
EUROGRAPHICS 2006 Tutorial

Geometric Modeling Based on Triangle Meshes

Mario Botsch1 Mark Pauly1 Christian Rössl2 Stephan Bischoff3 Leif Kobbelt3

[2mm] 1ETH Zurich
[-1mm] 2INRIA Sophia Antipolis

[-1mm] 3RWTH Aachen University of Technology

Abstract
This course is designed to cover the entire geometry processing pipeline based on triangle meshes. We will
present the latest concepts for mesh generation and mesh repair, for geometry and topology optimizations like
mesh smoothing, decimation, and remeshing, for parametrization, segmentation, and shape editing. In addition
to describing and discussing the related algorithms, we will also give valuable implementation hints and provide
source code for most of the covered topics.

Contents

1 Introduction

2 Surface Representations

2.1 Explicit Surface Representations

2.2 Implicit Surface Representations

2.3 Conversion Methods

3 Mesh Data Structures

3.1 Halfedge Data Structure

3.2 Directed Edges

3.3 Mesh Libraries: CGAL and OpenMesh

3.4 Summary

4 Model Repair

4.1 Artifact Chart

4.2 Types of Repair Algorithms

4.3 Types of Input

4.4 Surface Oriented Algorithms

4.5 Volumetric Repair Algorithms

5 Discrete Curvatures

5.1 Differential Geometry

5.2 Discrete Differential Operators

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

6 Mesh Quality

6.1 Visualizing smoothness

6.2 Visualizing curvature and fairness

6.3 The shape of triangles

7 Mesh Smoothing

7.1 General Goals

7.2 Spectral Analysis and Filter Design

7.3 Diffusion Flow

7.4 Energy Minimization

7.5 Extensions and Alternative Methods

7.6 Summary

8 Parameterization

8.1 Objectives

8.2 Discrete Mappings

8.3 Angle Preservation

8.4 Reducing Area Distortion

8.5 Spherical Mappings

8.6 Mapping Surfaces of Arbitrary Topology

8.7 Alternative Objectives and Approaches

8.8 Summary

9 Mesh Decimation

9.1 Vertex Clustering

9.2 Incremental Mesh Decimation

9.3 Out-of-core Methods

10 Remeshing

10.1 Isotropic Remeshing

10.2 Anisotropic Remeshing

10.3 Variational Shape Approximation

10.4 Mesh Segmentation

11 Shape Deformations

11.1 Surface-Based Freeform Deformations

11.2 Space Deformations

11.3 Multiresolution Deformations

11.4 Deformations Based on Differential Coordinates

12 Numerics

12.1 Laplacian Systems

12.2 Dense Direct Solvers

12.3 Iterative Solvers

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

12.4 Multigrid Iterative Solvers

12.5 Sparse Direct Solvers

12.6 Non-Symmetric Indefinite Systems

12.7 Comparison

References

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

1. Introduction

In the last years triangle meshes have become increasingly popular and are
nowadays intensively used in many different areas of computer graphics and
geometry processing. In classical CAGD irregular triangle meshes devel-
oped into a valuable alternative to traditional spline surfaces, since their con-
ceptual simplicity allows for more flexible and highly efficient processing.

Moreover, the consequent use of triangle meshes as surface representa-
tion avoids error-prone conversions, e.g., from CAD surfaces to mesh-based
input data of numerical simulations. Besides classical geometric modeling,
other major areas frequently employing triangle meshes are computer games
and movie production. In this context geometric models are often acquired
by 3D scanning techniques and have to undergo post-processing and shape
optimization techniques before being actually used in production.

This course discusses the whole geometry processing pipeline based on
triangle meshes. We will first introduce general concepts of surface repre-
sentations and point out the advantageous properties of triangle meshes in
Chapter2, and present efficient data structures for their implementation in
Chapter3.

The different sources of input data and types of geometric and topological
degeneracies and inconsistencies are described in Chapter4, as well as tech-
niques for their removal, resulting in clean two-manifold meshes suitable
for further processing. Mesh quality criteria measuring geometric smooth-
ness and element shape together with the corresponding analysis techniques
are presented in Chapter6.

Mesh smoothing reduces noise in scanned surfaces by generalizing signal
processing techniques to irregular triangle meshes (Chapter7). Similarly,
the underlying concepts from differential geometry are useful for surface
parametrization as well (Chapter8). Due to the enormous complexity of
meshes acquired by 3D scanning, mesh decimation techniques are required
for error-controlled simplification (Chapter9). The shape of triangles, which
is important for the robustness of numerical simulations, can be optimized
by general remeshing methods (Chapter10).

After optimizing meshes with respect to the different quality criteria, we
finally present techniques for intuitive and interactive shape deformation
(Chapter11). Since solving linear systems is a commonly required compo-
nent for many of the presented mesh processing algorithms, we will discuss
their efficient solution and compare several existing libraries in Chapter12.

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

2. Surface Representations

The efficient processing of different kinds of geometric objects requires — analogously to other fields of computer science —
the design of suitable data structures. Since the data to be processed are geometric shapes, each specific problem requires the
right shape representation to be chosen in order to enable efficient access to the relevant information. In this context, there are
two major classes of surface representations:explicit surface representations andimplicit surface representations.

Explicit surfaces are defined by a vector-valued parameterization functionf : Ω→S, that maps a two-dimensional parameter
domainΩ ⊂ IR2 to the surfaceS = f (Ω) ⊂ IR3. In contrast, an implicit (or volumetric) surface is implicitly defined to be the
zero-set of a scalar-valued functionF : IR3→ IR, i.e.,S = {x ∈ IR3 | F(x) = 0}. A simple two-dimensional example is the unit
circle, which can be described as the range of the explicit function

f : [0,2π]→ IR2 , t 7→
(

cos(t)
sin(t)

)
as well as by the kernel of the implicit function

F : IR2→ IR , (x,y) 7→
√

x2 +y2−1 .

Both representations have their own strengths and weaknesses, such that for each geometric problem the better suited one
should be chosen. In order to analyze geometric operations and their requirements on the surface representation, one can classify
them into the following three categories [Kob03]:

Evaluation: The sampling of the surface geometry or of other surface attributes, e.g., the surface normal field. A typical
example is surface rendering.

Query: Spatial queries are used to determine whether or not a given pointp ∈ IR3 is inside or outside of the solid bounded by
a surfaceS, which is a key component for solid modeling operations. Another typical query is the computation of a point’s
distance to a surface.

Modification: A surface can be modified either in terms ofgeometry(surface deformation), or in terms oftopology, e.g., when
different parts of the surface are to be merged.

We will see in the following that explicit and implicit surface representations have complementary advantages w.r.t. these
three kinds of geometric operations, i.e., the strengths of the one are the drawbacks of the other. Hence, for each specific
geometric problem the more efficient representation should be chosen, which, in turn, requires efficient conversion routines
between the two representations (Section2.3).

2.1. Explicit Surface Representations

Explicit (or parametric) surface representations have the advantage that their parameterizationf : Ω→S enables the reduction
of several three-dimensional problems on the surfaceS to two-dimensional problems in the parameter domainΩ. For instance,
points on the surface can easily be generated by simple function evaluations off, which obviously allows for efficient evaluation
operations. In a similar manner, geodesic neighborhoods, i.e., neighborhoods on the surfaceS, can easily be found by consider-
ing neighboring points in the parameter domainΩ. A simple composition off with a deformation functiond : IR3→ IR3 results
in an efficient modification of the surface geometry.

On the other hand, generating an explicit surface parameterizationf can be very complex, since the parameter domainΩ has
to match the topological and metric structure of the surfaceS (Chapter8). When changing the shape ofS, it might even be
necessary to update the parameterization accordingly in order to reflect the respective changes of the underlying geometry: A
low-distortion parameterization requires the metrics inS andΩ to be similar, and hence we have to avoid or adapt to excessive
stretching.

However, since the surfaceS is the range of the parameterizationf, its topology can be controlled explicitly. In turn, changing
the topology of an explicit surfaceS can be extremely complicated, since the parameterization as well as the domainΩ have to
be adjusted accordingly. The typical inside/outside or distance queries are in general also very expensive on explicit surfaces.
Hence, topological modification and spatial queries are the weak points of explicit surfaces.

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

Figure 1: Subdivision surfaces are generated by an iterative refinement of a coarse control mesh.

2.1.1. Spline Surfaces

Tensor-product spline surfaces are the standard surface representation of today’s CAD systems. They are used for constructing
high-quality surfaces from scratch as well as for later surface deformation tasks. Spline surfaces can conveniently be described
by the B-spline basis functionsNn

i (·), for more detail see [Far97, PT97, PBP02].

A tensor product spline surfacef of degreen is a piecewise polynomial surface that is built by connecting several polynomial
patches in a smoothCn−1 manner:

f : [0,1]2 → IR3

(u,v) 7→
m

∑
i=0

m

∑
j=0

ci j N
n
i (u)Nn

j (v) .

Thecontrol pointsci j ∈ IR3 define the so-calledcontrol grid of the spline surface. BecauseNn
i (u) ≥ 0 and∑i N

n
i ≡ 1, each

surface pointf (u,v) is a convex combination of the control pointsci j , i.e., the surface lies within the convex hull of the control
grid. Due to the small support of the basis functions, each control point has local influence only. These two properties cause
spline surfaces to closely follow the control grid, thereby providing a geometrically intuitive metaphor for modeling surfaces
by adjusting its control points.

A tensor-product surface — as the image of a rectangular domain under the parameterizationf — always represents a
rectangular surface patch embedded in IR3. If shapes of more complicated topological structure are to be represented by spline
surfaces, the model has to be decomposed into a large number of (possibly trimmed) tensor-product patches.

As a consequence of thesetopological constraints, typical CAD models consist of a huge collection of surface patches. In
order to represent a high quality, globally smooth surface, these patches have to be connected in a smooth manner, leading
to additionalgeometric constraints, that have to be taken care of throughout all surface processing phases. The large number
of surface patches and the resulting topological and geometric constraints significantly complicate surface construction and in
particular the later surface modeling tasks.

2.1.2. Subdivision Surfaces

Subdivision surfaces [ZSD∗00] can be considered as a generalization of spline surfaces, since they are also controlled by a
coarsecontrol mesh, but in contrast to spline surfaces allow to represent surfaces of arbitrary topology. Subdivision surfaces are
generated by repeated refinement of control meshes: After each topological refinement step, the positions of the (old and new)
vertices are adjusted based on a set of local averaging rules. A careful analysis of these rules reveals that in the limit this process
results in a surface of provable smoothness (cf. Fig.1).

As a consequence, subdivision surfaces are restricted neither by topological nor by geometric constraints as spline surfaces
are, and their inherent hierarchical structure allows for highly efficient algorithms. However, subdivision techniques are re-
stricted to surfaces with so-called semi-regularsubdivision connectivity, i.e., surface meshes whose triangulation is the result
of repeated refinement of a coarse control mesh. As this constraint is not met by arbitrary surfaces, those would have to be
remeshedto subdivision connectivity in a preprocessing step [EDD∗95, LSS∗98, KVLS99a, GVSS00]. But as this remeshing
corresponds to a resampling of the surface, it usually leads to sampling artifacts and loss of information. In order to avoid the
restrictions caused by theseconnectivity constraints, our goal is to work on arbitrary triangle meshes, as they provide higher
flexibility and also allow for efficient surface processing.

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

Figure 2: Each subdivision step halves the edge lengths, increases the number of faces by a factor of 4, and reduces the error
by a factor of14 .

2.1.3. Triangle Meshes

In contrast to spline surfaces, triangle meshes are neither specified in terms of a surface parameterization nor do they provide
an inherent parameterization as subdivision surfaces do. However, triangle meshes are also defined in an explicit manner, and
therefore are categorized to be anexplicit surface representation, although not aparametricone.

A triangle meshM consists of a geometric and a topological component, where the latter can be represented by a set of
vertices

V = {v1, . . . ,vV}

and a set of triangular faces connecting them

F = { f1, . . . , fF} , fi ∈ V ×V ×V ,

where each triangle specifies its three vertices fromV. However, as we will see in Chapter3, it is sometimes more efficient to
represent the connectivity of a triangle mesh in terms of the edges of the respective graph

E = {e1, . . . ,eE} , ei ∈ V ×V .

The geometric embedding of a triangle mesh into IR3 is specified by associating a 3D positionpi to each vertexvi ∈ V:

P = {p1, . . . ,pV} , pi := p(vi) =

 x(vi)
y(vi)
z(vi)

 ∈ IR3 ,

such that each facef ∈ F actually represents a triangle in 3-space specified by its three vertex positions.

A triangle mesh therefore represents a continuous piecewise linear surface. If a sufficiently smooth surface is approximated
by such a piecewise linear function, a local Tailor expansion reveals that the approximation error is of the orderO(h2), with
h denoting the maximum edge length. Due to this quadratic approximation power, the error is reduced by a factor of 1/4 by
halving the edge lengths. As this refinement splits each triangle into four sub-triangles, it increases the number of triangles from
F to 4F (cf. Fig. 2). Hence, the approximation error of a triangle mesh is inversely proportional to the number of its faces.
The approximation error depends on the higher order terms of the Taylor expansion, i.e., mainly on the second derivatives or
the curvature of the underlying smooth surface. From this we can derive that a sufficient approximation is possible with just a
moderate mesh complexity: The vertex density has to be locally adapted to the surface curvature, such that flat areas are sparsely
sampled, while in detailed regions the sampling density is sufficiently higher.

An important topological characterization of a surface is whether or not it istwo-manifold, which is the case if for each point
the surface is locally homeomorphic to a disk (or a half-disk at boundaries). A triangle mesh is considered to be two-manifold,
if it does neither contain non-manifold edges, non-manifold vertices, nor self-intersections. Anon-manifold edgehas more than
two incident triangles and anon-manifold vertexis generated by pinching two surface sheets together at that vertex, such that
the vertex is incident to two fans of triangles (cf. Fig.3). Non-manifold meshes are problematic for most algorithms, since
around non-manifold configurations there exists no well-defined local geodesic neighborhoods.

Even irregular triangle meshes provide a certain topological structure. The famous Euler formula [Cox89] states an interesting
relation between the numbers of verticesV, edgesE and faces/trianglesF in a closed and connected mesh:

V−E +F = 2(1−g) , (1)

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

Figure 3: Two surface sheets meet at a non-manifold vertex (left). A non-manifold edge has more than two incident faces
(center). The right configuration, although being non-manifold in the strict sense, can be handled by most data structures.

whereg is the genus of the surface and intuitively represents the number of handles of an object (cf. Fig.4). Since for typical
meshes the genus is small compared to the numbers of elements, the right-hand side of Eq. (1) can be assumed to be almost zero.
Given this and the fact that each triangle is bounded by three edges and that each (interior) edge is incident to two triangles, one
can derive the following mesh statistics:

• The number of triangles is twice the number of vertices:F ≈ 2V.
• The number of edges is three times the number of vertices:E ≈ 3V.
• The average vertex valence (number of incident edges) is 6.

These relations will become important when considering data structures or file formats for triangle meshes in Chapter3.

In comparison to spline and subdivision surfaces, triangle meshes are not restricted by geometric, topological, or connectivity
constraints, and hence can be considered to be the most flexible of these surface representations. Being 2-simplices, triangles are
the conceptually simplest primitives for representing surfaces, and thus allow for the implementation of very efficient geometry
processing algorithms. Since the development of efficient algorithms for triangle meshes requires suitable data structures, we
will discuss this topic in detail in Chapter3.

Figure 4: From left to right: sphere of genus 0, torus of genus 1, double-torus of genus 2.

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

+ - - =

Figure 5: A complex object constructed by boolean operations.

2.2. Implicit Surface Representations

The basic concept ofimplicit or volumetricrepresentations of geometric models is to characterize the whole embedding space
of an object by classifying each 3D point to lie either inside, outside, or exactly on the surfaceS bounding a solid object.

There are different representations for implicit functions, like continuous algebraic surfaces, radial basis functions, or discrete
voxelizations. In any case, the surfaceS is defined to be the zero-level iso-surface of a scalar-valued functionF : IR3→ IR. By
definition, negative function values ofF designate points inside the object and positive values points outside the object, such
that the zero-level iso-surfaceS separates the inside from the outside.

As a consequence, geometric inside/outside queries simplify to function evaluations ofF and checking the sign of the
resulting value. This makes implicit representations well suited for constructive solid geometry (CSG), where complex objects
are constructed by boolean operations of simpler ones (cf. Fig.5). The different boolean operations can easily be computed by
simple min and max combinations of the objects’ implicit functions. Hence, implicit surfaces can easily change their topology.
Moreover, since an implicit surface is a level-set of a potential function, geometric self-intersections cannot occur, which will
later be exploited for mesh repair (Chapter4).

The implicit functionF for a given surfaceS is not uniquely determined, but the most common and most natural representa-
tion is the so-calledsigned distance function, which maps each 3D point to its signed distance from the surfaceS. In addition
to inside/outside queries, this representation also simplifies distance computations to simple function evaluations, which can be
used to compute and control the global error for mesh processing algorithms [WK03, BBVK04].

On the other hand, enumerating points on an implicit surface, finding geodesic neighborhoods, and even just rendering the
surface is quite difficult. Moreover, implicit surfaces do not provide any means of parameterization, which is why it is almost
impossible to consistently paste textures onto evolving implicit surfaces. Furthermore, boundaries cannot be represented.

2.2.1. Regular Grids

In order to efficiently process implicit representations, the continuous scalar fieldF is typically discretized in some bounding
box around the object using a sufficiently dense grid with nodesgi jk ∈ IR3. The most basic representation therefore is a uniform
scalar grid of sampled valuesFi jk := F(gi jk), and function values within voxels are derived by tri-linear interpolation, thus
providing quadratic approximation order. However, the memory consumption of this naive data structure grows cubically if the
precision is increased by reducing the edge length of grid voxels.

2.2.2. Adaptive Data Structures

For better memory efficiecy the sampling density is often adapted to the local geometric significance in the scalar fieldF : Since
the signed distance values are most important in the vicinity of the surface, a higher sampling rate can be used in these regions
only. Instead of a uniform 3D grid, a hierarchical octree is then used to store the sampled values [Sam94]. The further refinement
of an octree cell lying completely inside or outside the object does not improve the approximation of the surfaceS. Adaptively
refining only those cells that are intersected by the surface yields a uniformly refined crust of leaf cells around the surface and
reduces the storage complexity from cubic to quadratic (cf. Fig.6, left).

If the local refinement is additionally restricted to those cells where the tri-linear interpolant deviates more than a prescribed
tolerance from the actual distance field, the resulting approximation adapts to the locality of the surface as well as to its shape
complexity [FPRJ00] (cf. Fig. 6, center). Since extreme refinement is only necessary in regions of high surface curvature, this

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

Figure 6: Different adaptive approximations of a signed distance field with the same accuracy: 3-color quadtree (left, 12040
cells), ADF [FPRJ00] (center, 895 cells), and BSP tree [WK03] (right, 254 cells).

approach reduces the storage complexity even further and results in a memory consumption comparable to explicit represen-
tations. Similarly, an adaptive space-decomposition with linear (instead of tri-linear) interpolants at the leaves can be used
[WK03]. Although the asymptotic complexity as well as the approximation power are the same, the latter method provides
slightly better memory efficiency (cf. Fig.6, right).

2.3. Conversion Methods

In order to exploit the specific advantages of explicit and implicit surface representations efficient conversion methods between
the different representations are necessary. However, notice that both kinds of representations are usually finite samplings
(triangle meshes in the explicit case, uniform/adaptive grids in the implicit case) and that each conversion corresponds to a
re-sampling step. Hence, special care has to be taken in order to minimize loss of information during these conversion routines.

2.3.1. Explicit to Implicit

The conversion of an explicit surface representation to an implicit one amounts to the computation or approximation of its signed
distance field. This can be done very efficiently by voxelization or 3D scan-conversion techniques [Kau87], but the resulting
approximation is piecewise constant only. As a surface’s distance field is in general not smooth everywhere, a piecewise linear
or piecewise tri-linear approximation seems to be the best compromise between approximation accuracy and computational
efficiency. Since we focus on triangle meshes as explicit representation, the conversion to an implicit representation basically
requires the computation of signed distances to the triangle mesh at the nodes of a (uniform or adaptive) 3D grid.

Computing the exact distance of a grid node to a given mesh amounts to computing the distance to the closest triangle, which
can be found efficiently by spatial data structures. Notice that in order to compute asigneddistance field, one additionally has
to determine whether a grid node lies inside or outside the object. Ifg denotes the grid node andc its closest point on the
surface, then the orientation can be derived from the angle between(g− c) and the normaln(c): g is defined to be inside if
(g− c)Tn(c) < 0. The robustness and reliability of this test strongly depends on the way the normaln(c) is computed. Using
barycentric normal interpolation within triangles’ interiors and computing per-vertex normals using angle-weighted averaging
of face normals was shown to yield correct results [AB03].

Computing the distances on a whole grid can be accelerated byfast marchingmethods [Set96]. In a first step, the exact signed
distance values are computed for all grid nodes in the immediate vicinity of the triangle mesh. After this initialization, the fast
marching method propagates distances to the unknown grid nodes in a breadth-first manner.

2.3.2. Implicit to Explicit

The conversion from an implicit or volumetric representation to an explicit triangle mesh, the so-called isosurface extraction,
occurs for instance in CSG modeling (cf. Fig.5) and in medical applications, e.g., to extract the skull surface from a CT head
scan. The de-facto standard algorithm for isosurface extraction isMarching Cubes[LC87]. This grid-based method samples the
implicit function on a regular grid and processes each cell of the discrete distance field separately, thereby allowing for trivial

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

Figure 7: The 15 base configurations of the Marching Cubes triangulation table. The other cases can be found by rotation or
symmetry.

parallelization. For each cell that is intersected by the iso-surfaceS a surface patch is generated based on local criteria. The
collection of all these small pieces eventually yields a triangle mesh approximation of the complete iso-surfaceS.

For each edge intersecting the surfaceS the Marching Cubes algorithm computes a sample point which approximates this
intersection. In terms of the scalar fieldF this means that the sign ofF differs at the edge’s endpointsp1 andp2. Since the
tri-linear approximationF is actually linear along the grid edges, the intersection pointscan be found by linear interpolation of
the distance valuesd1 := F(p1) andd2 := F(p2) at the edge’s endpoints:

s =
|d2|

|d1|+ |d2|
p1 +

|d1|
|d1|+ |d2|

p2 .

The resulting sample points of each cell are then connected to a triangulated surface patch based on a triangulation look-up
table holding all possible configurations of edge intersections (cf. Fig.7). Since the possible combinatorial configurations are
determined by the signs at a cell’s corners, their number is 28 = 256.

Notice that a few cell configuration are ambiguous, which might lead to cracks in the extracted surface. A properly modified
look-up table yields a simple and efficient solution, however, at the price of sacrificing the symmetry w.r.t. sign inversion of
F [MSS94]. The resulting isosurfaces then are watertight 2-manifolds, which is exploited by many mesh repair techniques
(Chapter4).

Notice that Marching Cubes computes intersection points on the edges of a regular grid only, which causes sharp edges or
corners to be “chopped of”. A faithful reconstruction of sharp features would instead require additional sample points within
the cells containing them. The extended Marching Cubes [KBSS01] therefore examines the distance function’s gradient∇F
to detect those cells and to find additional sample points by intersecting the tangent planes at the edge intersection points.
This principle is depicted in Fig.8, and a 3D example of the well known fandisk dataset is shown in Fig.9. An example
implementation of the extended Marching Cubes based on the OpenMesh data structure [BSM05] can be downloaded from
[Bot05a].

The high complexity of the extracted isosurfaces remains a major problem for Marching Cubes like approaches. Instead
of decimating the resulting meshes (Chapter9), Ju et al. [JLSW02] proposed thedual contouringapproach, which allows
to directly extract adaptive meshes from an octree. Notice however that their approach yields non-manifold meshes for cell

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

Figure 8: By using point and normal information on both sides of the sharp feature one can find a good estimate for the feature
point at the intersection of the tangent elements. The dashed line is the result the standard Marching Cubes algorithm would
produce.

Figure 9: Two reconstructions of the “fandisk” dataset from a65×65×65sampling of its signed distance field. The standard
Marching Cubes algorithm leads to severe alias artifacts near sharp features (top), whereas the feature-sensitive iso-surface
extraction faithfully reconstructs them (bottom).

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

configurations containing multiple surface sheets. A further promising approach is the cubical marching squares algorithm
[HWC∗05], which also provides adaptive and feature-sensitive isosurface extractions.

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

3. Mesh Data Structures

The efficiency of the geometric modeling algorithms presented in this tutorial crucially depends on the underlying mesh data
structures. A variety of data structures has been described in the literature, and a number of different implementations are
available. We refer to [Ket98] for an excellent overview and comparison of different mesh data structures and to [FH03, FH05b]
for references on data structures for representing non-manifold meshes.

In general, when choosing a data structure one has to take into account topological as well as algorithmic considerations:

3.0.2.1. Topological requirements. Which kinds of meshes need to be represented by the data structure? Do we need bound-
aries or can we assume closed meshes? Do we need to represent complex edges and singular vertices (see Chapter4) or can
we rely on a manifold mesh? Can we restrict ourselves to pure triangle meshes or do we need to represent arbitrary polygonal
meshes? Are the meshes regular, semi-regular or irregular? Do we want to build up a hierarchy of differently refined meshes or
do we need only a flat data structure?

3.0.2.2. Algorithmic requirements. Which kinds of algorithms will be operating on the data structure? Do we simply want to
render the mesh? Do we need to modify only the geometry of the mesh, or do we also have to modify the connectivity/topology?
Do we need to associate additional data with the vertices, edges or faces of the mesh? Do we need to have constant-time access
to the local neighborhoods of vertices, edges and faces? Can we assume the mesh to be globally orientable?

The simplest representation for triangle meshes would just store a set ofindividual triangles. Some data exchange formats use
this representation as a common denominator (e.g., STL format). However, it is immediately clear that this is not sufficient for
most requirements: connectivity information cannot be accessed explicitly, and vertices and associated data are replicated. The
latter can be fixed by a shared vertex data structure, which stores a table of vertices and encodes triangles as triples of indices
into this table. In fact this representation is used in many file formats because it is simple and efficient in storage (assuming no
mesh compression is applied). Similarly, it is efficient for certain algorithms that assume static data, e.g., rendering. However,
without additional connectivity information this is still not efficient for most algorithms.

Before we go on, we want to identify some minimal set of operations that are frequently used by most algorithms.

• Access of individual vertices, edges, faces. This includes enumeration ofall elements (in no particular order).
• Oriented traversal of edges of a face, which refers to finding thenextedge in a face. (This defines alsodegreeof the face and

the inverse operation for theprevioushalfedge. With additional access to vertices, e.g., rendering of faces is enabled.)
• Access of the faces attached to an edge. Depending on orientation this is either the left or right face in the manifold case.

This enables access to neighboring faces and hence traversal of faces (and boundaries as special case).
• Given an edge access its starting and/or end vertex.
• Given a vertex at least one attached face or edge must be accessible. Then (for manifold meshes) all other elements in the

one-ring neighborhood of a vertex can be enumerated, i.e., incident faces, edges, or neighboring vertices.

These operations enable local and global traversal of the mesh. They relate vertices, edges and faces by connectivity information
(and orientation). We remark that all these operations are possible even for a shared vertex representation, however, this requires
expensive searches.

Several data structures have been developed which enable fast traversal of meshes. Well-known arewinged-edge[Bau72],
quad-edge[GS85], andhalf-edge[Man88] data structures in different flavors (see, e.g., [O’R94]).

From our own experience, we have found two of these mesh data structures to be especially suitable for geometry processing:
halfedge data structure (Section3.1) and directed edges structure [CKS98] (Section3.2) as a special case for triangle meshes.
Both data structures allow for efficient enumeration of neighborhoods of vertices and faces. This operation is frequently used
in many algorithms, e.g., in mesh smoothing and mesh decimation. The halfedge data structure is able to represent arbitrary
polygonal meshes that are subsets of a 2-manifold. The directed edges data structure is more memory efficient, but it can only
represent 2-manifold triangle meshes.

