
Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2008)
M. Gross and D. James (Editors)

Flexible Simulation of Deformable Models Using
Discontinuous Galerkin FEM

Peter Kaufmann1, Sebastian Martin1, Mario Botsch1,2, Markus Gross1

1Computer Graphics Laboratory, ETH Zurich,
2Computer Graphics Group, Bielefeld University

Abstract

We propose a simulation technique for elastically deformable objects based on the discontinuous Galerkin finite
element method (DG FEM). In contrast to traditional FEM, it overcomes the restrictions of conforming basis
functions by allowing for discontinuous elements with weakly enforced continuity constraints. This added flexi-
bility enables the simulation of arbitrarily shaped, convex and non-convex polyhedral elements, while still using
simple polynomial basis functions. For the accurate strain integration over these elements we propose an analytic
technique based on the divergence theorem. Being able to handle arbitrary elements eventually allows us to derive
simple and efficient techniques for volumetric mesh generation, adaptive mesh refinement, and robust cutting.

1. Introduction

Finite element methods (FEMs) have become an indispens-
able tool in computer graphics, where they are mostly used
for physically-based simulation of deformable objects or flu-
ids. Their solid mathematical foundation helps to achieve re-
alistic simulation results, for instance in computer animation
or surgery simulation. In particular in computer graphics,
FEM simulations are mostly based on tetrahedral or hex-
ahedral meshes. While this allows for simple and efficient
implementations, topological changes of the simulation do-
main require complex and error-prone remeshing to main-
tain a consistent simulation mesh. Dynamically adjusting the
mesh is, however, of crucial importance in several simulation
scenarios, such as fracture, interactive cutting in medical ap-
plications, or adaptive refinement of complex domains.

The use of more general convex elements in FEM was
recently shown to considerably simplify cutting and frac-
ture simulations [WBG07]. However, the strict conformity
constraints of standard FEM require comparatively com-
plex shape functions for those elements. In a slightly differ-
ent context, the discontinuous element meshes of the PriMo
framework enable adaptive mesh refinement for interactive
shape deformation [BPWG07]. Due to the missing physical
accuracy this method is not directly useful for physically-
based simulations though.

In this paper we propose a flexible and efficient simulation
technique for corotated linear elasticity based on the discon-
tinuous Galerkin finite element method (DG FEM) [Coc03].

Our approach conceptually generalizes the aforementioned
techniques, and overcomes their limitations by combining
their respective strengths: Like standard continuous Galerkin
FEM (CG FEM), the DG formulation is physically accu-
rate, in the sense that under element refinement the approx-
imation converges toward the exact solution of the involved
PDE. Similar to PriMo, our DG approach supports arbitrary
polyhedral elements and discontinuous meshes with weakly
enforced continuity, thereby allowing for easy and flexible
mesh restructuring.

In comparison to CG FEM, this added flexibility enables
adaptive refinement of mesh elements (h-refinement) and of
the shape functions’ polynomial degree (p-refinement) in a
simple and efficient manner. Furthermore, in order to support
flexible simulations for computer graphics applications, we
extend DG FEM by the following components:

• We simulate arbitrary polyhedral elements using simple
and efficient polynomial basis functions and a fast and ac-
curate volumetric integration technique (Section 6).

• We generalize stiffness warping to discontinuous polyhe-
dral elements, thereby allowing linear strain measures to
be used for large deformations (Section 7).

• For embedded simulations we reconstruct from the dis-
continuous mesh a smooth displacement field based on
moving least squares (MLS) interpolation (Section 8).

In Section 10 we demonstrate the versatility of our approach
on slicing-based mesh generation, adaptive stress-based ele-
ment refinement, and flexible and efficient cutting.
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2. Related Work

Starting with Terzopoulos et al. [TPBF87], physically-based
methods have been successfully employed for the simulation
of deformable solids, thin shells, cloth, and fluids. The focus
of this paper, and of the discussions in this section, is on
deformable solids, and on the finite element method (FEM)
as the underlying simulation scheme. For a more detailed
survey of this topic we refer the reader to [NMK∗06].

Cutting & Fracture. Fracturing can efficiently be per-
formed by restricting cuts to existing element bound-
aries [MG04], but this approach typically is not accurate
enough for more sophisticated simulations. Splitting individ-
ual elements allows for precise fracturing and cutting, but
in turn requires element decompositions [BG00, BGTG03]
and/or general remeshing [OH99, OBH02, SHGS06]. When
accommodating the crack surface, special care has to be
taken to avoid numerically unstable sliver elements. Simi-
larly, Bargteil et al. [BWHT07] performed remeshing to re-
move degenerate elements during large plastic deformations.

Meshless approaches intrinsically avoid remeshing by
using particles instead of a simulation mesh [MKN∗04].
While this considerably simplifies the actual topological
changes, the material distance, which controls the mutual
influence of simulation nodes, has to be adjusted. This can
be accomplished either by recomputing special shape func-
tions [PKA∗05] or by updating a distance graph [SOG06].
Note, however, that these approaches still require resampling
in order to guarantee a sufficiently dense discretization in the
vicinity of cracks and cuts.

A mesh-based alternative to remeshing is the virtual
node algorithm [MBF04], which, instead of splitting el-
ements, duplicates them and embeds the surface in both
copies. While the original approach was limited to cut-
ting each element at most three times, its recent general-
ization [SDF07, SSIF07] overcomes this restriction. Wicke
et al. [WBG07] avoid remeshing of cut elements into con-
sistent tetrahedra by directly supporting convex polyhedra
in FEM simulations. The drawback of their method is the
comparatively complex computation and integration of their
mean value shape functions.

