algorithm, but
has the advantage of being simpler to implement and robust. In particular, it does not need
a (global or local) parameterization or the involved computation of (geodesic) Voronoi cells as,
e.g., [?]. The algorithm takes as input a target edge length and then repeatedly splits long edges,
collapses short edges, and relocates vertices until all edges are approximately of the desired target
edge length. Thus the algorithm runs the following loop:

111

10 Remeshing

Figure 10.5: Isotropic remeshing of the Michelangelo David head.

Figure 10.6: Isotropic remeshing using overlapping parameterizations.

112

10.1 Isotropic

Figure 10.7: Isotropic remeshing. Left and center left: Max Planck model at full resolution.
Center right and right: Uniform and adaptive remeshes.

remesh(target edge length)
low = 4/5 * target edge length
high = 4/3 * target edge length
for i = 0 to 10 do

split long edges(high)
collapse short edges(low,high)
equalize valences()
tangential relaxation()
project to surface()

Notice that the proper thresholds 4
5 and 4

3 are essential to converge to a uniform edge length [?].
The values are derived from considerations to make sure that the edge lengths are closer to the
target lengths after a split or collapse operation than before. A hysteresis behavior is induced
by the interleaved tangential smoothing operator.

The split long edges(high) function visits all edges of the current mesh. If an edge is longer
than the given threshold high, the edge is split at its midpoint and the two adjacent triangles
are bisected (2-4 split).

split long edges(high)
while exists edge e with length(e)>high do

split e at midpoint(e)

The collapse short edges(low, high) function collapses and thus removes all edges that are
shorter than a threshold low. Here one has to take care of a subtle problem: by collapsing
along chains of short edges the algorithm may create new edges that are arbitrarily long and
thus undo the work that was done in split long edges(high). This issue is resolved by testing
before each collapse whether the collapse would produce an edge that is longer than high. If so,
the collapse is not executed.

collapse short edges(low, high)
finished = false
while exists edge e with length(e)<low and not finished do

113

10 Remeshing

finished = true
let e=(a,b) and let a[1],...,a[n] be the 1-ring of a
collapse ok = true
for i = 1 to n do

if length(b,a[i])>high then
collapse ok = false

if collapse ok then
collapse a into b along e
finished = false

The equalize valences() function equalizes the vertex valences by flipping edges. The target
valence target val(v) is 6 and 4 for interior and boundary vertices, respectively. The algorithm
tentatively flips each edge e and checks whether the deviation to the target valences decreases.
If not, the edge is flipped back.

equalize valences()
for each edge e do

let a,b,c,d be the vertices of the two triangles adjacent to e
deviation pre = abs(valence(a)-target val(a)) + abs(valence(b)-target val(b))

+ abs(valence(c)-target val(c)) + abs(valence(d)-target val(d))
flip(e)
deviation post = abs(valence(a)-target val(a)) + abs(valence(b)-target val(b))

+ abs(valence(c)-target val(c)) + abs(valence(d)-target val(d))
if deviation pre ≤ deviation post do

flip(e)

The tangential relaxation() function applies an iterative smoothing filter to the mesh. Here the
vertex movement has to be constrained to the vertex’ tangent plane in order to stabilize the
following projection operator. Let p be an arbitrary vertex in the current mesh, let n be its
normal, and let q be the position of the vertex as calculated by a smoothing algorithms with
uniform Laplacian weights (see Chapter ??). The new position p′ of p is then computed by
projecting q onto p’s tangent plane

p′ = q + nnT (p− q) .

Again, this can be easily implemented:

tangential relaxation()
for each vertex v do

q[v] = the barycenter of v’s neighbor vertices
for each vertex v do

let p[v] and n[v] be the position and normal of v, respectively
p[v] = q[v] + dot(n[v],(p[v]-q[v]))*n[v]

Finally, the project to surface() function maps the vertices back to the surface.

Feature preservation A few simple rules suffice to make sure that the remeshing algorithm
preserves the features of the input model, see Fig. ??. Here we assume, that the feature edges
and vertices have already been marked in the input model, e.g., by automatic feature detection
algorithms or by manual specification [?, ?].

114

10.2 Quadrangle

• Corner vertices with more than two or exactly one incident feature edge have to be preserved
and are excluded from all topological and geometric operations.

• Feature vertices may only be collapsed along their incident feature edges.

• Splitting a feature edge creates two new feature edges and a feature vertex.

• Feature edges are never flipped.

• Tangential smoothing of feature vertices is restricted to univariate smoothing along the
corresponding feature lines.

As can be seen in Fig. ?? and Fig. ??, the algorithm above produces quite good results. It
is also possible to incorporate additional regularization terms by adjusting the weights that are
used in the smoothing phase. This allows to achieve a uniform triangle area distribution or
to implement an adaptive remeshing algorithm that produces finer elements in regions of high
curvature.

Figure 10.8: Isotropic, feature sensitive remeshing of a CAD model.

10.2 Quadrangle

Partitioning a surface into quadrilateral regions is a common requirement in computer graphics,
computer aided geometric design and, reverse engineering. Such quad tilings are amenable to a
variety of subsequent applications due to their tensor-product nature, such as B-spline fitting,
simulation, texture atlasing, and complex rendering with highly detailed modulation maps. Quad
meshes are also useful in modeling as they aptly capture the symmetries of natural or man-made
geometry.

In an anisotropic mesh the elements align to the principal curvature directions, i.e., they are
elongated along the minimum curvature direction and shortened along the maximum curvature
direction (see Chapter ??). Anisotropic triangle remeshes of a given target complexity can easily
be produced by incrementally decimating the input model down to a desired target complexity
(see also Section ??). No matter whether one uses quadric error metrics, (one-sided) Hausdorff-
distance, or the normal deviation to rank the priorities of removal operations, the result will
always be an anisotropic triangle mesh that naturally aligns to the principal curvature directions.
The remeshes that are produced by this method satisfy the definition of being anisotropic, but
unfortunately they do not convey the orthogonal structure of the curvature lines. To produce
such a structure, it is usually better to first compute a quadrangle remesh.

115

10 Remeshing

Automatically converting a triangulated surface (issued, e.g., from a 3D scanner) into a quad
mesh is a notoriously difficult task. Stringent topological conditions make quadrangulating a
domain or a surface a rather constrained and global problem compared to triangulating a do-
main. Application-dependent meshing requirements such as edge orthogonality, alignment of the
elements with the geometry, sizing, and mesh regularity add further hurdles.

Several paradigms have been proposed for generating quadrangle meshes:

• Quadrangulation: A number of techniques have been proposed to quadrangulate point
sets. A subset of these techniques allow generating all-convex quadrangles by adding Steiner
points [?], and well-shaped quadrangles using some circle packing technique [?]. Quadrangle
meshing thus amounts to carefully placing a set of points, which are then automatically
quadrangulated. In the context of surface remeshing, the main issue with this paradigm is
the lack of control over the alignment of the edges and over the mesh regularity.

• Conversion: One way to generate quadrangle meshes is to first generate a triangle or
polygon mesh, then convert it to a quadrangle mesh. Examples of such approaches typically
proceed by pairwise triangle merging and 4-8 subdivision, or by bisection of hex-dominant
meshes followed by barycentric subdivision [?]. As for quadrangulation of point sets, this
approach provides the user with little control over alignment of the mesh edges.

• Curve-based sampling: One way to control the edge alignment of the mesh edges is to
place a set of curves which are everywhere tangent to direction fields. The vertices of
the final remesh are obtained by intersecting the networks of curves. When using lines of
curvatures the output meshes are quad-dominant, although not pure quadrangle meshes as
T-junctions can appear due to the greedy process used for tracing the lines of curvatures.
Another curve-based approach consists of placing a set of minimum-bending curves.

• Contouring: When pure quadrangle meshes are sought after (without T-junctions), a robust
approach consists of computing two scalar functions, and extracting a quadrangle surface
tiling by contouring these functions along well-chosen isovalues. These methods include
the parameterization-based techniques (see Chapter ??).

In the following sections, we restrict ourselves to the approaches based upon curve-based
sampling and contouring.

10.2.1 Curve-Based Sampling

Lines of Curvatures. The remeshing technique introduced by Alliez et al. [?] generates a quad-
dominant mesh that reflects the symmetries of the input shape by sampling the input shape with
curves instead of the usual points (see Fig. ??). The algorithm has three main stages. The first
stage recovers a continuous model from the input triangle mesh by estimating one 3D curvature
tensor per vertex (see Chapter ??). The normal component of each tensor is then discarded
and a 2D piecewise linear curvature tensor field is built after computing a discrete conformal
parameterization. This field is then altered to obtain smoother principal curvature directions.
The singularities of the tensor field (the umbilics) are also extracted. The second stage consists
of resampling the original mesh in parameter space by building a network of lines of curvatures
(a set of “streamlines” approximated by polylines) following the principal curvature directions.
A user-prescribed approximation precision in conjunction with the estimated curvatures is used
to define the local density of lines of curvatures at each point in parameter space during the

116

10.2 Quadrangle

Figure 10.9: Anisotropic remeshing: From an input triangulated geometry, the curvature tensor
field is estimated, then smoothed, and its umbilics are deduced (colored dots). Lines of curvatures
(following the principal directions) are then traced on the surface, with a local density guided
by the principal curvatures, while usual point-sampling is used near umbilic points (spherical
regions). The final mesh is extracted by subsampling, and conforming-edge insertion. The result
is an anisotropic mesh, with elongated quads aligned to the original principal directions, and
triangles in isotropic regions.

integration of streamlines. The third stage deduces the vertices of the new mesh by intersecting
the lines of curvatures in anisotropic areas and by selecting a subset of the umbilics in isotropic
areas (estimated to be spherical). The edges are obtained by straightening the lines of curvatures
in-between the newly extracted vertices in anisotropic areas, and deduced from the Delaunay
triangulation in isotropic areas. The final output is a polygon mesh with mostly elongated
quadrilateral elements in anisotropic areas, and triangles on isotropic areas. Quads are placed
mostly in regions with two estimated axis of symmetry, while triangles are used to either tile
isotropic areas or to generate conforming convex polygonal elements. In flat areas the infinite
spacing of streamlines will not produce any polygons, except for the sake of convex decomposition.

117

10 Remeshing

Marinov and Kobbelt [?] propose a variant of Alliez et al.’s algorithm, that differs from the
original work in two aspects (see Fig. ??):

• Curvature line tracking and meshing are all done in 3D space: There is no need to compute
a global parameterization such that objects of arbitrary genus can be processed.

• The algorithm is able to compute a quad-dominant, anisotropic remesh even in flat regions
of the model, where there are no reliable curvature estimates by extrapolating directional
information from neighboring anisotropic regions.

In addition to mere curvature directions, a confidence value for each face and vertex of the input
mesh is estimated as well. The estimate is based on the coherence of the principal directions at
the face’s vertices. This confidence estimate is then used to propagate the curvature tensors from
regions of high confidence (highly curved regions) into regions of low confidence (flat regions and
noisy regions). Curvature lines are traced directly on the 3D mesh, i.e., at any time a line sample
position is identified by a tuple (f, (u, v, w)) where f is the index of a triangle and (u, v, w) are the
barycentric coordinates of the sample within that triangle. To advance the current sample point,
the face f and its neighborhood are locally flattened, either by a hinge map (if the curvature line
crosses an edge of f) or by a polar map (if the curvature line crosses one of f ’s vertices).

Hinge map Polar map

When the traced line enters a region of low confidence, the algorithm switches the tracing
mode: Instead of integrating along the principal curvatures, the line is simply extrapolated from
its last sample points along a geodesic curve until it enters a region of high confidence again. At
this point the line is then “snapped” to the most similar principal curvature direction.

Due to the strong visual and structural importance of curvatures, remeshing algorithms that
track these lines produce results that are similar to those that would have been created by a
human designer. However, reliably estimating and tracking the principal curvatures on a discrete
triangle mesh is not that easy, in particular for coarse or noisy meshes. Alliez et al.’s algorithm
out-sources most of the computationally hard work to a constrained Delaunay triangulation
(e.g., the one provided by CGAL) by globally paramaterizing the whole input model. Apart
from being hard to compute for large models, a global parameterization restricts the inputs to
genus-0 manifolds with a single boundary loop. Higher genus objects have to be cut open along
each handle. The approach of Marinov et al. is parameterization-free and has no restrictions
on the topology of the input model. However, the extraction of the final mesh might lead to
non-manifold configurations that have to be handled and fixed in a post-processing step.