3.1. Halfedge Data Structure

One of the most convenient and flexible data structures in geometry processing is the halfedge data structure [Man88, Ket98].
This structure is able to represent arbitrary polygonal meshes that are subsets of orientable 2-manifolds. In this data structure
each edge is split into two opposing halfedges such that all halfedges are oriented consistently in counter-clockwise order
around each face and along the boundary, see Fig.10. For each halfedge we store a reference to

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

• the vertex it points to
• its adjacent face (a zero pointer, if it is a boundary halfedge)
• the next halfedge of the face or boundary (in counter-clockwise direction)
• its inverse (or opposite) halfedge
• the previous half-edge in the face (optionalfor better performance)

Additionally we store references for each face to one of its adjacent halfedges and for each vertex to one of its outgoing
halfedges. Thus, a basic halfedge structure can be realized using the following classes:

struct Halfedge {
HalfedgeRef next_halfedge;
HalfedgeRef opposite_halfedge;
FaceRef face;
VertexRef to_vertex;

};

struct Face {
HalfedgeRef halfedge;

};

struct Vertex {
HalfedgeRef outgoing_halfedge;

};

This simple structure already enables us to enumerate for each element (i.e. vertex, edge, halfedge or face) its adjacent elements.
As an example, the following procedure enumerates all vertices that are adjacent to a given center vertex (the so-called 1-ring)

enumerate_1_ring(Vertex * center)
{

HalfedgeRef h = outgoing_halfedge(center);
HalfedgeRef hstop = h;
do {

VertexRef v = to_vertex(h);
// do something with v
h = next_halfedge(opposite_halfedge(h));

} while (h != hstop);
}

The implementation of the references (e.g.,HalfedgeRef) can be realized in different ways, for instance using pointers or
indices. In practice, index representations (see, e.g., Section3.2) are more flexible even though memory access is indirect:
using indices into data arrays enables efficient memory relocation (and simpler and more compact memory management) and
all attributes of a vertex (edge, face) are identified by the same index. As a side effect, use of indices is platform compatible.
More important in this context is the following observation: halfedges always come in pairs. Thus when we actually implement
a halfedge data structure we group inverse halfedges pairwise in an array. This trick has two advantages: first, the opposite
halfedge is given implicitly by an addition modulo two so there is no need to explicitly store it. Second, we obtain an explicit
representation for “full” edges, which is important when we want to associate data with edges rather than halfedges. (Note that
this is generally also possible with a pointer implementation.)

to_vertex
next_halfedge
opposite_halfedge
face

Figure 10: This figure shows the references stored with each halfedge. Note that thenext_halfedge references enable traversing
the boundary loop.

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

3.2. Directed Edges

The directed edges data structure [CKS98] is a memory efficient variant of the halfedge data structure designed for triangles
meshes. It has the following restrictions:

• Only triangle meshes can be represented.
• There is no explicit representation of edges.

The main benefit of directed edges is memory efficiency while they can represent all triangle meshes which can be repre-
sented by the general halfedge data structure. In addition some atomic operations are more efficient than for general halfedges.
However, traversing boundary loops is more expensive as there is no atomic operation to enumerate the next boundary edge.

The directed edges data structure is based on indices as references to each element (vertex, face, halfedge). The indexing is
not arbitrary but follows certain rules thatimplicitly encode some of the connectivity information of the triangle mesh. Instead
of pairing opposite halfedges (see above), this data structure groups the three halfedges belonging to a common triangle. To be
more precise, letf be the index of a face, then the indices of its three halfedges are given as

halfedge(f , i) = 3 f + i, i = 0,1,2

Now leth be the index of a halfedge. Then the index of its adjacent face and its index within that face are simply given by

face(h) = h/3

Not surprisingly, we can also compute the index ofh’s next halfedge as(h+1) mod 3. The remaining parts of the connectivity
have to be stored explicitly in arrays. Thus for each vertex we store the index of an outgoing halfedge. For each halfedge, we
store the index of its opposite halfedge and the index of the vertex, the halfedge points to.

3.2.0.3. Notes

• The directed edge data structure handles boundaries by special (e.g., negative) indices indicating that the inverse edge is
invalid. This leads to a non-uniform treatment of the connectivity encoding and some special cases.
• We have described the directed edges data structure for pure triangle meshes. An adaption to pure quad meshes is straight-

forward. However, it is not possible to mix triangles and quads, which severely limits this extension to regular settings.

3.3. Mesh Libraries: CGAL and OpenMesh

Although the description of a halfedge data structure is straightforward, its implementation is not. Programming a basic mesh
data structure might thus be a good exercise for an undergraduate course in geometric modeling, but designing and implementing
a full-fledged mesh library that is memory- and time-efficient, robust and easy to use and that is possibly equipped with a number
of standard operations and algorithms is an advanced and time consuming task. Among others the following issues have to be
taken into account:

• Access:How can we conveniently access vertices, edges and faces? How can we conveniently enumerate neighborhoods or
navigate along mesh boundaries?
• Modification: How can a mesh be modified by the user? How can vertices and faces be added or deleted? How can we

guarantee that after a modification the data structure is still consistent?
• Composed operations:How can high level operations like halfedge-collapses, face-splits etc. be implemented efficiently?
• Parameterization:How can arbitrary additional data efficiently be with the vertices, edges and faces of the mesh? What kind

of memory management is efficient?
• Input and output:How to read and write data from different file formats? How to build up a halfedge-structure from an

indexed face set?

Taking all these issues into account and coping with the often subtle problems when modifying the data structure, we strongly
recommend to use one of full featured, publicly available mesh libraries. We refer the interested programmer to the following
C++ libraries.

3.3.0.4. CGAL, the Computational Geometry Algorithms Library, is a generic C++ library for geometric computing. It
provides basic geometric primitives and operations, as well as a collection of standard data structures and geometric algorithms,
including 3D polyhedral surfaces with a halfedge data structure and a rich set of 2D and 3D triangulations. CGAL is specifically
designed to provide reliable solutions to efficiency and robustness issues which are of crucial importance in geometric algo-
rithms. Robustness and scalability of the algorithms are achieved by isolating a minimal number of predicates and constructors,
and by the use of templated kernels. The CGAL library is available athttp://www.cgal.org .

c© The Eurographics Association 2006.

http://www.cgal.org

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

3.3.0.5. OpenMesh provides efficient halfedge data structures for polygonal meshes, their input/output and several standard
geometry processing algorithms. OpenMesh is available at
http://www.openmesh.org .

Comparing objectives and functionalities of these two libraries, CGAL is much more ambitious. Its rich foundation of algo-
rithms is strongly biased by computational geometry with focus on robust and exact algorithms. CGAL has a wide user base
and a number of research institutions actively contribute to its development. A major difference in data structures is the support
for tetrahedral meshes. In contrast, OpenMesh is highly specialized on efficient processing of surface meshes based solely on
halfedge data structures. It takes over some concepts of CGAL which provided one of the first publicly available halfedge data
structures. It is much more focused on requirements of modeling with polygonal meshes and provides a set of standard geometry
processing algorithms, like mesh smoothing, decimation, etc. We note that both libraries have different licensing policies.

As some authors of this tutorial were actively involved in the design and implementation of OpenMesh, we will describe this
library in more detail here. Note that the same functionality is available in CGAL, however, the code reads differently.

• Access:Vertices, edges, halfedges and faces are all explicitly represented in OpenMesh and can easily be accessed through
iterators or through handles (which replace indices as references). OpenMesh also provides so-called circulators that allow
to enumerate the neighborhoods of each element. The following example shows how to compute the barycenter of the 1-ring
of each vertex in a mesh:
TriangleMesh mymesh;

(...) // Read a mesh

// A VertexIter is an STL-compliant iterator to enumerate all vertices of a mesh
for (VertexIter vi = mymesh.vertices_begin(); vi != mymesh.vertices_end(); ++vi)
{

int cnt = 0;
Point cog(0,0,0);

// A VertexVertexIter is a circulator that enumerates the 1-ring of a vertex
for (VertexVertexIter vvi = mymesh.vv_iter(vi); vvi; ++vvi)
{

cnt += 1;
cog += mymesh.point(vvi);

}

cog /= cnt;
// Now cog equals the center of gravity of vi’s neighbors

}
• Modification:OpenMesh provides functions to add and remove vertices and faces to and from a mesh. These operations are

guaranteed to preserve a consistent state of the mesh. The following example shows how to add a triangle to a mesh:
TriangleMesh mymesh;

// Add three vertices to the mesh
VertexHandle v0 = mymesh.add_vertex(Point(0, 0, 0));
VertexHandle v1 = mymesh.add_vertex(Point(0, 1, 0));
VertexHandle v2 = mymesh.add_vertex(Point(3, 0, 2));

// Connect the vertices by a triangle
FaceHandle f = mymesh.add_face(v0, v1, v2);

// Remove the face
mymesh.delete_face(f);
• Composed operations:OpenMesh provides a number of high-level operations, among them halfedge-collapse, vertex-split,

face-split, edge-split and edge-flip. It also provides functions that test whether a certain operation is legal or not. The following
snippet of code tries to collapse all edges that are shorter than a given threshold:
TriangleMesh mymesh;

(...)

for (HalfedgeIter hi = mymesh.halfedges_begin(); hi != mymesh.halfedges_end(); ++hi)
if (! mymesh.status(hi).is_deleted())
{

Point a = mymesh.point(mymesh.from_vertex_handle(hi));

c© The Eurographics Association 2006.

http://www.openmesh.org

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

Point b = mymesh.point(mymesh.to_vertex_handle(hi));
if ((b-a).norm() < epsilon && mymesh.is_collapse_ok(hi))

mymesh.collapse(hi);
}

mymesh.garbage_collection();
• Parameterization:Arbitrary additional data can be associated with the vertices, edges, halfedges or faces of a mesh via

OpenMesh’s property mechanism. This mechanism allows to assign and remove data from the mesh at runtime. Thus it is for
example possible to temporarily assign to each edge a weight:
TriangleMesh mymesh;

(...)

// Add a property (in this case a float) to each edge of mymesh
EdgePropertyHandle< float > weight;
mymesh.add_property(weight);

// Assign values to the properties
for (EdgeIter ei = mymesh.edges_begin(); ei != mymesh.edges_end(); ++ei)

mymesh.propery(weight, ei) = some_value;
(...)

// Do something with the properties
for (EdgeIter ei = mymesh.edges_begin(); ei != mymesh.edges_end(); ++ei)

do_something_with(mymesh.propery(weight, ei));

(...)

// If the weights are not needed anymore, remove them to free some memory
mymesh.remove_property(weight);
• Input and output:OpenMesh reads and writesstl (ASCII and Binary),off andobj files. Handlers for other file types can

easily be added by the user.
TriangleMesh mymesh;

read_mesh(mymesh, "a_filename.off");
(...)

write_mesh(mymesh, "another_filename.stl");
• Standard algorithms:OpenMesh provides a set of standard algorithms that can easily be customized to different needs.

Among these algorithms are: smoothing (Chapter7), decimation (Chapter9) and subdivision (see also Chapter10).

3.4. Summary

Efficient data structures are crucial for geometry processing based on polygonal meshes. We recommend halfedge data struc-
tures (or directed edges as a special case for triangle meshes), for which full-featured and publicly available implementations
already exist, e.g. CGAL or OpenMesh.

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

4. Model Repair

In short, model repair is the task of removing artifacts from a geometric model to produce an output model that is suitable for
further processing by downstream applications that have certain quality requirements on their input. Although this definition is
most often too general, it nonetheless captures the essence of model repair: the definition of what we mean by a “model”, of
what exactly constitutes an “artifact” and what is meant by “suitable for further processing” is highly dependent on the problem
at hand and there generally is no single algorithm which is be applicable in all situations.

Model repair is a necessity in a wide range of applications. As an example, consider the design cycle in automotive CAD/CAE/CAM:
Car models are typically manually designed in CAD systems that use trimmed NURBS surfaces as the underlying data struc-
ture for representing geometry. However, downstream applications like numerical fluid simulations cannot handle NURBS
patches but need a watertight, manifold triangle mesh as input. Thus there is a need for an intermediate stage that converts the
NURBS model into a triangle mesh. Unfortunately, this conversion process often produces artifacts that cannot be handled by
downstream applications. Thus, the converted model has to be repaired — often in a manual and tedious post-process.

The goal of this tutorial is to give a practical view on the typical types of artifacts that occur in geometric models and
to introduce the most common algorithms that address these artifacts. After giving a short overview on the common types of
artifacts in Section4.1, we start out in Section4.2by classifying repair algorithms on whether theyexplicitly identify and resolve
artifacts or on whether they rely on an intermediatevolumetricrepresentation that automatically enforces certain consistency
constraints. This classification already gives a hint on the strengths and weaknesses of a particular algorithm and on the quality
that can be expected from its output. In Section4.3 we then give an overview on the different types of input models that are
encountered in practice. We describe the specific artifacts and problems of each model and explain their origin. We also give
references to algorithms that are designed to resolve these artifacts. Finally, we present some of the common model repair
algorithms in more detail in Section4.5. We give a short description on how each algorithm works and to which models it is
applicable. We hope that this provides a deeper understanding of the often subtle problems that occur in model repair and of
ways to address these problems. Some of these algorithms are relatively straightforward, while others are more involved such
that we can only show their basic mechanisms.

4.1. Artifact Chart

The chart in Fig.11 shows the most common types of artifacts that occur in typical input models. Note that this chart is by no
means complete and in particular in CAD models one encounters further artifacts like self-intersecting curves, points that do
not lie on their defining planes and so on. While some of these artifacts, e.g., complex edges, have a precise meaning, others,
like the distinction between small scale and large scale overlaps, are described intuitively rather than by strict definitions.

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

singular
vertex

holes and
isles

large scale overlap

inconsistent
orientation

gaps and
small overlaps

handle

intersection

complex
edges

Figure 11: Artifact chart

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

4.2. Types of Repair Algorithms

Most model repair algorithms can roughly be classified as being eithersurface orientedor volumetric. Understanding these
concepts already helps to evaluate the strengths and weaknesses of a given algorithm and the quality that can be expected of its
output.

4.2.0.6. Surface oriented algorithms operate directly on the input data and try to explicitly identify and resolve artifacts
on the surface. For example, gaps could be removed by snapping boundary elements (vertices and edges) onto each other or
by stitching triangle strips in between the gap. Holes can be closed by a triangulation that minimizes a certain error term.
Intersections could be located and resolved by explicitly splitting edges and triangles.

Surface oriented repair algorithms only minimally perturb the input model and are able to preserve the model structure in
areas that are away from artifacts. In particular, structure that is encoded in the connectivity of the input (e.g. curvature lines)
or material properties that are associated with triangles or vertices are usually well preserved. Furthermore, these algorithms
introduce only a limited number of additional triangles.

To guarantee a valid output, surface oriented repair algorithms usually require that the input model already satisfies certain
quality requirements (error tolerances). These requirements cannot be guaranteed or even be checked automatically, so these
algorithms are rarely fully automatic but need user interaction and manual post-processing. Furthermore, due to numerical
inaccuracies, certain types of artifacts (like intersections or large overlaps) cannot be resolved robustly. Other artifacts, like
gaps between two closed connected components of the input model that are geometrically close to each other, cannot even be
identified.

4.2.0.7. Volumetric algorithms convert the input model into an intermediate volumetric representation from which the output
model is then extracted. Here, a volumetric representation is any kind of partitioning of space into cells such that each cell can be
classified as either beinginsideor outside.Examples of volumetric representations that have been used in model repair include
regular Cartesian grids, adaptive octrees,kd-trees, BSP-trees and Delaunay triangulations, see also Chapter2. The interface
between inside and outside cells then defines the topology and the geometry of the reconstructed model. Due to their very
nature, volumetric representations do not allow for artifacts like intersections, holes, gaps or overlaps or inconsistent normal
orientations. Depending on the type of the extraction algorithm, one can often also guarantee the absence of complex edges and
singular vertices. Handles, however, might still be present in the reconstruction.

Volumetric algorithms are typically fully automatic and produce watertight models (Section2.3.2). Depending on the type of
volume, they can often be implemented very robustly. In particular, the discrete neighborhood relation of cells allows to reliably
extract a consistent topology of the restored model. Furthermore, well-known morphological operators can be used to robustly
remove handles from the volume.

On the downside, the conversion to and from a volume leads to a resampling of the model. It often introduces aliasing
artifacts, loss of model features and destroys any structure that might have been present in the connectivity of the input model.
The number of triangles in the output of a volumetric algorithm is usually much higher than that of the input model and thus
has to be decimated in a post-processing step. Also the quality of the output triangles often degrades and has to be improved
afterwards (see also Fig.9). Finally, volumetric representations are quite memory intensive so it is hard to run them at high
resolutions.

4.3. Types of Input

In this section we list the most common types of input models that occur in practice. For each type we describe its typical
artifacts (see also Section4.1) and give references to algorithms that can be used to remove them.

4.3.0.8. Registered Range Scansare a set of patches (usually triangle meshes) that represent
overlapping parts of the surfaceS of a scanned object. While large overlaps are a distinct
advantage in registering the scans, they pose severe problems when these patches are to be
fused into a single consistent triangle mesh. The main geometric problem in this setup are
the potentially very large overlaps of the scans such that a pointx on S is often described by
multiple patches that do not necessarily agree onx’s position. Furthermore, each patch has its
own connectivity that is usually not compatible to the connectivity of the other patches. This is
in particular a problem for surface oriented repair algorithms.

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

There are only a few surface oriented algorithms for fusing range images, e.g., Turk et al.’s
mesh zippering algorithm [TL94]. The most well-known volumetric method is due to Curless
and Levoy [CL96].

4.3.0.9. Fused Range ScansFused range images are manifold meshes with boundaries, i.e.,
holes and isles. These artifacts are either due to obstructions in the line of sight of the scanner or
result from bad surface properties of the scanned model such as transparency or glossiness. The
goal is to identify and fill these holes. In the simplest case, the filling is a patch that minimizes

some bending energy and joins smoothly to the boundary of the hole. Advanced algorithms synthesize new geometric detail
that resembles the detail that is present in a local neighborhood of the hole or transplant geometry from other parts of the model
in order to increase the realism of the reconstruction. The main obstacles in hole filling are the incorporation of isles into the
reconstruction and the avoidance of self-intersections.

Kliencsek proposes an algorithm based on dynamic programming for finding minimum weight
triangulations of planar polygons [Kli80]. This algorithm is a key ingredient in a number of other
model repair algorithms. Liepa proposes a surface oriented method to smoothly fill holes such
that the vertex densities around the hole are interpolated [Lie03]. Podolak et al. cast hole filling
as a graph-cut problem and report an algorithm that is guaranteed to produce non-intersecting
patches [PR05]. Davis et al. propose a volumetric method that diffuses a signed distance function
into empty regions of the volume [DMGL02]. Pauly et al. use a database of geometric priors from
which they select shapes to fill in regions of missing data [PMG∗05].

4.3.0.10. Triangle Soupsare mere sets of triangles with no or only little connectivity informa-
tion. They most often arise in CAD models that are manually created in a boundary representa-
tion where users typically assemble predefined elements (taken from a library) without bothering
about consistency constraints. Due to the manual layout, these models typically are made of only
a few thousands of triangles, but they may contain all kinds of artifacts. Thus triangle soups are
well suited for visualization, but cannot be used in most downstream application.

Intersecting triangles are one of the most common type of artifact in triangle soups, as the
detection and in particular the resolution of intersecting geometry would be much too time-
consuming and numerically unstable. Complex edges and singular vertices are often intention-
ally created in order to avoid the duplication of vertices and the subsequent need to keep these
duplicate vertices consistent. Other artifacts include inconsistent normal orientations, small gaps
and excess interior geometry.

Surface oriented methods that are able to automatically repair triangle soups are not known.
However, there are a number of volumetric methods that can be applied to triangle soups: Murali et al. produce a BSP tree from
the triangle soup and automatically compute for each leaf a solidity [MF97]. Nooruddin et al. use ray-casting and filtering to
convert the triangle soup into a volumetric representation from which they then extract a consistent, watertight model [NT03].
Shen et al. create an implicit representation by generalizing the moving least squares approach from point sets to triangle
soups [SOS04]. Bischoff and Kobbelt scan convert the soup into a binary grid, use morphological operators to determine
inside/outside information and then invoke a feature-sensitive extraction algorithm [BPK05]. Gress and Klein use akd-tree to
improve the geometric fidelity of the volumetric reconstruction [GK03].

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

4.3.0.11. Tringulated NURBS Patchestypically are a
set of triangle patches that contain gaps and small over-
laps. These artifacts arise when triangulating two or more
trimmed NURBS patches that join at a common bound-
ary curve. Usually, each patch is triangulated separately,
thus the common boundary is sampled differently from
each side. Other artifacts present in such models include
intersecting patches and inconsistent normal orientations.
Triangulated NURBS patches are usually repaired using
surface oriented methods. These methods first try to es-
tablish a consistent orientation of the input patches. Then
they identify corresponding parts of the boundary and
snap these parts onto each other. Thus any structure that
might be present in the triangulation (like iso-lines, cur-
vature lines, etc.) is preserved.

Barequet and Sharir use a geometric hashing technique
to identify and bridge boundary parts that have a similar shape [BS95]. Barequet and Kumar describe an algorithm that identifies
geometrically close edges and snaps them onto each other [BK97]. Borodin and Klein generalize the vertex-contraction operator
to a vertex-edge contraction operator and thus are able to progressively close gaps [BNK02]. Bischoff and Kobbelt use a
volumetric repair method locally around the artifacts and stitch the resulting patches into the remaining mesh [BK05a]. Borodin
et al. propose an algorithm to consistently orient the normals which takes visibility information into account [BZK04].

4.3.0.12. Contoured Meshesare meshes that have been extracted from a
volumetric dataset by Marching Cubes, Dual Contouring or other extraction
algorithms. Provided that the correct triangulation look-up tables are used,
contoured meshes are always guaranteed to be watertight and manifold (Sec-
tion 2.3.2). However, these meshes often contain topological artifacts, such
as small handles.

Volumetric data arises most often in medical imaging (CT, MRI,. . .), as
an intermediate representation when fusing registered range scans or in con-
structive solid geometry (CSG). In a volumetric dataset, each voxel is clas-
sified as being either inside or outside the object. Unfortunately, due to the
finite resolution of the underlying grid, voxels are often classified wrongly
(so-called partial volume effect). This leads to topological artifacts in the re-
construction, like handles, holes, or disconnected components, that are not

consistent with the model that should be represented by the volume. A famous example are MRI datasets of the brain: It is well
known that the surface of the brain is homeomorphic to a sphere, but all too often a model of higher genus is extracted.

While disconnected components and small holes can easily be detected and removed from the main part of the model, handles
are more problematic. Due to the simple connectivity of the underlying Cartesian grid, it is usually easiest to remove them from
the volume dataset before applying the contouring algorithm or to identify and resolve them during reconstruction [WHDS04].
Guskov and Wood presented one of the few surface oriented algorithms to remove handles from an input mesh [GW01].

4.3.0.13. Badly Meshed Manifolds contain degenerate elements
like triangles with zero area, caps, needles and triangle flips. These
meshes result from the tessellation of CAD models or are the output
of marching cubes like algorithms, in particular if they are enhanced
by feature-preserving techniques. Although badly meshed manifolds
are in fact manifold and even often watertight, the degenerate shape of
the elements prevents further processing, e.g., in finite element mesh-
ers, and leads to instabilities in numerical simulations. The repair of
such meshes is calledremeshing,and we discuss this issue in depth in
Chapter10.

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

4.4. Surface Oriented Algorithms

In this section we describe some of the most common surface oriented repair algorithms. These algorithms work directly on the
input surface and try to remove artifacts by explicitly modifying the geometry and the connectivity of the input.

4.4.1. Consistent Normal Orientation

Consistently orientating the normals of an input model is part of most surface oriented repair algorithms and can even improve
the performance of volumetric algorithms. Usually the orientation of the normals is propagated along a minimum spanning tree
between neighboring patches either in a preprocessing step or implicitly during traversal of the input. Borodin et al. describe a
more sophisticated algorithm that additionally takes visibility information into account [BZK04].

The input is a set of arbitrarily oriented polygons. In a preprocessing phase the polygons are assembled into larger, manifold
patches (possibly with boundary) as described in Section4.4.3. The algorithm then builds up a connectivity graph of neighboring
patches where the label of each edge encodes thenormal coherenceof the two patches. Furthermore, for each side of each patch
a visibility coefficientis computed that describes how much of the patch is visible when viewed from the outside. Finally, a
globally consistent orientation is computed by a greedy optimization algorithm: If the coherence of two patches is high, normal
consistency is favoured over front-face visibility and vice versa.

4.4.2. Surface Based Hole Filling

In this section we describe an algorithm for computing a fair triangulation of a hole. The algorithm was proposed by Liepa [Lie03]
and builds on work of Klincsek [Kli80] and Barequet and Sharir [BS95]. It is a basic building block of many other repair algo-
rithms.

The goal is to produce a triangulation of a polygonp0, . . . ,pn−1 that minimizes some given weight function. In the context of
mesh repair, this weight function typically measures the fairness of the triangulation, e.g., its area or the variation of the triangle
normals (see also Chapter6).

i
0 n-1

m

j

Let φ(i, j,k) be a weight function that is defined on the set of all triangles
(pi ,p j ,pk) that could possibly appear during construction of the triangula-
tion and letwi, j be the minimum total weight that can be achieved in trian-
gulating the polygonpi , . . . ,p j , 0≤ i < j < n. Thenwi, j can be computed
recursively as

wi, j = min
i<m< j

wi,m+wm, j +φ(i,m, j) .

The triangulation that minimizesw0,n−1 is computed by a dynamic program-
ming algorithm that caches the intermediate valueswi, j .

Liepa suggests a weight functionφ that is designed to take into account
the dihedral angles between neighboring triangles as well as triangle area. It
produces tuples

φ(i, j,k) = (α,A) ,

whereα is the maximum of the dihedral angles to the neighbors of(pi ,p j ,pk) andA is its area. Note that this weight function
in particular penalizes fold-overs. When comparing different values ofω, a low normal variation is favored over a low area:

(α1,A1) < (α2,A2) :⇔ (α1 < α2)∨ (α1 = α2∧A1 < A2)

Note that when evaluatingω one has to take into account that the neighboring triangles can either belong to the mesh that
surrounds the hole or to the patch that is currently being created. A triangulation of a hole that is produced using this weight
function is shown in Fig.12.

To produce a fair hole filling, Liepa suggests to produce a tangent continuous fill-in of minimal thin plate energy: First the
holes are identified and filled by a coarse triangulation as described above. These patches are then refined such that their vertex
densities and edge lengths match that of the area surrounding the holes, see Chapter10. Finally, the patch is smoothed such as
to blend with the geometry of the surrounding mesh, see Chapter7.

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

Figure 12: A hole triangulation that minimizes normal variation and total area.

4.4.2.1. DiscussionThe algorithm reliably closes holes in models with smooth patches. The density of the vertices matches
that of the surrounding surface, see Fig.13. The complexity of building the initial triangulation isO(n3), which is sufficient
for most holes that occur in practice. However, the algorithm does not check or avoid self intersections and does not detect or
incorporate isles into the filling.

Figure 13: Liepa’s hole filling algorithm. Note that the point density of the fill-in matches that of the surrounding area.

4.4.3. Conversion to Manifolds

Gueziec et al. propose a method to remove complex edges and singular vertices from non-manifold input models [GTLH01].
The output is guaranteed to be a manifold triangle mesh, possibly with boundaries. As the algorithm operates solely on the

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

connectivity of the input model, it does not suffer from numerical robustness issues. In a preprocessing phase all complex
edges and singular vertices are identified. The input is then cut along these complex edges into manifold patches (usually with
boundaries). Finally, pairs of matching edges (i.e., edges that have the same endpoints) are identified and – if possible – merged.

In the preprocessing phase the input is split into separate faces and all complex edges are identified by counting the number
of adjacent faces: edges with one, two, or more than two adjacent faces are boundary, regular interior or complex respectively.
Then the input model is separated into manifold patches along the complex edges by stitching the two adjacent faces of each
interior regularedge. This method implicitly handles stand-alone and singular vertices.