In the context of cutting and fracturing our approach is
most similar to [WBG07], but its ability to handle arbitrary
convex and non-convex polyhedra provides a higher flexibil-
ity, and it is more efficient due to the use of simple polyno-
mial shape functions.

Adaptive Simulation. The steadily growing complexity of
geometric objects as well as of physical models results in
an increasing demand for adaptive simulations, allowing to
concentrate computing resources to interesting regions of the
simulation domain [DDCB01, GKS02, CGC∗02, OGRG07].
When adaptively refining the mesh, special care has to be
taken to avoid or to properly handle hanging nodes.

This problem can be circumvented by subdividing basis
functions instead of elements [GKS02, CGC∗02]. However,
in order to ensure linear independence of basis functions,
Grinspun et al. [GKS02] restrict the refinement to one level
difference between neighboring elements. In contrast, the
hybrid simulation [SSIF07] allows for multi-level hanging
nodes, also by constraining them to edges using either hard
or soft constraints.

Another approach for reducing computational complex-
ity is to embed a high resolution surface mesh into
a coarser simulation mesh [FvdPT97, CGC∗02, MBF04,
MG04, MTG04, JBT04, SSIF07]. The nodal displacements
of the coarse mesh are then interpolated onto the surface
mesh. A similar space deformation approach was employed
for interactive shape deformation in [BPWG07], where fur-
thermore a discontinuous mesh with “glue-like” continuity
energies allowed for easy and flexible mesh refinement.

Our method is based on DG FEM, and hence also em-
ploys discontinuous element meshes, with continuity being
weakly enforced through penalty forces. This, in combina-
tion with the support for arbitrary elements, makes adaptive
refinement both easy and efficient. Moreover, our smooth,
MLS-based embedding technique works on arbitrary ele-
ments and provides higher smoothness compared to the typ-
ically employed barycentric interpolation.

Discontinuous Galerkin FEM. The basic idea of DG
FEM, i.e., employing discontinuous shape functions and
weakly enforcing boundary constraints and inter-element
continuity through penalty forces, is rather old (see,
e.g., [BZ73, DD76]). In the last decade, however, DG
FEM regained increasing attention in applied mathemat-
ics [ABCM01, Coc03].

The main strength of DG FEM is its support for irregular,
non-conforming meshes, and for shape functions of different
polynomial degree, which in combination allows for flexible
hp-refinement. In applied mathematics and mechanics, DG
FEM has successfully been employed for linear and nonlin-
ear elasticity (see, e.g., [LNSO04, TEL06, Wih06]), where it
was shown to be locking-free even for nearly incompressible
materials and to provide an accuracy similar to CG FEM at
comparable computational cost.

Since physical accuracy is not the primary goal in most
graphics applications, we resort to the physically plausible,
robust, and efficient co-rotated linear elasticity. After re-
viewing CG FEM for linear elasticity (Section 3), we intro-
duce the main concepts and differences of DG FEM (Sec-
tion 4), before discussing the simulation of arbitrary polyhe-
dra (Section 6), the generalization of stiffness warping to DG
FEM (Section 7), embedded simulation (Section 8), and col-
lision handling (Section 9). Equipped with those techniques,
we demonstrate the versatility of our framework on a set of
different applications in Section 10.
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3. Linear Elasticity using CG FEM

In this section we briefly review the main equations of 3D
linear elasticity and their respective discretization using CG
FEM, in order to contrast them with DG FEM in the follow-
ing sections. A more detailed derivation of the CG formula-
tion can be found in many textbooks, e.g. [Bat95, Hug00].

In the following we consider a 3D object with material
coordinates x = (x,y,z)T ∈ Ω, which is to be deformed
by a displacement vector field u : Ω → IR3. We measure
local deformations using the linear Cauchy strain ε(u) =
1
2

(
∇u+∇uT

)
, which under the assumption of a Hookean

material is linearly related to the stress

σ(u) = C : ε(u) (1)

through a symmetric 4-tensor C containing material param-
eters†. In static equilibrium the internal forces have to be in
balance with the external forces f, which is expressed by

−∇·σ(u) = f . (2)

Equations (1) and (2), in combination with suitable
boundary constraints on ∂Ω, constitute the strong form of the
problem. The standard approach is to multiply (1) and (2) by
suitable test functions, to formally integrate by parts over the
domain Ω, and combine the resulting equations. This yields
the weak form

aCG(u,v) :=
Z

Ω

ε(v) : C : ε(u) =
Z

Ω

f ·v , (3)

which is defined in terms of the bilinear form aCG(·, ·). The
goal is to find a displacement function u, such that the weak
form (3) holds for all suitable test functions v.

In order to discretize (3) the domain Ω is partitioned into
finite elements K ∈ T . On top of this tessellation a set of
basis functions {N1, . . . ,Nn} is defined and used to approxi-
mate u as

u(x) ≈
n

∑
i=1

ui Ni(x) . (4)

For a weak form containing m’th partial derivatives, standard
FEM requires basis functions Ni from the Sobolev space
Hm(Ω). This in particular restrict the basis functions to be
conforming, i.e., Cm continuous within and Cm−1 continu-
ous across elements [Hug00]. For the linear elasticity prob-
lem with weak form (3), the Ni therefore have to be C0 con-
tinuous across elements.