Minimum bending energy curves. In [?] a quad-dominant remeshing algorithm is proposed that
exploits the mesh segmentationR produced by the algorithm described in [?]. First sample points

118

10.2 Quadrangle

Figure 10.10: Quad-dominant remeshing. Left: The input is a manifold triangle mesh. Middle:
In regions of low confidence, the curvature lines are not well-defined. The algorithm bridges
these regions by extrapolation and produces the result on the right.

are uniformly distributed on the boundaries of the patches Ri and each patch is parameterized
over a 2D domain. There, each pair of sample points is connected by a cubic curve that minimizes
its bending energy. A discrete optimization algorithm selects a subset of the cubics that produces
the most well-shaped elements. The resulting quad-dominant mesh is then projected back to 3D.
This algorithm is able to bridge flat, isotropic or noisy regions of the input mesh in a robust
manner, see Fig. ??.

Figure 10.11: Quadrilateral remeshing by segmentation and fitting of minimum-bending curves.

10.2.2 Contouring

In our taxonomy a quad-dominant remeshing technique based upon contouring consists of com-
puting two scalar functions, and extracting a quadrangle tiling by contouring these functions
along well-chosen isovalues. Although any mesh parameterization technique can be used for
computing quadrangle surface tilings by contouring isoparameter lines, we wish to focus on the
techniques which allows the user to control the alignment of the mesh edges, and refer the reader
to Chapter ?? otherwise.

Dong et al. [?] propose a hybrid technique which combines contouring of a function, and
placement of streamlines. A harmonic function is computed on the input mesh, then drawing
isocontours of this function, and placing a set of orthogonal streamlines results in a good quad
remesh (see Fig. ??). The few T-junctions which remain due to the termination of streamlines
are removed by adding conforming edges. Examples are shown where harmonic line singularities
are specified by the user in order to locally control the alignment of the mesh edges.

119

10 Remeshing

Figure 10.12: Quadrilateral remeshing of arbitrary manifolds: A harmonic function is computed
over the manifold. A set of crossings along each flow line is constructed. A non-conforming
mesh is extracted from this net of flow crossings. A post-process produces a conforming mesh
composed solely of triangles and quadrilaterals. Figure taken from [?].

Ray et al. [?] introduce another contouring technique performing a non-linear optimization
of periodic parameters to best align directions along two given orthogonal vector fields, offering
more freedom on the type of singularities than any previous approach. In particular, indices of
type 1/2 and 1/4 can be introduced, allowing a balance between area distortion and alignment
control. A curl-correction step modulating the norm of the vector field is used to minimize the
number of point singularities, hence the number of irregular vertices in the final remesh. When
the input vector fields are derived from estimated principal curvature directions, this technique
generates high quality meshes both automatically and efficiently (see Fig. ??).

Dong et al. [?] propose to generate quadrangle tilings by computing Laplacian eigenfunctions
of the input triangle mesh. A Morse-Smale complex is extracted from one Laplacian eigenvector,
and refined using a globally smooth parameterization technique. The results show that the eigen-
functions distribute their extrema evenly across the mesh, which generates reasonably uniform
quadrangulations (see Fig. ??). The mesh density can be adjusted by selecting the appropriate
Laplacian eigenvalue.

Given a triangle surface mesh and a user-defined singularity graph, Tong et al. [?] compute two
harmonic scalar functions, whose isolines tile the input surface into quadrangles. The key idea
is to extend the discrete Laplace operator which encompasses several types of line singularities.
The resulting two discrete differential 1-forms are either regular, opposite, or switched along the
singularity graph edges. This modification is shown to guarantee the continuity of the isolines
across the lines, while the locations of the isolines themselves depend on the global solution to
the modified Laplace equation over the whole surface (see Fig. ??). The idea originates from

120

10.2 Quadrangle

Figure 10.13: Left: input triangle mesh. Middle: estimated curvature directions. Right: quad-
dominant tiling.

Figure 10.14: Spectral surface quadrangulation. Figure taken from [?].

the observation that it is sufficient to search for two scalar functions whose union of isocontours
match across the line singularities. Design flexibility is provided through specification of the
type of each line singularity of the graph, as well as the number of isolines along independent
meta-edges to control quad sizes.

Given a triangle surface mesh, a frame field and a user-defined cut graph, Kälberer et al. [?]
generate a quadrangulation whose edges best align to the input frame field. The key idea herein
is to construct a 4-branched covering of the input triangle mesh from the cut graph, such that
the input frame field can be converted into an integrable vector field. The latter conversion is
performed by Hodge decomposition on the covering space, which leads to a locally integrable
(harmonic) vector field. The final quadrangulation is obtained by contouring the two associated
piecewise linear harmonic functions (see Fig. ??).

Discussion. All methods based upon contouring of scalar functions are in general robust and
well suited to generate quadrangulations with no T-junctions. The periodic global parameter-
ization approach proposed by Ray et al. [?] currently provides the best automatic solution to
generated quadrangulations with controlled alignment of the mesh edges. Although the notion
of harmonic line singularity proposed by Tong et al. [?] advances the knowledge for further con-
trol over edge alignment, it requires a user-defined singularity graph. The next challenge would
be to turn this approach into a fully automatic algorithm, ultimately where the design of the
singularity graph itself would be part of an optimization process.

121

10 Remeshing

Figure 10.15: Quadrangle surface tiling through contouring. Top: Two harmonic potentials
with user-defined line singularities. Middle: Pair of 1-forms associated to the potentials. Bottom
right: Isocontouring these potentials results in a quadrangle tiling.

10.3 Error-Driven

Error-driven remeshing amounts to generating meshes which maximize the trade-off between
complexity and accuracy. The complexity is expressed in terms of the number of mesh elements,
while the geometric accuracy is measured relative to the input mesh and according to a predefined
distortion error measure. The efficiency of a mesh is qualified by the error per element ratio (the
smaller, the better). One usually wants to minimize the approximation error for a given budget
of elements, or conversely, minimize the number of elements for a given error tolerance.

Efficient representation of complex shapes is of fundamental importance, in particular for
applications dealing with digital models generated by laser scanning or isosurfacing of volume
data. This is mainly due to the fact that the complexity of numerous algorithms is proportional
to the number of mesh primitives. Examples of related applications are modeling, processing,
simulation, storage, or transmission. Even for most rendering algorithms, polygon count is still
the main bottleneck. Being able to automatically adapt the newly generated mesh to the local
shape complexity is of crucial importance in this context. Mesh simplification or refinement
methods are obvious ways for generating efficient meshes. We refer the reader to Chapter ?? for
a treatment of this topic. In this section we focus on techniques that are specifically designed

122

10.3 Error-Driven

Figure 10.16: QuadCover. Left: A frame field lifted to a vector field on the covering. Middle:
Branch point of the covering. Right: Final quadrangulation.

to exploit a shape’s local planarity, symmetry, and features in order to optimize its geometric
representation.

Variational shape approximation (VSA) is a relatively new approach to remeshing (and to
shape approximation in general) introduced by Cohen-Steiner et al. [?]. VSA is highly sensitive to
features and symmetries and produces anisotropic remeshings of high approximation quality. In
VSA the input shape is approximated by a set of proxies. The approximation error is iteratively
decreased by clustering faces into best-fitting regions. In contrast to the remeshing methods
presented in the previous sections, VSA does not require a parameterization of the input or local
estimates of differential quantities. Apart from remeshing, VSA techniques can also be used in
mesh segmentation.

Let M be a triangle mesh and let R = {R1, . . . ,Rk} be a partition of M into k regions, i.e.,
Ri ⊂M and

R1 ∪ · · · ∪ Rk =M .

Furthermore let P = {P1, . . . , Pk} be a set of proxies. A proxy Pi = (xi,ni) is simply a plane in
space through the point xi with normal direction ni. Cohen-Steiner et al. consider two metrics
that measure a generalized distance of a region Ri to its proxy Pi. The standard L2 metric is
defined as

L2(Ri, Pi) =
∫
x∈Ri

||x− πi(x)||2 dx ,

where πi(x) = x− ninTi (x− xi) is the orthogonal projection of x onto Pi. They also introduce
a new shape metric L2,1 that is based on a measure of the normal field

L2,1(Ri, Pi) =
∫
x∈Ri

||n(x)− ni||2 dx .

The goal of variational shape approximation is then the following: Given a number k and an
error metric E (i.e., either E = L2 or E = L2,1) find a set R = {R1, . . . ,Rk} of regions and a
set P = {P1, . . . , Pk} of proxies such that the global distortion

E(R,P) =
k∑
i=1

E(Ri, Pi) (10.3)

is minimized. For remeshing purposes one can then extract a remesh of the original input from
the proxies.

123

10 Remeshing

In the following we describe and compare two algorithms for computing an (approximate)
minimum of Eq. (??). The first algorithm is due to Cohen-Steiner et al. and uses Lloyd-clustering
to produce the regionsRi. The second method is a greedy approximation to VSA with additional
injectivity guarantees.

10.3.1 Variational

Cohen-Steiner et al. [?] use a method to minimize Eq. (??) that is inspired by Lloyd’s clustering
algorithm, which has been used for mesh segmentation in [?]. The algorithm iteratively alternates
between a geometry partitioning phase and a proxy fitting phase. In the geometry partitioning
phase the algorithm computes a set of regions that best fit a given set of proxies. In the proxy
fitting phase, the partitioning is kept fixed and the proxies are adjusted.

Geometry partitioning In the geometry partitioning phase, the algorithm modifies the set R
of regions to achieve a lower approximation error Eq. (??) while keeping the proxies P fixed. It
does so by first selecting a number of seed triangles and then greedily growing new regions Ri
around these seeds.

First the algorithm picks the triangle ti from each region Ri that is most similar to its asso-
ciated proxy Pi. This can easily be done by iterating once over all triangles t in Ri and finding
the one that minimizes E(t, Pi).

After initializing Ri = {ti}, the algorithm simultaneously grows the sets Ri. A priority queue
contains candidate pairs (t, Pi) of triangles and proxies. The priority of a triangle/proxy pair
(t, Pi) is naturally given as E(t, Pi). For each seed triangle ti its neighboring triangles r are
found and the pairs (r, Pi) are inserted into the queue. The algorithm then iteratively removes
pairs (t, Pi) from the queue, checks whether t has already been conquered by the region growing
process, and if not assigns t to Ri. Again the unconquered neighbor triangles r of t are selected
and the pairs (r, Pi) are inserted to the queue. This process is iterated until the queue is empty
and all triangles are assigned to a region. Note that a given triangle can appear up to three times
simultaneously in the queue. One could of course check for each triangle, whether it already is
in the queue and if so take appropriate measures. Instead of this expensive check the algorithm
rather keeps a status bit conquered for each triangle and checks this bit before assigning a triangle
to a region. The following pseudo-code summarizes the geometry partitioning procedure:

partition(R = {R1, . . . ,Rk},P = {P1, . . . , Pk})

// find the seed triangles and initialize the priority queue
queue = ∅
for i = 1 to k do

select the triangle t ∈ Ri that minimizes E(t, Pi)
Ri = {T}
set t to conquered
for all neighbors r of t do

insert (r, Pi) into queue

// grow the regions
while the queue is not empty do

get next (t, Pi) from the queue
if t is not conquered then

set t to conquered

124

10.3 Error-Driven

Ri = Ri ∪ {t}
for all neighbors r of t do

if r is not conquered then
insert (r, Pi) into queue

To initialize the algorithm one randomly picks k triangles t1, . . . , tk on the input model, sets
Ri = {ti} and initializes Pi = (xi,ni) where xi is an arbitrary point on ti and ni is ti’s normal.
Then regions are grown as in the geometry partitioning phase.

Proxy fitting In the proxy fitting phase, the partition R is kept fixed while the proxies Pi =
(xi,ni) are adjusted in order to minimize Eq. (??). For the L2 metric the best proxy is the
area weighted least-squares fitting plane. It can be found using standard principal component
analysis. When using the L2,1 metric, the proxy normal ni is just the area-weighted average of
the triangle normals. The base point xi is irrelevant for L2,1, but is set to the barycenter of Ri
for remeshing purposes.

Extracting the remesh From an optimal partitioning R = {R1, . . . ,Rk} and corresponding
proxies P = {P1, . . . , Pk} one can now extract an anisotropic remesh as follows: First, all vertices
in the original mesh that are adjacent to three or more different regions are identified. These
vertices are projected onto each proxy and their average position is computed. These so-called
anchor vertices are then connected by tracing the boundaries of the regions R. The resulting
faces are triangulated by performing a “discrete” Delaunay triangulation, see example Fig. ??).