Gueziec et al. propose two different strategies for stitching further edges:pinchingandsnapping.The pinching strategy only
stitches along edges that belong to the same connected component. Thus small erroneous connected components are separated
from the main part of the model and can be easily detected and removed in a post-processing step. The algorithm iterates once
over all boundary vertices. Letv be a boundary vertex,vp its predecessor andvn its successor along the boundary. Ifvp = vn the
two edges(vp,v) and(v,vn) are merged.

In contrast to pinching, the snapping strategy reduces the number of connected components of the model. The basic idea is
to locate candidate pairs of boundary edges and to stitch them if a certain stitchability criterion is met. This criterion asserts that
after stitching, the model does not contain new complex edges or singular vertices. The snapping strategy can be extended to
also allow the stitching of edges that are geometrically close to each other.

4.4.3.1. DiscussionThe scope of this algorithm is limited to the removal of complex edges and singular vertices. This, how-
ever, is done efficiently and robustly.

4.4.4. Gap Closing

A number of surface oriented algorithms have been proposed to close the gaps and small overlaps that are typical for triangulated
NURBS models.

Barequet and Sharir proposed one of the first algorithms to fill gaps and remove small overlaps [BS95]. The algorithm
identifies matching parts of the boundaries by a geometric hashing technique and fills the gaps by patching them with triangle
strips or by the technique presented in Section4.4.2.

Barequet and Kumar propse an algorithm to repair CAD models that identifies and merges pairs of boundary edges [BK97].
For each pair of boundary edges the area between the two edges normalized by the edge lengths is computed. This score
measures the geometric error that would be introduced by merging the two edges. Pairs of boundary edges are then iteratively
merged in order of increasing score.

Borodin et al. [BNK02] propose an algorithm that snaps boundary vertices to nearby boundary edges. The algorithm is based
on a standard mesh-decimation technique, but replaces the vertex-vertex contraction operator by a vertex-edge contraction
operator, that operates on boundary verticesv and boundary edgese: Let c be the closest point tov one. If c is an interior point
of e, c is inserted intoeby splitting the adjacent triangle in two. Finally,v andc are merged. The cost of a vertex-edge collapse
is defined as the distance ofv to c. The algorithm maintains a priority queue of vertex/edge pairs and snaps them in order of
increasing distance.

4.4.4.1. Discussion The semantics of these surface oriented algorithms is well defined and they are typically easy to im-
plement. If the input data is well-behaved and the user parameters are chosen in accordance with the error that was accepted
during triangulation, they also produce satisfying results. However, there are no guarantees on the quality of the output. Due to
the simple heuristics, many artifacts remain unresolved. Therefore, these algorithms are usually run in an interactive loop that
allows designers to override the decisions made by the algorithms or to steer the algorithms in a certain direction.

4.4.5. Topology Simplification

Guskov and Wood proposed an algorithm that detects and resolves all handles up to a given sizeε in a manifold triangle
mesh [GW01]. Handles are removed by cutting the input along a non-separating closed path and sealing the two resulting holes
by triangle patches, see Fig.14.

Given a seed triangles, the algorithm conquers a geodesic regionRε(s) arounds in the order that is given by Dijkstra’s
algorithm on the dual graph of the input meshM. Note that Dijkstra’s algorithm not only computes the length of a shortest
path from each trianglet to the seeds, but it also produces a parentp(t) such thatt, p(t), p2(t), . . . ,s actuallyis a shortest path
from t to s.

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

Figure 14: Left and middle left: The Happy Buddha model contains more than 100 handles. Middle right: A non-separating
closed cycle along a handle. Right: The handle was removed by cutting along the non-separating cycle and closing the holes
with triangle patches.

The boundary ofRε(s) consists of one or more boundary loops. Whenever a boundary loop touches itself along an edge, it is
split into two new loops and the algorithm proceeds. However, when two different loops touch along a common edge, a handle
is detected. Lett1 andt2 be the two triangles that are adjacent to the common edge andpn1(t1) = pn2(t2) a common ancestor of
t1 andt2. The closed path

pn1(t1), . . . , p(t1), t1, t2, p(t2), . . . , pn2(t2)

is then a cycle of adjacent triangles that stretches around the handle. The input model is cut along this triangle strip and the two
boundary loops that are created by this cut are then sealed, e.g., by the method presented in Section4.4.2.

To detect all handles ofM, one has to perform the region growing for all triangless∈M. Guskov and Wood describe a
method to considerably reduce the necessary number of seed triangles and thus are able to significantly speed up the algorithm.

4.4.5.1. Discussion The proposed method reliably detects small handles up to a user-prescribed size and removes them.
However, the algorithm is slow, it does not detect long, thin handles and it cannot guarantee that no self-intersections are
created when a handle is removed.

4.5. Volumetric Repair Algorithms

This section presents recent repair algorithms that use an intermediate volumetric representation to implicitly remove the arti-
facts of a model. This volumetric representation might be as simple as a regular Cartesian grid or as complex as a binary space
partition.

4.5.1. Volumetric Repair on Regular Grids

Nooruddin and Turk proposed one of the first volumetric techniques to repair arbitrary models that contain gaps, overlaps
and intersections [NT03]. Additionally they employed morphological operators to resolve topological artifacts like holes and
handles.

First, the model is converted into a Cartesian voxel grid: A set of projection directions{di} is produced, e.g., by subdividing
an octahedron or icosahedron. Then the model is projected along these directions onto an orthogonal planar grid. For each grid
point x, the algorithm records the first and last intersection point of the rayx + λdi and the input model. A voxel is classified
by such a ray to beinside, if it lies between these two extreme depth samples, otherwise it is classified asoutside. The final
classification of each voxel is derived from the majority vote of all the rays passing through that voxel. A Marching Cubes
algorithm is then used to extract the surface between inside and outside voxels.

In an optional second step, thin handles and holes are removed from the volume by applyingmorphological operatorsthat
are also known from image processing [HSZ87]. Thedilation operatordε computes the distance from each outside voxel to the
inside component. All voxels that are within a distance ofε to the inside are also set toinside. Thus the dilation operator closes
small handles and bridges small gaps. Theerosionoperatoreε works exactly the other way round and removes thin bridges and
handles. Usually, dilation and erosion are used in conjunction,eε ◦dε to avoid expansion or shrinkage of the model.

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

Figure 15: Reconstruction (green) of a triangle soup (blue). Left: Visually there is no difference between the triangle soup
and the reconstruction. Middle: The reconstruction is a watertight mesh that is refined near the model features. Right: The
volumetric approach allows to reliably detect and remove excess interior geometry from the input.

4.5.1.1. DiscussionThe classification of inside and outside voxels is rather heuristic and often not reliable. Furthermore, the
algorithm is not feature-sensitive.

4.5.2. Volumetric Repair on Adaptive Grids

Bischoff et al. [BPK05] propose an improved volumetric technique to repair arbitrary triangle soups. The user provides an
error toleranceε and a maximum diameterρ up to which gaps should be closed. The algorithm first creates an adaptive octree
representation of the input model where each cell stores the triangles intersecting with it. From these triangles a feature-sensitive
sample point can be computed for each cell. Then a sequence of morphological operations is applied to the octree to determine
the topology of the model. Finally, the connectivity and geometry of the reconstruction are derived from the octree structure
and samples, respectively.

Let us assume that the triangle soup is scaled to fit into the root cell of the octree. We set the maximum depth of the octree
cells such that the diameter of the finest level cells is smaller thanε. Each cell stores references to the triangles that intersect
it and initially all triangles are associated with the root cell. Then cells that are not yet on maximum depth are recursively split
if they either contain a boundary edge or if the triangles within the cell deviate too much from a common supporting plane.
Whenever a cell is split, its triangles are distributed to its children. The result is a memory-efficient octree with large cells in
planar or empty regions and fine cells along the features and boundaries of the input model (see Fig.16).

In the second phase, each leaf cell of the octree is classified as being eitherinsideor outside. First, all cells that contain
a boundary of the model are dilated byn := ρ/ε layers of voxels such that all gaps of diameter≤ ρ are closed. A flood fill
algorithm then propagates the outside label from the boundary of the octree into its interior. Finally, the outside component is
dilated again byn layers to avoid an expansion of the model.

A Dual Contouring algorithm then reconstructs the interface between the outside and the inside cells by connecting sample
points. These sample points are the minimizers of the squared distances to their supporting triangle planes, thus features like
edges and corners are well preserved (see also Chapter9 on quadric error metrics). If no such planes are available (e.g., because
the cell was one of the dilated boundary cells), the corresponding sample point is smoothed in a post-processing step (Chapter7).

4.5.2.1. DiscussionAs this algorithm is based on a volumetric representation, it produces guaranteed manifold output (Fig.15).
Features are also well preserved. However, despite the adaptive octree, the resolution of the reconstruction is limited.

4.5.3. Volumetric Repair with BSP Trees

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

Figure 16: Left: Adaptive octree, boundary cells are marked red. Center left: Dilated boundary (green) and outside component
(orange). Center right: Outside component dilated back into the boundary cells. Right: Final reconstruction

BSP

solidity coefficients

reconstruction

A unique method for converting triangle soups to manifold surfaces was presented by Murali
and Funkhouser [MF97]. The polygon soup is first converted into a BSP tree, the supporting
planes of the input polygons serve as splitting planes for the space partition. The leaves of
the tree thus correspond to closed convex spatial regionsCi . For eachCi a solidity coefficient
si ∈ [−1,1] is computed. Negative solidity coefficients designate empty regions, while positive
coefficients designate solid regions.

All unbounded cells naturally lie outside the object and thus are assigned a solidity value of
−1. LetCi be a bounded cell and letN (i) be the indices of all its face neighbors. Thus for each
j ∈ N (i) the intersectionPi j = Ci ∩Cj is a planar polygon that might be partially covered by
the input geometry. For eachj ∈N (i) let ti j be the transparent area,oi j the opaque area andai j
the total area ofPi j . The soliditysi is then related to the soliditiessj of its face neighbors by

si =
1
Ai

∑
j∈N (i)

(ti j −oi j)sj , (2)

whereAi = ∑ai j is the total area of the boundary ofCi . Note the two extreme cases: IfPi j is
fully transparent,ti j −oi j = ai j > 0 the correlation ofsi andsj is positive, indicating that both
cells should be solid or both cells should be empty. If, on the other hand,Pi j is fully opaque,
ti j −oi j =−ai j < 0, the negative correlation indicates that one cell should be solid and the other
empty. Collecting all equations Eq. (2) leads to a sparse linear system

M [s1, . . . ,sn]T = b ,

which can be solved efficiently using an iterative solver (Chapter12). It can be shown thatM is
always invertible and that the solidity coefficients of the solution in fact lie in the range[−1,1].

Finally, the surface of the solid cells is extracted by enumerating all neighboring pairs of leaf
cells (Ci ,Cj). If one of them is empty and the other is solid, the corresponding (triangulated)
boundary polygonPi j is added to the reconstruction.

4.5.3.1. DiscussionThis method does not need (but also cannot incorporate) any user parame-
ters to automatically produce watertight models. The output might contain complex edges and singular vertices, but these can be
removed using the algorithm presented in Section4.4.3. Unfortunately, a robust and efficient computation of the combinatoric
structure of the BSP is hard to accomplish.

4.5.4. Volumetric Repair on the Dual Grid

Input

Face set

Patches

Reconstruction

Ju proposes an interesting volumetric algorithm to repair arbitrary triangle soups [Ju04]. While
the boundary loops are explicitly traced and filled, the overall scheme is volumetric.

The algorithm first approximates the input model by a subsetF of the faces of a Cartesian
grid. For memory efficiency, these faces are stored in an adaptive octree. Additionally, a sample
point (and possibly a normal) from the input model are associated with each face, to allow for

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

a more accurate reconstruction. The boundary∂F of F is defined to be the subset of the grid
edges that are incident to an odd number of faces inF . Note that ifG is another face set, such
that∂G = ∂F , then∂(F 	G) = ∅. Here, thesymmetric difference(xor) of two setsA andB is
defined asA	B = (A∪B)\ (A∩B). Also, if ∂F = ∅ then the grid voxels can be two-colored
by insideandoutsidelabels such that two adjacent voxels have the same label, while two voxels
that are separated by a face ofF have different labels.

For each boundary loopBi of F , the algorithm constructs a minimal face setGi such that
∂Gi = Bi . ThenF is replaced by

F ′ = F 	G1	·· ·	Gn,

thus ∂F ′ = ∅. As voxels at the corners of the bounding box are known to beoutside, they
are used as seeds for propagating theinside/outsideinformation over the grid. The interface
betweeninsideandoutsidevoxels is then extracted using either a Marching Cubes or a Dual
Contouring algorithm.

4.5.4.1. DiscussionJu’s algorithm uses a volumetric representation and thus produces guar-
anteed manifold output. The algorithm is memory-less, i.e., insensitive to the size of the input
and thus can process arbitrarily large meshes out-of-core. On the other hand, the algorithm has
problems handling thin structures. In particular, if the discrete approximation that is used in
the hole filling step overlaps with the input geometry, this part of the mesh may disappear or
be shattered into many pieces. Due to the volumetric representation the whole input model is
resampled and the output might become arbitrarily large for fine resolutions.

4.5.5. Extending MLS to Triangle Soups

Shen et al. propose a volumetric repair algorithm that operates on arbitrary triangle
soups [SOS04]. It is a generalization of the moving least squares approach that can for instance
be used for reconstructing geometry from point clouds. Instead of approximating positional in-
formation only, they also incorporate normal constraints into the reconstruction and thus avoid
an oscillating solution. The details of this algorithm are involved and we restrict ourselves to
the basic ideas.

Let t1, . . . , tN be a set of triangles and letn1, . . . ,nN be their normals. The goal is to generate a functions: IR3→ IR whose zero
level-set matchest1, . . . , tN as close as possible. An arbitrary contouring algorithm can then be used to extract a reconstruction
of t1, . . . , tN from s. For a single triangletk, the corresponding functionsk is of course linear

sk(x) = nT
k (x−qk)

whereqk is an arbitrary point ontk.

The functions is expressed as a linear combination of a setb(x) = [b1(x), . . . ,bM(x)]T of basis functions, thus

s(x) = b(x)Tc (3)

for some vectorc. So-calledradial basis functionsare a common choice forb(x), but they lead to a large linear system that is
hard to solve efficiently. Instead, Chen et al. follow an approach that is known asMoving Least Squares (MLS),see [AK04] and
references therein.

The idea of MLS is to only use a very limited set of basis functions, typicallyb(x,y,z) = [1,x,y,z]T . To compensate the
limited degrees of freedom in choosing a small number of basis functions, Eq. (3) is made dependent on the pointx0 at which
one plans to evaluate and triangles that are close tox0 are given a greater weight than those that are far away. Thus, for a fixed
pointx0 one seeks to minimize

∑
k

∫
tk

wx0(x)2
(

b(x)Tcx0−sk(x)
)2

dx (4)

with respect tocx0 where the weight functionwx0(x) is chosen as

wx0(x) =
1

||x−x0||2 + ε2

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

Setting the derivative of Eq. (4) w.r.t. cx0 to zero leads to a 4×4 linear system

∑
k

Akcx0 = ∑
k

ak

where

Ak =
∫

tk
wx0(x)2b(x)b(x)Tdx and ak =

∫
tk

wx0(x)2b(x)Tsk(x)dx

Thus, the functions is given ass(x0) = b(x0)Tcx0.

The integrands that appear inAk andak are rational polynomials and Chen et al. devise a suitable numerical integration
scheme to evaluate them. They also propose a method to speed up the evaluation.

4.5.5.1. DiscussionThis algorithm produces watertight models and automatically bridges gaps in an intuitive way. The method
can be modified to produce hulls of a different geometric complexities that enclose the input model. These hulls can then be
used, e.g., for fast collision detection tests. Unfortunately, the algorithm does not cope well with models that contain interior
excess geometry.

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

5. Discrete Curvatures

This section introduces differential properties of 2-manifold surfaces and discusses the corresponding approximations on ar-
bitrary triangle meshes. These discrete differential operators play a central role in many mesh processing applications such as
surface smoothing (Chapter7), parameterization (Chapter8), or mesh deformation (Chapter11).

5.1. Differential Geometry

We provide a brief review of important concepts from differential geometry that form the basis of the definition of the discrete
operators on triangle meshes. For an in-depth discussion we refer to standard textbooks such as [dC76].

Let a continuous surfaceS ⊂ IR3 be given in parametric form as

x(u,v) =

 x(u,v)
y(u,v)
z(u,v)

 , (u,v) ∈ IR2,

wherex,y,z are (sufficiently often) differentiable functions inu andv. The partial derivativesxu andxv span the tangent plane
to S atx. Assuming a regular parameterization, i.e.,xu×xv 6= 0, the normal vector is given asn = (xu×xv)/‖xu×xv‖.

Thefirst fundamental formof x is given by the matrix

I =
[

E F
F G

]
:=
[

xT
u xu xT

u xv

xT
u xv xT

v xv

]
, (5)

which defines an inner product on the tangent space ofS. The corresponding arc elementds is given as

ds2 = Edu2 +2Fdudv+Gdv2.

The area element can be derived as

dA=
√

EG−F2dudv.

Thesecond fundamental formis defined as

II =
[

e f
f g

]
:=
[

xT
uun xT

uvn
xT

uvn xT
vvn

]
. (6)

Alternatively,II can be expressed using the identitiesxT
uun =−xT

u nu, xT
uvn = xT

vun =− 1
2(xT

u nv +xT
v nu), andxT

vvn =−xvnv.

The symmetric bilinear first and second fundamental forms allow to measure length, angles, area, and curvatures on the
surface.

Let t = axu + bxv be a unit vector in the tangent plane atp, represented as̄t = (a,b)T in the local coordinate system. The
normal curvatureκn(t̄) is the curvature of the planar curve that results from intersectingS with the plane throughp spanned by
n andt. The normal curvature in direction̄t can be expressed in terms of the fundamental forms as

κn(t̄) =
t̄T II t̄
t̄T I t̄

=
ea2 +2 f ab+gb2

Ea2 +2Fab+Gb2

The minimal normal curvatureκ1 and the maximal normal curvatureκ2 are calledprincipal curvatures. The associated
tangent vectorst1 andt2 are calledprincipal directionsand are always perpendicular to each other.

The principal curvatures are also obtained as eigenvalues of theWeingarten curvature matrix(or second fundamental tensor)

W :=
1

EG−F2

[
eG− f F f G−gF
f E−eF gE− f F

]
. (7)

W represents the Weingarten map or shape operator, which measures the directional derivative of the normal, i.e.Wt̄ =
∂
∂t̄

n.

This allows the normal curvature to be expressed as

κn(t̄) = t̄TWt̄ .

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

With a local coordinate system defined by the principal directionst1 andt2, W is a diagonal matrix, or in general

W =
[

t̄1 t̄2
][κ1 0

0 κ2

][
t̄1 t̄2

]−1
. (8)

Then the normal curvature can also be written as

κn(t̄) = κn(φ) = κ1 cos2 φ+κ2 sin2 φ, (9)

whereφ is the angle between̄t andt̄1 (Euler’s theorem).

The curvature tensorT is expressed as a symmetric 3× 3 matrix with the eigenvaluesκ1, κ2, 0 and the corresponding
eigenvectorst1, t2, n. The tensorT measures the change of the unit normal with respect to a tangent vectort independently of
the parameterization. It can be constructed as

T = PDP−1 ,

with P = [t1, t2,n] andD = diag(κ1,κ2,0).

TheGaussian curvature Kis defined as the product of the principal curvatures, i.e.,

K = κ1κ2 = det(W), (10)

themean curvature Has the average of the principal curvatures, i.e.,

H =
κ1 +κ2

2
=

1
2

trace(W). (11)

The mean curvature can alternatively be expressed as the (continuous) average of the normal curvatures

H =
1
2π

∫ 2π

0
κn(φ)dφ . (12)

In differential geometry, properties that only depend on the first fundamental form are calledintrinsic. Intuitively, the intrinsic
geometry of a surface can be perceived by 2D creatures that live on the surface without knowledge of the third dimension.
Examples include length and angles of curves on the surface. Gauss’ famous Theorema Egregium states that the Gaussian
curvature is invariant under local isometries and as such also intrinsic to the surface [dC76]. Note that the term “intrinsic” is
often also used to denote independence of a particular parametrization.

5.1.0.2. Laplace Operator. The following sections will make extensive use of theLaplace operator∆, resp., theLaplace-
Beltrami operator∆S . In general, the Laplace operator is defined as the divergence of the gradient, i.e.∆ = ∇2 = ∇·∇. In
Euclidean space this second order differential operator can be written as the sum of second partial derivatives

∆ f = div∇ f = ∑
i

∂2 f

∂x2
i

(13)

with Cartesian coordinatesxi . TheLaplace-Beltrami operatorextends this concept to functions defined on surfaces. For a given
function f defined on a manifold surfaceS the Laplace-Beltrami is defined as

∆S f = divS ∇S f ,

which requires a suitable definition of the divergence and gradient operators on manifolds (see [dC76] for details). Applied to
the coordinate functionx of the surface the Laplace-Beltrami operator evaluates to the mean curvature normal

∆S x =−2Hn.

Note that the Laplace-Beltrami operator is an intrinsic property that only depends on the metric tensor of the surface and is thus
independent of a specific parameterization.

5.2. Discrete Differential Operators

The differential properties defined in the previous section require a surface to be sufficiently often differentiable, e.g., the
definition of the curvature tensor requires the existence of second derivatives. Since polygonal meshes are piecewise linear
surfaces, the concepts introduced above cannot be applied directly. The following definitions of discrete differential operators
are thus based on the assumption that meshes can be interpreted as piecewise linear approximations of smooth surfaces. The
goal is then to compute approximations of the differential properties of this underlying surface directly from the mesh data.

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

Different approaches have been proposed in recent years and we will provide a brief overview and comparison of the different
techniques. For details we refer to the references given throughout the text and to the survey [Pet01].

The general idea of the techniques described below is to compute discrete differential properties as spatial averages over a
local neighborhoodN (x) of a pointx on the mesh. Oftenx coincides with a mesh vertexvi , andn-ring neighborhoodsNn (v)
or local geodesic balls are used as the averaging domain. The size of the local neighborhood critically affects the stability and
accuracy of the discrete operators. The bigger the neighborhoods the more smoothing is introduced by the averaging operation,
which makes the computations more stable in the presence of noise. For clean data sets, small neighborhoods, e.g., one-rings,
are typically preferable, as they more accurately capture fine-scale variations of differential properties.

In order to estimate the curvature tensor at a vertex a certain neighborhood of this vertex is considered, typically its one-ring.
A common approach is to first discretize the normal curvature along edges. Given is an edge(vi ,v j), vertex positionspi , p j ,
and the normalni , then

κi j = 2
(p j −pi)ni

‖p j −pi‖2
(14)

provides an approximation of the normal curvature atpi in the tangent direction which results from projectingpi andp j into
the tangent plane defined byni . This expression can be interpreted geometrically as fitting the osculating circle interpolatingpi
andp j with normalni atpi (cf. [MS92]). Alternatively, the equation can be derived from discretizing the curvature of a smooth
planar curve (see [Tau95a]). With estimatesκi j of the normal curvature for all edges incident to vertexvi , Euler’s theorem
(9) can be applied to relate theκi j to the unknown principal curvatures (and principal directions). Then approximations to the
principal curvatures can be obtained either directly as functions of the eigenvalues of a symmetric matrix ([Tau95a, PKS∗01])
or from solving a least-squares problem ([MS92, MDSB03]). Alternatively, [WB01] apply the trapezoid rule to get a discrete
approximation of (12), which provides the mean curvatureH, the Gaussian curvatureK is obtained from a similar integral over
κ2

n, and the principal curvatures are then obtained from equations (10), (11). Exact quadrature formulas for curvature estimation
are provided in [LBS05].

A straightforward approach to estimating local surface properties uses a local higher-order reconstruction of the surface,
followed by analytical evaluation of the desired properties on the reconstructed surface patch. Local surface patches, typically
bivariate polynomials of low degree, are fitted to sample points [CP03, Pet01, WW94] and possibly normals [GI04] within
a local neighborhood. Special care is required to ensure good conditioning of the arising local least-squares problems which
depend on local parameterization. A (rather expensive) global fitting of an implcit surface is applied in [OB04].

Taubin [Tau95b] proposed the uniform discretization of the Laplace-Beltrami operator

∆uni f (v) :=
1

|N1 (v)| ∑
vi∈N1(v)

(f (vi)− f (v)) , (15)

where the sum is taken over all one-ring neighborsvi ∈ N1 (v) (cf. Fig. 17). This discretization does not take any local geom-
etry of the domain mesh (edge lengths or angles) into account and hence cannot give a sufficient approximation for irregular
tessellations. For example, when smoothing a planar (and hence perfectly smooth) triangulation, this operator may still shift
vertices within the surface by moving each vertex to the barycenter of its neighbors. Although this leads to an improvement of
the triangle shapes, it is a bad approximation to the Laplace-Beltrami of the surface (which should be parallel to the surface
normal:∆Sp =−2Hn). A better (and the current standard) discretization was proposed in [PP93, DMSB99, MDSB03]:

∆S f (v) :=
2

A(v) ∑
vi∈N1(v)

(cotαi +cotβi)(f (vi)− f (v)) , (16)

whereαi = 6 (p(v) ,p(vi−1) ,p(vi)), βi = 6 (p(v) ,p(vi+1) ,p(vi)), andA(v) denotes the Voronoi area around the vertexv
as shown in Fig.17 (for an exact definition of the Voronoi region area see [MDSB03]). The same approach yields a discrete
estimate for Gaussian curvature as

K(v) =
1

A(v)

(
2π− ∑

vi∈N1(v)
θi

)
, (17)

where the angles of the incident triangles at vertexv are denoted byθi . This formula is a direct consequence of the Gauss-
Bonnet theorem. Given the mean curvature normal as defined in (16) and the approximation of the Gaussian curvature of (17),
the principal curvatures can be computed from (10) and (11) as

κ1,2(v) = H(v)±
√

H(v)2−K(v)

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

v
A(v)

v2

v

vi
βi

αi

vi+1

vi-1

v1

v3

v4
v5

v6

Figure 17: The Laplace-Beltrami∆S f (v) of a vertex v∈ V is computed by a linear combination of its function value f(v) and
those of its one-ring neighbors f(vi). The corresponding weights are given by the cotangent values ofαi andβi and the Voronoi
area A(v).

whereH(v) = 1
2‖∆Sp(v)‖.

Eq. (16) is probably the most widely used discretization of the Laplace-Beltrami for triangle meshes and is typically applied
for various geometry processing operations, such as surface smoothing (Chapter7), parameterization (Chapter8), and shape
modeling (Chapter11). However, there are some disadvantages of the cotangent formula of (16):

• The cotangent weightsωi = cotαi +cotβi become negative ifαi +βi > π. This is well-known and can lead to flipped triangles
in certain applications, e.g., when computing a parameterization (see Chapter8).
• The definition of the Laplace-Beltrami is not purely intrinsic, i.e., its evaluation can lead to different results even for two

isometric surfaces, if their triangulation is different (see [BS05a]).

The first point can possibly be fixed by using different weights. In [ZRS05a] the positive mean value coordinates [Flo03a] are
interpreted as an alternative, less accurate discretization of the Laplace-Beltrami operator where integration over the Voronoi
area is replaced by integration over circle areas.

Bobenko and Springborn [BS05a] propose an alternative definition that addresses these shortcomings for the case of piece-
wise flat surfaces, i.e., 2-dimensional manifolds that are equipped with a metric that is flat except at isolated points. The resulting
formula is the same as (16), but with respect to an intrinsic Delaunay triangulation of the simplicial surface. For a piecewise flat
surface, this triangulation is unique, which makes the evaluation of the discrete Laplace-Beltrami operator independent of the
specific tessellation of the mesh. In addition, the Delaunay property guarantees positive weights by construction. Computing
the intrinsic Laplace-Beltrami requires to first compute the restricted Delaunay triangulation using an edge flipping algorithm,
which is guaranteed to converge. Thus this approach is computationally more involved, in particular for applications that it-
eratively modify the vertex positions, e.g., curvature flow (Chapter7), where the re-tessellation is required after each time
step.