† The colon operator denotes the tensor product between matrices
A and B as A : B = ∑i, j Ai jBi j , and between matrix A and 4-tensor
C as A : C = ∑i, j Ai jCi jkl or C : A = ∑k,l Ci jklAkl . The dot denotes
vector dot products u ·v or matrix-vector products A ·v and v ·A.

Approximating both u and v by the shape functions Ni and
exploiting the bilinearity of aCG(·, ·) yields the linear system

K ·


...

ui
...

=


...

Fi
...

 , with

{
Ki j = aCG

(
Ni,N j

)
· I3

Fi =
R

Ω
f Ni

,

(5)
where I3 denotes the 3× 3 identity matrix. This system is
finally solved for the unknown coefficients ui ∈ IR3.

4. Linear Elasticity using DG FEM

After reviewing CG FEM, we will now introduce the main
concepts of DG FEM and point out the differences to stan-
dard CG FEM. Due to space constraints we only provide the
most important equations, and refer the interested reader to
the survey articles [ABCM01, Coc03] for more details. In
contrast to CG FEM, DG FEM allows for non-conforming
or discontinuous shape functions Ni, thereby resulting in dis-
continuous approximations of u. Those discontinuities have
to be taken into account when deriving the weak form of the
problem, which will lead to penalty terms that weakly en-
force continuity across elements.

Analogous to CG FEM, equations (1) and (2) are mul-
tiplied by test functions and integrated over the domain
Ω =∪K∈T K, formulated as a sum of integrals over elements
K ∈ T . Integration by parts over these K leads to additional
integrals over all element boundaries Γ = ∪K∂K, which due
to the discontinuities of u and σ do not cancel out as in CG
FEM. In order to “glue” the discontinuities, the functions
u and σ are replaced by their so-called numerical fluxes on
the element boundaries Γ. The various DG methods differ in
exactly these fluxes, a detailed overview and classification
of which can be found in [ABCM01]. In the resulting DG
weak form they show up as penalty terms punishing discon-
tinuities, thereby weakly enforcing continuity.

To formalize this we introduce the average operator {·}
and the jump operator J·K for both vector-valued functions u
and matrix-valued functions σ on an element boundary, i.e.,
on a face f = K−∩K+ shared by two elements K− and K+.
If we denote by u± and σ

± functions evaluated on f ⊂ ∂K±,
by n± the outward normal of K± on f , and by u⊗n = unT

the outer product, then these two operators are defined as

{u} :=
1
2

(
u−+u+

)
, JuK := u−⊗n−+u+⊗n+ ,

{σ} :=
1
2

(
σ
−+σ

+
)

, JσK := σ
− ·n−+σ

+ ·n+ .

A straightforward approach is to minimize the squared
jump JuK : JuK = ‖u− − u+‖2. This corresponds to the
method of Babuška and Zlámal [BZ73], denoted by BZ,
whose weak form uses aBZ instead of aCG in (3):

aBZ(u,v) :=
Z

Ω

ε(v) :C :ε(u) +
Z

Γ

η f JuK :JvK . (6)
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Figure 1: Comparison of CG FEM (left), DG FEM (center), and the elastically coupled rigid cells of PriMo [BPGK06] (right).
The DG method conceptually spans the whole space from CG to PriMo, since for sufficiently large penalties η it approximates
the CG results, and for an extremely stiff material and lower penalty η it reproduces the rigid cells of PriMo.

Note that the BZ weak form (6) differs from the CG weak
form (3) in the Γ-integral only, which punishes the jump JuK
weighted by a penalty parameter per face f [HL02]

η f = η · area( f ) ·
(

1
vol(K−)

+
1

vol(K+)

)
, (7)

using a global penalty parameter η > 0 typically being in the
order of 101–102 in all our experiments. The internal elastic
energy of the deformed object can then be written as

aBZ(u,u) =
Z

Ω

σ(u) :ε(u) +
Z

Γ

η f

∥∥∥u−−u+
∥∥∥2

,

which reveals an interesting connection to both CG FEM and
the elastically coupled rigid cells of PriMo [BPGK06]: CG
computes elastic energies within elements only, using the Ω-
integral, whereas PriMo employs only the “glue” energy be-
tween elements, represented by the Γ-integral. Since BZ is
based on both energy terms, with properly chosen penalty
weight and material stiffness it can reproduce both methods,
and can hence be considered as a generalization of them
(cf. Fig. 1). As such, it combines the strengths of both ap-
proaches, since it inherits the physical accuracy of CG FEM,
as well as the flexibility in element shapes and meshing of
PriMo [BPWG07], as we will show in Section 6.

The BZ method is geometrically intuitive and easy to im-
plement. Its penalty term is equivalent to both the glue en-
ergy of PriMo [BPGK06] and the soft bindings of [SSIF07].
Moreover, it is stable in the sense that the stiffness matrix
K is positive definite for any η > 0. However, as detailed
in [ABCM01], the method is not consistent: A continuous
solution u of the problem might not satisfy the BZ weak
form (6). Consequently, the approximate solution u does in
general not converge toward the exact solution under ele-
ment refinement. Our experiments have shown that the BZ
method is very well suited for applications aiming at phys-
ically plausible deformations only. However, if physical ac-
curacy is important, other DG methods should be chosen.

A more accurate alternative is the interior penalty (IP)
method [DD76], whose weak form is defined by

aIP(u,v) :=
Z

Ω

ε(v) : C : ε(u) (8)

−
Z

Γ

(
JvK :{σ(u)} + JuK :{σ(v)} − η f JuK :JvK

)
.