Figure 10.17: Variational Shape Approximation applied to the fandisk model.

Generalizations In [?] the variational shape approximation approach is taken a step further by
allowing for proxies other than simple planes, e.g., spheres, cylinders, and rolling-ball blends.
Apart from requiring fewer primitives to achieve a certain fitting approximation, this method
can also recover the “semantic structure” of an input model to some extend, see Fig. ??. In [?]
a similar idea is used to decompose the input mesh into nearly developable segments.

Another recent extension of this algorithm to handle general quadric proxies has been elab-
orated by Yan et al. [?]. Faithful approximations are obtained using fewer proxies than when
using planar proxies, see Fig. ??.

125

10 Remeshing

Figure 10.18: Hybrid Variational Surface Approximation: In addition to planes, Wu and Kobbelt
also use more general proxies like spheres, cylinders, and rolling ball blends. These proxies allow
to recover the semantic structure of the input model.

Figure 10.19: Stanford bunny approximated by 28 quadric proxies. Figure taken from [?].

10.3.2 Greedy

In [?] a greedy algorithm to compute an approximate minimum of Eq. (??) is proposed (see Fig. ??).
It’s main advantages are:

• The algorithm naturally generates a multi-resolution hierarchy of shape approximations
(Fig. ??).

• The output is guaranteed to be free of fold-overs and degenerate faces.

On the downside, due to its greedy approach, it is more likely that the algorithm gets stuck in a
local minimum (although this is rarely observed in practice). Furthermore, its implementation
is involved and requires the robust computation of Delaunay triangulations.

Setup In addition to the partition R = {R1, . . . ,Rk} and the proxies P = {P1, . . . , Pk}, the
algorithm maintains a set of polygonal faces F = {f1, . . . , fk}. Each face fi can be an arbitrary
connected polygon, i.e., it has an outer boundary and possibly a number of inner boundaries
around interior holes. At the beginning of the algorithm we initialize the sets R,P, and F as
follows:

126

10.3 Error-Driven

Figure 10.20: A multi-resolution hierarchy of differently detailed meshes that was created by
variational shape approximation.

• Ri = {ti}, i.e., each triangle makes up a region on its own.

• The proxy of Ri is set to Pi = (xi,ni) where xi is an arbitrary point on ti and ni is ti’s
normal.

• fi = ti, in particular the projection of fi onto Pi is injective.

Algorithm Invariant The goal of the algorithm is to guarantee a valid shape approximation
that is free of fold-overs and degenerate faces. This is achieved by maintaining the following
invariant at all times during the run of the algorithm:

Injectivity constraint: The projection of fi onto Pi is injective.

Note that the initial settings for the sets R, P, and F satisfy this constraint.

Due to the injectivity constraint, one is able to extract a valid triangle mesh at all times during
the run of the algorithm. To produce a triangulation Di of a face fi one simply projects fi onto
Pi (which is a plane), performs a (planar) constrained Delaunay triangulation there, and lifts
the triangles of the Delaunay triangulation back to fi.

Greedy Optimization The partitioning is now greedily optimized in a loop that stops when a
predefined maximum error or a predefined number of regions is reached. In each iteration one
selects (subject to the injectivity constraint) two regions Ri and Rj and merges them into a new
region R′ = Ri ∪ Rj . (The order in which the merging is performed is described in the next
paragraph.) Then a new proxy P ′ = (x′,n′) is computed as an area-weighted average of Pi and
Pj

n′ =
aini + ajnj
||aini + ajnj ||

and x′ =
aixi + ajxj
ai + aj

,

where ai = area(Ri). Finally, a new face f ′ is computed by identifying and removing the
common boundary edges of fi and fj . The algorithm then checks for valence two vertices: If it
finds an interior valence two vertex, it is immediately removed. Boundary valence-two vertices
are only removed, if their distance from the proxy is smaller than a user-defined threshold.

Note again, that all the operations described above (merging of faces, removal of valence two
vertices) are only performed if the injectivity constraint is not violated by the operation!

127

10 Remeshing

Merge priorities For each adjacent pair Ri and Rj of regions we could compute the shape
measure E(R′, P ′) as described in Eq. (??) and order the region pairs by increasing shape error.
In order to speed up the algorithm, the exact L2 measure is approximated by

L2(f ′) = L2(Di, P ′) + L2(Dj , P ′) .

Since Di usually contains much less triangles than Ri this will significantly speed up the algo-
rithm. The L2,1 error is replaced by

L2,1(f ′) = ai||ni − n′||2 + aj ||nj − n′||2 ,

where ai = area(Ri) as before. The two error measures are combined into a single, scale-
independent measure

E(f ′) =
(
1 + L2(f ′)

)
·
(
1 + L2,1(f ′)

)
,

which does not require any user selected weight parameters.

Cohen-Steiner’s algorithm is fast, efficient, and generally produces high quality results with
low approximation error. However, the mesh extraction step might produce degenerate triangles
and fold-overs. The extensions presented by Marinov produce a hierarchy of reconstructions
which are guaranteed to be free of fold-overs. However, due to the greedy approach, Marinov’s
algorithm is more likely to get stuck in a local optimum. To achieve acceptable running times,
they furthermore have to resort to an approximation of the true L2 or L2,1 errors.

10.4 Summary

We have provided a brief overview of surface remeshing techniques with focus on isotropic,
quadrangle, and error-driven techniques.

Isotropic remeshing is now a well-studied problem, and robust software components are avail-
able for large meshes. Although the variational or pliant approaches generate the best practical
results, the greedy technique based upon Delaunay refinement and filtering provides guarantees
over the shape of the elements as well as other useful properties such as the absence of self-
intersection. The latter property is often of crucial importance for, e.g., generating volumetric
meshes for simulation.

Quadrangle remeshing has been investigated with various ideas ranging from mesh conversion
to contouring of harmonic functions through placement of streamlines. We remark that only
one technique [?] provides the user with control over the alignment of the mesh edges while
being robust, versatile, and fully automatic. The variety of techniques proposed to tackle this
problem reveals its intrinsic difficulty: quadrangle remeshing is a global problem by nature. The
motivation for controlling the shape and alignment of the elements takes some of its roots in the
approximation theory: it is known that optimal bilinear elements must align with the principal
directions, with aspect ratios depending on the principal curvatures. A less known fact is that
this assertion is true for elliptic areas only, the mesh edges of the optimal elements being aligned
to the asymptotic directions (zero curvature lines) on hyperbolic areas. Some research must be
carried on in order to elaborate upon automatic quadrangle remeshing techniques which would be
driven only by the approximation error (instead of, e.g., fitting estimated curvature directions).

Recent work on error-driven remeshing propose to fit simple primitives ranging from planes
to general quadrics through CAD primitives such as cylinders, spheres, or rolling ball patches.
One recent trend is to elaborate upon methods which aim at recovering the global structure of

128

10.4 Summary

the initial surface for modeling or high level geometry processing applications. For the quadric-
fitting approach [?] it is interesting to notice how the initial remeshing goal joins the “resurfacing”
problem for reverse engineering, and to some extend the shape recognition and reconstruction
problem.

129

10 Remeshing

130

11 Shape Deformation

The field of interactive shape deformation has seen a lot of attention throughout the last years,
with a large number of approaches having been proposed. It is a very challenging research
field, since complex mathematical formulations (i) have to be hidden behind an intuitive user
interface and (ii) have to be implemented in a sufficiently efficient and robust manner to allow
for interactive applications. In this section we will give an overview of different kinds of shape
deformation techniques, classify them into different categories, and show their interrelations.

We start by discussing surface-based deformation methods in Section ??, roughly classified into
(multiresolution) bending energy minimization (Section ?? and ??) and differential coordinates
(Section ??). We point out the inherent limitations of linear(ized) deformation approaches
(Section ??), which are avoided by fully nonlinear techniques (Section ??). Finally we also give
an overview of linear and nonlinear space deformation techniques in Section ??.

11.1 Surface-Based Deformation

In the case of surface-based deformations we are looking for a displacement function d : S → IR3

that maps the given surface S to its deformed version S ′:

S ′ := {p + d (p) | p ∈ S} .

In particular in engineering applications, exact control of the deformation process is crucial, i.e.,
one has to be able to specify displacements for a set of constrained points C:

d (pi) = di , ∀pi ∈ C .

Since we are targetting interactive shape deformations, another important aspect is the amount
of user interaction required to specify the desired deformation function d.

11.1.1 Tensor-Product Spline Surfaces

The traditional surface representation in CAGD are spline surfaces (see Section ??). They are
controlled by an intuitive control point metaphor and yield high quality smooth surfaces. A
single tensor-product spline patch is defined as

f (u, v) =
m∑
i=0

m∑
j=0

cijNn
i (u)Nn

j (v) ,

i.e., each control point cij is associated with a smooth basis function Nij (u, v) := Nn
i (u)Nn

j (v).
A translation of a control point cij therefore adds a smooth bump of rectangular support to the

131

11 Shape Deformation

Figure 11.1: A modeling example using a bi-cubic tensor-product spline surface. Each control
point is associated with a smooth basis function of fixed rectangular support (left). This fixed
support and the fixed regular placement of the control points, resp. basis functions, prevents a
precise support specification (center) and can lead to alias artifacts in the resulting surface, that
are revealed by more sensitive surface shading (right).

surface (cf. Fig. ??, left). Every more sophisticated modeling operation has to be composed from
such smooth elementary modifications, such that the displacement function has the form

d (u, v) =
m∑
i=0

m∑
j=0

δcijNij (u, v) ,

where δcij denotes the change of the control point cij . The support of the deformation is the
union of the supports of individual basis functions. As the positions of the basis functions are
fixed to the initial grid of control points, this prohibits a fine-grained control of the desired
support region. Moreover, the composition of fixed basis functions located on a fixed grid might
lead to alias artifacts in the resulting surface, as shown in Fig. ??.

It was also shown in Section ?? that tensor-product spline surfaces are restricted to rectangular
domains, and that complex surfaces therefore have to be composed by a large number of spline
patches. Specifying complex deformations in terms of control point movements thus involves a lot
of user interaction, since smoothness constraints across patch boundaries have to be considered
during the deformation process. Also notice that prescribing constraints d (ui, vi) = di requires
to solve a linear system for the control point displacements δcij . These systems can be over-
as well as under-determined, and hence are typically solved by least squares and least norm
techniques. However, in the first case, the system cannot be solved exactly, and in the latter case
the minimization of control point displacements does not necessarily lead to fair deformations,
which would require to minimize some fairness energy (Section ??).

11.1.2 Transformation Propagation

The main drawback of spline-based deformations is that the underlying mathematical surface
representation is identical to the basis functions that are used for the surface deformation. To
overcome this limitation, the deformation basis functions consequently should be independent of
the actual surface representation.

A popular approach falling into this category works as follows (cf. Fig. ??): In a first step the
user specifies the support of the deformation (the region which is allowed to change) and a handle
region H within it. The handle region is directly deformed using any modeling interface, and its
transformation is smoothly interpolated within the support region in order to blend between the
transformed handle H and the fixed part F of the surface. This smooth blend is controlled by a
scalar field s : S → [0, 1], which is 1 at the handle (full deformation), 0 outside the support (no

132

11.1 Surface-Based Deformation

Figure 11.2: After specifying the blue support region and the green handle regions (left), a
smooth scalar field is constructed that is 1 at the handle and 0 outside the support (center).
This scalar field is used to propagate and damp the handle’s transformation (right).

deformation), and smoothly blends between 1 and 0 within the support region. A typical way
to construct such a scalar field is to compute geodesic (or Euclidean) distances distF (p) and
distH (p) from p to the fixed part F and the handle region H, respectively, and to define

s (p) =
distF (p)

distF (p) + distH (p)
,

similar to [?, ?]. This scalar field can further be enhanced by a transfer function t (s (p)), which
provides more control of the blending process. The damping of the handle transformation is then
performed separately on the rotation, scale/shear, and translation components, for instance like
in [?]. In case the individual transformation components are not given, they can be computed
by polar decomposition [?].

As shown in Fig. ??, the major problem with this approach is that the distance-based prop-
agation of transformations will typically not result in the geometrically most intuitive solution.
This would require the smooth interpolation of the handle transformation by the displacement
function d, while otherwise minimizing some fairness energies.

Figure 11.3: A sphere is deformed by lifting a closed handle polygon (left). Propagating
this translation based on geodesic distance causes a dent in the interior of the handle polygon
(center). The more intuitive solution of a smooth interpolation (right) cannot be achieved with
this approach; it was produced by variational energy minimization (Section ??).