Rusinkiewicz proposed a scheme that approximates the curvature tensor using finite differences of vertex normals [Rus04].
As discussed above the curvature tensor measures the change of the normal along the tangent directions. For a given triangle
three such directions are given by the triangle edges. The change of normals along each of these edges can be approximated
from the difference of the normals of the corresponding vertices. The resulting set of linear constraints on the elements of the
curvature tensor can be used in a least-squares optimization to obtain a per-face estimate. The approximation of the curvature
tensor for a vertex is then computed using weighted averaging of all per-face estimates of the one-ring based on an appropriate
coordinate transformation as discussed in [Rus04]. The paper also shows how this approach can be extended to higher order
derivatives. Since the per-face estimates depend on vertex normals that are computed by standard weighted averaging of one-
ring face normals, the averaging domain of this method is the two-ring neighborhood. As such, the results produced by this
method are somewhat more stable for noisy data. The computation is efficient however, since it can be performed using two
passes over the one-rings of the mesh.

In [TRZS04] the piecewise linear surface is considered together with a piecewise linear normal field. Their discrete deriva-
tives define the Weingarten map (7) and hence the tensor of curvature. The precomputed normal field replaces the second order

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

derivatives, which are not available for piecewise linear functions. This idea is motivated by Phong-shading well-known in com-
puter graphics, and similarly the inherent inconsistencies lead to artifacts — the Weingarten matrix is not symmetric anymore
— and hence approximation errors. However, [TRZS04] show convergence to curvatures of smooth surfaces and the errors are
small enough to be competitive with other methods. The method yields a piecewise function for the curvature tensor which
varies across faces as normals are interpolated. Gaussian and mean curvatures can be written as simple expressions of certain
determinants. Evaluation is purely local and efficient, as curvature estimates at vertices are obtained by averaging.

Cohen-Steiner and Morvan [CM03] (see also [ACD∗03] and [HP04]) propose a method for estimating the curvature tensor
by averaging a line density of tensors defined on each edge of the mesh. This method is derived from the concept of normal
cycles, which has been introduced to provide a unified way to define curvature for booth smooth and polygonal surfaces. It
includes a proof of convergence under certain sampling conditions based on measure theory. Intuitively, a curvature tensor can
be defined for an edge by assigning a minimum curvature along the edge and a maximum curvature across the edge. Averaging
over the local neighborhood regionN (v) yields a simple summation formula over the edges intersectingN (v):

C(v) =
1

|N (v)| ∑
e∈N (v)

β(e)‖e∩N (v)‖ ēēT ,

where |N (v)| denotes the surface area of the local neighborhood aroundv, β(e) is the signed dihedral angle between the
normals of the two incident faces,‖e∩N (v)‖ is the length of the part of the edgee that is contained inN (v), andē= e/‖e‖.
The local neighborhoodN (v) is typically chosen to be the one- or two-ring of the vertexv, but can also be computed as a local
geodesic disk, i.e., all points on the mesh that are within a certain (geodesic) distanced from v. This can be more appropriate for
non-uniformly tessellated surface, where the size ofn-ring neighborhoodsNn (v) can vary significantly over the mesh. As noted
in [Rus04], tensor averaging can yield inaccurate results for low-valence vertices and small, e.g., one-ring, neighborhoods.

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

6. Mesh Quality

This section provides a brief overview of methods used to interactively evaluate the quality of triangle meshes. The techniques
discussed here are adapted from smooth free-form surfaces (e.g. NURBS), and are mainly used to visualize surface quality in
order to detect surface defects. Different applications may require different quality criteria. We distinguish betweensmoothness
and fairness. While the former denotes the continuous differentiability (Ck) of a surface, e.g.,C2 for cubic splines, the latter
is a more abstract concept required for high-quality surface design. Note that smoothness and fairness are not always used
consistently. For example, surface smoothing typically denotes the process of improving the fairness of a surface (see Chapter7).

A surface may be smooth in a mathematical sense but still unsatisfactory from an aesthetical point of view. Fairness is an
aesthetic measure of “well-shapedness” and therefore more difficult to define in technical terms than smoothness (distribution
vs. variation of curvature) [BAFS94]. An important rule is the so calledprinciple of simplest shapethat is derived from fine
arts. A surface is said to be well-shaped, if it is simple in design and free of unessential features. So afair surface meets the
mathematically defined goals (e.g. interpolation, continuity), while obeying this design principle. The most common measures
for fairness are motivated by physical models like the strain energy of a thin plate∫

S
κ2

1 +κ2
2 dA,

or are defined in terms of differential geometry, like the variation of curvature∫
S

(
∂κ1

∂t1

)2

+
(

∂κ2

∂t2

)2

dA,

with principal curvaturesκi and principal directionst i (see Chapter5). In general, some surface energy is defined that quantifies
surface fairness, and curvature is used to express these terms as it is independent of the special parameterization of a surface.
A fair surface is then designed by minimizing these energies (cf. Chapter7). Our current goal is not to improve, but to check
surface quality, so we need to visualize these energies. Note that there are also different characterizations of fairness, such as
aesthetical shape of isophotes/reflection lines [YBP97].

Another important aspect of mesh quality is triangle shape. Some applications require “well shaped” triangles, e.g., simula-
tions usingFinite Element Methods(FEM). This requires constraints on shape parameters such as angles and area, which will
also be discussed in Chapter10.

6.1. Visualizing smoothness

In order to interactively visualize surface quality, graphics hardware support should be exploited whenever possible. A given
surface is tessellated into a set of triangles for rendering (in contrast to more involved rendering techniques like ray-tracing).
Since a mesh can be interpreted as an accurate tessellation of, e.g., a set of NURBS patches, the same techniques for quality
control can be used that are applied for smooth surfaces [HHS∗92].

6.1.0.3. Specular shadingThe simplest visualization technique is to use standard lighting and shading (Phong illumination
model, flat- or Gouraud shading) as provided by the graphics subsystem. The local illumination of a vertex depends on the
position of the light sources, on the surface normal, and on the view point/direction. This approach to surface interrogation is
the most straightforward one, but it is difficult to find minor perturbations of a surface (cf. Fig.18, left).

6.1.0.4. Isophotes Isophotes are lines of constant illumination on a surface. For a Lambertian surface with purely diffuse
reflection, isophotes are independent of the view point. When using a single, infinitely distant point light source, the illumination
Ip of a surface pointp is given by

Ip = max
{〈

n L
〉
,0
}

,

wheren is the surface normal atp andL is the direction of light. Both vectors are normalized, so the value ofIp is in the interval
[0,1]. Now some valuesIc, j ∈ [0,1] = const (e.g.,Ic, j = j

n , j = 0, . . . ,n) are chosen and the isophotes/iso-curvesI = Ic, j are
rendered.

The resulting image makes it easier to detect irregularities on the surface compared to standard shading. The user can visually
trace the lines, rate their smoothness and transfer these observations to the surface: If the surface isCk continuous then the
isophotes areCk−1 continuous, since they depend on normals, i.e., on first derivatives (cf. Fig.18).

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

Figure 18: Isophotes. The center part of the surface was blended between the three tubes using C1 boundary conditions.
The discontinuities of the curvature at the joints are hard to detect from the flat shaded image (left), but clearly visualized by
isophotes (middle) since C1 blends cause C0 isophotes. The right image sketches the rendering of isophotes with a 1D-texture:
The illumination values are calculated for the vertices of a triangle from vertex normals and the light direction. These values
are used as texture coordinates. The texel denoting the iso-value is colored black. Iso-lines are interpolated within the triangle.

There are two main approaches to render iso-curves, such as isophotes: The first approach is to explicitly extract the curves
or curve segments and then display them as lines. Here, in principle the same algorithms as for extracting iso-surfaces can be
applied (Section2.3.2), reduced to the setting of extracting a curve on a surface.

The second approach takes advantage of the graphics hardware and allows direct rendering of isophotes from illumination
values at the vertices of a triangle mesh: A one-dimensional texture is initialized with a default colorC. Illumination valuesIp

are now treated as texture coordinates, and for the isophote valuesIc, j the corresponding texels are set to a colorCj 6= C. With
this setup the graphics subsystem will linearly interpolate the 1D texture within the triangles resulting in a rendered image of
the isophotes (colorsCj) that are drawn onto the surface (colorC) (cf. Fig. 18). The 1D texture approach benefits more from
the graphics hardware in contrast to explicitly calculating line segments. A drawback is that the width of the curves varies due
to texture interpolation.

6.1.0.5. Reflection lines In contrast to isophotes, rendering of reflection lines assumes a specular surface. As a consequence
reflection lines change when the point of view is modified and when the object is rotated or translated. The light source consists
of a set of “light-lines” that are placed in 3-space space. Normally, the light-lines are parallel lines (cf. Fig.19).

Traditionally, reflection lines have been used in the process of designing cars. An arrangement of parallel fluorescent tubes is
placed above the car model to survey the surface and its reflection properties.

Under the assumption that the light source is infinitely far away from the object,environment mappingcan be used to display
reflection lines in real-time. A texture for environment mapping is generated once by ray-tracing the light sources over a sphere.
The graphics subsystem will then automatically generate appropriate texture coordinates for every vertex depending on its
relative position and normal.

Reflection lines are an effective and intuitive tool for surface interrogation. If the surface isCk continuous then the reflection
lines areCk−1 continuous. Just like isophotes, they can be efficiently rendered by taking advantage of graphics hardware and
they are also sensitive to small surface perturbations. In addition, the concept that a real-world process is simulated makes their
application very intuitive even for unexperienced users. Fig.20shows reflection lines forC0, C1 andC2 surfaces.

6.2. Visualizing curvature and fairness

If fairness is expressed in terms of curvature, the techniques described in Chapter5 can be used for visualization. Gaussian
curvatureK = κ1κ2 indicates the local shape of the surface (elliptic forK > 0, hyperbolic forK < 0 and parabolic forK =
0∧H 6= 0 resp. flat forK = 0∧H = 0). A local change of the sign ofK may denote a (even very small) perturbation of the
surface. Additionally, mean curvature, principal curvatures, and total curvatureκ2

1 + κ2
2 can be used. These scalar values are

typically visualized using color-coding as shown in Fig.21

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

Figure 19: Reflection lines. The light source consists of parallel lines that are reflected by the surface. The reflection property
requires that angles of incidence (light,normal) are equal to angles of emission (viewing direction,normal).

Figure 20: Reflection lines on C0, C1 and C2 surfaces. One clearly sees that the differentiability of the reflection lines is one
order lower, i.e., C−1, C0 and C1 respectively.

Figure 21: Color coding curvature values, mean curvature (left) and Gaussian curvature (right).

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

Figure 22: Lines of curvature. Lines of curvature are superimposed on a flat shaded image of a VW Beetle model.

6.2.0.6. Iso-curvature lines Iso-curvature lines are lines of constant curvature on a surface. They can be displayed similarly to
isophotes, where instead of illumination values, curvature values are used. If the surface isCk continuous, then the iso-curvature
lines areCk−2 continuous, so iso-curvature lines are even more sensitive to discontinuities than isophotes or reflection lines.

A problem when rendering iso-curvature lines with 1D-textures may be a wide range of curvature values that may not map
appropriately to the[0,1] interval of texture coordinates or the actual texels. One solution is to clamp the curvature values to a
suitable interval, the other solution is to explicitly extract the curves and draw them as lines.

6.2.0.7. Lines of curvature Besides the scalar principal curvatures, the principal directions also carry information on the local
surface properties. They define discrete direction fields in the tangent space of the surface. By linearly interpolating principal
directions computed at the mesh vertices over triangles using barycentric coordinates, a continuous field can be defined. Lines
of curvature can then be traced on this direction field using Euler integration (see Section10.2.1for more details). Fig.22shows
lines of curvature that provide very good and intuitive impression of the surface. Alternatively texture based techniques likeline
integral convolution(LIC)[CL93] can also be used on triangle meshes. However, tracing and constructing a large number of
lines of curvature is rather expensive compared to the other techniques.

6.3. The shape of triangles

Figure 23: Triangle mesh optimized for smooth appearance, leading to skinny triangles (left), and for triangle shape, leading
to rendering artifacts (right).

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

Some applications need “well-shaped”, round triangles in order to prevent them from running into numerical problems,
e.g., numerical simulations based on FEM. For this purpose, “round” triangles are needed, e.g., the ratio of the radius of the
circumcircle to the shortest edge should be as small as possible [She02] (cf. Fig. 23).

The most common way to inspect the quality of triangles is to view a wireframe or hidden-line rendered image. This may not
be an option for very complex meshes, however. A straightforward solution is a color coding criterion based on triangle shapes.
This helps to identify even single “badly shaped” triangles (see also Chapter10).

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

7. Mesh Smoothing

Mesh smoothing is a central tool in geometry processing with many applications such as denoising of acquired data, surface
blending and hole-filling, or design of high-quality surfaces. In addition, smoothing techniques constitute foundations for geo-
metric filtering or signal processing used in multi-resolution shape editing and mesh deformation methods as will be discussed
in Chapter11.

Many different techniques for mesh smoothing have been developed within the last decade. In this section, we will concentrate
mainly on linear methods, namely Laplacian smoothing and (isotropic) mean curvature flow. Their main application is denoising
and generation of fair surfaces as required in multi-resolution modeling.

7.1. General Goals

We distinguish two different goals of smoothing methods: The first isdenoisingmeasured data. For instance meshes acquired
by range scanners typically show high frequency noise, i.e., small perturbations in the vertex positions, which do not correspond
to shape features. Fig.24 shows a typical example. Here, the goal is to smooth out these artifacts in such a way that the global
shape, or the low frequency components, is preserved. In signal processing this is called low-pass filtering, well-known, e.g., in
image processing. Denoising algorithms must be able to handle fairly huge data sets efficiently, as they may be applied directly
after acquisition and before simplification (Chapter9). This fact renders linear methods, i.e., those which only require numerical
solution of a linear system, especially attractive. An additional requirement is often the preservation of certain surface features
like sharp edges and corners, which should not be “blurred”. However, this leads to non-linear methods.

A second goal is the design of high-quality, fair surfaces. This process is calledfairing, and the resulting surfaces must
satisfy certain aesthetic requirements. In order to find appropriate mathematical models these requirements are put essentially
asprinciple of the simplest shape[Sap94], meaning that an aesthetic surface is free of unnecessary details such as noise or
oscillations. Fig.27 shows an example of fair surface design from boundary conditions. Mathematical formulations of this
principle lead to the minimization of certain energy functionals, see Chapter6, which are often inspired by physical processes
such as spanning a membrane or bending a thin plate. The energy functionals are typically formulated in terms of intrinsic
shape properties, i.e., quantities that do not depend on the particular parameterization (or triangulation in the discrete setting),
such as curvatures (see Chapter5). Hence the associated optimization problems are non-linear, and their numerical solution is
more involved. Applications of fairing are for instance shape optimization or hole filling (see Chapter4). For the latter, the hole
is first filled with a template mesh, which is then subject to fairing while the transition at the hole boundary is required to be
smooth.

Finally, smoothing is often applied in order to make triangulations more regular. This is a well-known technique to ensure
numerical robustness of finite element methods (usually for planar domains in bivariate settings). For surfaces this means that
the distribution of vertices over the mesh is optimized. This process is part of (isotropic) remeshing described in Chapter10. In
the following we review general approaches to mesh smoothing, their intuition and motivation.

7.2. Spectral Analysis and Filter Design

It is well-known from signal processing theory that Fourier transformation is a valuable tool for both, filter design and efficient
implementation. For instance, every univariate signal functionf (t) is assumed to be a linear combination of periodic functions
eiϕt (i.e., scaled and shifted sine waves) of different frequenciesϕ. Instead of observing the signal in the spatial domain one
considers its spectrum in the frequency domain. Assuming that noise is associated with high frequencies, an ideal denoising
filter would cut off such high frequencies prior to the inverse Fourier transform to the spatial domain. This is called a low-pass
filter.

We will see that a similar notion ofgeometric frequenciescan be established for surfaces and used for filter design. (We refer
also to multi-scale techniques for surface deformation in Chapter11.) However, contrary to image processing, analysis in the
frequency domain will only serve as a theoretical tool and does not yield efficient implementations in general.

Let us for a moment consider the univariate case. The Fourier transformF(ϕ) of a signalf (t) is defined as

F(ϕ) =
1
2π

∫ ∞

−∞
f (t)e−iϕtdt .

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

Figure 24: This scan of a statue’s face contains typical measurement noise, which can be removed by low-pass filtering the
surface geometry. The bottom row shows selective smoothing, for better visualization only the eye region is considered. Mean
curvature is superimposed as color-code in the right column.

A low-pass filter would damp (or ideally cut off) high frequenciesϕ of F prior to the inverse transform, e.g., by multiplyingF
with a Gaussian. For (discrete) surfaces the situation is more difficult, we require some generalization of the basis functions of
typeeiϕt . Considering the identity

∂2

∂t2 eiϕt = ∆eiϕt = −ϕ2 eiϕt ,

it follows immediately thateiϕt are eigenfunctions of the Laplace operator∆ with eigenvalues−ϕ2. Therefore it seems natural
to use eigenfunctions of the Laplace operator as basis also in the bivariate setting and for surfaces of arbitrary topology. As we
know how to discretize the Laplacian on triangles meshes this will provide the generalization of Fourier transformation for filter
design.

The discrete Laplacian operator (see also Chapter5) on a piecewise linear surface, i.e., a triangle mesh, is expressed as

∆pi = ∑
v j∈N1(vi)

ωi j (p j −pi) , (18)

where for all verticesvi weights are normalized such that

∑
v j∈N1(vi)

ωi j = 1 . (19)

(Note that normalization and symmetry are not generally necessary for smoothing. In contrast, possibly required area terms
destroy these properties, see also Chapter5 and Chapter12.) We can now write the discrete Laplacian operator as a matrixL
with non-zero entries

L i j =

{
−1 , i = j

wi j , v j ∈N1(vi)

L is generally sparse, the number of non-zeros in each row is one plus the valence of the associated vertex. For the uniform
discretization∆uni we choose weightsωi j = 1

#N1(vi)
, i.e., the Laplacian depends only on the mesh connectivity. ThenL is sym-

metric and has real eigenvalues and eigenvectors.

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

Figure 25: Spectral analysis of a gargoyle model. The first20 of 10k eigenvectors were computed. Left: The 2nd and 10th
eigenvector of the associated discrete Laplace operator are visualized by the color codes. (Values are uniformly scaled). Right:
Reconstruction of the model using only the first10and20eigenvectors, respectively. (Reconstructions are rescaled.)

The eigenvectors ofL form an orthogonal basis of IRn, wheren denotes the number of vertices, and the associated eigenvalues
are commonly interpreted asfrequencies. The projections of the coordinatespx,py,pz∈ IRn into this basis is calledspectrumof
the geometry. Given eigenvectorsei , thex-componentspx of the mesh geometry can now be expressed as

px =
n

∑
i=1

αx
i ei ,

where the coefficientsαx
i = eT

i px, and similar forpy,pz. It shows that the eigenvectors associated with the first eigenvalues
0≤ λ1 ≤ ·· · ≤ λn correspond to low-frequency components: in other words, cancelling coefficientsα·i associated with high-
frequency components yields a smoothed version of the shape. Fig.25visualizes some eigenvectors on a model together with a
synthesis using only very few low frequency components.

This is well-known fromspectral graph theory[Chu97]: the projection into the linear space spanned by the eigenvectors
provides a generalization of the Discrete Fourier Transform. This can also be seen immediately for the discrete univariate
setting: here, the decomposition is equivalent to the discrete cosine transform (see, e.g., [Tau95b]).

For general surface meshes, their spectral decomposition defines a natural frequency domain. Taubin [Tau95b, Tau00] uses
this fact to motivategeometric signal processingand to define low-pass filters for smoothing meshes (see also [TZG96]). In
[KG00, SCT03] spectral analysis is applied for mesh compression, taking advantage of low-pass and high-pass filter properties,
respectively.

Although the matrixL is generally sparse it is in practicenot feasibleto explicitly compute eigenvalues and eigenvectors
even for moderately sized meshes: computational costs are too high and one has to pay close attention to numerical robustness.
(In practice, the computation ofsomeeigenvalues in a specified range is possible, as shown in Fig.25.) Therefore in [KG00],
meshes are partitioned without enforcing smoothness across patch boundaries, whereas in [SCT03, Tau95b], spectral analysis
is applied as a theoretical tool.

Ideal low-pass filters are often too costly even in image processing. Instead of strictly truncating the frequency band, high
frequencies are often damped, e.g., by weighting with an appropriate Gaussian kernel (often called Gaussian blurring). In a
continuous setting, the Fourier transformation of a Gaussian kernel yields again a Gaussian. Therefore in the spatial domain
this corresponds to convolution with a Gaussian or more general to some weighted averaging. The situation is similar for mesh
filtering.

We illustrated the theoretical framework for ideal low-pass filtering on meshes. Unfortunately this is generally too expensive
to be practical. Therefore, we will now focus on two major approaches to mesh smoothing: diffusion flow and energy mini-
mization. Note that although different in motivation for particular instances, these two approaches are closely related, and they
can be justified by the above observations.

7.3. Diffusion Flow

Diffusion processes constitute a powerful and well-understood tool for smoothing signals. They often arise as physical processes
in the real world, which makes them intuitive to understand. A common example is heat distribution in an object, where the

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

local differences in temperature are equilibrated under conservation of energy. Letx(u, t) denote the temperature at positionu
inside an object at timet, then the heat flow is given asf = −µ∇x. Here, the diffusion constantµ > 0 specifies the material
conductivity. (Instead of a scalar in the isotropic case, we may set a positive definite symmetric matrix as diffusion tensor in
general, see Section7.5.1.) Furthermore, due to conservation of energy the continuity equation∂x

∂t =−div f applies (assuming
no heat injection). Then theheat equationis expressed as the linear diffusion equation

∂
∂t

x = divµ∇x . (20)

In the following we will consider this type of diffusion equation for mesh smoothing: the vertex positions are subject to diffusion
such that small differences, i.e., noise, are equilibrated. For the steady state we have zero flow∂x

∂t = 0 and hence∆x = 0. We
remark that for appropriate settings the solutionx(u, t) to the diffusion equation is a convolution of the initial valuex(u,0) with
a Gaussian kernel depending on the time stept.

In the following, we review discrete solutions of linear diffusion equations for smoothing triangle meshes. Particular ap-
proaches differ in the differential operator and its particular discretization, and different numerical integration schemes can be
applied.

7.3.1. Laplacian Smoothing

Laplacian smoothing is a simple and very effective technique based on linear diffusion of vertex positions∂p
∂t = µ∆p. Obviously,

for triangle meshes this method depends on the discretization of the Laplace operator (see Chapter5). The straightforward choice
is a uniform discretization based on finite differences assuming a uniform triangulation.
Note that the uniform discretization smoothness geometry (shape)and triangulation, i.e., vertices move in normal direction as
well as in their respective tangent planes.

7.3.2. Curvature Flow

Curvature is an intrinsic property of the surface that does not depend on parameterization (see Chapter5). Such independence
of the particular triangulation of a shape is favorable for smoothing: only the geometry of the shape is supposed to be smoothed
while at the same time the shape of each individual triangle should be preserved as much as possible. This means that vertices
should be displaced only in normal direction rather than in the associated tangent plane. Tangential drift occurs indeed for the
uniform discretization of the Laplacian (see above), and in most applications it is regarded as an undesirable artifact.

Mean curvature flow [DMSB99] considers the flow equation

∂p
∂t

= −µHn . (21)

For smoothing, vertex positionsp move along the surface normaln with speed proportional to the mean curvatureH = 1
2(κ1 +

κ2). As H = divn, speed is reduced if the normal field spreads out less in a local region, and in the extreme case vertices stay
in place for zero curvature. Using the identity∆Sp =−2Hn, we replace the right hand side of (21) and apply the well-known
discretization of the Laplace-Beltrami operator∆S (see Chapter5). This way, we can also interpret the mean curvature flow
as diffusion using a more appropriate discretization of the Laplace operator on the surface (w.r.t. the initial mesh as parameter
domain). The resulting linear diffusion equation reads as∂p

∂t = µ∆Sp. We remark that curvature flow has also been used in
combination with parameterization regularization [OBB00].

7.3.3. Higher Order Flows

Higher order flows based on∆k (or ∆k
S) are used due to better low-pass properties (see, e.g, [DMSB99]). In practice, bi-

Laplacian smoothing (k = 2) is a good trade-off between efficiency and quality: In the frequency domain higher orders of the
Laplace operator yield better truncation (damping) of high frequencies. However, the associated discrete linear operator is less
sparse (see also Chapter12). Note that higher order flows require (and are able to satisfy) higher order boundary conditions.
This is similar to energy minimization methods discussed below.

7.3.4. Integration

A straightforward method for the numerical solution of the linear diffusion equations isexplicit (or forward) Euler integration.
This leads to an iterative algorithm using, e.g., the update rule

p′i = pi +µdt∆pi (22)

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

on all vertex positionspi for Laplacian smoothing. Updates can be applied simultaneously or sequentially [VMM99] in iterative
algorithms of Jacobi or Gauss-Seidel type, respectively. In practice, direct solvers (see Chapter12) in combination with implicit
integration (see below) show superior efficiency and stability for most settings.

The above formula depends on the parameterµdt, which can be interpreted as time step and here should satisfy 0< µdt < 1
for stability reasons.

The explicit integration (22) of the (discrete) diffusion equation can be written in matrix form as

p′ = (I +µdtL)p ,

whereµdt< 1 is required. Desbrun et al. [DMSB99] propose the use of abackward Euler methodfor implicit smoothing, which
is unconditionally stable without limitations on the time step. Such implicit integration reads as

(I −µdtL)p′ = p

and requires the solution of a (sparse) linear system for the unknownsp′ (see Chapter12). The value ofµdt can be chosen
arbitrarily, and it roughly corresponds to the number of explicit integration steps.

7.4. Energy Minimization

Methods based on energy minimization frequently appear in mesh fairing and fair surface design (see, e.g., [Gre94, GLW96, KCVS98, MS92, WW92]).
The idea is to penalize unaesthetic behavior of the shape. For this purpose different fairness functionals have been proposed.
Ideally such functionals depend only on intrinsic surface properties, such as curvature, and not on a particular parameterization.
For the discrete setting one can then expect the same geometric shape of the solution regardless of the initial triangulation.

Best known in this context is thetotal curvatureof a surfaceS∫
S

κ2
1 +κ2

2 dA , (23)

expressed as the area integral of the sum of squared principal curvatures (see, e.g., [MS92] and Chapter6).

Parameter independence has a price, however: minimization problems are non-linear and the numerical computation of
solutions (see, e.g., [WW94]) is generally too expensive to be practical for large meshes. For isometric parameterizations
x : Ω→ IR3, minimizing (23) is equivalent to minimizing∫∫

Ω
‖xuu‖2 +2‖xuv‖2 +‖xvv‖2dudv. (24)

This energy has a physical interpretation: it expresses the bending energy of athin platespanned across a domainΩ.

Generally such approaches linearize curvature terms by higher order derivatives for the sake of giving up parameter de-
pendence. Still ad hoc minimization of (24) is rather involved. Fortunately, for some fairness functionals the minimizers are
characterized by solutions oflinear systems. In this case applying variational calculus [Kob97] yields the minimizer as solution
of the associated Euler-Lagrange equation

∆2x = 0 ,

subject to appropriate boundary conditions [KCVS98]. Note that this equation also characterizes the equilibrium of the linear
diffusion ∂x

∂t =−µ∆2x [DMSB99], and its discretization leads to a linear system. In Chapter12we discuss efficient solution of
such systems.

Similarly, minimizing the membrane energy (25)∫∫
Ω
‖xu‖2 +‖xv‖2dudv, (25)

which captures the energy of a membrane spanned across a domainΩ leads to solving∆x = 0.

For achieving higher order fairness the following well-known functional is minimized∫
S

(
∂κ1

∂e1

)2

+
(

∂κ2

∂e2

)2

dA (26)

to penalize variation of curvature, which yieldsminimum variation surfaces[MS92]. Giving up parameter independence corre-
sponds to solving the sixth-order PDE∆3x = 0.