This method consists of three penalty terms in the Γ-integral:

• The first term ensures consistency: Any continuous solu-
tion u of the problem (1), (2) also satisfies (8).

• The second term achieves symmetry of the bilinear form
a(u,v), and thus of the stiffness matrix K.

• The last term ensures stability: For a sufficiently large
penalty η, a(u,u) > 0, i.e., K is positive definite.

It follows from consistency and stability that the IP method
converges under refinement towards the exact solution, with
a convergence rate determined by the polynomial degree of
Ni [ABCM01]. Another advantage is that the IP method is
still relatively easy to implement (see Section 5). While other
(more complex) numerical fluxes exist (see, e.g., [TEL06,
Wih06]), for our applications the BZ and IP methods per-
formed very well and have been fully sufficient.

5. Discretization & Matrix Assembly

In order to implement DG FEM for linear elasticity, we have
to discretize both u and v, and set up the stiffness matrix K of
the problem. Since this is very similar to CG FEM discussed
in Section 3), we refer the reader to [Hug00, NMK∗06] for
more details on the following derivations.

The discretization (4) of u can be written in matrix no-
tation as u(x) = H(x)U using a 3× 3n interpolation matrix
H(x) built from the basis functions Ni(x), and a 3n vector U
containing the unknown coefficients ui ∈ IR3. Equivalently,
the test function v can be represented as v(x) = H(x)V.

Moreover, we represent stress and strain by 6D vectors σ̄

and ε̄ composed of the independent entries of the symmetric
3×3 matrices σ and ε, respectively. This leads to the matrix
notation of the linear stress-strain relationship

σ̄(u(x)) = C̄ ε̄(u(x)) = C̄B(x)U , (9)
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with a symmetric 6×6 matrix C̄ built from C’s coefficients,
and a 6×3n matrix B(x) containing first derivatives of Ni.

For the assembly of the stiffness matrix we use the above
matrix notations to write the IP weak form (8) in terms of
element contributions (Ω-integrals) and face contributions
(Γ-integrals). Note that for the BZ method (6) only the last
of the three face contributions in (8) is needed.

The element contributions are written in terms of element
stiffness matrices KK as in CG FEM:Z

Ω

ε(v) : C : ε(u) = ∑
K∈T

VT
Z

K
BT (x) C̄B(x)︸ ︷︷ ︸

KK

U . (10)

After expanding {·} and J·K, the first two face contribu-
tions of f = K−∩K+ have the form (with n−=−n+)

JvK :{σ(u)} =
((

v+−v−
)
⊗n+

)
:

1
2

(
σ
−(u)+σ

+(u)
)

.

To write this in matrix notation, we need a “normal matrix”

N f :=

 n+
x 0 0 0 n+

z n+
y

0 n+
y 0 n+

z 0 n+
x

0 0 n+
z n+

y n+
x 0

T

,

and difference and average versions of matrices B and H

HJK
f :=

(
H+

f −H−f
)

, B{}f :=
1
2

(
B+

f +B−f
)

,

which themselves are defined in terms of the restrictions
B±f := B|K± and H±f := H|K± containing only the entries

of B or H corresponding to basis functions of K±. With these
matrices the three face contributions in (8) can be written in
terms of stiffness matrices K f 1, K f 2, K f 3 for each face f :

−
Z

Γ

JvK : {σ(u)} = ∑
f∈T

VT
Z

f
−HJK

f

T
NT

f C̄B{}f︸ ︷︷ ︸
K f 1

U , (11)

−
Z

Γ

JuK :{σ(v)} = ∑
f∈T

VT
Z

f
−B{}f

T
C̄N f HJK

f︸ ︷︷ ︸
K f 2

U , (12)

Z
Γ

η f JuK :JvK = ∑
f∈T

VT
Z

f
η f HJK

f

T
HJK

f︸ ︷︷ ︸
K f 3

U . (13)

The 3n× 3n stiffness matrix K can therefore be assem-
bled by doing one pass over all elements K ∈ T and accu-
mulating their contributions KK , and a second pass over all
faces f ∈ T that accumulates their contributions K f i. Equiv-
alently to CG, the external force vector F is assembled from
the elements’ contributions

R
K H(x)T f. Note that even for

linear basis functions the integrands H(x) are not constant,
requiring integration techniques as discussed in Section 6.
The weak form a(u,v) = VT KU = VT F has to hold for all
test functions v, i.e., all vectors V, leading to the linear sys-
tem KU = F to be solved for the static solution U.

Dirichlet boundary constraints can be prescribed in DG
FEM as weak or strong constraints. The latter simply re-
moves some DOFs from the system, i.e., fixes the coeffi-
cients ui for the corresponding Ni. Weak boundary condi-
tions are imposed by appropriately defining averages and
jumps at boundary elements. For a prescribed displacement
g this means to define the function values on the “free” side
of boundary faces f ∈ ∂Ω as

u− := g, v− := 0, σ
−(v) := σ

+(v) , σ
−(u) := σ

+(u) .

Dynamic simulations of deformable objects with time-
varying U(t) and F(t) require additional inertial and damp-
ing forces, resulting in the governing equations

MÜ+DU̇+KU = F , (14)

with mass matrix M and damping matrix D, equivalently
as for CG FEM [NMK∗06]. In order to guarantee stabil-
ity we employ semi-implicit Euler time-integration, result-
ing in a sparse, symmetric, positive definite linear system to
be solved for each time-step.