133

11 Shape Deformation

Figure 11.4: The surface S (left) is edited by minimizing its deformation energy subject to
user-defined constraints that fix the gray part F of the surface and prescribe the transformation
of the yellow handle region H. The deformation energy (??) consists of stretching and bending
terms, and the examples show pure stretching with ks = 1, kb = 0 (center left), pure bending
with ks = 0, kb = 1 (center right), and a weighted combination with ks = 1, kb = 10 (right).

11.1.3 Variational Energy Minimization

More intuitive surface deformations d with prescribed geometric constraints d (pi) = di can be
modeled by minimizing physically-inspired elastic energies. The surface is assumed to behave
like a physical skin that stretches and bends as forces are acting on it. Mathematically, this
behavior can be captured by an energy functional that penalizes both stretching and bending.

As introduced in Section ?? and Section ??, the first and second fundamental forms, I (u, v)
and II (u, v), can be used to measure geometrically intrinsic (i.e., parameterization independent)
properties of S, such as lengths, areas, and curvatures. When the surface S is deformed to S ′,
and its fundamental forms change to I′ and II′, the difference of the fundamental forms can be
used as an elastic thin shell energy that measures stretching and bending [?]:

Eshell (S ′) =
∫

Ω

ks
∥∥I′ − I

∥∥2 + kb
∥∥II′ − II

∥∥2 dudv . (11.1)

The stiffness parameters ks and kb are used to control the resistance to stretching and bending,
respectively. In a modeling application one would have to minimize the elastic energy (??)
subject to user-defined deformation constraints. As shown in Fig. ??, this typically means fixing
certain surface parts F ⊂ S and prescribing displacements for the so-called handle region(s)
H ⊂ S.

However, this nonlinear minimization is computationally too expensive for interactive appli-
cations. It is therefore simplified and linearized by replacing the difference of fundamental forms
by partial derivatives of the displacement function d [?, ?]:

Ẽshell (d) =
∫

Ω

ks

(
‖du‖2 + ‖dv‖2

)
+ kb

(
‖duu‖2 + 2 ‖duv‖2 + ‖dvv‖2

)
dudv , (11.2)

where we use the notation dx = ∂
∂xd and dxy = ∂2

∂x∂yd. For the efficient minimization of (??)
we apply variational calculus, which yields the corresponding Euler-Lagrange equations that
characterize the minimizer of (??), again subject to user constraints:

− ks ∆Sd + kb ∆2
Sd = 0 . (11.3)

Notice that for the second derivatives in (??) to closely approximate surface curvatures (i.e.,
bending), the parameterization p : Ω→ S should be as close to isometric as possible. Therefore
Ω is typically chosen to equal S, such that d : S → IR3 is defined on the manifold S itself.
As a consequence, the Laplace operator in (??) corresponds to the Laplace-Beltrami operator
(see Section ??). Notice that the variational minimization of stretching and bending energies is
closely related to the minimization of surface area and surface curvature introduced in Section ??

134

11.1 Surface-Based Deformation

in the context of mesh fairing. The difference is that now the displacement function d (instead
of the coordinate function p) minimizes certain fairness energies.

The order k of partial derivatives in the energy (??) or in the corresponding Euler-Lagrange
equations (−1)k ∆k

Sd = 0 defines the maximum continuity Ck−1 for interpolating displacement
constraints [?]. Hence, minimizing (??) by solving (??) provides C1 continuous surface defor-
mations, as can also be observed in Fig. ??. On a discrete triangle mesh, the C1 constraints are
defined by the first two rings of fixed vertices F and handle vertices H.

Using the cotangent discretization of the Laplace-Beltrami defined in Section ??, the Euler-
Lagrange PDE (??) turns into a sparse bi-Laplacian linear system:

−ks ∆Sd + kb ∆S2d = 0 , pi 6∈ H ∪ F ,
d (pi) = di , pi ∈ H ,
d (pi) = 0 , pi ∈ F .

(11.4)

Interactively manipulating the handle region H changes the boundary constraints of the opti-
mization, i.e., the right-hand side of the linear system Eq. (??). As a consequence, this system
has to be solved in each frame. In Chapter ?? we will discuss efficient linear system solvers that
are particularly suited for this multiple right-hand side problem. Also notice that restricting to
affine transformation of the handle region H (which is usually sufficient) allows to precompute
basis functions of the deformation, such that instead of solving (??) in each frame, only the basis
functions have to be evaluated [?].

The approaches of [?] and [?] can be considered as instances of the framework described in this
section, since both methods solve bi-Laplacian system to derive fair shape deformations. Other
methods are conceptually similar, but achieve smooth deformations, for instance by hierarchical
smoothing [?] or subdivision surfaces [?].

11.1.4 Multiresolution Deformation

The variational optimization techniques introduced in the last section provide C1 continuous,
smooth, and fair surface deformations. Interactive performance is achieved by simplifying or
linearizing the nonlinear shell energy (??), such that the techniques become linear in the sense
that they only require solving a linear system for the deformed surface S ′. However, as a con-
sequence of this linearization, such methods typically do not correctly handle fine-scale surface
details, as depicted in Fig. ??. The local rotation of geometric details is an inherently nonlinear
behavior, and hence cannot be modeled by purely linear techniques. One way to preserve geo-
metric details under global deformations, while still using a linear deformation approach, is to
use multiresolution techniques, as described in this section.

Multiresolution (or multi-scale) techniques perform a frequency decomposition of the object in
order to provide global deformations with intuitive local detail preservation. Chapter ?? describes
how signal processing techniques, such as low-pass filtering, can be generalized to (signals on)
surfaces. In this setting the fine surface details correspond to the high frequencies of the surface
signal and the global shape is represented by its low frequency components. However, in contrast
to surface smoothing, one now wants to explicitly modify the low frequencies and preserve the
high frequency details, resulting in the desired multiresolution deformation. Fig. ?? shows a
simple 2D example of this concept.

The complete multiresolution editing process is depicted in Fig. ??. In a first step a low-
frequency representation of the given surface S is computed by removing the high frequencies,

135

11 Shape Deformation

Figure 11.5: The right strip H of the bumpy plane (left) is lifted. The intuitive local rota-
tions of geometric details cannot be achieved by a linearized deformation alone (center left). A
multiresolution approach based on normal displacements (center right) correctly rotates local
details, but also distortions them, which can be seen in the left-most row of bumps. The more
accurate result of a nonlinear technique is shown on the right.

Figure 11.6: A multiresolution deformation of a sine wave. A frequency decomposition yields
the dashed line as its low frequency component (left). Bending this line and adding the higher
frequencies back onto it results in the desired global shape deformation (right).

yielding a smooth base surface B. The geometric details D = S 	B, i.e., the fine surface features
that have been removed, represent the high frequencies of S and are stored as detail information.
This allows reconstructing the original surface S by adding the geometric details back onto the
base surface: S = B ⊕ D. The special operators 	 and ⊕ are called the decomposition and
the reconstruction operator of the multiresolution framework, respectively. This multiresolution
surface representation is now enhanced by an editing operator, that is used to deform the smooth
base surface B into a modified version B′. Adding the geometric details onto the deformed base
surface then results in a multiresolution deformation S ′ = B′ ⊕D.

Notice that in general more than one decomposition step is used to generate a hierarchy of
meshes S = S0,S1, . . . ,Sk = B with decreasing geometric complexity. In this case the frequencies
that are lost from one level Si to the next smoother one Si+1 are stored as geometric details
Di+1 = Si	Si+1, such that after deforming the base surface to B′, the modified original surface
can be reconstructed by S ′ = B′

⊕k−1
i=0 Dk−i. Since the generalization to several hierarchy levels

is straightforward, we restrict our explanations to the simpler case of a two-band decomposition,
as shown in Fig. ??.

A complete multiresolution deformation framework has to provide the three basic operators
shown in Fig. ??: the decomposition operator (detail analysis), the editing operator (shape de-
formation), and the reconstruction operator (detail synthesis). The decomposition is typically
performed by mesh smoothing or fairing (Chapter ??), and surface deformation has been dis-
cussed in the previous sections. The missing component is a suitable representation for the
geometric detail D = S 	 B, which we describe in the following.

136

11.1 Surface-Based Deformation

Geometric
Details

Multiresolution Editing

De
co

m
po

sit
io

n Reconstruction
S S

′

B

Editing

B
′

D

Figure 11.7: A general multiresolution editing framework consists of three main operators:
the decomposition operator, that separates the low and high frequencies, the editing operator,
that deforms the low frequency components, and the reconstruction operator, that adds the
details back onto the modified base surface. Since the lower part of this scheme is hidden in the
multiresolution kernel, only the multiresolution edit in the top row is visible to the designer.

Displacement Vectors The straightforward representation for multiresolution details is a dis-
placement of the base surface B, i.e., the detail information is a vector valued displacement
function h : B → IR3 that associates a displacement vector h(b) with each point b on the base
surface. In a typical setting S and B will have the same connectivity, leading to per-vertex
displacement vectors hi [?, ?, ?]:

pi = bi + hi , hi ∈ IR3,

where bi ∈ B is the vertex corresponding to pi ∈ S. The vectors hi have to be encoded in local
frames w.r.t. B [?, ?], determined by the normal vector ni and two vectors spanning the tangent
plane (cf. Fig. ??). When the base surface B is deformed to B′, the displacement vectors rotate

Figure 11.8: Representing the displacements w.r.t. the global coordinate system does not lead
to the desired result (left). The geometrically intuitive solution is achieved by storing the detail
w.r.t. local frames that rotate according to the local tangent plane’s rotation of B (right).

137

11 Shape Deformation

according to the rotations of the base surface’s local frames, which then leads to a plausible detail
reconstruction for S ′.

Normal Displacements As we will see below, long displacement vectors might lead to insta-
bilities, in particular for bending deformations. As a consequence, for numerical robustness the
displacement vectors should be as short as possible, which is the case if they connect vertices
pi ∈ S to their closest surface points on B instead of to their corresponding vertices of B. This
idea leads to normal displacements that are perpendicular to B, i.e., parallel to its normal field
n:

pi = bi + hi · ni , hi ∈ IR. (11.5)

Since the displacements are in general not parallel to the surface normal, generating normal
displacements has to involve some kind of resampling. Shooting rays in normal direction from
each base vertex bi ∈ B and deriving new vertex positions pi ∈ S at their intersections with the
detailed surface leads to a resampling of the latter [?, ?]. Because S might be a detailed surface
with high frequency features, such a resampling is likely to introduce alias artifacts. Hence,
Kobbelt et al. [?] go the other direction: for each vertex position pi ∈ S they find a base point
bi ∈ B (now not necessarily a vertex of B), such that the displacements are normal to B, i.e.,
pi = bi+hi ·n(bi). This avoids a resampling of S and therefore allows for the preservation of all
of its sharp features (see also [?] for a comparison and discussion). Since the base points bi are
arbitrary surface points of B, the connectivity of S and B is no longer restricted to be identical.
This can be exploited in order to remesh the base surface B for the sake of higher numerical
robustness [?].

Displacement Volumes While normal displacement are extremely efficient, their main problem
is that neighboring displacement vectors are not coupled in any way. When bending the surface
in a convex or concave manner, the angle between neighboring displacement vectors increases
or decreases, leading to an undesired distortion of geometric details (cf. Figs. ?? and ??). In
the extreme case of neighboring displacement vectors crossing each other (which happens if the
curvature of B′ becomes larger than the displacement length hi), the surface even self-intersects
locally.

Both problems, the unnatural change of volume and local self-intersections, are addressed by
displacement volumes instead of displacement vectors [?]. Each triangle

(
pi,pj ,pk

)
of S, to-

gether with the corresponding points (bi,bj ,bk) on B, defines a triangular a prism. The volumes
of those prisms are used as detail coefficients D, and are kept constant during deformations. For
a modified base surface B′ the reconstruction operator therefore has to find S ′ such that the
enclosed prisms have the same volumes as for the original shape. The local volume preservation
leads to more intuitive results and avoids local self-intersections (cf. Figs. ??, ??). However,
the improved detail preservation comes at the higher computational cost of a nonlinear detail
reconstruction process.

Deformation Transfer Botsch et al. [?] use the deformation transfer approach of [?] to transfer
the base surface deformation B 7→ B′ onto the detailed surface S, resulting in a multiresolu-
tion deformation S ′. This method yields results similar in quality to displacement volumes (cf.
Figs. ??, ??), but only requires solving a sparse linear Poisson system. Both in terms of results
and of computational efficiency this method can be considered as lying in between displacement
vectors and displacement volumes.