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

Figure 26: The order k of the energy functional and of the corresponding Euler-Lagrange PDE∆k
S x = 0 defines the stiffness of

the surface in the support region and the maximum smoothness Ck−1 of the boundary conditions. From left to right: membrane
surface (k= 1), thin-plate surface (k= 2), minimum variation surface (k= 3).

The Euler-Lagrange equations associated with minimizers of various fairing functionals show their relation to steady state
solutions of diffusion flow (and hence signal processing and low-pass filters). It follows that fairing indeed refers to design-
ing fair surface which ideally depend only on the given boundary conditions: for surfaces derived from∆kx = 0, boundary
constraints of orderCk−1 are interpolated. Fig.26 illustrates the application of different fairing functionals with appropriate
boundary conditions for a simple cylindrical shape. This is in contrast to denoising which is usually far from the steady state.
Note that for the solution of the arising linear systems appropriate boundary conditions have to be applied to guarantee the
existence of solutions. (The Laplacian matrix does not have full rank.)

7.5. Extensions and Alternative Methods

We classified smoothing schemes into two categories depending on whether they are based on diffusion flow or energy min-
imization. Both categories lead to PDE discretization, and both are tightly connected as we focus on linear methods and the
required simplifications. In the following we briefly review some (non-linear) extensions and alternative methods.

7.5.1. Anisotropic Diffusion

Denoising is supposed to smooth out small perturbations in a surface or outliers from measurements. The techniques discussed
so far assume smooth surfaces and are not aware of surface features, i.e., sharp edges or creases and corners. However, most
shapes are only piecewise smooth and denoising will also blur features as these are also represented by high-frequency compo-
nents similar to what is assumed for noise.

This problem has been well-studied in image processing and a common approach to feature-preserving filtering is anisotropic
diffusion [PM90] (see also [Wei98]). The basic idea is to consider the diffusion equation (20) and to replace the scalar diffusion
constantµ by a data dependentdiffusion tensorD. This modification renders the equation non-linear and guides the directional
(i.e., anisotropic) diffusion. A natural choice forD is the curvature tensor (in combination with an appropriate transfer func-
tion), which enables feature preservation or even enhancement: the speed of the flow is reduced in directions of high normal
curvature, e.g., across sharp edges. There are various related approaches to feature preserving smoothing as for instance in
[BX03, CDR00, DMSB00, HP04].

7.5.2. Normal Filtering

The basic idea of normal filtering methods is as follows: instead of filtering the spatial coordinates, the normal field of the
surface is smoothed. The resulting normals are then integrated in order to reconstruct a smooth surface. Hence, in contrast
to smoothing surfaces, or vertex positions, directly, their derivatives are subject to smoothing. This is usually achieved by a
diffusion process [BO01, OBS02, TWBO02, Tau01, YZX∗04]. We remark that normal smoothing is commonly applied as a
preprocess for stabilization (mollification) in order to get reliable estimates for other methods (see, e.g., [JDD03]).

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

Figure 27: Six circles with C1 boundary-conditions are used to design a “tetra thing”. Due to the symmetry the final solution is
actually G2 continuous in this case, which is indicated by the smooth reflection lines (see Chapter6). Surfaces are constructed
using the intrinsic fairing method [SK01] based on solving∆SH = 0, therefore the solution is independent of the triangulation
(or parameterization, respectively).

7.5.3. Statistical Methods

Smoothing can also seen from a statistical point of view: signal and noise are assumed to be stochastic processes with known
spectral characteristics or known autocorrelation and cross-correlation. The Wiener filter is a well-known example from image
processing. Local adaptive Wiener filtering has been adapted to denoising discrete surfaces [Ale02, PG01, PSZ01]. Also the
following bilateral filtering relies on robust statistical estimations.

7.5.4. Bilateral Filtering

Bilateral filtering of images [TM98] (see also [Bar02] for relation to nonlinear diffusion) is a powerful feature-preserving
filtering technique. The central idea is to consider both, the image domain (as for classical filtering) and its range: each pixel
becomes a weighted average ofsimilar pixels in the neighborhood, where “similar” is defined in terms of spatial distanceand
intensity.

In [FDC03, JDD03] bilateral filtering is adapted to denoising surface meshes, where spatial distance and local variation of
normals is taken into account. In [FDC03] the normal displacement of vertex positions for smoothing is computed based on
weighted averages of these measured. The non-iterative approach in [JDD03] does not require explicit connectivity information
and applies (mollified) normals to predict vertex positions, which are used for weighting. The rationale behind this is that
prediction fails near shape features, i.e., distances to such predicted points are larger.

7.5.5. Approaches based on non-linear PDEs

Such methods should depend exclusively on intrinsic properties, i.e., be independent of the parameterization. In [SK01] a PDE-
based method was developed for design of fair surfaces. The method enablesG1 boundary constraints (prescribed as vertices
and unit normals), such that the resulting shape is independent of the particular triangulation. This particular approach is based
on solving the fourth-order non-linear PDE

∆SH = 0, (27)

i.e., it depends purely on intrinsic properties. This can be interpreted as one possible nonlinear analogon to thin plate splines
minimizing (24), and the equation characterizes the equilibrium of the Laplacian of curvature flow [CS99]. Due to the mean
value property of the Laplacian the extremal mean curvatures are obtained at the boundaries. As a consequence there are no
local extrema in the interior [SK00], and thus the principle of simplest shape requirement is satisfied. Notice that the numeric
solution of the PDE requires high-quality discretization of the mean curvature (following [MS92], see Chapter5). For efficiency
reasons the fourth order PDE is factored into two second order problems.

Recently Bobenko and Schröder [BS05b] used discrete Willmore flow for denoising and fair surface design. The minimizer
of the associated energy functional also minimizes (23) for certain settings.

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

7.6. Summary

We gave a brief overview of mesh smoothing techniques with focus on linear methods based on diffusion flow and energy
minimization, revealing relations between the two approaches and relations to spectral analysis. These techniques are linear and
hence very efficient and well-understood, see also Chapter12 for efficient numerical solvers and overview of computational
costs. They constitute basic tools for further geometry processing steps, e.g., for shape deformation Chapter11. We listed
several alternative techniques and summarized their main ideas. In conclusion we remark that there are several other aspects
in smoothing that were not discussed here, such as volume preservation or existence of solutions (which is still unknown for
minimization of many standard non-linear functionals).

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

8. Parameterization

Parameterization techniques establish mappings between surfaces. Such mappings are required by many applications in com-
puter graphics and geometry processing as for instance texturing, compression, scattered data approximation, and remeshing
(see Chapter10). A central property of these mappings is distortion, i.e., the change of angles, areas and distances in the image.
This property is commonly used to categorize parameterization methods.

In this section we review parameterization methods with focus on mappings to planar domains. The importance of parameteri-
zation techniques is reflected by the significant amount of work on the topic in recent years, we refer to the recent comprehensive
survey by Floater and Hormann [FH05a].

8.1. Objectives

The central objective of parameterization techniques is to establish bijective mappings between surfaces andparametric do-
mains. For example in the previous section, we referred toparameterizationas the particular triangulation of a surface: this
can be seen as a piecewise linear mapping from the triangulation as domain onto the approximated shape. In most practical
settings simple standard domains are chosen, like plane or sphere. Mappings are established between a surface (patch) and a
homeomorphic domain, e.g., a genus-zero surfaces can be mapped to a sphere (see, e.g., Fig.30). In practice, surfaces may
be cut to introduce additional boundary loops, for instance a sphere can be unfolded to a disk after opening it with one cut.
Often surfaces may be partitioned into a number of disk-like patches, which are mapped separately. A well-known example is
a texture atlas. In the following we restrict ourselves to mapping surface patches homeomorphic to a disk onto the plane.

The main concern of parameterization methods is the reduction ofparametric distortion. Basic differential geometry reveals
that isometric or length-preserving mappings are rare: they exist only for those surfaces which share intrinsic properties with the
plane such as planes, cylinders, or ruled surfaces for instance. Assume a regular surfaceS ⊂ IR3 with parametric representation

x(u,v) =

 x(u,v)
y(u,v)
z(u,v)

 , (u,v) ∈ IR2 .

The mappingx is characterized by the first fundamental formI ∈ IR2×2 (see Chapter5) which tells how distances — and hence
angles and area — measured in the parametric domain are translated to distances on the surface. The mapping isisometric
iff I is the identity, i.e., for the arc elementdswe haveds2 = (du,dv) I (du,dv)T = du2 + dv2. Conformal mappingspreserve
angles. Here, isotropic scaling ofI by some scalarµ(u,v) 6= 0 is allowed, i.e.,ds2 = µ(u,v)(du2 + dv2). Equiareal mappings
preserve area, hence detI = 1 is required, i.e., for the area element we havedA= dudv. Note that consequently any mapping
which preserves both, angles and area, also preserves distances and vice versa. Alternatively, these properties can be expressed
in terms of the eigenvaluesλ1,λ2 of I (or, asI = JTJ, equivalently in terms or singular values of the JacobianJ for planar
mappings). In summary, we haveλ1 = λ2 for isometric mappings,λ1/λ2 = 1 for conformal mappings, andλ1λ2 = 1 for
equiareal mappings (see also Chapter5 and [FH05a]).

Many approaches use the above characterizations directly and minimize appropriate functionals in order to establish (approx-
imations to) low-distortion maps. In many practical applications the goal is a balance between angle and area preservation.

Besides distortion there are several other important aspects. Most important are guarantees on the validity of the resulting
parameterization. In fact, many methods are guaranteed to produce bijective mappings only under particular, rather restrictive
boundary conditions — although they may perform well in many practical settings. A related aspect is treatment of boundaries:
are they fixed in the domain or allowed to evolve freely? Boundaries are often fixed to convex polygons in order to guarantee
valid mappings. On the other hand, adding some degrees of freedom to boundaries may reduce distortion. Some applications
require additional constraints such as fixing interior points in the domain. An example is morphing where semantic correspon-
dence between mappings from a common domain to different surfaces is required.

In summary there are many criteria for classifying parameterization methods: type of domain (e.g., plane, sphere), minimized
distortion (angle and/or area), treatment of boundaries (fixed or free evolution), numerical solution (e.g., linear or non-linear),
guarantees on validity and convergence. Consequently, many different methods can be found in the literature. In the following
we summarize on some of the main ideas.

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

x

zy

u

v
u

v

x

zy
T

T

p

p

q

q

i

jk
qk j

i

p

x x

Figure 28: Example of a piecewise linear mapping. The meshes share the same connectivity, and individual triangles are
mapped.

8.2. Discrete Mappings

We assume that surfaces are approximated by triangle meshes. Consequently, we are interested in discrete parameterizations,
i.e., piecewise linear mappings. Given a surface meshM with verticespi ∈ IR3 we represent such mapping as a second triangle
meshM′ which shares the connectivity ofM. The verticesqi ofM′ are located in the domain, e.g.,qi ∈ Ω ⊂ IR2 for planar
mappings. We assume interpolationx(qi,1,qi,2) = pi and obtain a bivariate linear mappingf|T : IR2→ IR2 for every triangleT.
By introducing local coordinate systems for surface trianglesT, distortion can be measured easily for these atomic linear maps
f|T in terms of their Jacobians. Finally,M′ represents a valid, bijective mapping if no degenerate triangles exist and pairwise
intersections of triangles are empty. The latter condition is violated locally in case of fold-overs of neighboring triangles or
globally in case of boundary self-intersections (see also Chapter4). Fig.28 illustrates this setting. Note that an implementation
would require only one triangle mesh data structure to representM andM′. This data structure defines two types of coordinate
attributesp andq per vertex. A typical example is to store position and texture coordinates per vertex.

An intuitive way to establish a planar map is to fix the boundary on the plane, e.g., by projection, and to apply smoothing:
minimizing the membrane energy (25) yields a planar mesh and hence a mapping. This can be interpreted as flattening the
surface into the plane and is consistent with the physical interpretation of the membrane energy. There is one pitfall, however:
the result is not necessarily a valid mapping. In order to have guarantees on validity, i.e., no degeneracies and no foldovers, one
has to carefully choose boundary conditions (and the discrete differential operator). In a continuous setting the above motivation
can be seen as solving∆Sx = 0 subject to boundary conditionsx|∂S = x0(u,v) (see Chapter7).

8.3. Angle Preservation

Conformal mappings preserve angles, i.e., angles of intersecting curves in the domain are the same as corresponding angles
between surface curves onS. In contrast to the continuous setting conformal maps can only be approximated in the discrete
sense, where strict angle preservation is generally not possible.

Supposef : S → Ω ⊂ IR2, is a mapping from the surfaceS to the plane such thatf(s, t) = (u,v). Here, we assume that
coordinates(s, t) are given on the surface, and we are looking for planar coordinates(u,v). It shows that the above 3D setting,
which flattens the surface by smoothing, corresponds to minimizing the Dirichlet energy

ED(f) =
1
2

∫
S
‖∇S f‖2 ,

which is achieved for solutions to the above Laplace equations

∆S u = 0 and ∆S v = 0 , (28)

whereu|∂Ω = u0 andv|∂Ω = v0. Here∆S is the Laplace-Beltrami operator w.r.t. the surfaceS (see Chapter5).

Generally, the parameterization problem can be stated as energy minimization, for instance considering functions (or various
norms) of the first fundamental form, Dirichlet energy or conformal energy. The minimizers are often characterized by the
solutions of certain partial differential equations, and finite element/finite difference methods can be applied to compute discrete
solutions.

Minimizers of the Dirichlet energy or equivalently solutions to the Laplace equations are calledharmonic mappings. They
play an important role in parameterization sinceconformalmappings constitute a special case within the class of harmonic
mappings: every conformal mapping is also harmonic. In the discrete planar setting the construction of harmonic mappings
leads to solution of linear problems [EDD∗95], and validity is guaranteed for fixing convex boundaries [Flo03b]. We refer to
[FH05a] for a more detailed discussion (see also [PP93]).

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

Harmonic mappings can be computed efficiently, and due to their simplicity they are commonly used in practice. However,
they are not angle preserving in general. Still, in the discrete setting we can interpret them as fair approximations to conformal
mappings: the solution to (28) yields a unique harmonic mapping, and any conformal mapping must satisfy the same conditions.

In the following we review approaches to the computation of discrete harmonic mappings.Convex combination mapsare
established by solving Laplace equations (28) using a certain class of discretizations of the Laplace operator (18) with positive
weightsωi j . Together with normalization (19) this means that every interior vertex(ui ,vi) will be a convex combination of
its neighbors and hence be located in their convex hull. For such settings, validity of discrete mappings is guaranteed if the
boundary is mapped to a convex polygon in the domain. The special case of uniform weights leads tobarycentric mappings
which are well-studied in graph-theory [Tut63]. Floater [Flo97] designedshape preserving weightssuch that planar meshes
are reproduced (or alternatively the map coincides with an affine mapping of the boundary). Recently, Floater proposed mean
value coordinates [Flo03a] as a superior alternative. The design of the associated weights is based on the mean value property
of harmonic functions: the function value atx0 is equal to the average of values on any circle centered aroundx0. In the discrete
setting the goal is to find piecewise linear mappings that satisfy this property for each interior vertex. The resulting weights are
positive, however, not symmetric in general.

Convex combination maps are advantageous for establishing harmonic mappings due to the positivity of the weights. This
is important for guarantees on validity. Note that other weights (see below) work well in practice but require more restrictive
conditions to guarantee one-to-one mappings [Flo03b].

In order to motivate angle preservation, discrete conformal maps can be computed as finite element approximations [HAT∗00]
or defined as minimizers of a conformal energy [PP93]. Lévy et al. [LPRM02a] express the problem in terms of the Cauchy-
Riemann equations. Conformal mappingsf(s, t) = (u(s, t),v(s, t)) in the plane satisfy the Cauchy-Riemann equations

∂u(s, t)
∂s

=
∂v(s, t)

∂t
,

∂u(s, t)
∂t

=− ∂v(s, t)
∂s

. (29)

Roughly speaking, this means that coordinate functions are defined by the gradients(us,ut) and(vs,vt), which are equal in

length and orthogonal. Here,us,ut ,vs,vt denote the respective partial derivativesu(s,t)
∂s , etc., and we remark that (28) are obtained

from differentiation of (29). While this applies only to planar, continuous settings, the idea in [LPRM02a] is to minimize a
functional that penalizes violation of these conditions for a discrete surface: for every triangle this is the conformal energy
(us− vt)2 + (ut + vs)2. Minimization of the quadratic energy corresponds to satisfying the above conditions in least-squares
sense and leads to the solution of a linear system. Although the linear systems are different in setup and conditioning, this
approach is tightly coupled to the computation of discrete conformal parameterizations as proposed by Desbrun et al. [DMA02],
where a Dirichlet energy is minimized (see also [CD02]). For interior vertices the latter corresponds to using cotangent weights
for the discrete Laplace operator. (Note that these weights can be negative, see Chapter5, which may lead to invalid solutions.
The same applies to [LPRM02a].) Both methods apply so-called natural boundary conditions, which are conditions on the
derivatives of the boundary. This enables the evolution of the boundary in the plane, where the solution depends on particular
fixed vertices. Fig.29 (left) and Fig.30 (center) show examples of discrete conformal maps. The methods reviewed so far are
based on the solution of linear systems and hence very efficient (see Section12). However, they lack guarantees for general or
evolving boundaries.

A popular non-linear method is the Most Isometric Parameterization (MIPS) of Hormann and Greiner [HG00]. It measures
conformality for every triangle in terms of the condition number of the Jacobian of linear atomic mapf|T w.r.t. the Frobenius
norm, which can be written in terms of eigenvalues of the first fundamental form (or singular values of the Jacobian). The energy
functional associated with every linear piece is minimal iff|T is conformal. We refer to [FH05a] for relation to the conformal
energy used in [PP93]. The MIPS algorithm enables evolution of the boundary and computes one-to-one mappings. Due to the
non-linearity of the method, computation is involved and relatively expensive. A solution of a (fixed-boundary) linear method
can be used as initial guess, e.g., for Newton methods. Hierarchical approaches enable efficient processing of larger meshes
(see also [HGC99]).

Angle based flattening(ABF) [SdS00] is an alternative approach to establishing angle preserving mappings. ABF specifies
the parameterization problem in terms of interior angles. This seems natural for computing conformal maps. ABF minimizes
a functional which penalizes angular distortion of the planar mesh w.r.t. the angles of the original mesh. A set of linear and
non-linear constraints on the planar angles guarantees the validity of the parameterization. Obvious conditions are positivity of
angles, vertex consistency and triangle consistency, i.e., angles sum to 2π andπ around interior vertices and within each triangle,
respectively. In addition one more class of non-linear conditions is required to guarantee a consistency (see also [BV93]). In
contrast to most other approaches, ABF enables free evolution of the boundary while no local foldovers can occur. Global self-
intersections — parts of the boundary overlap in the plane — are still possible and must be resolved in postprocessing steps;
this is similar for other methods. In [ZRS04b] additional inequality constraints are proposed to control local convexity of the

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

Figure 29: Left: Discrete conformal parameterization [DMA02, LPRM02a] of a camel head model to the plane. Center: The
texture is mapped from the plane onto the surface and visualizes distortion of angles and area. Right: Area distortion is improved
using [ZRS05a].

boundary in addition to a transformation of the minimization problem to improve ordering and sparsity of the system matrix.
(A side effect is the easier setup of the system matrix.) The required non-linear optimization is relatively expensive compared
to linear approaches. In order to make it practical for moderately sized meshes, in [SLMB04] hierarchical methods are applied,
while in [ZRS04a] efficient iterative solvers are examined.

The recent approach in [KSS06] establishes discrete conformal maps based on circle patterns. Here, also angles are subject
of optimization, however, the associated minimization problem which drives computation can be solved by quadratic program-
ming. The method offers flexibility on the evolution of the boundary including explicit specification of singularities (see below).

8.4. Reducing Area Distortion

For many applications conformal mappings are not sufficient as they may suffer from severe area distortion. In fact, for fixed
boundary settings it is typical that the size of triangles in the domain is scaled extremely as one gets away from the boundary.
One possible solution is to introduce new cuts to provide more flexibility at the price of having discontinuities. In most situations
it is preferable to ease angle preservation in favor of area preservation. (Equiareal mappings are not practical in general, see
[FH05a]). The idea is to have a fair balance between angle and area preservation. Many methods start from conformal mappings
as initial solutions for subsequent optimization.

Degener et al. [DMK03] modify the MIPS energy in [HG00] to account for area scaling. Sander et al. [SSGH01] define a
functional that measures the “stretch” of a mapping based on singular values of the Jacobian off|−1

T . The use of hierarchical
solvers for the arising non-linear minimization is avoided in [YBS04] who apply an efficient quasi-Newton optimization. In
[SCGL02] a modification of this functional is used and the global optimization is replaced by a greedy approach which possibly
cuts the surface while it proceeds. Variational methods are applied in [CLR04], where distortion measures are derived from
principles of rational mechanics.

The above methods define appropriate energy functionals which to some extent penalize area distortion. The methods differ
in the degree of conformality that is retained and in the smoothness of the solution which may not be included in the objec-
tive function (leading to visual cracks due to rapid change of shape of triangles, see [YBS04]). The associated minimization
problems are non-linear, and their solution generally requires sophisticated solvers.

The following methods are based the solution of on linear problems. In order to establish area-preserving, so-called authalic,
mappings [DMA02] derive an energy and associated weightsωi j for local preservation of area. The global effects are, however,
limited in general: global area scaling cannot be reliably predicted a priori based on local information only. Zayer et al. [ZRS05a]
propose the use of discrete quasi-harmonic maps: instead of solving the Laplace system to minimize the Dirichlet energy the
following quasi-harmonic equation is considered

divS(C∇S f) = 0 , (30)

where the symmetric and positive definite tensorC is derived from the Jacobian of an initial discrete conformal mapping (e.g.,
from [DMA02, LPRM02a]). In the discrete setting the 2×2 matrix functionC is piecewise constant and computed per triangle.
Discretizations of the differential operator are provided based on cotangent weights (16) (better conformality) and mean value
coordinates (positivity). We remark that Zayer et al. [ZRS05a] interpret both, cotangent weights and mean value coordinates, as
different discretizations of the same differential operator. The approach leads to an iterative process which requires the solution

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

Figure 30: The gargoyle model (see also Fig.25) is opened with a cut shown as red lines (left). The center image shows a
discrete conformal map visualized by the original 3D shading. Here, the boundary is fixed to a circle. The right image shows a
free boundary map using [ZRS05b].

of one linear system in each step. In practice the method can also start and recover from ill-shaped configurations including
folds, e.g., one could fix the boundary on the plane and then just project interior vertices. As an empirical observation there is
no change of solutions after few iterations. Fig.29 illustrates the effect of area scaling. In [ZRS05b] quasi-harmonic maps are
applied for free boundary parameterization based on a Poisson setting (see also Chapter11). In contrast to natural boundary
conditions applied in [DMA02, LPRM02b] no boundary vertices are treated special by fixing them in the plane, and the solution
does not depend on such a particular choice. This method also proceeds in few steps solving linear systems. Fig.30 shows an
example.

8.5. Spherical Mappings

So far we discussed only mappings of disk-type surface patches to the plane. However, for many surfaces this requires artificial
cuts which may lead to discontinuities across patches. Indeed, for surfaces of genus zero it seems much more natural to chose
the sphere as domain. The fact that many geometric models are homeomorphic to a sphere makes such spherical mappings an
appealing geometry processing tool. Spherical maps have been used for long, for instance many early applications considered
the mapping of brain surfaces. Fig.31 (center) shows an example of a spherical mapping.

The spherical parameterization problem can be stated as a minimization problem subject to the non-linear constraint

||pi ||2 = 1, i = 1, . . . ,n .

The choice of objective function is similar as for the planar case. However, the additional constraint makes the problem more
involved than its planar counterpart.

A straightforward approach is a Gauss-Seidel iteration of a local relaxation step based on tangential Laplacian smoothing
followed by back projection onto the sphere. This type of solution was carried out in [Ale00, KVLS99a]. The result is used
as starting point for computing minimal Moebius transform in [GY02, GWC∗04]. A principal problem is that a minimum is
reached for degenerate configurations, e.g., with vertices slipping over the sphere until triangles collapse. Heuristics such as
imposing stopping criteria or introducing additional boundary conditions cannot solve this problem in general. More promising
is a careful analysis of the discrete objective function in order to compensate for the spherical setting [FSD05].

In [SGD03] the constrained minimization problem is expressed by adapting the planar angle based flattening method to the
spherical setting. Gotsman et al. [GGS03] present a method that comes with theoretical guarantees and generates provably
bijective maps. However, while theoretically interesting, both approaches are computationally too expensive to be of general
use in practice. In [PH03] the “stretch” minimization is adapted to the spherical domain, where the algorithmic solution relies
on hierarchical structures.

Alternative approaches resort to the existence of simple maps from the plane to the sphere. In [HAT∗00] a triangle is cut
from the mesh, and then the whole mesh is mapped into a triangular boundary. The resulting planar parameterization is lifted to
the sphere by an inverse stereographic projection. Besides high distortion this method generally suffers from foldovers. This is
due to the fact that the boundary in the planar domain is considered to extent to infinity. In order to overcome such limitations
[SYGS05] cut the mesh into two halves and map each half to a circle. These two planar embeddings are mapped onto the sphere

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

Figure 31: Mapping a cow model (left) to the sphere (center, using [ZRS06]) and to a base triangulation (right, following
[LSS∗98]). The maps are visualized by the original shading and original vertices in coarse base triangles, respectively.

and serve as starting point for subsequent non-linear optimization on the sphere. This approach is motivated by [GGS03] and
greatly reduces computation time.

In [BGK92] a different approach is taken: first an initial parameterization is established based on curvilinear coordinates. In
order to achieve this, two poles have to be identified and the surface is cut along the date line from pole to pole. Second, the
solution is further improved in the spherical domain by non-linear optimization which turns out to be too unstable for practical
use. Hierarchical methods are applied in [QBH∗00] to improve convergence, however, it is still impractical from an performance
point of view. Zayer et al. [ZRS06] propose a related but efficient approach taking advantage of techniques developed for planar
parameterizations: area distortion of an initial solution in curvilinear coordinates is improved by discrete quasi-harmonic maps
[ZRS05a]. All this achieved in the planar domain using appropriate linear solvers (see Chapter12). Final smoothing on the
spherical domain is restricted to neighborhoods of the cut date line.

8.6. Mapping Surfaces of Arbitrary Topology

Arbitrary topology surfaces are often cut to disk-like patches which are then mapped to the plane. For triangle meshes natural
partitions can be computed by decimation (see Chapter9): the simplified mesh, the so-called base mesh, is used as domain,
and vertices of the original surface mesh are mapped to the coarse base triangles. The result is a piecewise parameterization
over the base mesh. Fig.31(right) shows an example. There is a variety of such approaches which generally follow the original
algorithmic frameworks in [EDD∗95, LSS∗98]: discrete geodesics are used for partitioning and definition of a base domain in
[FHR02]. In [KLS03] a global optimization is applied to achieve smooth transitions between the patches. The choice of base
mesh and objective can be tuned for spherical parameterization as done in [PH03].

Some applications require consistent mappings between surfaces using a common base mesh which is either given a priory
[PSS01] or generated as the method proceeds [KS04, SAPH04].

Gu and Yau [GY03] compute discrete conformal structures for general surfaces. Their parameterization is based on a partic-
ular pair of holomorphic discrete 1-forms (see also [GGT05]). Ray et al. [RLL∗05] apply non-linear optimization on periodic
parameters to obtain a globally smooth parameterization where isoparametric lines are aligned to prescribed orthogonal vector
fields. For all methods the coordinate functions generally must have critical points. The approach in [KSS06] allows to explicitly
place singularities at appropriate spots when designing a mapping.

8.7. Alternative Objectives and Approaches

In the following we list alternative methods and possible extensions, which might be required by particular applications.

As already pointed out, some applications require consistent mappings of several surfaces to the same domain. In order to
enforce semantic consistency, use provided constraints are required. Examples of such constraint parameterization approaches
in planar domains are [Lév01, SG03a, KGG05].

Polycube maps [THCM04] provide a special kind of mapping for efficient texturing. Here, the base domain of a surface is
approximated by simple configuration of cubes.