We compared two kinds of linear system solvers: precon-
ditioned conjugate gradients [SvdV00] and sparse Cholesky
factorization [TCR]. While both worked well in all our ex-
periments, the Cholesky solver turned out to scale better to
larger problems thanks to its quasi-linear asymptotic com-
plexity, as also observed in [BBK05].

6. Arbitrary Polyhedral Elements

The main advantage of DG FEM is the possibility to use
non-conforming, discontinuous shape functions Ni. This
added flexibility allows us to employ simple degree-k poly-
nomials {1,x,y,z,xy, . . . ,zk} as (non-nodal) basis functions
within each element K. We used either 4 linear or 10
quadratic basis functions per element. Notice that k should
be ≥ 1, since then the DG method can exactly reproduce
rigid motions, yielding in that case a linear, continuous dis-
placement function u without jumps [Coc03].

In contrast to nodal basis functions, these non-nodal basis
functions no longer depend on the element shape, thereby
enabling us to work with arbitrarily shaped elements. For
practical reasons, however, we restrict ourselves to convex
or non-convex polyhedra (i.e., planar faces and linear edges),
which still is considerably more flexible than the convex
polyhedra with triangulated faces of [WBG07].

For a practical implementation we have to accurately and
efficiently compute the integrals of the formZ

K
NaNb ,

Z
K

∂Na

∂xi

∂Nb
∂x j

,
Z

f
NaNb ,

Z
f

∂Na

∂xi
Nb ,

over elements K and faces f , since they are the building
blocks for the matrix assembly described in Section 5. While
tetrahedra or hexahedra can be integrated analytically, gen-
eral polyhedral elements typically require numerical integra-
tion, which trades accuracy for performance [WBG07].
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In contrast, our polynomial basis functions can be inte-
grated analytically over a polyhedron, which is exact up to
numerical round-off errors. We use the divergence theorem
for reducing the volume integral of a degree-k polynomial
pk over an element K to an area integral of a degree-(k + 1)
polynomial pk+1 over its boundary ∂K, i.e., to a sum of inte-
grals over its faces. Each face integral can in turn be reduced
to line integrals over its edges e ∈ ∂ f , which in the end re-
sults in degree-(k +3) polynomials in the edge endpoints.

The resulting expressions for polynomial basis functions
can be (pre-)computed analytically. For linear and quadratic
polynomials they are derived in detail by [Mir96], who ini-
tially proposed this approach for accurately computing mass
properties of polyhedra. Expressions for higher order poly-
nomials can be derived accordingly.

The resulting analytic integration is exact up to round-off-
errors, and is also reasonably efficient: A straightforward nu-
merical integration still shows an error of about 10−2 for the
same computation time. Compared to CG FEM using the
mean value polyhedral elements of [WBG07], our integra-
tion method is faster by an order of magnitude.

7. Stiffness Warping

Under large rotational deformations, linear FEM shows ar-
tifacts such as an unrealistic increase in volume. To avoid
the cost of a full nonlinear simulation but still get physically
plausible deformations in these cases, we employ a corotated
formulation, which computes elastic forces in a rotated co-
ordinate frame defined for each element [MG04, HS04].

In linear CG FEM, the forces acting on the nodes of an
element K are computed from nodal displacements U and
the element stiffness matrix KK defined in (10) as follows:

FK = KKU = KK

(
X−X0

)
, (15)

with X and X0 denoting the deformed and undeformed nodal
positions, respectively. In order to avoid the aforementioned
rotational artifacts, the corotational, or warped stiffness ap-
proach [MG04, HS04] first reverts the element’s rotation,
computes displacements and forces in the un-rotated state,
and re-rotates the resulting forces:

FK = RK KK

(
RT

KX−X0
)

, (16)

where RK is a block-diagonal matrix containing the 3× 3
rotation matrix of element K on its diagonal.

This approach cannot be directly applied to DG for two
reasons. First, the contributions resulting from integrals over
interior faces are associated with two elements and require
special treatment. Second, in case non-nodal basis functions
are used, we will no longer be solving for nodal displace-
ments, and X0 in (15) needs to be generalized to a set of
degrees of freedom defining the undeformed state of the ob-
ject in terms of the basis functions Ni.

Element and Face Contributions. Element contributions
(10) can be treated just as in CG FEM using (16). We de-
termine the rotations of general polyhedra by first fitting an
affine transformation to the nodal displacements in the least
squares sense, and then extracting its rotational component
RK using polar decomposition [HS04].

Note that for face contributions (11), (12), (13) we cannot
simply apply (16) using the face’s rotation, since that would
lead to ghost forces and instabilities similar to the per-vertex
stiffness warping of [MDM∗02]. Moreover, the corotational
method is only required to correct artifacts due to the linear
strain ε̄ = BU, and therefore it is not needed for (13).

For the face contributions (11) and (12) it is crucial that
the strains B+

f U and B−f U, which constitute B{}f , are com-
puted consistently with the strains of the element contribu-
tions (16) of K+ and K−. This requires to use the elements’
rotations R+

f and R−f for correcting B+
f U and B−f U, respec-

tively. We therefore have to split up the stiffness matrices
K f 1 and K f 2 w.r.t. strain contributions from either K+ or
K−, yielding the four stiffness matrices

K±f 1 := −1
2

Z
f
HJK

f

T
NT

f C̄B±f ,

K±f 2 := −1
2

Z
f
B±f

T
C̄N f HJK

f ,

where (·)± again denotes either (·)+ or (·)−. These stiffness
matrices allow for a consistent warping of a face f ’s contri-
butions, such that we get five corotated contributions:

F±f 1 = R±f K±f 1

(
R±f

T
X−X0

)
,

F±f 2 = R±f K±f 2

(
R±f

T
X−X0

)
,

F f 3 = K f 3

(
X−X0

)
.