138

11.1 Surface-Based Deformation

Figure 11.9: For a bending of the bumpy plane, normal displacements distort geometric details
and almost lead to self-intersections (left), whereas displacement volumes (center) and deforma-
tion transfer (right) achieve more natural results.

11.1.5 Differential Coordinates

While multiresolution or multi-scale hierarchies are an effective tool for enhancing freeform de-
formations by fine-scale detail preservation, the generation of the hierarchy can become quite
involved for geometrically or topologically complex models. To avoid the explicit multi-scale de-
composition, another class of methods modifies differential surface properties instead of spatial
coordinates, and then reconstructs a deformed surface having the desired differential coordinates.

We will first describe two typical differential representations, gradients and Laplacians, and
how to derive the deformed surface from the manipulated differential coordinates. We then
explain how to compute the local transformations of differential coordinates based on the user’s
deformation constraints. More details on these topics, such as methods based on local frames [?,
?, ?], sketching interfaces [?], or volumetric Laplacians [?], can be found in the recent survey [?].

Gradient-Based Deformation

The methods of [?, ?] deform the surface by prescribing a target gradient field and finding
a surface that matches this gradient field in the least squares sense. In the continuous setting,
consider a function f : Ω→ IR that should match a user-prescribed gradient field g by minimizing∫

Ω

‖∇f − g‖2 dudv .

Applying variational calculus yields the Euler-Lagrange equation

∆f = divg , (11.6)

which has to be solved for the optimal f . On a discrete triangle mesh, a piecewise linear function
f : S → IR is defined by its values fi := f (pi) at the mesh vertices. Its gradient ∇f : S → IR3 is
a constant vector gj ∈ IR3 within each triangle fj . If instead of a scalar function f the piecewise
linear coordinate function p (vi) = pi ∈ IR3 is considered, then the gradient within a face fj is a
constant 3× 3 matrix

∇p|fj
=: Gj ∈ IR3×3 .

For a mesh with V vertices and F triangles, the discrete gradient operator can be expressed by
a 3F × V matrix G: G1

...
GF

 = G ·

 pT1
...

pTV

 .

139

11 Shape Deformation

The face gradients are then modified explicitly (as discussed later), yielding new gradients G′j per
triangle fj . Reconstructing a mesh having these desired gradients is an overdetermined problem,
and therefore is solved in a weighted least squares sense using the normal equations [?]:

GTDG︸ ︷︷ ︸
∆S

·

 p′1
T

...
p′V

T

 = GTD︸ ︷︷ ︸
div

·

 G′1
...

G′F

 , (11.7)

where D is a diagonal matrix containing the face areas as weighting factors. Since the matrix
GTD corresponds to the discrete divergence operator, and since div∇ = ∆, this system actually
is a Poisson equation. It corresponds to the discretization of the Euler-Lagrange PDE (??).
Hence, these methods prescribe a guidance gradient field (G′1, . . . ,G

′
F), compute its divergence,

and solve three sparse linear Poisson systems for the x, y, and z coordinates of the modified
mesh vertices p′i.

Laplacian-Based Deformation

Other methods manipulate Laplacians of the vertices instead of gradient fields [?, ?, ?, ?]. They
compute initial Laplacian coordinates δi = ∆S (pi) and manipulate them to δ′i as discussed be-
low. The goal is to find a new coordinate function p′ that matches the target Laplace coordinates.
In the continuous setting one has to minimize∫

Ω

∥∥∆Sp′ − δ′
∥∥2 dudv ,

which leads to the Euler-Lagrange equations

∆2
Sp
′ = ∆Sδ′ .

On a discrete mesh, this yields a bi-Laplacian system to be solved for the deformed surface S ′:

∆2
S ·

 p′1
T

...
p′V

T

 = ∆S ·

δ′1
T

...
δ′V

T

 .

Although the original approaches use the uniform Laplacian discretization [?, ?], the cotangent
weights can be shown to yield better results for irregular triangle meshes (see Fig. ?? and [?]).

When we do not consider the local transformation δi 7→ δ′i, but instead reconstruct the surface
from the original Laplacians δi, then the Euler-Lagrange equation ∆2

Sp
′ = ∆Sδ reveals the

connection to the variational bending minimization (Section ??), whose Euler-Lagrange PDE
is ∆2

Sp
′ = 0. Using the identities p′ = p + d and δ = ∆Sp one immediately sees that the

two approaches are equivalent. The methods differ in the way they model the local rotations of
geometric details or differential coordinates, either by multiresolution methods (Section ??) or
by local transformations, as discussed in the following.

Local Transformations

The missing component is a technique for modifying the gradients Gj or Laplacians δi based on
the affine handle transformation provided by the user. The methods discussed below derive local
transformations Ti in order to transform gradients (G′j = Gi ·Tj) or Laplacians (δ′i = Ti · δi).

140

11.1 Surface-Based Deformation

(a) (b) (c) (d)

Figure 11.10: Using gradient-based editing to bend the cylinder (a) by 90◦. Reconstructing
the mesh from new handle positions, but original gradients distorts the object (b). Applying
damped local rotations derived from (??) to the individual triangles breaks up the mesh (c), but
solving the Poisson system (??) re-connects it and yields the desired result (d).

The gradient-based approaches [?, ?] use the gradient of this affine deformation, i.e., its rotation
and scale/shear components, for transforming the surface gradients. They first construct a
smooth scalar blending field s : S → [0, 1] based on either geodesic distances (Section ??) or
harmonic fields. The gradient T = RS of the affine handle transformation x 7→ Tx + t is
decomposed into rotation R and scale/shear S using polar decomposition [?]. Both components
are then interpolated over the support region:

Ti = slerp (R, I, 1− si) · ((1− si)S + siI) , (11.8)

where slerp (·) denotes quaternion interpolation, si = s(pi) is the vertex’ blending value, and
I denotes the identity matrix. This method works well for rotations, since those are handled
explicitly, but it is insensitive to handle translations: Adding a translation t to a given deforma-
tion does not change its gradient, and thus has no influence on the resulting surface gradients.
But as there is a (nonlinear) connection between translations and local rotations of gradients,
these methods yield counter-intuitive results for modifications containing large translations (Sec-
tion ??).

To address this issue, Sorkine et al. [?] implicitly optimize for the local rotations Ti of vertex
neighborhoods by minimizing the following energy functional

E (p′1, . . . ,p
′
V) =

V∑
i=1

‖Tiδi −∆ (p′i)‖
2 +

∑
i∈C
‖p′i − ui‖

2
,

where ui are the target positions for the constrained vertices pi, i ∈ C. For the sake of computa-
tional efficiency they had to linearize the local frame transformations Ti, which on the one hand
allows to formulate the optimization as a single linear system, but one the other hand leads to
artifacts in case of large rotations.

Lipman et al. [?, ?] minimize surface bending by preserving the relative orientations of per-
vertex local frames. This is done by first solving a linear least squares system for the modified
per-vertex local frame rotations Ti, and reconstructing the modified vertex positions p′i in a
second step. However, since the first system does not consider the positional constraints, one has
to ensure that the positional constraints and the orientation constraints are compatible. While

141

11 Shape Deformation

their method works very well even for large rotations, it exhibits the same translation-insensitivity
as the gradient-based methods.

11.1.6 Limitations on Linear Methods

In this section we compare the linear surface deformation techniques discussed so far, and point
out their limitations. The goal is therefore not to show the best-possible results each method can
produce, but rather to show under which circumstances each individual method fails. Hence, in
Fig. ??we picked extreme deformations that identify the respective limitations of the different
techniques. For comparison we show the results of the non-linear surface deformation PriMo [?],
which does not suffer from linearization artifacts. For more detailed comparisons see [?].

The variational bending energy minimization [?], in combination with the multiresolution
technique [?] works fine for pure translations, and yields fair and detail preserving deformations.
However, due to the linearization of the shell energy this approach fails for large rotations. The
gradient-based editing [?, ?] updates the surface gradients using the gradient of the deformation
(its rotation and scale/shear components), and therefore works very well for rotations. How-
ever, as mentioned in the last section, the explicit propagation of local rotations is translation-
insensitive, such that the plane example is neither smooth nor detail preserving. The Laplacian
surface editing [?] implicitly optimizes for local rotations, and hence works similarly well for
translations and rotations. However, the required linearization of rotations yields artifacts for
large rotations.

As the physical equations governing the surface deformation process are inherently nonlinear,
all linearized techniques fail under certain circumstances. While the variational energy mini-
mization typically works for translations, but have problems with large rotations, it is the other
way around for differential approaches. Another comparison on a large-scale transformation is
shown in Fig. ??. To overcome the limitations for large-scale deformations, those either have to
be split up into sequences of smaller deformations — thereby complicating the user interaction
— or nonlinear approaches have to be considered, as discussed in the next section.

11.1.7 Nonlinear Surface Deformation

Thanks to the rapid increase in both computational power and available memory of today’s
workstations, nonlinear deformation methods become more and more tractable, which in the
last years already lead to a first set of nonlinear, yet interactive, surface deformation approaches.
Due to space limitations we will only briefly mention some nonlinear approaches and refer the
reader to the original papers. While a nonlinear implementation of the previously discussed
approaches seems to be straightforward (simply do not use any linearization), in the nonlinear
case special attention has to be paid to computational efficiency and numerical robustness.

PriMo [?] is a nonlinear version of the variational minimization of bending and stretching
energies. The surface is modeled as a thin layer of triangular prisms, which are coupled by
a nonlinear elastic energy. During deformation the prisms are kept rigid, which allows for an
extremely robust geometric optimization.

The pyramid coordinates Sheffer and Kraevoy [?, ?] can be considered as a nonlinear version
of Laplacian coordinates, leading to differential coordinates invariant under rigid motions, which
can be used for deformation as well as for morphing.

142

11.1 Surface-Based Deformation

Approach Pure Translation 120◦ bend 135◦ twist

Original model

Nonlinear
prism-based
modeling [?]

Variational
minimization [?] +

deformation
transfer [?]

Gradient-based
editing [?]

Laplacian-based
editing with

implicit
optimization [?]

Figure 11.11: The extreme examples shown in this comparison matrix were particularly chosen
to reveal the limitations of the respective deformation approaches.

143

11 Shape Deformation

Original [?] [?] [?] [?]

Figure 11.12: The crouching dragon was lifted by fixing its hind feet and moving its head to
the target position in a single, large-scale deformation. Similar to Fig. ??, the linear deformation
methods yield counter-intuitive results. The nonlinear PriMo technique yields a more natural
deformation.

Huang et al. [?] employ a nonlinear version of the volumetric graph Laplacian, which also
features nonlinear volume preservation constraints. In order to increase performance and ef-
ficiency of their optimization they use a subspace approach: The original mesh is embedded
in a coarse control mesh, and the optimization is performed on the control mesh while con-
sidering the constraints from the original mesh in a least squares manner. An extension of
nonlinear gradient-based deformation to mesh sequences was presented by [?]. In order to solve
the involved nonlinear systems more efficiently they alternatively solved least squares systems
for vertex positions p′i and local rotations Ti.

An alternative approach to subspace methods is the handle-aware isoline technique of [?]. In
a preprocessing step they construct a set of isolines of the geodesic distance from either the fixed
regions or the handle regions, similar in spirit to [?]. For each of these isolines they find a local
transformation Ti for a Laplacian-based deformation, based on a nonlinear optimization. The
number of required isolines is relatively small, which guarantees an efficient numerical optimiza-
tion and thereby allows for interactive editing. Shi et a. [?] combine Laplacian-based deformation
with skeleton-based inverse kinematics. Their approach allows for easy and intuitive character
posing, featuring control of lengths, rigidity, and joint limits, but it in turn requires a complex
cascading optimization for the involved nonlinear energy minimization.

11.2 Space Deformation

All the surface-based approaches described in Section ?? compute a smooth deformation field
on the surface S. For linear methods this typically amounts to solving a (bi-)Laplacian system
as the Euler-Lagrange PDE of some quadratic energy, whereas nonlinear approaches minimize
higher order energies using Newton- or Gauss-Newton-like techniques. An apparent drawback
of such methods is that their computational effort and numerical robustness are strongly related
to the complexity and quality of the surface tessellation.

In the presence of degenerate triangles the discrete Laplacian operator is not well-defined
and thus the involved linear systems become singular. Similarly, topological artifacts like gaps
or non-manifold configurations lead to problems as well. In such cases quite some effort has
to be spent to still be able to compute smooth deformations for the numerically problematic

144

11.2 Space Deformation

Figure 11.13: Freeform space deformations warp the space around an object, and by this deform
the embedded object itself.