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

Multidimensional scaling is a statistical method which was also applied to planar surface parameterization in [ZKK02]. The
idea is to preserve distances, i.e., isometry, to a certain extent, however, the method does not scale well with data size and hence
suffers from computational costs.

Guskov [Gus02] modifies Floater’s shape preserving weights to achieve anisotropy for optimized grid generation. In [ZMT05]
surface features are considered for alignment, while [TSS∗04] include texture information in the optimization, which is based
on stretch minimization for both approaches.

8.8. Summary

Parameterization is required in many applications in computer graphics and geometry processing, see for instance Chapter10.
The topic relies on discrete differential geometry (Chapter5) to characterize mappings. Besides parametric distortion there are
several other criteria for categorization of methods, and consequently many different approaches exist. We gave a brief overview
of methods for establishing planar mappings and listed approaches to spherical maps and mapping surfaces of arbitrary topology.

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

9. Mesh Decimation

Mesh decimation describes a class of algorithms that transform a given polygonal mesh into another mesh with fewer faces,
edges and vertices [GGK02]. The decimation procedure is usually controlled by user defined quality criteria which prefer
meshes that preserve specific properties of the original data as well as possible. Typical criteria include geometric distance (e.g.
Hausdorff-distance) or visual appearance (e.g. color difference, feature preservation, ...) [CMS98].

There are many applications for decimation algorithms. First, they obviously can be used toadjust the complexityof a
geometric data set. This makes geometry processing a scalable task where differently complex models can be used on computers
with varying computing performance. Second, since many decimation schemes work iteratively, i.e. they decimate a mesh by
removing one vertex at a time, they usually can be inverted. Running a decimation scheme backwards means to reconstruct the
original data from a decimated version by inserting more and more detail information. This inverse decimation can be used for
progressive transmissionof geometry data [Hop96]. Obviously, in order to make progressive transmission effective we have to
use decimation operators whose inverse can be encoded compactly (cf. Fig.34).

There are several different conceptual approaches to mesh decimation. In principle we can think of the complexity reduction
as a one step operation or as an iterative procedure. The vertex positions of the decimated mesh can be obtained as a subset
of the original set of vertex positions, as a set of weighted averages of original vertex positions, or by resampling the original
piecewise linear surface. In the literature the different approaches are classified into

• Vertex clustering algorithms
• Incremental decimation algorithms
• Resampling algorithms

The first class of algorithms is usually very efficient and robust. The computational complexity is typically linear in the
number of vertices. However, the quality of the resulting meshes is not always satisfactory.Incremental algorithmsin most
cases lead to higher quality meshes. The iterative decimation procedure can take arbitrary user-defined criteria into account,
according to which the next removal operation is chosen. However, their total computation complexity in the average case
is O(nlogn) and can go up toO(n2) in the worst case, especially when a global error threshold is to be respected. Finally,
resampling techniquesare the most general approach to mesh decimation. Here, new samples are more or less freely distributed
over the original piecewise linear surface geometry. By connecting these samples a completely new mesh is constructed. The
major motivation for resampling techniques is that they can enforce the decimated mesh to have a special connectivity structure,
i.e. subdivision connectivity (or semi-regular connectivity). By this they can be used in a straight forward manner to build
multiresolution representations based on subdivision basis functions and their corresponding (pseudo-) wavelets [EDD∗95].
The most serious disadvantage of resampling, however, is thatalias errorscan occur if the sampling pattern is not perfectly
aligned to features in the original geometry. To avoid alias effects, many resampling schemes to some degree require manual
pre-segmentation of the data for reliable feature detection. Resampling techniques will be discussed in detail in Chapter10.

In the following sections we will explain the different approaches to mesh decimation in more detail. Usually there are
many choices for the different ingredients and sub-procedures in each algorithm and we will point out the advantages and
disadvantages for each class (see also [PGK02] for a comparison of different decimation techniques for point-sampled surfaces).

9.1. Vertex Clustering

The basic idea of vertex clustering is quite simple: for a given approximation toleranceε we partition the bounding space around
the given object into cells with diameter smaller than that tolerance. For each cell we compute a representative vertex position,
which we assign to all the vertices that fall into that cell. By this clustering step, original faces degenerate if two or three of their
corners lie in the same cell and consequently are mapped to the same position. The decimated mesh is eventually obtained by
removing all those degenerate faces [RB93].

The remaining faces correspond to those original triangles whose corners all lie in different cells. Stated otherwise: ifp is the
representative vertex for the verticesp0, ...,pn in the clusterP andq is the representative for the verticesq0...,qm in the cluster
Q thenp andq are connected in the decimated mesh if and only if at least one pair of vertices(pi ,q j) was connected in the
original mesh.

One immediately obvious draw-back of vertex clustering is that the resulting mesh might no longer be 2-manifold even if the
original mesh was. Topological changes occur when the part of a surface that collapses into a single point is not homeomorphic
to a disc, i.e., when two different sheets of the surface pass through a singleε-cell. However, this disadvantage can also be

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

Figure 32: Different choices for the representative vertex when decimating a mesh using clustering. From left to right: Original,
average, median, quadric-based.

considered as an advantage. Since the scheme is able to change the topology of the given model we can reduce the object com-
plexity very effectively. Consider, e.g., applying mesh decimation to a 3D-model of a sponge. Here, any decimation scheme that
preserves the surface topology cannot reduce the mesh complexity significantly since all the small holes have to be preserved.

The computational efficiency of vertex clustering is determined by the effort it takes to map the mesh vertices to clusters. For
simple uniform spatial grids this can be achieved in linear time with small constants. Then for each cell a representative has
to be found which might require fairly complicated computations but the number of clusters is usually much smaller than the
number of vertices.

Another apparently nice aspect of vertex clustering is that it automatically guarantees a global approximation tolerance by
defining the clusters accordingly. However, in practice it turns out that the actual approximation error of the decimated mesh is
usually much smaller than the radius of the clusters. This indicates that for a given error threshold, vertex clustering algorithms
do not achieve optimal complexity reduction. Consider, as an extreme example, a very fine planar mesh. Here decimation down
to a single triangle without any approximation error would be possible. The result of vertex clustering instead will always keep
one vertex for everyε-cell.

9.1.1. Computing Cluster Representatives

The way in which vertex clustering algorithms differ is mainly in how they compute the representative. Simply taking the center
of each cell, the straight average, or the median of its members are obvious choices which, however, rarely lead to satisfying
results (cf. Fig.32).

A more reasonable choice is based on finding the optimal vertex position in the least squares sense. For this we exploit the
fact that for sufficiently smallε the polygonal surface patch that lies within oneε-cell is expected to be piecewise flat, i.e., either
the associated normal cone has a small opening angle (totally flat) or the patch can be split into a small number of sectors for
which the normal cone has a small opening angle.

The optimal representative vertex position should have a minimum deviation from all the (regression) tangent planes that
correspond to these sectors. If these approximate tangent planes do not intersect in a single point, we have to compute a solution
in the least squares sense.

Consider one triangleti belonging to a specific cell, i.e., whose corner vertices lie in the same cell. The quadratic distance of
an arbitrary pointx from the supporting plane of that triangle can be computed by

(nT
i x−di)

2 ,

whereni is the normal vector ofti anddi is the scalar product ofni times one ofti ’s corner vertices. The sum of the quadratic
distances to all the triangle planes within one cell is given by

E(x) = ∑
i

(nT
i x−di)

2 . (31)

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

Figure 33: Decimation of the dragon mesh consisting of 577.512 triangles (top left) to simplified version with10%, 1%, and
0.1%of the original triangle count.

The iso-contours of this error functional are ellipsoids and consequently the resulting error measure is calledquadric error
metric (QEM)[GH97, Lin00]. The point position where the quadric error is minimized is given by the solution of(

∑
i

ni n
T
i

)
x =

(
∑
i

ni di

)
. (32)

If the matrix has full rank, i.e. if the normal vectors of the patch do not lie in a plane, then the above equation could be solved
directly. However, to avoid special case handling and to make the solution more robust, a pseudo-inverse based on asingular
value decompositionshould be used.

9.2. Incremental Mesh Decimation

Incremental algorithms remove one mesh vertex at a time (see Fig.33). In each step, the best candidate for removal is determined
based on user-specified criteria. Those criteria can bebinary (= removal is allowed or not) orcontinuous(= rate the quality of
the mesh after the removal between 0 and 1). Binary criteria usually refer to the global approximation tolerance or to other
minimum requirements, e.g., minimum aspect ratio of triangles. Continuous criteria measure thefairnessof the mesh in some
sense, e.g., “round” triangles are better than thin ones, small normal jumps between neighboring triangles are better than large
normal jumps.

Every time a removal has been executed, the surface geometry in the vicinity changes. Therefore, the quality criteria have to
be re-evaluated. During the iterative procedure, this re-evaluation is the computationally most expensive part. To preserve the
order of the candidates, they are usually kept in aheap data structurewith the best removal operation on top. Whenever removal
candidates have to be re-evaluated, they are deleted from the heap and re-inserted with their new value. By this, the complexity
of the update-step increases only likeO(logn) for large meshes if the criteria evaluation itself has constant complexity.

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

Vertex Insertion

Vertex Removal

Edge Split

Edge Collapse

Half Edge Collapse

Restricted Vertex Split

Figure 34: Euler-operations for incremental mesh decimation and their inverses: vertex removal, full edge collapse, and half-
edge collapse.

9.2.1. Topological operations

There are several different choices for the basic removal operation. The major design goal is to keep the operation as simple as
possible. In particular this means that we do not want to remove large parts of the original mesh at once but rather remove a single
vertex at a time. Strong decimation is then achieved by applying many simple decimation step instead of a few complicated
ones. If mesh consistency, i.e., topological correctness matters, the decimation operator has to be anEuler-operator(derived
from the Euler formula for graphs) [HDD∗93].

The first operator one might think ofdeletes one vertexplus its adjacent triangles. For a vertex with valencek this leaves a
k-sided hole. This hole can be fixed by any polygon triangulation algorithm [SZL92]. Although there are several combinatorial
degrees of freedom, the number of triangles will always bek−2. Hence the removal operation decreases the number of vertices
by one and the number of triangles by two (cf. Fig.34, top).

Another decimation operator takes two adjacent verticesp, q and collapses the edge between them, i.e., both vertices are
moved to the same new positionr [Hop96] (cf. Fig. 34, middle). By this two adjacent triangles degenerate and can be removed
from the mesh. In total this operator also removes one vertex and two triangles. The degrees of freedom in thisedge collapse
operator emerge from the freedom to choose the new positionr .

Both operators that we discussed so far are not unique. In either case there is some optimization involved to find the best local
triangulation or the best vertex position. Conceptually this is not well-designed since it mixes the global optimization (which
candidate is best according to the sorting criteria for the heap) with local optimization.

A possible way out is the so-calledhalf-edge collapseoperation: for an ordered pair (p, q) of adjacent vertices,p is moved
to q’s position [KCS98] (cf. Fig. 34, bottom). This can be considered as a special case of edge collapsing where the new
vertex positionr coincides withq. On the other hand, it can also be considered as a special case of vertex deletion where the
triangulation of thek-sided hole is generated by connecting all neighboring vertices with vertexq.

The half-edge collapse has no degrees of freedom. Notice that (p→ q) and (q→ p) are treated as independent removal
operations which both have to be evaluated and stored in the candidate heap. Since half-edge collapsing is a special case of the
other two removal operations, one might expect an inferior quality of the decimated mesh. In fact, half-edge collapsing merely
sub-samples the set of original vertices while the full edge collapse can act as a low-pass filter where new vertex positions are
computed, e.g., by averaging original vertex positions. However, in practice this effect becomes noticeable only for extremely
strong decimation where the exact location of individual vertices really matters.

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

The big advantage of half-edge collapsing is that for moderate decimation, the global optimization (i.e., candidate selec-
tion based on user specified criteria) is completely separated from the decimation operator which makes the design of mesh
decimation schemes more orthogonal.

All the above removal operations preserve the mesh consistency and consequently the topology of the underlying surface.
No holes in the original mesh can be closed, no handles can be eliminated completely. If a decimation scheme should be able to
also simplify the topology of the input model, we have to use non-Euler removal operators. The most common operator in this
class is thevertex contractionwhere two verticesp andq can be contracted into one new vertexr even if they are not connected
by an edge [GH97, Sch97]. This operation reduces the number of vertices by one but it does keep the number of triangles
constant. The implementation of mesh decimation based on vertex contraction requires flexible data structures that are able to
represent non-manifold meshes since the surface patch around vertexr after the contraction might no longer be homeomorphic
to a (half-)disc.

9.2.2. Distance measures

Guaranteeing an approximation tolerance during decimation is the most important requirement for most applications. Usually
an upper boundε is prescribed and the decimation scheme looks for the mesh with the least number of triangles that stays
within ε to the original mesh. However, exactly computing the geometric distance between two polygonal mesh models is
computationally expensive [KLS96, CRS98] and hence conservative approximations are used that can be evaluated quickly.

The generic situation during mesh decimation is that each triangleti in the decimated mesh is associated with a sub-patch
Si of the original mesh. Distance measures have to be computed between each triangleti and either the vertices or faces ofSi .
Depending on the application, we have to take the maximum distance or we can average the distance over the patch.

The simplest technique is error accumulation [SZL92]. For example each edge collapse operation modifies the adjacent
trianglesti by shifting one of their corner vertices fromp or q to r . Hence the distance ofr to ti is an upper bound for the
approximation error introduced in this step. Error accumulation means that we store an error value for each triangle and simply
add the new error contribution for every decimation step. The error accumulation can be done based on scalar distance values
or on distance vectors. Vector addition takes the effect into account that approximation error estimates in opposite directions
can cancel each other.

Another distance measure assigns distance values to the verticesp j of the decimated mesh. It is based on estimating the
squared average of the distances ofp j from all the supporting planes of triangles in the patchesSi which are associated with
the trianglesti surroundingp j . This is, in fact, what the quadric error metric does [GH97].

Initially we compute the error quadricE j for each original vertexp j according to (31) by summing over all triangles which
are directly adjacent top j . Since we are interested in theaveragesquared distance,E j has to be normalized by dividing through
the valence ofp j Then, whenever the edge between two verticesp andq is collapsed, the error quadric for the new vertexr is
found byEr = (Ep +Eq)/2.

The quadric error metric is evaluated by computingE j (p j). Hence when collapsingp andq into r , the optimal position for
r is given by the solution of (32). Notice that due to the averaging step the quadric error metric does neither give a strict upper
nor a strict lower bound on the true geometric error.

Finally, the most expensive but also the sharpest distance error estimate is theHausdorff-distance[KLS96]. This distance
measure is defined to be the maximum minimum distance, i.e., if we have two setsA andB thenH(A,B) is found by computing
the minimum distanced(p,B) for each pointp ∈ A and then taking the maximum of those values. Notice that in general
H(A,B) 6= H(B,A) and hence thesymmetric Hausdorff-distanceis the maximum of both values.

If we assume that the vertices of the original mesh represent sample points measured on some original geometry then the
faces have been generated by some triangulation pre-process and should be considered as piecewise linear approximations to
the original shape. From this point of view, the correct error estimate for the decimated mesh would be the one-sided Hausdorff-
distanceH(A,B) from the original sample pointsA to the decimated meshB.

To efficiently compute the Hausdorff-distance we have to keep track of the assignment of original vertices to the triangles of
the decimated mesh. Whenever an edge collapse operation is performed, the removed verticesp andq (or p alone in the case
of a half-edge collapse) are assigned to the nearest triangle in a local vicinity. In addition, since the edge collapse changes the
shape of the adjacent triangles, the data points that previously have been assigned to these triangles, must be re-distributed. By
this, every triangleti of the decimated mesh at any time maintains a list of original vertices belonging to the currently associated
patchSi . The Hausdorff-distance is then evaluated by finding the most distant point in this list.

A special technique for exact distance computation is suggested in [CVM∗96], where two offset surfaces to the original mesh
are computed to bound the space where the decimated mesh has to stay in.

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

9.2.3. Fairness criteria

The distance measures can be used to decide which removal operation among the candidates is legal and which is not (because
it violates the global error thresholdε). In an incremental mesh decimation scheme we have to provide an additional criterion
which ranks all the legal removal operations. This criterion determines the ordering of the candidates in the heap.

One straightforward solution is to use the distance measure for the ordering as well. This implies that the decimation algorithm
will always remove that vertex in the next step that increases the approximation error least. While this is a reasonable heuristic
in general, we can use other criteria to optimize the resulting mesh for special application dependent requirements.

For example, we might prefer triangle meshes with faces that are as close as possible to equilateral. In this case we can
measure the quality of a vertex removal operation, e.g., by thelongest edge to inner circle radius ratioof the triangles after the
removal.

If we prefer visually smooth meshes, we can use the maximum or average normal jump between adjacent triangles after the
removal as a sorting criterion. Other criteria might include color deviation or texture distortion if the input data does not consist
of pure geometry but also has color and texture attributes attached [CMR∗99, COM98, GH98].

All these different criteria for sorting vertex removal operations are calledfairness criteriasince they rate the quality of
the mesh beyond the mere approximation tolerance. If we keep the fairness criterion separate from the other modules in an
implementation of incremental mesh decimation, we can adapt the algorithm to arbitrary user requirement by simply exchanging
that one procedure. This gives rise to a flexible tool-box for building custom tailored mesh decimation schemes [EDD∗95].

9.3. Out-of-core Methods

Mesh decimation is frequently applied to very large data sets that are too complex to fit into main memory. To avoid severe
performance degradation due to virtual memory swapping,out-of-corealgorithms have been proposed that allow an efficient
decimation of polygonal meshes without requiring the entire data set to be present in main memory. The challenge here is to
design suitable data structures that avoid random access to parts of the mesh during the simplification.

Lindstrom [Lin00] presented an approach based on vertex clustering combined with quadric error metrics for computing the
cluster representatives (see Section9.1). This algorithm only requires limited connectivity information and processes meshes
stored as a triangle soup, where each triangle is represented as a triplet of vertex coordinates. Using a single pass over the mesh
data an in-core representation of the simplified mesh is build incrementally. A dynamic hash table is used for fast localization
and quadrics associated with a cluster are aggregated until all triangles have been processed. The final simplified mesh is
then produced by computing a representative from the per-cluster quadrics and the corresponding connectivity information as
described above.

Lindstrom and Silva [LS01] improve on this approach by removing the requirement for the output model to fit into main
memory by using a multi-pass approach. Their method only requires a constant amount of memory that is independent of the
size of the input and output data. This improvement is achieved by a careful use of (slower, but cheaper) disk space, which
typically leads to performance overheads between a factor of two and five as compared to [Lin00]. To avoid storing the list of
occupied clusters and associated quadrics in main memory, the required information from each triangle to compute the quadrics
is stored to disk. This file is then sorted according to the grid locations using an external sort algorithm. Finally, quadrics and
final vertex positions are computed in a single linear sweep over the sorted file. The authors also apply a scheme similar to the
one proposed in [GH97] to better preserve boundary edges.

Wu and Kobbelt [WK04] proposed an streaming approach to out-of-core mesh decimation based edge collapse operations
in connection with quadric error metric. Their method uses a fixed-size active working set and is independent of the input
and output model complexity. In contrast to the previous two approaches for out-of-core decimation, their method allows to
prescribe the size of the output mesh exactly and supports explicit control over the topology during the simplification. The basic
idea is to sequentially stream the mesh data and incrementally apply decimation operations on an active working set that is kept
in main memory. Assuming that the geometry stream is approximately pre-sorted, e.g., by one coordinate, the spatial coherency
then guarantees that the working set can be small as compared to the total model size (see Fig.35) For decimation they apply
randomized multiple choice optimization, which has been shown to produce results of similar quality than the standard greedy
optimization. The idea is to select a small random set of candidate edges for contraction and only collapse the edge with
smallest quadric error. This significantly reduces computation costs, since no global heap data structure has to be maintained
during the simplification process. In order to avoid inconsistencies during the simplification, edges can only be collapsed, if
they are not part of the boundary between the active working set and the parts of the mesh that are held out-of-core. Since no

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

Figure 35: This snapshot of a stream decimation shows the yet unprocessed part of the input data (left), the current in-core
portion (middle) and the already decimated output (right). The data in the original file happened to be pre-sorted from right to
left (from [WK04]).

global connectivity information is available, this boundary cannot be distinguished from the actual mesh boundary of the input
model. Thus the latter can only be simplified after the entire mesh has been processed, which can be problematic for meshes
with large boundaries.

Isenburg et al. introducesmesh processing sequences, which represent a mesh as a fixed interleaved sequence of indexed
vertices and triangles [ILGS03]. Processing sequences can be used to improve the out-of-core decimation algorithms described
above. Both memory efficiency and mesh quality are improved for the vertex clustering method of [Lin00], while increased
coherency and explicit boundary information help to reduce the size of the active working set in [WK04].

Shaffer and Garland [SG01] proposed a scheme that combines an out-of-core vertex clustering step with an in-core iterative
decimation step. The central observation, which is also the rationale behind the randomized multiple choice optimization, is
that the exact ordering of edge collapses is only relevant for very coarse approximations. Thus the decimation process can be
simplified by combining many edge collapse operations into single vertex clustering operations to obtain an intermediate mesh,
which then serves as input for the standard greedy decimation (Section9.2). Shaffer and Garland use quadric error metrics for
both types of decimation and couple the two simplification steps by passing the quadrics computed during clustering to the
subsequent iterative edge collapse pass. This coupling achieves significantly improvements when compared to simply applying
the two operations in succession.

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

10. Remeshing

Remeshing is a key technique for mesh quality preservation in many geometric modeling algorithms, e.g., shape editing, an-
imation, morphing, and numerical simulation. As such, it has received considerable attention in recent years and a wealth of
remeshing algorithms have been developed. The goal of remeshing is on the one hand to reduce the complexity of an input
mesh subject to certain quality criteria. This process is better known asmesh decimationor mesh simplification,a topic that
is covered in Chapter9 in more detail. The second goal of remeshing is toimprove the qualityof a model, such that it can
be used as input for various downstream applications. Different applications, of course, imply different quality criteria and
requirements. This corresponds to the following basic definition of the term “remeshing” that was given by Alliez et al. in
their survey paper [AUGA05] (which we highly recommend as a reference for further reading on the topic):Given a 3D mesh,
compute another mesh whose elements satisfy some quality requirements, while approximating well the input.Here the term
approximation can be understood with respect to location as well as normal orientation.

In contrast to general mesh repair (see Chapter4), the input of remeshing algorithms is usually assumed to already be a
(part of a) manifold triangle mesh. The term mesh quality thus refers to non-topological properties, like the sampling density,
regularity, size, alignment, orientation, and shape of the mesh elements. This section will in particular deal with these latter
aspects of remeshing and present various methods that achieve this goal.

We will begin our discussion by structuring the different types of remeshing algorithms and by clarifying some concepts
that are commonly used in the remeshing literature. In the following sections we will then discussisotropic andanisotropic
remeshing methods in more detail.

10.0.0.1. Local Structure The local structure of a mesh is described by the type, shape, orientation, and distribution of the
mesh elements.

• Element type:The most common target element types in remeshing aretriangles and quadrangles.Triangle meshes are
usually easier to produce, while in quadrangular remeshing one often has to content oneself with results that are onlyquad-
dominant. Note that in principle any quadrangle mesh can be converted trivially into a triangle mesh by inserting a diagonal
into each quadrangle. On the other hand, triangle meshes can be converted to quads by splitting each triangle at its barycenter
into three new triangles (1-to-3 split) and discarding the original mesh edges.
• Element shape:Elements can be classified as being eitherisotropicor anisotropic. The shape of isotropic elements is close

to circular, thus a triangle/quadrangle is isotropic if it is close to equilateral/square. For triangles this “roundness” can be
measured by dividing the length of the shortest edge by the radius of the circumcircle, see [She97]. Anisotropic elements
typically are aligned with the principal curvature directions of the surface (see Chapter5). Anisotropic meshes usually need
fewer elements than their isotropic pendants to achieve the same approximation quality. Furthermore anisotropic elements
better express the structure of geometric primitives (plane, cylinders, spheres, ...) inherent in many technical models. Isotropic
elements on the other hand are sometimes favored in numerical applications (FEM), as the uniform shape of their elements
often leads to a better conditioning of the resulting systems, see [She02] for a more detailed discussion.

Isotropy

low high
• Element density:In a uniform distribution, the mesh elements are evenly spread across the entire model. In anon-uniform

or adaptivedistribution, the number of element varies, e.g., more and smaller elements are assigned to curved or to feature
regions than to flat areas. Adaptive meshes need significantly fewer elements to achieve an approximation quality that is
comparable to that of uniform meshes.
• Element alignment:Converting a piecewise smooth input surface into a (re-)mesh corresponds to a (re-)sampling process.

Hence sharp features may be affected by alias-artifacts. In order to prevent this, elements should be aligned to sharp features
such that they properly represent tangent discontinuities.

10.0.0.2. Global Structure A vertex in a triangle mesh is calledregular, if its valence (i.e., number of neighboring vertices) is
6 for interior vertices or 4 for boundary vertices. In quadrangle meshes, the regular valences are 4 and 3, respectively. Vertices
that are not regular are calledirregular, singular, or extraordinary.

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

The global structure of a remesh can be classified as being eithercompletely regular, semi-regular, highly regularor irregular.

• In a completely regularmesh all vertices are regular. A regular mesh can compactly be stored in a two-dimensional array
which can be used to speed up the visualization (a so-calledgeometry image), see [GGH02, SWG∗03, LHSW03].
• Semi-regularmeshes are produced by regular subdivision of a coarse initial mesh. Thus the number of extraordinary vertices

in a semi-regular mesh is small and constant [EDD∗95, GVSS00, LSS∗98, KVLS99b] under uniform refinement.
• In highly regularmeshes most vertices are regular. In contrast to semi-regular meshes, highly regular meshes need not be the

result of a subdivision process [SKR02, SG03b, AMD02, SAG03].
• Irregular meshes do not exhibit any kind of regularities in their connectivity.

Besides this topological characterization, the suitability of a remeshing algorithm usually depends on its ability to capture the
global structure of the input geometry by aligning groups of elements to the dominant geometric features. Since this corresponds
to the alignment of entire submeshes, e.g., to global curvature lines of geometric primitives, it is strongly related to mesh
segmentation techniques [MK06].

Fully regular meshes can be generated only for a very limited number of input models, namely those that topologically
are (part of) a torus. All other models have to be cut into one or more topological disks before processing (and then the global
regularity is broken at the seams). Furthermore, special care has to be taken to correctly identify and handle the seams that result
from the cutting. Semi-regular meshes are in particular suitable for multi-resolution analysis and modeling [ZSS97, GVSS00].
They define a natural parameterization of a model over a coarse base mesh. Thus, some algorithms for semi-regular remeshing
are described in Chapter8. Highly regular meshes require different techniques for multi-resolution analysis, but still they are
well-suited for numerical simulations. In particular, mesh compression algorithms can take advantage of the mostly uniform
valence distribution and produce a very efficient connectivity encoding [TG98].

10.0.0.3. CorrespondencesAll remeshing algorithms compute sample points on or near the original surface. Most algorithms
furthermore iteratively relocate sample points in order to improve the quality of the mesh. Thus, a key issue in all remeshing
algorithms is to compute or maintain correspondences between sample pointsp on the remesh and their counterpartsφ(p) on
the input mesh. There are a number of approaches to address this problem:

• Global parameterization:The input model is globally parameterized onto a 2D domain. Sample points can then be easily
distributed and relocated in the 2D domain and later be “lifted” to 3D.
• Local parameterization:The algorithm maintains a parameterization of a local geodesic neighborhood aroundφ(p). When

the sample leaves this neighborhood, a new neighborhood has to be computed.
• Projection:The sample point is directly projected to the nearest point on the input model.

Global parameterization is generally expensive and may suffer from parametric distortion. Naive direct projection may pro-
duce local and global fold overs if the points are too far away from the surface. However, in practice the projection operator can
be stabilized by constraining the movement of the sample points to their tangent planes. Although no theoretical guarantees can
be provided, this makes sure that the samples do not move away too far from the surface, such that the projection can safely
be evaluated. The local parameterization approach is stable and produces currently the best results, however, it needs expensive
bookkeeping to track, cache, and reparameterize the local neighborhoods.