Non-Nodal Basis Functions. In order to use stiffness warp-
ing for non-nodal basis functions, we need to generalize
the definition of the vector X0 representing the undeformed
state. To this end, we have to find X0 = (x0

1, . . . ,x
0
n) satis-

fying the identity ∑i x0
i Ni(x)≡ x. For nodal basis functions,

this vector would contain the nodal positions of the unde-
formed mesh. Since for each element K our non-nodal ba-
sis functions always contain the linear polynomials (cf. Sec-
tion 6), finding X0 is trivial. For each element K, if its linear
basis functions are

NiK (x) = x , N jK (x) = y , NkK (x) = z ,

we simply set the corresponding coefficients to

x0
iK = (1,0,0)T , x0

jK = (0,1,0)T , x0
kK

= (0,0,1)T ,

and use x0
lK = (0,0,0)T for all its other basis functions. This

results in a vector X0 representing the undeformed state,
based on which stiffness warping can be performed just as
for nodal basis functions.

c© The Eurographics Association 2008.



Kaufmann et al. / Flexible Simulation of Deformable Models Using Discontinuous Galerkin FEM

Note that for quadratic or higher order basis functions,
stiffness warping only removes the global element rotation,
whereas local rotations due to bending might remain. While
this was not a problem in all our experiments, such cases can
easily be detected and the respective elements can be refined
(see Section 10). We used stiffness warping for all 3D exam-
ples shown in this paper, and only provide a comparison to
non-warped linear elasticity in the accompanying video.

8. MLS-Based Surface Embedding

When it comes to the simulation of complex models, a com-
mon approach for keeping computation costs low is to em-
bed a high resolution surface mesh into a lower resolution
simulation mesh. The latter can be simulated efficiently, and
its displacement field u(x) is used to deform the surface
mesh (see, e.g., [FvdPT97,MTG04,JBT04,SSIF07]). In DG
FEM, the discontinuous displacement u cannot be applied
directly to the high resolution surface, since it would lead to
gaps and self-intersections.

To remove the discontinuities we first stitch the simulation
mesh by averaging, for each node xi ∈ T , the different dis-
placements u|K(xi) corresponding to its incident elements
K ∈Ni, similar to [BPGK06]:

ũi =
1
|Ni| ∑

K∈Ni

u|K(xi) . (17)

This results in a deformed, continuous simulation mesh,
which is sufficient for visualizing the simulation mesh itself.

The averaged nodal displacements have to be interpolated
within elements in order to deform the embedded mesh. For
tetrahedral or hexahedral elements this amounts to simple
linear or trilinear interpolation, respectively. For more gen-
eral convex or non-convex polyhedra, mean value coordi-
nates [FKR05, JSW05] or harmonic coordinates [JMD∗07]
can be employed. All these methods, however, correspond
to a non-smooth, generalized barycentric C0 interpolation,
resulting in clearly visible shading artifacts for coarse simu-
lation meshes (cf. Fig. 2, left).

Botsch et al. [BPWG07] employ globally supported ra-
dial basis functions for high quality interpolation, but the
involved dense linear systems are prohibitive for complex
simulation meshes. To overcome these limitations, and in-
spired by meshless methods [MKN∗04, PKA∗05], we pro-
pose a smooth embedding based on moving-least-squares
(MLS) interpolation.

If we denote by xi the nodes of the undeformed simu-
lation mesh, and by ũi their averaged displacements, then
the displacement at a material point x is computed by fitting
an affine transformation, which amounts to minimizing the
weighted least square error

∑
i

θ(‖x−xi‖)
∥∥∥a(x)T p(xi)− ũi

∥∥∥2
, (18)

Figure 2: Comparison of embedding techniques. Stitching
the discontinuous simulation mesh, followed by barycentric
interpolation, leads to C0 artifacts (left). In contrast, our
smooth MLS-based embedding yields a considerably higher
surface quality (right).

with p(x,y,z) = (1,x,y,z)T and θ(x) a (truncated) Gaussian
weight function. Solving a 4× 4 linear system A(x)a(x) =
b(x) yields the coefficients a(x) for the interpolated displace-
ment ũ(x) = a(x)T p(x) at the position x. This MLS-based
embedding has several interesting properties:

• The smoothness of the interpolation is determined by the
weighting kernels wi, resulting in a high quality embed-
ding for our choice of Gaussian kernels (cf. Fig. 2, right).

• The use of linear polynomials p(x), in combination with
the partition of unity property of MLS shape functions,
guarantees the exact reproduction of linear displacements
u, i.e., in particular of rigid motions [FM04].