Figure 11.14: In the freeform deformation approach a regular 3D control lattice is used to
specify a volumetric displacement function (left). Similar to tensor-product spline surfaces, the
tri-variate tensor-product splines can also lead to alias artifacts in the deformed surface (right).

meshes, like eliminating degenerate triangles (Chapter ??) or even remeshing the complete surface
(Chapter ??). Even when the mesh quality is sufficiently high, extremely complex meshes will
result in linear or nonlinear systems which cannot be solved simply due to their size.

These problems are avoided by volumetric space deformation techniques, that deform the
ambient 3D space and by this implicitly deform the embedded objects (cf. Fig. ??). In contrast to
surface-based methods, space deformation approaches employ a trivariate deformation function
d : IR3 → IR3 to transform all points of the original surface S to the modified surface S ′ =
{p + d (p) |p ∈ S}. Since the space deformation function d does not depend on a particular
surface representation, it can be used to deform all kinds of explicit surface representations,
e.g., by transforming all vertices of a triangle mesh or all points of a point-sampled model.
Analogously to surface-based techniques, we will see that approaches based on a global energy
minimization typically lead to highest quality results.

145

11 Shape Deformation

11.2.1 Freeform Deformation

The classical freeform deformation (FFD) method [?] represents the space deformation by a
tensor-product Bezier or spline function

d (u, v, w) =
∑
i

∑
j

∑
k

δcijkN l
i (u)Nn

j (v)Nm
k (w) .

Because of the same reasons as for spline surfaces (Section ??), these approaches require complex
user-interactions and can cause aliasing problems, as shown in Fig. ??. In order to satisfy given
displacement constraints, the inverse FFD method [?] solves a linear system for the required
movements of control points cijk, which again does not necessarily imply a fair deformation of
low curvature energy.

11.2.2 Transformation Propagation

Handle transformations can be propagated analogously to the surface-based techniques described
in Section ?? by constructing the scalar field s (·) based on Euclidean distances, instead of
geodesic distances [?]. While this typically leads to inferior results compared to geodesic-based
propagation, this method even works if a surface-based propagation fails due to topological
problems like gaps or holes.

Besides from that, the limitations of the surface-based propagation also apply to this method.
A smooth interpolation of arbitrary constraints might not be possible, and the resulting surface
fairness is typically inferior to techniques based on energy minimization.

11.2.3 Radial Basis Functions

In the case of surface-based deformations, the highest quality results are achieved by interpolating
user constraints by a displacement function d : S → IR3 that additionally minimizes fairness
energies (Section ??). Motivated by this, we therefore are looking for smoothly interpolating
tri-variate space deformation functions d : IR3 → IR3 that minimizes analogous fairness energies.

Radial basis functions (RBFs) are known to be well suited for scattered data interpolation
problems [?]. A trivariate RBF deformation is defined in terms of centers cj ∈ IR3 and weights
wj ∈ IR3 as

d (x) =
∑
j

wj · ϕ (‖cj − x‖) + p (x) , (11.9)

where ϕ (‖cj − ·‖) is the basis function corresponding to the jth center cj and p (x) is a poly-
nomial of low degree used to guarantee polynomial precision. In order to construct an RBF
interpolating the constraints d (pi) = di, the centers are typically placed on the constraints
(ci = pi) and a linear system is solved for the RBF’s weights wi and the coefficients of the
polynomial p (x) (see for instance [?]).

The choice of ϕ has a strong influence on the computational complexity and the resulting
surface’s fairness: While compactly supported radial basis functions lead to sparse linear systems
and hence can be used to interpolate several hundred thousands of data points [?, ?], they do
not provide the same degree of fairness as basis functions of global support [?]. It was shown

146

11.2 Space Deformation

Figure 11.15: Using multiple independent handle components allows to stretch the hood while
rigidly preserving the shape of the wheel houses. This 3M triangle model consists of 10k individual
connected components, which are neither two-manifold nor consistently oriented.

by Duchon [?] that for the basis function ϕ (r) = r3 and quadratic polynomials p (·) ∈ Π2, the
function (??) is triharmonic (∆3d = 0) and minimizes the energy∫

IR3
‖dxxx (x)‖2 + ‖dxxy (x)‖2 + . . .+ ‖dzzz (x)‖2 dx .

Notice that these trivariate functions are conceptually equivalent to the minimum variation sur-
faces of [?] and the triharmonic surfaces used in [?], and hence provide the same degree of fairness.
The difference is that for triharmonic RBFs the energy minimization is “built-in”, whereas for
surface-based approaches we explicitly optimized for it (Section ??). The major drawback is
that the fairness property comes at the price of having to solve a dense linear system, due to the
global support of the triharmonic basis function ϕ (r) = r3.

However, Botsch and Kobbelt [?] propose an incremental least squares method that efficiently
solves the linear system up to a prescribed error bound. Using this solver to pre-compute defor-
mation basis functions allows interactively deforming even complex models. Moreover, evaluating
these basis functions on the graphics card further accelerates this approach and provides real-time
space deformations at a rate of 30M vertices/sec. As shown in Fig. ??, even complex surfaces
consisting of disconnected patches can be handled by this technique, whereas all surface-based
techniques would fail in this situation.

However, for the discussed space deformation approaches the deformed surface S ′ linearly
depends on the displacement constraints di. As a consequence, nonlinear effects such as local
detail rotation cannot be achieved, similar to the linear surface-based methods. Although space
deformations can be enhanced by multiresolution techniques as well (see, e.g., [?]), they suffer
from the same limitations as discussed in Section ??, which lead to the development of nonlinear
space deformation approaches.

11.2.4 Nonlinear Space Deformation

In this section, similar to Section ??, we only mention some very recent nonlinear space defor-
mation methods without providing details, and refer the reader to the cited papers for more
details.

Sumner et al. [?] compute detail-preserving space deformations by formulating an energy func-
tional that explicitly penalizes deviation from local rigidity, by optimizing the local deformation

147

11 Shape Deformation

gradients to be rotations. In addition to static geometries, their method can also be applied to
hand-crafted animations and precomputed simulations.

Botsch et al. [?] extend the PriMo framework [?] to deformations of solid objects. The input
model is voxelized in an adaptive manner, and the resulting hexahedral cells are kept rigid under
deformations to ensure numerical robustness. The deformation is governed by a nonlinear elastic
energy coupling neighboring rigid cells.

Another class of approaches uses divergence-free vector fields to deform shapes [?, ?]. The ad-
vantage of those techniques is that they by construction yield volume preserving and intersection-
free deformations. As a drawback, it is harder to construct vector fields that exactly satisfy
user-defined deformation constraints.

148

12 Numerics

In this section we describe different types of solvers for sparse linear systems. Within this class of
systems, we will further concentrate on symmetric positive definite (so-called spd) matrices, since
exploiting their special structure allows for the most efficient and most robust implementations.
Examples of such matrices are Laplacian system (to be analyzed in Section ??) and general least
squares systems. However, the general case of a non-symmetric indefinite system is outlined
afterwards in Section ??.

Following [?], we propose the use of direct solvers for sparse spd systems, since their superior
efficiency — although well known in the field of high performance computing — is often neglected
in geometry processing applications. After reviewing the commonly known and used direct and
iterative solvers, we introduce sparse direct solvers and point out their advantages.

For the following discussion we restrict ourselves to sparse spd problems Ax = b, with A =
AT ∈ IRn×n, x,b ∈ IRn, and denote by x∗ the exact solution A−1b. The general case of
non-symmetric indefinite systems is then outlined in Section ??.

12.1 Laplacian Systems

Since Laplacian systems play a major role in several geometry processing applications, like
smoothing (Chapter ??), conformal parametrization (Chapter ??), and shape deformation (Chap-
ter ??), we will shortly describe general Laplacian matrices first.

In each row the matrix ∆S contains the weights for the discretization of the Laplace-Beltrami
of a function f : S → IR at one vertex vi (see Chapter ??):

∆S f (vi) =
2

A (vi)

∑
vj∈N1(vi)

(cotαij + cotβij) (f (vj)− f (vi)) .

This can be written in matrix notation as
...

∆Sf (vi)
...

 = D ·M ·

...

f (vi)
...

 ,

where D is a diagonal matrix of normalization factors Dii = 2/A (vi), and M is a symmetric
matrix containing the cotangent weights. Since the Laplacian of a vertex vi is defined locally in
terms of its one-ring neighbors, the matrix M is highly sparse and has non-zeros in the ith row
only on the diagonal and in those columns corresponding to vi’s one-ring neighbors N1 (vi).

For a closed mesh, Laplacian systems ∆k
SP = B of any order k can be turned into symmetric

ones by moving the first diagonal matrix D to the right-hand side:

M (DM)k−1 P = D−1B . (12.1)

149

12 Numerics

Boundary constraints are typically employed by restricting the values at certain vertices, which
corresponds to eliminating their respective rows and columns and hence keeps the matrix sym-
metric. The case of meshes with boundaries is equivalent to a patch bounded by constrained
vertices and therefore also results in a symmetric matrix. Pinkal and Polthier [?] additionally
showed that this system is positive definite, such that the efficient solvers presented in the next
section can be applied.

12.2 Dense Direct Solvers

Direct linear system solvers are based on a factorization of the matrix A into matrices of simpler
structure, e.g., triangular, diagonal, or orthogonal matrices. This structure allows for an efficient
solution of the factorized system. As a consequence, once the factorization is computed, it can
be used to solve the linear system for several different right hand sides.

The most commonly used examples for general matrices A are, in the order of increasing
numerical robustness and computational effort, the LU factorization, QR factorization, or the
singular value decomposition. However, in the special case of a spd matrix the Cholesky fac-
torization A = LLT , with L denoting a lower triangular matrix, should be employed, since it
exploits the symmetry of the matrix and can additionally be shown to be numerically very robust
due to the positive definiteness of the matrix A [?].

On the downside, the asymptotic time complexity of all dense direct methods is O(n3) for the
factorization and O(n2) for solving the system based on the pre-computed factorization. Since
for the problems we are targeting at, n can be of the order of 105, the total cubic complexity
of dense direct methods is prohibitive. Even if the matrix A is highly sparse, the näıve direct
methods enumerated here are not designed to exploit this structure, hence the factors are dense
matrices in general (cf. Fig. ??, top row).

12.3 Iterative Solvers

In contrast to dense direct solvers, iterative methods are able to exploit the sparsity of the matrix
A. Since they additionally allow for a simple implementation [?], iterative solvers are the de-
facto standard method for solving sparse linear systems in the context of geometric problems. A
detailed overview of iterative methods with valuable implementation hints can be found in [?].

Iterative methods compute a converging sequence x(0),x(1), . . . ,x(i) of approximations to the
solution x∗ of the linear system, i.e., limi→∞ x(i) = x∗. In practice, however, one has to find
a suitable criterion to stop the iteration if the current solution x(i) is accurate enough, i.e., if
the norm of the error e(i) := x∗ − x(i) is less than some ε. Since the solution x∗ is not known
beforehand, the error has to be estimated by considering the residual r(i) := Ax(i) − b. These
two are related by the residual equations Ae(i) = r(i), leading to an upper bound

∥∥e(i)
∥∥ ≤∥∥A−1

∥∥ ·∥∥r(i)
∥∥, i.e., the norm of the inverse matrix has to be estimated or approximated in some

way (see [?]).

In the case of spd matrices the method of conjugate gradients (CG) [?, ?] is suited best, since
it provides guaranteed convergence with monotonically decreasing error. For a spd matrix A the
solution of Ax = b is equivalent to the minimization of the quadratic form

φ (x) :=
1
2
xTAx− bTx .

150

12.4 Multigrid Iterative Solvers

The CG method successively minimizes this functional along a set of linearly independent A-
conjugate search directions, such that the exact solution x∗ ∈ IRn is found after at most n steps
(neglecting rounding errors). The complexity of each CG iteration is mainly determined by the
matrix-vector product Ax, which is of order O(n) if the matrix is sparse. Given the maximum
number of n iterations, the total complexity is O(n2) in the worst case, but it is usually better
in practice.

As the convergence rate mainly depends on the spectral properties of the matrix A, a proper
pre-conditioning scheme should be used to increase the efficiency and robustness of the iterative
scheme. This means that a slightly different system Ãx̃ = b̃ is solved instead, with Ã = PAPT ,
x̃ = P−Tx, b̃ = Pb, using a regular pre-conditioning matrix P, that is chosen such that Ã is
well conditioned [?, ?]. However, the matrix P is restricted to have a simple structure, since an
additional linear system Pz = r has to be solved each iteration.