10.1. Isotropic Remeshing

In an isotropic mesh all triangles are approximately equilateral. One may further require a globally uniform vertex density or
allow a smooth change in the triangle sizes (gradation). There are a number of algorithms for isotropic remeshing of triangle
meshes:

• Turk proposed one of the first remeshing algorithms [Tur92]. The algorithm places a number of points on the input mesh
and then uniformly distributes them by an attraction-repulsion mechanism. The algorithm works well, but has problems with
models that contain sharp features or thin structures.
• Alliez et al. proposed aninteractive remeshingtechnique [AMD02]. This algorithm first computes a global conformal param-

eterization of the input mesh and then uses an error-diffusion (dithering) technique to place new points in the 2D parameter
domain. These points are then connected and lifted back to 3D. The algorithm allows to interactively control various remesh-
ing criteria, e.g., to increase the sample density in highly curved regions or to incorporate feature edges. On the downside,
due to the parameterization this algorithm can only work on genus-0 meshes that are not too much distorted. Otherwise the
model has to be cut into topological disks.

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

Figure 36: Isotropic remeshing. Left and center left: Max Planck model at full resolution. Center right and right: Uniform and
adaptive remeshes.

• Surazhsky and Gotsman proposed an explicit surface remeshing algorithm that iterates through a sequence of area-based
smoothing, regularization and angle-based smoothing steps to achieve an isotropic remeshing of the input model [SG03b].
The algorithm uses parameterized, local patches [VRS03] that overlap each other.

• A number of algorithms that are based on the computation of a generalized centroidal Voronoi diagram by Lloyd relaxation
have been proposed recently [SAG03, AdVDI03, VC04, PC04]. The main idea is to iteratively move vertices to the center
of their (geodesic) Voronoi cell. These algorithms achieve high-quality results, but typically need local parameterizations of
neighborhoods and thus are somewhat harder to implement.

• Another class of remeshing schemes is based on global parameterizations. In [KLS03] triangle meshes are considered w.r.t.
a base domain, while Ray et al. [RLL∗05] generate quad-meshes. Most recently, in [DBG∗06] quad-meshes are generated
based on spectral analysis (see also Section7), which leads to a setup similar to [KLS03].

In this section we present a simple but efficient remeshing algorithm that produces isotropic triangle meshes. The algorithm
was presented in [BK04b] and is a simplified version of [VRS03] and an extension to [KBS00]. It produces results that are
comparable to the ones by the original algorithm, but has the advantage of being simpler to implement. In particular, it does
not need a (global or local) parameterization or the involved computation of (geodesic) Voronoi cells as, e.g., [SAG03]. The
algorithm takes as input a target edge length and then repeatedly splits long edges, collapses short edges, and relocates vertices
until all edges are approximately of the desired target edge length. Thus the algorithm runs the following loop:

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

remesh(target_edge_length)
low = 4/5 * target_edge_length
high = 4/3 * target_edge_length
for i = 0 to 10 do

split_long_edges(high)
collapse_short_edges(low,high)
equalize_valences()
tangential_relaxation()
project_to_surface()

Notice that the proper thresholds4
5 and 4

3 are essential to converge to a uniform edge length [BK04b]. The values are derived
from considerations to make sure that the edge lengths are closer to the target lengths after a split or collapse operation than
before. A hysteresis behavior is induced by the interleaved tangential smoothing operator.

Thesplit_long_edges(high) function visits all edges of the current mesh. If an edge is longer than the given thresholdhigh,
the edge is split at its midpoint and the two adjacent triangles are bisected (2-4 split).

split_long_edges(high)
while exists edge e with length(e)>high do

split e at midpoint(e)

Thecollapse_short_edges(low, high) function collapses and thus removes all edges that are shorter than a thresholdlow. Here
one has to take care of a subtle problem: by collapsing along chains of short edges the algorithm may create new edges that are
arbitrarily long and thus undo the work that was done insplit_long_edges(high). This issue is resolved by testingbeforeeach
collapse whether the collapse would produce an edge that is longer thanhigh. If so, the collapse is not executed.

collapse_short_edges(low, high)
finished = false
while exists edge e with length(e)<low and not finished do

finished = true
let e=(a,b) and let a[1],...,a[n] be the 1-ring of a
collapse_ok = true
for i = 1 to n do

if length(b,a[i])>high then
collapse_ok = false

if collapse_ok then
collapse a into b along e
finished = false

Theequalize_valences() function equalizes the vertex valences by flipping edges. The target valencetarget_val(v) is 6 and 4
for interior and boundary vertices, respectively. The algorithm tentatively flips each edgee and checks whether the deviation to
the target valences decreases. If not, the edge is flipped back.

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

equalize_valences()
for each edge e do

let a,b,c,d be the vertices of the two triangles adjacent to e
deviation_pre = abs(valence(a)-target_val(a)) + abs(valence(b)-target_val(b))

+ abs(valence(c)-target_val(c)) + abs(valence(d)-target_val(d))
flip(e)
deviation_post = abs(valence(a)-target_val(a)) + abs(valence(b)-target_val(b))

+ abs(valence(c)-target_val(c)) + abs(valence(d)-target_val(d))
if deviation_pre ≤ deviation_post do

flip(e)

The tangential_relaxation() function applies an iterative smoothing filter to the mesh. Here the vertex movement has to be
constrained to the vertex’ tangent plane in order to stabilize the following projection operator. Letp be an arbitrary vertex in the
current mesh, letn be its normal, and letq be the position of the vertex as calculated by a smoothing algorithms with uniform
Laplacian weights (see Chapter7). The new positionp′ of p is then computed by projectingq ontop’s tangent plane

p′ = q+nnT(p−q) .

Again, this can be easily implemented:

tangential_relaxation()
for each vertex v do

q[v] = the barycenter of v’s neighbor vertices
for each vertex v do

let p[v] and n[v] be the position and normal of v, respectively
p[v] = q[v] + dot(n[v],(p[v]-q[v]))*n[v]

Finally, theproject_to_surface() function maps the vertices back to the surface.

10.1.0.4. Feature preservationA few simple rules suffice to make sure that the remeshing algorithm preserves the features of
the input model, see Fig.37. Here we assume, that the feature edges and vertices have already been marked in the input model,
e.g., by automatic feature detection algorithms or by manual specification [VRS03, Bot05b].

• Corner vertices with more than two or exactly one incident feature edge have to be preserved and are excluded from all
topological and geometric operations.
• Feature vertices may only be collapsed along their incident feature edges.
• Splitting a feature edge creates two new feature edges and a feature vertex.
• Feature edges are never flipped.
• Tangential smoothing of feature vertices is restricted to univariate smoothing along the corresponding feature lines.

10.1.0.5. DiscussionAs can be seen in Fig.36and Fig.37, the algorithm above produces quite good results. It is also possible
to incorporate additional regularization terms by adjusting the weights that are used in the smoothing phase. This allows to
achieve a uniform triangle area distribution or to implement an adaptive remeshing algorithm that produces finer elements in
regions of high curvature.

Figure 37: Isotropic, feature sensitive remeshing of a CAD model.

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

10.2. Anisotropic Remeshing

In an anisotropic mesh the elements align to the principal curvature directions, i.e., they are elongated along the minimum cur-
vature direction and shortened along the maximum curvature direction (see Chapter5). Anisotropic triangle remeshes of a given
target complexity can easily be produced by incrementally decimating the input model down to a desired target complexity. No
matter whether one uses quadric error metrics, (one-sided) Hausdorff-distance, or the normal deviation to rank the priorities
of removal operations, the result will always be an anisotropic triangle mesh that naturally aligns to the principal curvature
directions. The remeshes that are produced by this method satisfy the definition of being anisotropic, but unfortunately they
do not convey the orthogonal structure of the curvature lines. To produce such a structure, it is usually better to first compute
a quadrangular remesh. If necessary, this quadrangle mesh can then be triangulated, e.g., by inserting the shorter of the two
diagonals of each quadrangle. There are a number of approaches for producing quadrangular remeshes of an input model. In
the following sections, we will elaborate on a method that tracks an orthogonal net of principal curvature lines on a mesh to
produce an anisotropic quadrangulation that is aligned to the curvature directions.

Recently, alternative approaches based on global parameterizations have been proposed, which are slightly less flexible due
to their global dependences, but produce guaranteed all quad meshes. The curvature line tracing based techniques only produce
quad-dominant meshes.

10.2.1. Anisotropic Polygonal Remeshing

In this section we describe a remeshing algorithm proposed by Alliez et al. [ACD∗03]. In curved regions, it produces an
anisotropic, quad-dominant remesh, while in flat regions an isotropic, Delaunay-like remeshing is created. LetM be the input
which is assumed to be a genus-0, manifold triangle mesh with a single boundary loop. The algorithm proceeds in four stages:

1. Parameterization:In a preprocessing step, a global conformal parameterizationφ : Ω→M of the input meshM is com-
puted. This can be done by one of the methods presented in Chapter8.

2. Curvature Tensor Estimation:A 3× 3 curvature tensor is estimated for each vertexv ∈ M by averaging fundamental
curvature tensors for each edge in a geodesic neighborhood aroundv (see Chapter5). The two principal directions are
derived from the curvature tensors and “flattened” into the parameter domainΩ. Finally, the vector fields are smoothed and
the umbilic points are extracted.

3. Resampling:In anisotropic regions, a network of lines of curvature is traced within the parameter domain. The density of
the network is controlled by a user-given error threshold and the local curvature estimates. In isotropic regions the algorithm
produces a uniform distribution of sample points.

4. Meshing:The vertices of the final mesh are the union of the intersection points of curvature lines and the vertices that were
scattered in the isotropic regions of the mesh. The edges of the final mesh are deduced from a straightening of the lines of
curvature that were traced in step 3 and from a Delaunay triangulation of the vertices in the isotropic regions.

10.2.1.1. Curvature Tensor Estimation A 3×3 curvature tensorT(v) is estimated for each vertexv∈M by averaging edge-
based curvature tensors in a geodesic neighborhood aroundv. Working with symmetric 3×3 matrices is particularly convenient
since they can easily be averaged while still remaining symmetric. The eigenvalues and eigenvectors ofT are good estimates
of the surface normal inv, the two principal directions, and the corresponding principal curvaturesκ1 andκ2 as described in
Chapter5. For efficiency reasons the tensorT is pulled backto the 2D parameter domain resulting in a 2D tensorQ = Q(u,v)
such that

Q = PT
[

κ1 0
0 κ2

]
P ,

whereP = P(u,v) is an orthogonal matrix that encodes the two principal directions in parameter space. The 2D tensor field
is then linearly interpolated across each triangle in parameter space. If a coarse remeshing of the input model is desired, it
additionally might become necessary to smooth the tensor field, e.g., by a circular, isotropic Gaussian filter.

Finally the umbilic points are extracted. Umbilic points correspond to isotropic regions that do not have two distinct principal
curvature directions, i.e., that are either flat or spherical. Thus an umbilic point(u,v) is characterized by

Q(u,v) =
[

κ 0
0 κ

]
.

It can be shown that there is at most one umbilic point per triangle. This point can be found by solving a linear 2×2 system.

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

10.2.1.2. Resampling In the second phase, the input mesh is resampled. Orthogonal lines of curvature are traced to resample
the anisotropic regions of the input mesh. Spherical and flat regions are simply resampled by a set of evenly distributed points.
Note that the whole resampling process takes place in the 2D parameter domainΩ.

Let Q(u,v) be the “flattened” metric tensor as described above. Then the eigenvectorq1(u,v) associated with the smallest
eigenvalueκ1 points in the direction of maximal (!) curvature. Let

c : t 7→ c(t) = (u(t),v(t))

be a curve such thatc′(t) is parallel toq1(c(t)) for all t, thenc(·) is called aline of maximum curvature. Analogously, one can
definelines of minimum curvature. Note that lines of maximum and minimum curvature always intersect orthogonally. A line
of curvature is either closed or it starts and ends in umbilic points or at the domain boundary. After selecting a seed(u0,v0)
the lines of curvature that pass through that seed can be traced, e.g., by an embedded fourth-order Runge-Kutta scheme with
adaptive step size.

The optimal spacing between two lines of the same curvature type are determined as follows: Let us assume that the piecewise
linear reconstruction between these two lines should not deviate by more than a user-given error thresholdε from the true
surface. Alliez et al. derive the following formula for the spacing between the two curvature lines:

d(κ) = 2

√
ε
(

2
|κ| − ε

)
.

Thus for any point on a line of maximum curvature, the optimal distance to the next line of maximum curvature isd2 = d(κ1),
and analogously for lines of minimum curvature. As all computations are done in the 2D parameter domain these distances have
to be multiplied by the local area stretching of the parameterizationφ.

To actually sample the curvature lines, the algorithm maintains a list ofpotential seeds. Initially, this list contains all umbilic
points. Then one iteratively selects a seed(u0,v0) from the list and starts tracing curvature (poly-)lines(u0,v0),(u1,v1), . . .
as described above. For each of the vertices(ui ,vi) two new seed vertices are placed orthogonally to the current curve at the
optimal distance from the curvature line. Line tracing ends once

• the line reaches an umbilic point or the domain boundary or
• the line comes back to its starting seed or
• the line comes too close to an existing line of same curvature type

10.2.1.3. Meshing Eventually a mesh is extracted from the net of curvature lines. The vertices of the mesh are made of the
intersections of the curvature lines and the points that were scattered in the flat and spherical regions of the model. A decimation
process removes all superfluous samples, like dangling edges or vertices that are adjacent to exactly two line segments of the
same type. Finally a Delaunay triangulation of the isotropic samples is produced and its edges are added to the output mesh.
Note that during the decimation the algorithm makes sure that no fold-overs are produced.

10.2.1.4. Implementation The algorithm described above is best implemented using aconstrained Delaunay triangulation
(CDT). Initially, the boundary of the parameter domainΩ is triangulated. When tracing lines of curvature(u0,v0),(u1,v1), . . .
the line segments are inserted into the CDT. The CDT in particular provides a fast nearest neighbor query that is needed in the
resampling phase and an efficient way to compute the intersection points of the curvature lines in the meshing phase. As the
implementation of a robust CDT is numerically non-trivial and requires robust predicates, an advanced geometry kernel, e.g.,
provided by CGAL, should be used.

10.2.2. Direct Anisotropic Remeshing

Marinov and Kobbelt [MK04] propose a variant of Alliez et al.’s algorithm, that differs from the original work in two aspects
(cf. Fig. 38):

• Curvature line tracking and meshing are all done in 3D space, so there is no need to compute a global parameterization such
that objects of arbitrary genus can be processed.
• The algorithm is able to compute a quad-dominant, anisotropic remesh even in flat regions of the model, where there are no

reliable curvature estimates by extrapolating directional information from neighboring anisotropic regions.

10.2.2.1. Curvature Estimation In addition to mere curvature directions, a confidence value for each face and vertex of the
input mesh is estimated as well. The estimate is based on the coherence of the principal directions at the face’s vertices. This
confidence estimate is then used to propagate the curvature tensors from regions of high confidence (highly curved regions) into
regions of low confidence (flat regions and noisy regions).

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

10.2.2.2. Resampling Curvature lines are traced directly on the 3D mesh, i.e., at any time a line sample position is identified
by a tuple(f ,(u,v,w)) where f is the index of a triangle and(u,v,w) are the barycentric coordinates of the sample within that
triangle. To advance the current sample point, the facef and its neighborhood are locally flattened, either by a hinge map (if
the curvature line crosses an edge off) or by a polar map (if the curvature line crosses one off ’s vertices).

Hinge map Polar map

When the traced line enters a region of low confidence, the algorithm switches the tracing mode: Instead of integrating along
the principal curvatures, the line is simply extrapolated from its last sample points along a geodesic curve until it enters a region
of high confidence again. At this point the line is then “snapped” to the most similar principal curvature direction.

Figure 38: Quad-dominant remeshing. Left: The input is a manifold triangle mesh. Middle: In regions of low confidence, the
curvature lines are not well-defined. The algorithm bridges these regions by extrapolation and produces the result on the right.

In [DKG05], similar streamline tracing is used to generate quad-meshes. Here, vector fields are not based on curvature but
instead defined by gradients of (user specified) harmonic functions, and streamlines are integrated on the surface.

10.2.3. Discussion

Due to the strong visual and structural importance of curvatures, remeshing algorithms that track these lines produce results that
are similar to those that would have been created by a human designer. However, reliably estimating and tracking the principal
curvatures on a discrete triangle mesh is not that easy, in particular for coarse or noisy meshes. Alliez et al.’s algorithm out-
sources most of the computationally hard work to a constrained Delaunay triangulation (e.g. the one provided by CGAL) by
globally paramaterizing the whole input model. Apart from being hard to compute for large models, a global parameterization
restricts the inputs to genus-0 manifolds with a single boundary loop. Higher genus objects have to be cut open along each
handle. The approach of Marinov et al. is parameterization-free and has no restrictions on the topology of the input model.
However, the extraction of the final mesh might lead to non-manifold configurations that have to be handled and fixed in a
post-processing step.

10.3. Variational Shape Approximation

Variational shape approximation (VSA)is a relatively new approach to remeshing (and to shape approximation in general)
introduced by Cohen-Steiner et al. [CAD04]. VSA is highly sensitive to features and symmetries and produces anisotropic
remeshings of high approximation quality. In VSA the input shape is approximated by a set of proxies. The approximation
error is iteratively decreased by clustering faces into best-fitting regions. In contrast to the remeshing methods presented in the

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

previous sections, VSA does not require a parameterization of the input or local estimates of differential quantities. Apart from
remeshing, VSA techniques can also be used in mesh segmentation.

LetM be a triangle mesh and letR= {R1, . . . ,Rk} be a partition ofM into k regions, i.e.,Ri ⊂M and

R1∪·· ·∪Rk =M .

Furthermore letP = {P1, . . . ,Pk} be a set ofproxies. A proxy Pi = (xi ,ni) is simply a plane in space through the pointxi with
normal directionni . Cohen-Steiner et al. consider two metrics that measure a generalized distance of a regionRi to its proxy
Pi . The standardL2 metric is defined as

L2(Ri ,Pi) =
∫

x∈Ri

||x−πi(x)||2dx ,

whereπi(x) = x−nin
T
i (x− xi) is the orthogonal projection ofx ontoPi . They also introduce a new shape metricL2,1 that is

based on a measure of the normal field

L2,1(Ri ,Pi) =
∫

x∈Ri

||n(x)−ni ||2dx .

The goal of variational shape approximation is then the following: Given a numberk and an error metricE (i.e., eitherE =L2

or E = L2,1) find a setR= {R1, . . . ,Rk} of regions and a setP = {P1, . . . ,Pk} of proxies such that the global distortion

E(R,P) =
k

∑
i=1

E(Ri ,Pi) (33)

is minimized. For remeshing purposes one can then extract a remesh of the original input from the proxies.

In the following we will describe and compare two algorithms for computing an (approximate) minimum of Eq. (33). The
first algorithm is due to Cohen-Steiner et al. and uses Lloyd-clustering to produce the regionsRi . The second method is a
greedy approximation to VSA with additional injectivity guarantees.

10.3.1. Lloyd Clustering

Cohen-Steiner et al. [CAD04] use a method to minimize Eq. (33) that is inspired by Lloyd’s clustering algorithm, which has
been used for mesh segmentation in [SWG∗03]. The algorithm iteratively alternates between ageometry partitioning phase
and aproxy fittingphase. In the geometry partitioning phase the algorithm computes a set of regions that best fit a given set of
proxies. In the proxy fitting phase, the partitioning is kept fixed and the proxies are adjusted.

10.3.1.1. Geometry partitioning In the geometry partitioning phase, the algorithm modifies the setR of regions to achieve
a lower approximation error Eq. (33) while keeping the proxiesP fixed. It does so by first selecting a number of seed triangles
and then greedily growing new regionsRi around these seeds.

First the algorithm picks the triangleti from each regionRi that is most similar to its associated proxyPi . This can easily be
done by iterating once over all trianglest inRi and finding the one that minimizesE(t,Pi).

After initializingRi = {ti}, the algorithm simultaneously grows the setsRi . A priority queue contains candidate pairs(t,Pi)
of triangles and proxies. The priority of a triangle/proxy pair(t,Pi) is naturally given asE(t,Pi). For each seed triangleti its
neighboring trianglesr are found and the pairs(r,Pi) are inserted into the queue. The algorithm then iteratively removes pairs
(t,Pi) from the queue, checks whethert has already been conquered by the region growing process, and if not assignst toRi .
Again the unconquered neighbor trianglesr of t are selected and the pairs(r,Pi) are inserted into the queue. This process is
iterated until the queue is empty and all triangles are assigned to a region. Note that a given triangle can appear up to three
times simultaneously in the queue. One could of course check for each triangle, whether it already is in the queue and if so
take appropriate measures. Instead of this expensive check the algorithm rather keeps a status bitconqueredfor each triangle
and checks this bit before assigning a triangle to a region. The following pseudo-code summarizes the geometry partitioning
procedure:

partition(R= {R1, . . . ,Rk},P = {P1, . . . ,Pk})

// find the seed triangles and initialize the priority queue
queue =∅
for i = 1 to k do

select the trianglet ∈Ri that minimizesE(t,Pi)

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

Ri = {T}
sett to conquered
for all neighborsr of t do

insert(r,Pi) into queue

// grow the regions
while the queue is not emptydo

get next(t,Pi) from the queue
if t is not conqueredthen

sett to conquered
Ri =Ri ∪{t}
for all neighborsr of t do

if r is not conqueredthen
insert(r,Pi) into queue

To initialize the algorithm one randomly picksk trianglest1, . . . , tk on the input model, setsRi = {ti} and initializesPi =
(xi ,ni) wherexi is an arbitrary point onti andni is ti ’s normal. Then regions are grown as in the geometry partitioning phase.

10.3.1.2. Proxy fitting In the proxy fitting phase, the partitionR is kept fixed while the proxiesPi = (xi ,ni) are adjusted in
order to minimize Eq. (33). For theL2 metric the best proxy is the area weighted least-squares fitting plane. It can be found
using standard principal component analysis. When using theL2,1 metric, the proxy normalni is just the area-weighted average
of the triangle normals. The base pointxi is irrelevant forL2,1, but is set to the barycenter ofRi for remeshing purposes.

10.3.1.3. Extracting the remeshFrom an optimal partitioningR= {R1, . . . ,Rk} and corresponding proxiesP = {P1, . . . ,Pk}
one can now extract an anisotropic remesh as follows: First, all vertices in the original mesh that are adjacent to three or more
different regions are identified. These vertices are projected onto each proxy and their average position is computed. These
so-called anchor vertices are then connected by tracing the boundaries of the regionsR. The resulting faces are triangulated by
performing a “discrete” Delaunay triangulation. Details of this non-trivial meshing scheme are given in Cohen-Steiner’s paper.

10.3.2. Greedy Approximation

In [MK05] a greedy algorithm to compute an approximate minimum of Eq. (33) is proposed (see Fig.39). It’s main advantages
are:

• The algorithm naturally generates a multi-resolution hierarchy of shape approximations (Fig.39).
• The output is guaranteed to be free of fold-overs and degenerate faces.

On the downside, due to its greedy approach, it is more likely that the algorithm gets stuck in a local minimum (although this
is rarely observed in practice). Furthermore, its implementation is involved and requires the robust computation of Delaunay
triangulations.

Figure 39: A multi-resolution hierarchy of differently detailed meshes that was created by variational shape approximation.

10.3.2.1. Setup In addition to the partitionR = {R1, . . . ,Rk} and the proxiesP = {P1, . . . ,Pk}, the algorithm maintains a
set of polygonal facesF = { f1, . . . , fk}. Each facefi can be an arbitrary connected polygon, i.e., it has an outer boundary and
possibly a number of inner boundaries around interior holes. At the beginning of the algorithm we initialize the setsR,P, and
F as follows:

• Ri = {ti}, i.e., each triangle makes up a region on its own.

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

• The proxy ofRi is set toPi = (xi ,ni) wherexi is an arbitrary point onti andni is ti ’s normal.
• fi = ti , in particular the projection offi ontoPi is injective.

10.3.2.2. Algorithm Invariant The goal of the algorithm is to guarantee a valid shape approximation that is free of fold-overs
and degenerate faces. This is achieved by maintaining the following invariant at all times during the run of the algorithm:

Injectivity constraint:The projection offi ontoPi is injective.

Note that the initial settings for the setsR, P, andF satisfy this constraint.

Due to the injectivity constraint, one is able to extract a valid triangle mesh at all times during the run of the algorithm.
To produce a triangulationDi of a face fi one simply projectsfi onto Pi (which is a plane), performs a (planar) constrained
Delaunay triangulation there, and lifts the triangles of the Delaunay triangulation back tofi .

10.3.2.3. Greedy Optimization The partitioning is now greedily optimized in a loop that stops when a predefined maximum
error or a predefined number of regions is reached. In each iteration one selects (subject to the injectivity constraint) two regions
Ri andR j and merges them into a new regionR′ =Ri ∪R j . (The order in which the merging is performed is described in the
next paragraph.) Then a new proxyP′ = (x′,n′) is computed as an area-weighted average ofPi andPj

n′ =
aini +a jn j

||aini +a jn j ||
and x′ =

aixi +a jx j

ai +a j
,

whereai = area(Ri). Finally, a new facef ′ is computed by identifying and removing the common boundary edges offi and
f j . The algorithm then checks for valence two vertices: If it finds an interior valence two vertex, it is immediately removed.
Boundary valence-two vertices are only removed, if their distance from the proxy is smaller than a user-defined threshold.

Note again, that all the operations described above (merging of faces, removal of valence two vertices) are only performed if
the injectivity constraint is not violated by the operation!

10.3.2.4. Merge priorities For each adjacent pairRi andR j of regions we could compute the shape measureE(R′,P′) as
described in Eq. (33) and order the region pairs by increasing shape error. In order to speed up the algorithm, the exactL2

measure is approximated by

L2(f ′) = L2(Di ,P
′)+L2(D j ,P

′) .

SinceDi usually contains much less triangles thanRi this will significantly speed up the algorithm. TheL2,1 error is replaced
by

L2,1(f ′) = ai ||ni −n′||2 +a j ||n j −n′||2 ,

whereai = area(Ri) as before. The two error measures are combined into a single, scale-independent measure

E(f ′) =
(

1+L2(f ′)
)
·
(

1+L2,1(f ′)
)

,

which does not require any user selected weight parameters.

10.3.3. Discussion

Cohen-Steiner’s algorithm is fast, efficient, and generally produces high quality results with low approximation error. However,
the mesh extraction step might produce degenerate triangles and fold-overs. The extensions presented by Marinov produce a
hierarchy of reconstructions which are guaranteed to be free of fold-overs. However, due to the greedy approach, Marinov’s
algorithm is more likely to get stuck in a local optimum. To achieve acceptable running times, they furthermore have to resort
to an approximation of the trueL2 orL2,1 errors.

10.3.3.1. Generalizations In [WK05] the variational shape approximation approach is taken a step further by allowing for
proxies other than simple planes, e.g., spheres, cylinders, and rolling-ball blends. Apart from requiring fewer primitives to
achieve a certain reconstruction quality, this method can also recover the “semantic structure” of an input model to some
extend, see Fig.40. In [JKS05] a similar idea is used to decompose the input mesh into nearly developable segments.

In [MK06] a quad-dominant remeshing algorithm is proposed that exploits the mesh segmentationR produced by VSA. First
sample points are uniformly distributed on the boundaries of the patchesRi and each patch is parameterized over a 2D domain.
There, each pair of sample points is connected by a cubic curve that minimizes its bending energy. A discrete optimization
algorithm selects a subset of the cubics that produces the most well-shaped elements. The resulting quad-dominant mesh is then
projected back to 3D. This algorithm is easily able to bridge flat or noisy regions of the input mesh in a robust manner.

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

Figure 40: Hybrid Variational Surface Approximation: In addition to planes, Wu and Kobbelt also use more general proxies
like spheres, cylinders, and rolling ball blends. These proxies allow to recover the semantic structure of the input model.