• Since the approach is entirely meshless it can be used to
interpolate within arbitrarily shaped elements. Choosing
the support radius of wi proportional to the local sampling
density at x0

i (e.g., distances to one-ring neighbors), yields
smooth interpolations even for irregular meshes.
• An accurate approximation of higher order polynomial

displacements u only requires to add more samples
(x0

i , ũi) to (18), such as edge, face, or element midpoints.
• The interpolated displacement ũ(x) of a vertex x of the

embedded mesh linearly depends on a(x), which in turn
linearly depends on the ũi used in (18), which finally lin-
early depend on ui through (17) and (4). Hence, by com-
bining these linear relationships, the weights wi(x) as well
as the set N (x) of relevant basis functions Ni can be pre-
computed, such that during the simulation only

ũ(x) = ∑
i∈N(x)

wi(x)Ni(x)ui =: ∑
i∈N(x)

Wi(x)ui (19)

has to be evaluated as a linear combination of ui.

9. Collisions

Since collision handling is not the focus of this work, we re-
strict ourselves to simple penalty-based collision response
within the semi-implicit time integration. The basic ap-
proach is equivalent to CG FEM, therefore we only discuss
the differences due to the discontinuous displacement u.
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Suppose that in the current time-step we detect a colli-
sion at a displaced material point xc + ũ(xc). Since we use
the interpolated displacement ũ of (19), xc can be an arbi-
trary embedded point, e.g., a vertex of the embedded surface
mesh. Nodal collisions using the stitched displacement (17)
is just a special case of this formulation.

For collision response a penalty force proportional to
the penetration depth is added to the system. For the
semi-implicit solve this displacement-dependent force yields
f(xc) = A · ũ(xc)+ b with A ∈ IR3×3 and b ∈ IR3. The cor-
responding penalty energy is

Ecoll(xc) =
1
2

ũ(xc)T Aũ(xc) + ũ(xc)T b ,

which after inserting the definition of ũ in (19) becomes

1
2 ∑

i, j
uT

i Wi(xc)AW j(xc)u j + ∑
i

uT
i Wi(xc)b .

Since this collision energy corresponds to an external force,
it has to be either subtracted from the internal potential en-
ergy 1

2 UT KU or to be added to the external energy UT F.
Hence, we can incorporate the collision energy Ecoll into the
system (14) by updating 3×3 blocks of the stiffness matrix
K and 3-vectors of the external force F (see Section 5):

Ki j −= Wi(xc)AW j(xc) ,

Fi += bWi(xc) ,

for all i, j ∈N (xc), i.e., the set of basis functions Wi, respec-
tively Ni, influencing the collision point xc (see (19)).

If the simulation mesh is also used for visualization, sim-
ple nodal collisions are sufficient in most cases, as for in-
stance for the examples shown in Section 10. However,
for embedded simulations collisions should be detected and
handled on the vertices of the embedded surface (cf. Fig. 3).

Figure 3: Collisions handling on the nodes of the simulation
mesh (left) and the vertices of the embedded mesh (right).

10. Results

In this section we demonstrate how the possibility to use ar-
bitrary polyhedral elements and simple polynomial shape
functions can be exploited to derive a versatile and effi-
cient simulation technique. Before presenting specific exam-
ple applications, which are also shown in the accompanying
video, we discuss some general advantages and disadvan-
tages of DG FEM compared to CG FEM.

Method Resolution #DOFs Spars. Int. Ass. Solve
DG BZ lin. 10×10×10 12k 0.28% 532 22 656
DG IP lin. 10×10×10 12k 0.62% 1437 87 734
CG trilin. 15×15×15 12k 0.58% 3750 41 641
DG BZ quad. 10×10×10 30k 0.28% 3062 152 7797
DG IP quad. 10×10×10 30k 0.64% 8344 621 8484

Table 1: Comparison of BZ and IP with linear/quadratic ba-
sis functions to trilinear CG FEM for 3D elasticity. The mesh
resolution is chosen to match the DOFs of DG and CG. The
table lists matrix sparsity and timings (in ms) for volume
integration, matrix assembly, and the solution of the linear
system (taken on an Intel Core2 Duo 2.4 GHz).

DG FEM versus CG FEM. The accompanying video pro-
vides comparisons of CG and DG for 3D elasticity, on coarse
and more detailed simulation meshes. However, a qualitative
comparison between the two methods is generally hard. We
therefore also quantitatively compare CG to DG, the latter
using BZ/IP penalties and linear/quadratic basis functions,
based on a 2D Poisson problem with analytically known so-
lution (cf. Fig. 4). In addition, Table 1 gives some statistics
and timings of the same five methods for 3D linear elasticity.
Note that even for the same mesh and basis functions DG
provides more degrees of freedom (DOFs) than CG, since
nodes can “split” due to discontinuous displacements. The
plots and timings are therefore with respect to DOFs.

As expected, the IP method converges regularly, at a rate
similar to CG for linear shape functions, and at a faster rate
for quadratic ones. By consequence, the jumps decrease un-
der element refinement, eventually reconstructing the exact,
continuous solution [Coc03]. The only additional parameter
compared to CG FEM is the penalty weight η in (7), which
has to be sufficiently high to guarantee stability. We simply
start with a low value and double it until K is positive def-
inite, which has never been a problem in our experiments
and typically leads to η in the order of 101–102. Note that η

should not be too high, since otherwise the method resem-
bles CG and does not exploit its additional DOFs (Fig. 1).

The missing consistency terms of BZ (cf. (6), (8)) allow
for sparser matrices and higher efficiency. Furthermore, the
method is stable for any positive penalty η. Although lacking
theoretical convergence guarantees, BZ shows a reasonable
convergence behavior in practice and gives visually convinc-
ing results. We therefore consider it well suited for typical
graphics applications requiring physically plausible defor-
mations only. For more accurate simulations the IP method
is the better choice. Highly accurate results can be achieved
using more complex numerical fluxes in combinations with
nonlinear strain measures [TEL06].