The iterative conjugate gradients method manages to decrease the computational complexity
from O(n3) to O(n2) for sparse matrices. However, this is still too slow to compute exact (or
sufficiently accurate) solutions of large and possibly ill-conditioned systems.

12.4 Multigrid Iterative Solvers

One characteristic problem of most iterative solvers is that they are smoothers: they attenu-
ate the high frequencies of the error e(i) very fast, but their convergence stalls if the error is
a smooth function. This fact is exploited by multigrid methods, that build a fine-to-coarse hi-
erarchy {M =M0,M1, . . . ,Mk} of the computation domain M and solve the linear system
hierarchically from coarse to fine [?, ?].

After a few (pre-)smoothing iterations on the finest levelM0 the high frequencies of the error
are removed and the solver becomes inefficient. However, the remaining low frequency error
e0 = x∗ − x0 on M0 corresponds to higher frequencies when restricted to the coarser level M1

and therefore can be removed efficiently on M1. Hence the error is solved for using the residual
equations Ae1 = r1 on M1, where r1 = R0→1r0 is the residual on M0 transferred to M1 by
a restriction operator R0→1. The result is prolongated back to M0 by e0 ← P1→0e1 and used
to correct the current approximation: x0 ← x0 + e0. Small high-frequency errors due to the
prolongation are finally removed by a few post-smoothing steps onM0. The recursive application
of this two-level approach to the whole hierarchy can be written as

Φi = Sµ Pi+1→i Φi+1Ri→i+1 Sλ ,

with λ and µ pre- and post-smoothing iterations, respectively. One recursive run is known as a
V-cycle iteration.

Another concept is the method of nested iterations, that exploits the fact that iterative solvers
are very efficient if the starting value is sufficiently close to the actual solution. One starts by
computing the exact solution on the coarsest level Mk, which can be done efficiently since the
system Akxk = bk corresponding to the restriction to Mk is small. The prolongated solution
Pk→k−1x∗k is then used as starting value for iterations on Mk−1, and this process is repeated
until the finest level M0 is reached and the solution x∗0 = x∗ is computed.

The remaining question is how to iteratively solve on each level. The standard method is to
use one or two V-cycle iterations, leading to the so-called full multigrid method. However, one
can also use an iterative smoothing solver (e.g., Jacobi or CG) on each level and completely avoid
V-cycles. In the latter case the number of iterations mi on level i must not be constant, but

151

12 Numerics

M0

M1

M2

M3

Figure 12.1: A schematic comparison in terms of visited multigrid levels for V-cycle (left), full
multigrid with one V-cycle per level (center), and cascading multigrid (right).

instead has to be chosen as mi = mγi to decrease exponentially from coarse to fine [?]. Besides
the easier implementation, the advantage of this cascading multigrid method is that once a level
is computed, it is not involved in further computations and can be discarded. A comparison of
the three methods in terms of visited multigrid levels is given in Fig. ??.

Due to the logarithmic number of hierarchy levels k = O(log n) the full multigrid method
and the cascading multigrid method can both be shown to have linear asymptotic complexity,
as opposed to quadratic for non-hierarchical iterative methods. However, they cannot exploit
synergy for multiple right hand sides, which is why factorization-based approaches are clearly
preferable in such situations, as we will show in the next section.

Since in our case the discrete computational domain M is an irregular triangle mesh instead
of a regular 2D or 3D grid, the coarsening operator for building the hierarchy is based on
mesh decimation techniques [?]. The shape of the resulting triangles is important for numerical
robustness, and the edge lengths on the different levels should mimic the case of regular grids.
Therefore the decimation usually removes edges in the order of increasing lengths, such that
the hierarchy levels have uniform edge lengths and triangles of bounded aspect ratio. The
simplification from one hierarchy level Mi to the next coarser one Mi+1 should additionally
be restricted to remove a maximally independent set of vertices, i.e., no two removed vertices
vj , vl ∈ Mi \Mi+1 are connected by an edge ejl ∈ Mi. In [?] some more efficient alternatives
to this kind of hierarchy are described.

The linear complexity of multi-grid methods allows for the highly efficient solution even of
very complex systems. However, the main problem of these solvers is their quite involved im-
plementation, since special care has to be taken for the hierarchy building, for special multigrid
pre-conditioners, and for the inter-level conversion by restriction and prolongation operators.
Additionally, appropriate numbers of iterations per hierarchy level have to be chosen. These
numbers have to be chosen either by heuristic or experience, since they not only depend on the
problem (structure of A), but also on its specific instance (values of A). A detailed overview of
these techniques is given in [?]. A highly efficient multigrid solver with specially tuned restriction
and prolongation operators was proposed for interactive shape deformation in [?].

12.5 Sparse Direct Solvers

The use of direct solvers for large sparse linear systems is often neglected, since näıve direct
methods have complexity O(n3), as described above. The problem is that even when the matrix

152

12.5 Sparse Direct Solvers

A is sparse, the factorization will not preserve this sparsity, such that the resulting Cholesky
factor is a dense lower triangular matrix.

However, an analysis of the factorization process reveals that a band-limitation of the matrix
A will be preserved. If the matrix A = LLT has a certain bandwidth β then so has its factor L.
An even stricter bound is that the so-called envelope (the leading zeros of each row) is preserved
[?]. This additional structure can be exploited in both the factorization and the solution process,
such that their complexities reduce from O(n3) and O(n2) to linear complexity in the number
of non-zeros nz(A) of A [?]. Since usually nz(A) = O(n), this is the same linear complexity as
for multigrid solvers. However, in particular for multiple right-hand side problems, sparse direct
methods turned out to be more efficient compared to multigrid solvers.

If matrices are sparse, but not band-limited or profile-optimized, the first step is to minimize the
matrix envelope, which can be achieved by symmetric row and column permutations A← PTAP
using a permutation matrix P, i.e., a re-ordering of the mesh vertices. Although this problem
is NP complete, several good heuristics exist, of which we will outline the most commonly
used in the following. All of these methods work on the undirected adjacency graph Adj(A)
corresponding to the non-zeros of A, i.e., two nodes i, j ∈ {1, . . . , n} are connected by an edge if
and only if Aij 6= 0.

The standard method for envelope minimization is the Cuthill-McKee algorithm [?], that
picks a start node and renumbers all its neighbors by traversing the adjacency graph in a greedy
breadth-first manner. Reverting this permutation further improves the re-ordering, leading to
the reverse Cuthill-McKee method (RCMK) [?]. The result PTAP of this matrix re-ordering is
depicted in the second row of Fig. ??.

Since no special pivoting is required for the Cholesky factorization, the non-zero structure of
its matrix factor L can symbolically be derived from the non-zero structure of the matrix A
alone, or, equivalently, from its adjacency graph. The minimum degree algorithm (MD) and
its variants [?, ?] directly work on the graph interpretation of the Cholesky factorization and
try to minimize fill-in elements Lij 6= 0 = Aij . While the resulting re-orderings do not yield a
band-structure (which implicitly limits fill-in), they usually lead to better results compared to
RCMK (cf. Fig. ??, third row).

The last class of re-ordering approaches is based on graph partitioning. A matrix A whose
adjacency graph has m separate connected components can be restructured to a block-diagonal
matrix of m blocks, such that the factorization can be performed on each block individually. If
the adjacency graph is connected, a small subset S of nodes, whose elimination would separate
the graph into two components of roughly equal size, is found by one of several heuristics [?].
This graph-partitioning results in a matrix consisting of two large diagonal blocks (two connected
components) and |S| rows representing their connection (separator S). Recursively repeating this
process leads to the method of nested dissection (ND), resulting in matrices of the typical block
structure shown in the bottom row of Fig. ??. Besides the obvious fill-in reduction, these systems
also allow for easy parallelization of both the factorization and the solution.

Analogously to the dense direct solvers, the factorization can be exploited to solve for different
right hand sides in a very efficient manner, since only the back-substitution has to be performed
again. Moreover, for sparse direct methods no additional parameters have to be chosen in a
problem-dependent manner (like iteration numbers for iterative solvers). The only degree of
freedom is the matrix re-ordering, which only depends on the symbolic structure of the problem
and therefore can be chosen quite easily. A highly efficient implementation is publicly available
in the TAUCS library [?] or recently in COLMOD [?].

153

12 Numerics

Figure 12.2: The top row shows the non-zero pattern of a typical 500 × 500 matrix A and
its Cholesky factor L, corresponding to a Laplacian system on a triangle mesh. Although A is
highly sparse (3502 non-zeros), the factor L is dense (36k non-zeros). The reverse Cuthill-McKee
algorithm minimizes the envelope of the matrix, resulting in 14k non-zeros of L (2nd row). The
minimum degree ordering avoids fill-in during the factorization, which decreases the number of
non-zeros to 6203 (3rd row). The last row shows the result of a nested dissection method (7142
non-zeros), that allows for parallelization due to its block structure.

154

12.6 Non-Symmetric Indefinite Systems

12.6 Non-Symmetric Indefinite Systems

When the assumptions about the symmetry and positive definiteness of the matrix A are not
satisfied, optimal methods like the Cholesky factorization or conjugate gradients cannot be used.
In this section we shortly outline which techniques are applicable instead.

From the class of iterative solvers the bi-conjugate gradients algorithm (BiCG) is typically
used as a replacement of the conjugate gradients method [?]. Although working well in most
cases, BiCG does not provide any theoretical convergence guarantees and has a very irregular
non-monotonically decreasing residual error for ill-conditioned systems. On the other hand, the
GMRES method converges monotonically with guarantees, but its computational cost and mem-
ory consumption increase in each iteration [?]. As a good trade-off, the stabilized Bi-CGSTAB
[?] represents a mixture between the efficient BiCG and the smoothly converging GMRES; it
provides a much smoother convergence and is reasonably efficient and easy to implement.

When considering dense direct solvers, the Cholesky factorization cannot be used for general
matrices. Therefore the LU factorization is typically employed (instead of QR or SVD), since
it is similarly efficient and also extends well to sparse direct methods. However, (partial) row
and column pivoting is essential for the numerical robustness of the LU factorization, since this
avoids zeros on the diagonal during the factorization process.

Similarly to the Cholesky factorization, it can be shown that the LU factorization also preserves
the band-width and envelope of the matrix A. Techniques like the minimum degree algorithm
generalize to non-symmetric matrices as well. But as for dense matrices, the banded LU fac-
torization relies on partial pivoting in order to guarantee numerical stability. In this case, two
competing types of permutations are involved: symbolic permutations for matrix re-ordering and
pivoting permutations ensuring numerical robustness. As these permutations cannot be handled
separately, a trade-off between stability and fill-in minimization has to be found, resulting in
a considerably more complex factorization. A highly efficient implementation of a sparse LU
factorization is provided by the SuperLU library [?].

12.7 Comparison

In the following we compare the different kinds of linear system solvers for Laplacian as well as for
bi-Laplacian systems. All timings reported in this and the next section were taken on a 3.0GHz
Pentium4 running Linux. The iterative solver (CG) from the gmm++ library [?] is based on the
conjugate gradients method and uses an incomplete LDLT factorization as preconditioner. The
cascading multigrid solver of [?] (MG) performs preconditioned conjugate gradient iterations
on each hierarchy level and additionally exploits SSE instructions in order to solve for up to
four right-hand sides simultaneously. The direct solver (LLT) of the TAUCS library [?] employs
nested dissection re-ordering and a sparse complete Cholesky factorization. Although our linear
systems are symmetric, we also compare to the popular SuperLU solver [?], which is based on a
sparse LU factorization.

Iterative solvers have the advantage over direct ones that the computation can be stopped as
soon as a sufficiently small error is reached, which — in typical computer graphics applications —
does not have to be the highest possible precision. In contrast, direct methods always compute
the exact solution up to numerical round-off errors, which in our application examples actually
was more precise than required. The stopping criteria of the iterative methods have therefore
been chosen to yield sufficient results, such that their quality is comparable to that achieved by

155

12 Numerics

direct solvers. The resulting residual errors were allowed to be about one order of magnitude
larger than those of the direct solvers.

Table ?? shows timings for the different solvers on Laplacian systems ∆SP = B of 10k to 50k
and 100k to 500k unknowns. For each solver three columns of timings are given:

Setup: Computing the cotangent weights for the Laplace discretization and building the matrix
structure (done per-level for the multigrid solver).

Precomputation: Preconditioning (iterative), building the hierarchy by mesh decimation
(multigrid), matrix re-ordering and sparse factorization (direct).

Solution: Solving the linear system for three different right-hand sides corresponding to the
x, y, and z components of the free vertices P.

Due to its effective preconditioner, which computes a sparse incomplete factorization, the
iterative solver scales almost linearly with the system complexity. However, for large and thus
ill-conditioned systems it breaks down. Notice that without preconditioning the solver would not
converge for the larger systems. The experiments clearly verify the linear complexity of multigrid
and sparse direct solvers. Once their sparse factorizations are pre-computed, the computational
costs for actually solving the system are about the same for the LU and Cholesky solver. However,
they differ significantly in the factorization performance, because the numerically more robust
Cholesky factorization allows for more optimizations, whereas pivoting is required for the LU
factorization to guarantee robustness. This is the reason for the break-down of the LU solver,
such that the multigrid solver is more efficient in terms of total computation time for the larger
systems.

Interactive applications often require to solve the same linear system for several right-hand
sides (e.g. once per frame), which typically reflects the change of boundary constraints due to user
interaction. For such problems the solution times, i.e., the third columns of the timings, are more
relevant, as they correspond to the per-frame computational costs. Here the precomputation of a
sparse factorization pays off and the direct solvers are clearly superior to the multigrid method.

Table ?? shows the same experiments for bi-Laplacian systems ∆2
SP = B of the same com-

plexity. In this case, the matrix setup is more complex, the matrix condition number is squared,
and the sparsity decreases from 7 to 19 non-zeros per row. Due to the higher condition number
the iterative solver takes much longer and even fails to converge on large systems. In contrast,
the multigrid solver converges robustly without numerical problems; notice that constructing
the multigrid hierarchy is almost the same as for the Laplacian system (up to one more ring of
boundary constraints). The computational costs required for the sparse factorization are pro-
portional to the increased number of non-zeros per row. The LU factorization additionally has
to incorporate pivoting for numerical stability and failed for larger systems. In contrast, the
Cholesky factorization worked robustly in all experiments.

The memory consumption of the multigrid method is mainly determined by the meshes rep-
resenting the different hierarchy levels. In contrast, the memory required for the Cholesky
factorization depends significantly on the sparsity of the matrix, too. On the 500k example the
multigrid method and the direct solver need about 1GB and 600MB for the Laplacian system,
and about 1.1GB and 1.2GB for the bi-Laplacian system. Hence, the direct solver would not
be capable of factorizing Laplacian systems of higher order on current PCs, while the multigrid
method would succeed.

These comparisons show that direct solvers are a valuable and efficient alternative to multigrid
methods even if the linear systems are highly complex. In all experiments the sparse Cholesky

156

12.7 Comparison

10k 20k 30k 40k 50k
0

2

4

6

8

10

12

Matrix Dimension

∆1 T
ot

al
 T

im
e

(s
)

CG
MG
LU
LLT

100k 200k 300k 400k 500k
0

50

100

150

Matrix Dimension

∆1 T
ot

al
 T

im
e

(s
)

CG
MG
LU
LLT

10k 20k 30k 40k 50k
0

0.2

0.4

0.6

0.8

1

Matrix Dimension

∆1 3
 S

ol
ut

io
ns

 T
im

e
(s

)

CG
MG
LU
LLT

100k 200k 300k 400k 500k
0

10

20

30

40

50

Matrix Dimension

∆1 3
 S

ol
ut

io
ns

 T
im

e
(s

)
CG
MG
LU
LLT

Size Iterative CG Multigrid LU LLT

10k 0.11/1.56/0.08 0.15/0.65/0.09 0.07/0.22/0.01 0.07/0.14/0.03
20k 0.21/3.36/0.21 0.32/1.38/0.19 0.14/0.62/0.03 0.14/0.31/0.06
30k 0.32/5.26/0.38 0.49/2.20/0.27 0.22/1.19/0.05 0.22/0.53/0.09
40k 0.44/6.86/0.56 0.65/3.07/0.33 0.30/1.80/0.06 0.31/0.75/0.12
50k 0.56/9.18/0.98 0.92/4.00/0.57 0.38/2.79/0.10 0.39/1.00/0.15

100k 1.15/16.0/3.19 1.73/8.10/0.96 0.79/5.66/0.21 0.80/2.26/0.31
200k 2.27/33.2/11.6 3.50/16.4/1.91 1.56/18.5/0.52 1.59/5.38/0.65
300k 3.36/50.7/23.6 5.60/24.6/3.54 2.29/30.0/0.83 2.35/9.10/1.00
400k 4.35/69.1/37.3 7.13/32.5/4.48 2.97/50.8/1.21 3.02/12.9/1.37
500k 5.42/87.3/47.4 8.70/40.2/5.57 3.69/68.4/1.54 3.74/17.4/1.74

Table 12.1: Comparison of different solvers for Laplacian systems ∆SP = B of 10k to 50k and
100k to 500k free vertices P. The three timings for each solver represent matrix setup, pre-
computation, and three solutions for the x, y, and z components of P. The graphs in the upper
row show the total computation times (sum of all three columns). The center row depicts the
solution times only (3rd column), as those typically determine the per-frame cost in interactive
applications.

157

12 Numerics

10k 20k 30k 40k 50k
0

5

10

15

20

25

30

35

40

45

Matrix Dimension

∆2 T
ot

al
 T

im
e

(s
)

CG
MG
LU
LLT

100k 200k 300k 400k 500k
10

20

30

40

50

60

70

80

90

Matrix Dimension

∆2 T
ot

al
 T

im
e

(s
)

MG
LLT

10k 20k 30k 40k 50k
0

2

4

6

8

10

12

Matrix Dimension

∆2 3
 S

ol
ut

io
ns

 T
im

e
(s

)

CG
MG
LU
LLT

100k 200k 300k 400k 500k
0

5

10

15

20

25

Matrix Dimension

∆2 3
 S

ol
ut

io
ns

 T
im

e
(s

)
MG
LLT

Size Iterative CG Multigrid LU LLT

10k 0.33/5.78/0.44 0.40/0.65/0.48 0.24/1.68/0.03 0.24/0.35/0.04
20k 0.64/12.4/1.50 0.96/1.37/0.84 0.49/4.50/0.08 0.49/0.82/0.09
30k 1.04/19.0/5.46 1.40/2.26/1.23 0.77/9.15/0.13 0.78/1.45/0.15
40k 1.43/26.3/10.6 1.69/3.08/1.47 1.07/16.2/0.20 1.08/2.05/0.21
50k 1.84/33.3/8.95 2.82/4.05/2.34 1.42/22.9/0.26 1.42/2.82/0.28

100k — 4.60/8.13/4.08 2.86/92.8/0.73 2.88/7.29/0.62
200k — 9.19/16.6/8.50 — 5.54/18.2/1.32
300k — 17.0/24.8/16.0 — 8.13/31.2/2.07
400k — 19.7/32.6/19.0 — 10.4/44.5/2.82
500k — 24.1/40.3/23.4 — 12.9/60.4/3.60

Table 12.2: Comparison of different solvers for bi-Laplacian systems ∆2
SP = B of 10k to 50k

and 100k to 500k free vertices P. The three timings for each solver represent matrix setup,
pre-computation, and three solutions for the components of P. The graphs in the upper row
again show the total computation times, while the center row depicts the solution times only
(3rd column). For the larger systems, the iterative solver and the sparse LU factorization fail to
compute a solution.

158

12.7 Comparison

solver was faster than the multigrid method, and if the system has to be solved for multiple
right-hand sides, the precomputation of a sparse factorization is even more beneficial.

159

12 Numerics

160

Speaker Biographies

Pierre Alliez is a researcher at the GEOMETRICA project-team of INRIA Sophia Antipolis -
Méditerranée, France. His research interests include various topics commonly referred to as ge-
ometry processing: Surface reconstruction, mesh generation, surface remeshing, mesh parameter-
ization, mesh compression. He studied Image Processing, Computer Vision and Computational
Geometry at the University of Nice Sophia-Antipolis, France, where he received his MS degree in
1997. He was awarded a Ph.D. in Image and Signal Processing in 2000 from the École Nationale
Supérieure des Télécommunications, Paris. He then spent a year as a post-doctoral researcher
at the University of Southern California with Mathieu Desbrun. Dr. Alliez has served on various
program committees, including EUROGRAPHICS, SIGGRAPH and the Symposium on Geom-
etry Processing. He was awarded in 2005 the EUROGRAPHICS young researcher award for his
contributions to computer graphics and geometry processing. He is co-chair of the Symposium
on Geometry Processing 2008.

Mario Botsch is a post-doctoral lecturer and senior researcher at the Computer Graphics Lab-
oratory of ETH Zurich, Switzerland. He received his MS in Mathematics from the University of
Erlangen-Nuremberg, Germany, in 1999. From 1999 to 2000 he worked as research associate at
the Max-Planck Institute for Computer Science in Saarbrücken, Germany. From 2001 to 2005
he worked as research associate and PhD candidate with Prof. Dr. Leif Kobbelt at the RWTH
Aachen, Germany, from where he received his PhD in 2005. He is an experienced speaker and
presented papers and courses at SIGGRAPH and EUROGRAPHICS. Dr. Botsch has served
on various program committees including EUROGRAPHICS and the Symposium on Geometry
Processing, and has co-chaired the Symposium on Point-Based Graphics in 2006 and 2007. Re-
cently, he received the EUROGRAPHICS 2007 young researcher award for his contributions to
computer graphics and geometry processing. Dr. Botsch’s research interests include geometry
processing in general, and mesh generation, mesh optimization, and shape editing in particular.

Leif Kobbelt is a full Professor of Computer Science and the Head of the Computer Graphics
group at the RWTH Aachen University of Technology, Germany. His research interests in-
clude all areas of Computer Graphics and Geometry Processing with a focus on multiresolution
and freeform modeling, 3D model optimization, as well as the efficient handling of polygonal
mesh data. He was a senior researcher at the Max-Planck Institute for Computer Science in
Saarbrücken, Germany, from 1999 to 2000 after he received his Habilitation degree from the
University of Erlangen, where he worked from 1996 to 1999. In 1995/96 he spent a post-doc
year at the University of Wisconsin, Madison. He received his PhD and MS degrees from the
University of Karlsruhe, Germany, in 1994 and 1992, respectively. Dr. Kobbelt’s research work
during the last years resulted in numerous publications in top scientific journals and interna-
tional conferences. He is invited regularly to give keynote presentations and tutorial lectures.
For his contributions he received several scientific awards. He has ongoing collaborations with
colleagues in Europe, North America, and Asia, and frequently serves on international program
committees. He organized and co-chaired several workshops and conferences.

161

Speaker Biographies

Bruno Lévy is a researcher with INRIA. He is the head of the ALICE research group. He did
a Ph.D. (1996-1999) with J.-L. Mallet, on 3D modeling for oil exploration, in the INPL (Nancy,
France). His Ph.D. thesis was awarded the SPECIF price in 2000 (best French Ph.D. thesis in
Computer Sciences). He then did a post-doc in Stanford university, in the SCCM group (headed
by G. Golub) where he learned numerical optimization, and in the earth sciences group (headed
by A. Journel and K. Aziz) where he learned finite element modeling. He has served on various
program committees, including Eurographics, Visualization and the Symposium on Geometry
Processing. He was program co-chair of the ACM Symposium on Solid and Physical Modeling in
2007 and 2008. His main contributions concern texture mapping and parameterization methods
for triangulated surfaces, that are now used by several popular 3D modeling software (including
Maya, Catia, Silo, Blender and Gocad).

Mark Pauly is an assistant professor at the computer science department of ETH Zurich,
Switzerland. From August 2003 to March 2005 he was a postdoctoral scholar at Stanford Uni-
versity, where he also held a position as visiting assistant professor during the summer of 2005.
He received his Ph.D. degree in 2003 from ETH Zurich and his M.S. degree in computer sci-
ence in 1999 from the Technical University of Kaiserslautern, Germany. Dr. Pauly has served
on various program committees including ACM SIGGRAPH, EUROGRAPHICS, and the Sym-
posium on Geometry Processing, and has co-chaired the Symposium on Point-Based Graphics.
He is an experienced speaker and has previously presented courses at SIGGRAPH and EURO-
GRAPHICS. Dr. Pauly was awarded the EUROGRAPHICS 2006 young researcher award for
his contributions to computer graphics and geometry processing. His research interests include
geometry processing, multi-scale shape modeling and analysis, physics-based animation, and
computational geometry.

162