Both DG methods lead to higher condition numbers of the
linear systems, which, however, has not been a problem in all
our examples, for both the conjugate gradients solver as well
as the sparse Cholesky factorization.
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Figure 4: Solution of the Poisson equation −∆u = f on a regular quadrilateral grid of resolutions 22, 42, 82, and 162, using
CG FEM and DG FEM. The plots compare the L2 errors ‖∆u+ f‖ and the condition numbers of the stiffness matrix K for the
BZ and IP method using linear and quadratic basis functions, and also include bilinear CG FEM as a reference.

For the same number of DOFs and basis functions of the
same degree, CG FEM can be observed to be more accurate
than DG FEM by a constant factor (Fig. 4) and to be slightly
more efficient (Table 1). Since standard CG FEM is also eas-
ier to implement, it will stay the preferred method for many
applications. However, as soon as topological changes of the
simulation mesh are required or if complex element shapes
have to be simulated, the higher flexibility of DG FEM pays
off, as for instance in the following examples.

Mesh Generation by Hexagonal Slicing. A challenge in
simulating deformable objects is the preservation of surface
detail without introducing an excessive amount of simulation
primitives. Commonly used approaches include voxelization
of the object’s volume or tetrahedrization. While voxeliza-
tion is simple to implement and results in well-behaved el-
ements, it cannot accurately represent surface details unless
a high number of elements is used. On the other hand, tetra-
hedral meshes can accurately represent objects defined by
surface meshes, but result in a higher number of elements.

Using arbitrary elements in DG FEM gives rise to an inter-
esting mesh generation algorithm that decouples the number
of elements (and thus the DOFs) from the resolution of the
surface mesh. Combining the strengths of both voxelization
and tetrahedrization, the simulation mesh is generated by in-
tersecting the object with a hexahedral grid. Each intersected
cell then corresponds to a finite element, resulting in hexa-
hedral elements in the interior and arbitrary polyhedra at the
object’s surface (cf. Fig. 5). Note that the strain energy is in-
tegrated over the exact volume of the object, whereas a pure

Figure 5: Intersecting the bunny with a hexahedral grid
generates 41 elements (left). Closeup view of a non-convex
element (right).

embedded simulation could in this case lead to an erroneous
coupling of the bunny’s ears.

Dynamic Adaptivity. In order to make optimal use of the
available computational resources, it is often desirable to
adaptively enhance the resolution of a dynamic simulation
around a specific area of interest. Using arbitrary elements
in a DG framework allows for easy and flexible refinement.

We chose a simple criterion based on stress concentration,
refining an element when its largest absolute principal stress
exceeds a given threshold. For the actual topological re-
finement, we can, e.g., perform a regular 1-to-8 subdivision
of hexahedral elements, conceptually similar to [GKS02].
An interesting alternative is the more flexible 1-to-2 split
along the plane perpendicular to the principal stress direc-
tion, which generates fewer elements for the same refine-
ment threshold (cf. Fig. 6).
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Figure 6: A bar (36 hex-elements) is dynamically refined
during bending. 1-to-8 subdivision results in 274 elements
(left), whereas 1-to-2 refinement yields 77 elements (right).

Note that the refinement of an element is in no way re-
stricted by the refinement level of its neighbors. When split-
ting an element, we simply copy the parent’s coefficients for
displacement ui and velocity u̇i to its children. This straight-
forward heuristic causes the slight popping artifacts visible
in the video, which could probably be avoided by a more
sophisticated technique.

Cutting. Using DG FEM for cutting simulations has a cou-
ple of advantages over existing methods. Being able to sim-
ulate arbitrary elements avoids complex remeshing of the
simulation domain (cf. Fig. 7), similar in spirit to [MBF04,
WBG07, SDF07]. Furthermore, thanks to the analytic inte-
gration the contributions of newly created elements can be
computed very efficiently and accurately, avoiding the need
for expensive numerical integration during the simulation.
By storing and reusing individual edge and face integrals,
after splitting an element we only need to recompute inte-
grals over edges and faces intersecting the cut plane.

Poorly shaped elements with negligible volume cause
numerical problems, equivalently to CG FEM. However,
those elements can effectively be avoided by simply merging
them with neighboring elements, exploiting the fact that our
method is not restricted to convex elements. Note that also
for mesh generation and dynamic refinement we either pre-
vent the generation of degenerate elements, or remove them
by the mentioned sliver merging technique.

11. Conclusion

We presented a novel simulation technique for deformable
models based on discontinuous Galerkin FEM. The main
advantage of DG FEM is the flexibility to use discontin-
uous shape functions, which we exploited for the efficient
simulation of arbitrary polyhedral elements. Our generaliza-
tion of stiffness warping enables physically plausible large-
scale deformations, and our MLS-based surface embedding
allows to simulate complex models in the DG framework.

We demonstrated the versatility of our approach on con-
ceptually simple, efficient, and robust techniques for mesh
generation, adaptive refinement, and cutting. While there

Figure 7: Sharpening a pencil consisting of a single convex
element (left). Cutting a bunny out of a cube (right).

are successful methods for each individual problem, our
approach provides an interesting alternative that handles
all problems in a single, consistent DG FEM framework.
Promising directions for future work include nonlinear elas-
ticity simulations of both solids and shells, which would
benefit even more from the flexibility offered by DG FEM.
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