10.4. Mesh Segmentation

As stated initially, remeshing has local aspects as well as global ones. Locally, the shape, orientation, and alignment of indi-
vidual element matters while globally, the overall geometric structure of the object has to be represented by the orientation
and alignment of entire regular sub-patches [MK06]. To address the local aspects, harmonic parameterizations and curvature
analysis are the appropriate mathematical tools. To recover the global structure, segmentation techniques are required. Since a
detailed description of the various approaches to mesh segmentation are beyond the scope of these notes, we only briefly sketch
the fundamental techniques that are typically used.

• Lloyd-relaxation:Variational shape approximation and all variants and extensions can be considered as segmentation tech-
niques as well.
• Region growing / level sets:By omitting the proxy re-fitting, variational shape approximation degenerates into a classical

region growing technique. By using more sophisticated growing strategies that also take surface curvature into account, these
techniques can be interpreted as level sets which live as scalar fields on a manifold.
• Snakes:If an initial segmentation is given manually or through some pre-processing, it can be refined by a snake-based

approach where the initial solution is improved by minimizing an energy functional, which accounts for local fitting, e.g., to
a curvature maximum, and segmentation boundary smoothness. Snakes effectively prevent jagged segment boundaries.
• Graph-cut:Level sets and snakes can only guarantee convergence to a local optimum. If a surface region for the boundary

between two segments can be identified, the global optimum can be found by re-formulating the segmentation problem as a
minimum graph-cut problem. In [KT03] the graph-cut is computed for the dual graph of the triangle mesh with edge-weights
depending on the local surface curvature.

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

11. Shape Deformations

In this section we will describe and compare different kinds of surface deformation techniques. We do not discuss approaches for
surface design from scratch, like for instance [AWC04, ACWK04], but rather focus on deforming given surfaces in a controlled
manner. We will first discuss freeform deformations, either surface-based (Section11.1) or space deformations (Section11.2),
which allow to deform a given surface in a smooth manner. However, under global deformations these techniques do not deform
fine surface details in a natural manner. Intuitive detail handling is provided by multiresolution hierarchies (Section11.3), which
can enhance any freeform deformation technique, or by deformations based on differential coordinates (Section11.4).

11.1. Surface-Based Freeform Deformations

For surface-based freeform deformations we are looking for a displacement functiond : S → IR3 which maps the given surface
S to its deformed versionS′:

S′ := {p+d(p) | p ∈ S} .

Especially in engineering applications it is of major importance to be able to exactly control the deformation process, i.e., to
specify displacements for a set of constrained pointsC:

d(pi) = di , ∀pi ∈ C .

Since we are targetting interactive shape deformations, another important aspect is the amount of user interaction or guidance
required to specify a desired deformation functiond.

11.1.1. Tensor-Product Spline Surfaces

The traditional surface representation for CAGD are spline surfaces that are controlled by the intuitive control point metaphor
and provide high quality smooth surfaces. A single tensor-product spline patch is defined as

f (u,v) =
m

∑
i=0

m

∑
j=0

ci j N
n
i (u)Nn

j (v) ,

i.e., each control pointci j is associated with a smooth basis functionNi j (u,v) := Nn
i (u)Nn

j (v). As a consequence, a translation of
a control point adds a smooth bump of rectangular support to the surface (cf. Fig.41, left). Every more sophisticated modeling
operation has to be composed from these smooth elementary modifications, such that the displacement function has the form

d(u,v) =
m

∑
i=0

m

∑
j=0

δci j Ni j (u,v) ,

whereδci j denotes the change of control pointci j . As a consequence, the support of the deformation is the union of the supports
of individual basis functions. As the positions of these basis functions are fixed to the initial grid of control points, this prohibits
a fine-grained control of the desired support region. Moreover, the composition of fixed basis functions located on a fixed grid
might lead to alias artifacts in the resulting surface, as shown in Fig.41.

It was also shown in Section2.1.1that tensor-product spline surfaces are restricted to rectangular domains, and that complex
surfaces therefore have to be composed by a large number of spline patches. Specifying complex deformations in terms of
control point movements thus involves a lot of user interaction, since smoothness constraints across patch boundaries have to
be considered during the whole deformation process. Also notice that prescribing constraintsd(ui ,vi) = di requires to solve a
linear system for the control point displacementsδci j . These system can be over- as well as under-determined, and hence are
typically solved by least squares and least norm techniques. However, in the first case, the system cannot be solved exactly, and
in the latter case the minimization of control point displacements does not neccessarily lead to fair deformations, which would
require to minimize some fairness energy (Section7.4).

11.1.2. Transformation Propagation

The main drawback of spline-based deformations is that the underlying mathematical surface representation is identical to
the basis functions that are used for the surface deformation. To overcome this limitation, the deformation basis functions
consequently should be independent of the actual surface representation.

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

Figure 41: A modeling example using a bi-cubic tensor-product spline surface. Each control point is associated with a smooth
basis function of fixed rectangular support (left). This fixed support and the fixed regular placement of the control points, resp.
basis functions, prevents a precise support specification (center) and can lead to alias artifacts in the resulting surface, that are
revealed by more sensitive surface shading (right).

Figure 42: After specifying the blue support region and the green handle regions (left), a smooth scalar field is constructed that
is 1 at the handle and 0 outside the support (center). This scalar field is used to propagate and damp the handle’s transformation
(right).

A popular approach falling into this category works as follows (cf. Fig.42): in a first step the user specifies the support of
the deformation (the region which is allowed to change) and a handle region within it. A direct transformation applied to this
handle region is then to be smoothly interpolated within the support region in order to blend between the transformed handle
and the fixed part of the surface.

This smooth blend is controlled by a scalar fields : S → [0,1], which s(p) is 1 at the handle (full deformation), 0 outside
the support (no deformation), and blends between 1 and 0 within the support region. One way to construct the scalar field is to
compute geodesic distances dist0 (p) and dist1 (p) from p to the fixed part and the handle region, respectively, and to define

s(p) =
dist0 (p)

dist0 (p)+dist1 (p)
,

similar to [BK03a, PKKG03]. However, in case of concave handle regions the geodesic distance fields will not be smooth.
Instead, harmonic fields can be used, which provide guaranteed smoothness [ZRKS05]. In this case a linear Laplacian system
has to be solved for the values ofs(pi) at the free verticespi within the support region:

∆S s(pi) = 0 pi ∈ support

s(pi) = 1 pi ∈ handle

s(pi) = 0 pi ∈ fixed .

As an additional benefit the scalar fields(p) can further be enhanced by a transfer functiont (s(p)), which provides more
control of the blending process [BK03a, PKKG03]. The damping of the handle transformation is then performed separately
on the rotation, scale/shear, and translation components, for instance like in [PKKG03]. In case the individual transformation
components are not given, they can be computed by polar decomposition [SD92].

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

As shown in Fig.43, the major problem with this approach is that distance-based propagations cannot yield the geometrically
most intuitive solution, which would be a smooth interpolation of the (transformed) handle region by a high quality smooth
surface.

11.1.3. Boundary Constraint Modeling

Smooth surface deformation functionsd(·) with prescribed boundary constraintsd(pi) = di are most elegantly modeled by an
energy minimization principle [MS92, WW92, KCVS98, BK04a]. The surface is assumed to behave like a physical skin, which
stretches and bends as forces are acting on it. Mathematically, this behavior can be captured by an energy functional which
penalizes stretch or bending. A popular example is the thin-plate energy of the displacement functiond (Chapter7):

ETP(d) =
∫
S
‖duu(x)‖2 +2‖duv(x)‖2 +‖dvv(x)‖2 dx .

The optimal surface is the one that minimizes this energy while satisfying the prescribed boundary conditions. These con-
straints are given by the first two rings of fixed vertices and handle vertices, which defineC0 andC1 constraints at the boundary
of the support region (cf. Fig.44, left). In order to efficiently compute the solution of this optimization problem, variational
calculus is applied to derive the Euler-Lagrange PDE that characterizes the minimizer ofETP [Kob97]:

∆2 d(pi) = 0 pi ∈ support
d(pi) = di pi ∈ handle
d(pi) = 0 pi ∈ fixed

. (34)

Figure 43: A sphere is deformed by lifting a closed handle polygon (left). Propagating this translation based on geodesic
distance causes a dent in the interior of the handle polygon (center). The more intuitive solution of a smooth interpolation
(right) cannot be achieved with this approach; it was produced by boundary constraint modeling.

C
0

C
1

C
2

C
0.2

Figure 44: Minimizing the thin-plate energy allows for C1 boundary constraints, which are given by the first two rings of fixed
and handle vertices (left). The framework even allows for anisotropic bending behavior and per-vertex control of boundary
continuity (right).

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

Figure 45: Freeform space deformations warp the space around an object, and by this deform the embedded object itself.

Hence, the optimal deformation functiond can directly be computed by solving a bi-Laplacian system. The advantage of this
formulation is that it allows to take arbitrary constraintsd(pi) = di into account and that the optimal solution is known to have
certain smoothness properties.

Interactively transforming the handle region changes the boundary constraints of the optimization. Since this also changes
the right-hand side of Eq. (34), this system has to be solved each frame. In Chapter12 we therefore discuss efficient linear
system solvers which are particularly suited for this multiple right-hand side problem. Also notice that restricting to affine
transformation of the handle region (which is usually sufficient) allows to precompute basis functions of the deformation, such
that instead of solving the linear system each frame, only these basis functions have to be evaluated [BK04a]. Also notice that
the boundary constraint modeling approach is much more flexible. As also shown in [BK04a], different energy functions can be
chosen to control the stiffness and bending behavior, which can even be anisotropic. Moreover, the continuity at the support’s
boundary can be controlled per vertex (cf. Fig.44, right).

11.2. Space Deformations

The surface-based approaches described in Section11.1compute a smooth deformation fieldon the surfaceS. If the underlying
surface representation is a triangle mesh, computing the deformation field typically requires to solve a linear Laplacian system
onS. An apparent drawback of such methods is that their computational effort and numerical robustness are strongly related to
the complexity and quality of the surface tessellation.

In the presence of degenerate triangles the discrete Laplacian operator is not well-defined and thus the involved linear systems
become singular. Similarly, topological problems like gaps or non-manifold configurations lead to problems as well. In such
cases quite some effort has to be spent to still be able to compute smooth deformations for the numerically problematic meshes,
like eliminating degenerate triangles (Chapter4) or even remeshing the complete surface (Chapter10). Even when the mesh
quality is sufficiently high, extremely complex meshes will result in linear systems which cannot be solved simply due to their
size.

The above problems are avoided by volumetricspace deformationtechniques, that deform the whole 3D space and by this
implicitly deform the embedded object (cf. Fig.45). In contrast to surface-based methods, they use a tri-variate deformation
functiond : IR3→ IR3 to transform all points of the original surfaceS to the modified surfaceS′ = {p+d(p) |p ∈ S}. Satisfy-
ing displacement constraintsd(pi) = di now amounts to finding a volumetric functiond : IR3→ IR3 interpolating them, instead
of an interpolation on a manifoldS as for surface-based approaches. Analogously to surface-based techniques, we will see that
approaches based on a global energy minimization typically lead to highest quality results.

Since the space deformation functiond does not depend on a particular surface representation, this uniform deformation
framework can also be applied to all explicit surface representations, e.g., by transforming all vertices of a triangle mesh or all
points of a point-sampled model. However, it does not allow for as fine grained surface control (anisotropic bending, boundary
continuity) as the surface-based approaches.

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

Figure 46: In the freeform deformation approach a regular 3D control lattice is used to specify a volumetric displacement
function (left). Similar to tensor-product spline surfaces, the tri-variate tensor-product splines can also lead to alias artifacts
in the deformed surface (right).

11.2.1. Freeform Deformation

The classical freeform deformation (FFD) method [SP86] represents the space deformation by a tensor-product Bezier or spline
function

d(u,v,w) = ∑
i

∑
j
∑
k

δci jk Nl
i (u)Nn

j (v)Nm
k (w) .

Because of the same reasons as for spline surfaces (Section11.1.1), these approaches require complex user-interactions and
can cause aliasing problems, as shown in Fig.46. In order to satisfy given displacement constraints, the inverse FFD method
[HHK92] solves a linear system for the required movement of grid pointsci jk . This system may be over- as well as under-
determined and hence is solved by least-squares or least-norm methods, respectively. However, the first cannot exactly interpo-
late constraints, and the latter minimizes control point movements, which does not necessarily imply a fair deformation of low
curvature energy.

11.2.2. Transformation Propagation

Handle transformations can be propagated analogously to the surface-based techniques described in Section11.1.2by con-
structing the scalar fields(·) based on Euclidean distances, instead of geodesic distances [PKKG03]. While this typically leads
to inferior results compared to geodesic-based propagation, this method even works if a surface-based propagation fails due to
topological problems like gaps or holes, or even is a point-sampled model

Besides from that, the limitations of the surface-based propagation also apply to this method. A smooth interpolation of
arbitrary constraints might not be possible, and the resulting surface fairness is typically inferior to techniques based on energy
minimization.

11.2.3. RBF Boundary Constraint Modeling

Surface-based boundary constraint modeling employs a deformation functiond : S → IR3 which smoothly interpolates user-
defined displacement constraintsd(pi) = di . An optimally fair function is found by minimizing an energy functional.

For space deformations, we therefore want to find a smoothly interpolating tri-variate deformation functiond : IR3→ IR3

which minimizes some analogous energies. Radial basis functions (RBFs) are known to be well suited for such kinds of scattered
data interpolation problems. A tri-variate RBF deformation is defined in terms of centersc j ∈ IR3 and weightsw j ∈ IR3 as

d(x) = ∑
j

w j ϕ
(∥∥c j −x

∥∥)+p(x) , (35)

whereϕ
(∥∥c j −·

∥∥) is the basis function corresponding to thejth centerc j andp(x) is a polynomial of low degree used to
guarantee polynomial precision.

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

Figure 47: Using multiple independent handle components allows to stretch the hood while rigidly preserving the shape of the
wheel houses. This 3M triangle model consists of 10k individual connected components, which are neither two-manifold nor
consistently oriented.

The choice ofϕ has a strong influence on the computational complexity and the resulting surface’s fairness: while compactly
supported radial basis functions lead to sparse linear systems and hence can be used to interpolate several hundred thousands of
data points [MYC∗01, OBS04], they do not provide the same degree of fairness as basis functions of global support [CBC∗01].
It was shown by Duchon [Duc77] that for the basis functionϕ(r) = r3 and quadratic polynomialsp(·) ∈Π2, the function (35)
is triharmonic (∆3d = 0) and hence minimizes the energy∫

IR3
‖dxxx(x)‖2 +‖dxxy(x)‖2 + . . .+‖dzzz(x)‖2 dx .

Notice that these trivariate functions are conceptually equivalent to the minimum variation surfaces of [MS92] and the trihar-
monic surfaces used in [BK04a], and hence provide the same degree of fairness.

In order to construct an RBF interpolating the constraintsd(pi) = di , the centers are placed on the constraints (ci = pi) and
a linear system is solved to find the RBF’s weightswi and the coefficients of the quadratic polynomialp(x) [BK05b]. Due to
the global support of the triharmonic basis functionϕ(r) = r3 this linear system is dense, which implies cubic complexity for
standard solvers.

However, Botsch and Kobbelt [BK05b] propose an incremental least squares method that efficiently solves the linear system
up to a prescribed error bound. Using this solver to pre-compute deformation basis functions allows to interactively deform
even complex models. Moreover, evaluating these basis functions on the graphics card further accelerates this approach and
provides real-time space deformations at a rate of 30M vertices/sec. As shown in Fig.47, even complex surfaces consisting of
disconnected patches can be handled by this technique, whereas all surface-based techniques would fail in this situation.

11.3. Multiresolution Deformations

The previous section introduced surface-based and spatial freeform deformations, which provide smooth deformations of given
surfaces. However, as shown in Fig.48, these approaches typically do not correctly handle fine-scale surface details. Preservat-
ing these details under global deformations is provided by multiresolution techniques, which are described in the following.

Multiresolution or multi-scale techniques perform a frequency decomposition of the object in order to provide global defor-
mations with intuitive detail preservation. Chapter7 described that signal processing techniques, such as low-pass filtering, can
be generalized to (signals on) surfaces. In this setting the fine surface details correspond to the high frequencies of the surface
signal and the global shape is represented by its low frequency components. But in contrast to surface smoothing one now
wants to explicitly modify the low frequencies and preserve the high frequency details, resulting in the desired multiresolution
deformation. Fig.49shows a simple 2D example of this concept.

The complete multiresolution editing process is depicted in Fig.50. In a first step a low-frequency representation of the given
surfaceS is computed by removing the high frequencies, yielding a smooth base surfaceB. The geometric detailsD = S 	B,
i.e., the fine surface features that have been removed, represent the high frequencies ofS and are stored as detail information.
By this we are able to reconstruct the original surfaceS by adding the geometric details back onto the base surface:S = B⊕D.

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

Figure 48: Fine-scale surface details are distorted by freeform deformations due to the lack of local frame rotations. For this
pure translation, all surface points move in the same direction. In contrast, multiresolution deformations correctly preserve the
bumps under global deformations.

The special operators	 and⊕ are called thedecompositionand thereconstructionoperator of the multiresolution framework,
respectively. This multiresolution surface representation is now enhanced by anediting operator, that is used to deform the
smooth base surfaceB into a modified versionB′. Adding the geometric details onto the deformed base surface then results in
a multiresolution deformationS′ = B′⊕D.

Notice that in general more than one decomposition step is used to generate a hierarchy of meshesS = S0,S1, . . . ,Sk = B
with decreasing geometric complexity. In this case the frequencies that are lost from one levelSi to the next smoother oneSi+1
are stored as geometric detailsDi+1 = Si	Si+1, such that after deforming the base surface toB′, the modified original surface
can be reconstructed byS′ = B′

⊕k−1
i=0 Dk−i . Since the generalization to several hierarchy levels is straightforward, we restrict

our explanations to the simpler case of a two-band decomposition, as shown in Fig.50.

A complete multiresolution deformation framework therefore has to provide the three basic operators shown in Fig.50: the
decomposition operator (detail analysis), the freeform editing operator (shape deformation), and the reconstruction operator
(detail synthesis). The decomposition is typically performed by mesh smoothing (Chapter7), and freeform deformations have
been discussed in Section11.1and Section11.2. The missing component is a suitable representation for the geometric detail
D = S 	B, for which we describe displacement vectors and displacement volumes in the following.

11.3.1. Displacement Vectors

The standard representation for multiresolution details is a displacement of the base surfaceB, i.e., the detail information is
a vector valued displacement functionh : B → IR3, that associates a displacement vectorh(b) with each pointb on the base
surface. Hence, the detailed surfaceS can be reconstructed from the base surfaceB by S = {b+h(b) | b ∈ B}.

Although the realization of this representation seems to be straightforward, special attention has to be paid to the represen-
tation of the displacement field. Expressing the displacements w.r.t. a global coordinate system does not lead to the expected
results (cf. Fig.51, left). When the base surfaceB is deformed toB′, the displacements have to be rotated according to the local
rotations of the base surface’s tangent plane in order to guarantee a plausible detail reconstructionS′. Hence, the displacements
have to be expressed in so-calledlocal frames[FB88, FB95], that consist of the surface normal and two perpendicular tangent
vectors (cf. Fig.51, right).

The typical discretization of the displacement field is to restrict the base meshB to have the same connectivity as the detailed
surfaceS, such that each vertexvi with positionpi ∈ S has an associated base pointbi ∈ B. The corresponding displacement
vectorhi := (pi −bi) is then stored in the local frame ofB at the pointbi [ZSS97, GSS99]. The problem of these general
displacement vectors is that the tangential component leads to ambiguities in the local frame encoding and might also cause
non-intuitive detail reconstructions, as discussed in [KVS99].

Suppressing the tangential component and enforcing the displacement vectors to be parallel to the normal of the base surface
leads to so-callednormal displacements. As the displacements are in general not parallel to the surface normal, generating
normal displacements has to involve some kind of resampling. Shooting rays in normal direction from each base vertexbi ∈ B
and deriving new vertex positionspi ∈ S at their intersections with the detailed surface leads to a resampling of the latter
[GVSS00, LMH00]. BecauseS might be a detailed surface with high frequency features, such a resampling is likely to introduce
alias artifacts. Therefore Kobbelt et al. [KVS99] go the other direction: for each vertex positionpi ∈ S they find a base point

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

Figure 49: A multiresolution deformation of a sine wave. A frequency decomposition yields the dashed line as its low fre-
quency component (left). Bending this line and adding the higher frequencies back onto it results in the desired global shape
deformation (right).

Geometric
Details

Multiresolution Editing

De
co

m
po

sit
io

n Reconstruction

S S
′

B
′

B

Editing

Figure 50: A general multiresolution editing framework consists of three main operators: thedecompositionoperator, that
separates the low and high frequencies, theeditingoperator, that deforms the low frequency components, and thereconstruc-
tion operator, that adds the details back onto the modified base surface. Since the lower part of this scheme is hidden in the
multiresolution kernel, only the multiresolution edit in the top row is visible to the designer.

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

bi ∈ B (now not necessarily a vertex ofB), such that the displacements are normal toB, i.e.,pi = bi +hi ·n(bi). This avoids a
resampling ofS and therefore allows for the preservation of all of its sharp features.

These normal displacements are then encoded by their lengthhi and by the base pointbi , which is represented parametrically
by a triangle index and its barycentric coordinates within that triangle. After modifying the base surface, the new base point
b′i ∈B′ is determined by this parametric information, and the corresponding pointp′i ∈S′ is reconstructed byp′i = b′i +hi ·n(b′i).
Once the normal displacements have been generated in the decomposition phase, the required per-frame reconstruction operator
is extremely efficient, since it basically involves computing the linear normal field on the deformed base surface, that is needed
anyway for rendering the modified surface.

11.3.2. Displacement Volumes

A major problem of the well established displacement vectors is that they are handled individually, i.e., they are not coupled
in any way. While this approach usually leads to sufficient detail reconstructions for translational or rotational modifications,
it results in an unnatural change of volume as soon as the base surface is bent. Consider the prisms that are spanned by the
original triangles ofS over the base surfaceB: bending the base surface changes their opening angles and thereby alters the
prism volumes. Since the volume enclosed between the base surface and the detailed surface is intuitively supposed to stay
constant, this behavior does not fully satisfy the plausibility requirements of detail preservation (cf. Fig.52).

A more severe problem of uncoupled displacement vectors is that they do not provide any mechanism to prevent local self-
intersections. As shown in Fig.53, these difficulties typically arise when the base surface is deformed in a concave manner.
Where a local self-intersection occurs, the surface is folding over itself. Expressed in terms of the prisms spanned by the
displacement vectors, local self-intersections occur when one or more of these prisms degenerate.

Both problems, the unnatural change of volume and local self-intersections, are addressed by displacementvolumesinstead
of displacementvectors[BK03b]. Each triangle of the original detailed meshS spans a prism over the base surfaceB, and the
volumes of these prisms are used as detail coefficients. For a modified base surfaceB′ the reconstruction operator then has to
find a new detailed meshS′ that has the same connectivity asS and spans the same prism volumes.

This notion of volume preservation provides a physical interpretation for the plausibility of the detail preservation: the detail
is supposed to mimic the behavior of elastic but incompressible materials. The multiresolution model will deform like a soft
but incompressible layer attached to a rigid skeleton (cf. Fig.52). Displacement volumes can also effectively avoid local self-
intersections (where the surface of a prism would inter-penetrate itself), since prisms can shear, i.e., their top triangles can move
tangentially, without changing their volume (cf. Fig.53).

Notice, however, that the improved detail preservation comes at the considerably higher computational cost of a non-linear
detail reconstruction process. Hence, displacement vectors should be used during interactive deformation, the result of which
can afterwards be optimized based on displacement volumes.

Figure 51: Representing the displacements w.r.t. the global coordinate system does not lead to the desired result (left). The
geometrically intuitive solution is achieved by storing the detail w.r.t. local frames which rotate according to the local tangent
plane’s rotation ofB (right).

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

Figure 52: A multiresolution deformation of a sine wave is done by bending its base line (dashed) and reconstructing the
corresponding detailed surface (solid). Since displacementvectorsare handled individually, the resulting surface shows an
unnatural change of the volume enclosed between base and detailed surface (bottom left). Displacementvolumesprovide a
natural coupling of the displacements, that prevents local self-intersections (bottom right).

Figure 53: Detail reconstruction based on displacementvectorsmay lead to a non-plausible change of volume and even to
local self-intersections for concave modifications (center). Displacementvolumesinstead reconstruct a more natural, non-
intersecting surface (right).

11.4. Deformations Based on Differential Coordinates

While multiresolution or multi-scale hierarchies are an effective tool for enhancing freeform deformations by fine-scale detail
preservation, the hierarchy generation can become quite involved for geometrically or topologically complex models. To avoid
the explicit multi-scale decomposition, another class of methods modifies differential properties of the surface instead of its
spatial coordinates, and then reconstructs a deformed surface having the desired differential coordinates.

From this class, the methods of [YZX∗04, ZRKS05] deform a surface in terms of its gradient field. For a piecewise linear
functions : S → IR, defined by its valuessi := s(pi) at the mesh vertices, the gradient∇s : S → IR3 is a constant 3-vectorg j

within each trianglef j . If instead of a scalar functions the piecewise linear coordinate functionp(vi) = pi ∈ IR3 is considered,
then the gradient within a facef j is a constant 3×3 matrix

∇p| f j
=: G j ∈ IR3×3 .

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

For a mesh withV vertices andF triangles, the gradient operator can be expressed by a 3F×V matrixG: G1
...

GF

 = G ·

 pT
1
...

pT
V

 .

These gradients are then modified explicitly, yielding new gradientsG′j per triangle f j . Reconstructing a mesh having these
desired gradients is an overdetermined problem, and therefore is solved in a weighted least squares sense using the normal
equations [GL89b]

GTDG ·


p′1

T

...

p′V
T

 = GTD ·

 G′1
...

G′F

 ,

whereD is a diagonal matrix containing the face areas as weighting factors. Since the matrixGTD corresponds to the divergence
operator, and since div∇= ∆, this system actually is a Poisson equation

∆ ·


p′1

T

...

p′V
T

 = div ·

 G′1
...

G′F

 .

Hence, these methods prescribe a guidance gradient field(G′1, . . . ,G
′
F), compute its divergence, and solve a Poisson system for

the modified mesh vertices.

The missing component is a technique for modifying the gradientsG j . For this [YZX∗04, ZRKS05] use gradients of affine
deformations, i.e., their rotation and scale/shear components, for transforming the surface gradientsG j , which is similar to
[SP04]. As a consequence, these methods work well for rotations, but are insensitive to translations: adding a translation to a
given deformation does not change its gradient, and thus has no influence on the resulting surface gradients. But as there is a
(non-linear) connection between translations and local rotations of gradients, these methods yield counter-intuitive results for
modifications containing large translations. Although [YZX∗04] proposed a special treatment of pure translations, deformations
containing both rotations as well as translations remain problematic.

Other methods directly deform the Laplacians of the vertices instead of gradient fields [LSC∗04]. They compute initial
Laplacian coordinatesδi = ∆(pi) and deform them toδ′i := T iδi using transformsT i . Since the Laplacian — as the mean
curvature normal — consists of gradient information (its direction) and curvature information (its length), it would theoretically
require the Hessian of the deformation in addition to its gradient to update the Laplacian coordinates. For instance, while
it is straightforward to bend a cylinder by properly rotating the gradients of triangles, the same is very difficult by direct
manipulation of Laplacian coordinates, since their target lengths, i.e., the curvature of the resulting surface, would have to be
known beforehand.

Because of that, Sorkine et al. [SCL∗04] implicitly solve for the local rotations of vertex neighborhoods as well by minimizing
the following energy functional

E
(
p′1, . . . ,p

′
V
)

=
V

∑
i=1

∥∥T iδi −∆
(
p′i
)∥∥2

+ ∑
i∈C

∥∥p′i −ui
∥∥2

,

whereui are the target positions for the constrained verticespi , i ∈ C. However, for the sake of computational efficiency they
linearize the local frame transformationsT i , which on the one hand allows to formulate the optimization as a single linear
system, but one the other hand also leads to artifacts in case of large rotations, as shown in [LSLC05].

In [LSLC05], Lipman et al. minimize surface bending by preserving the relative orientations of per-vertex local frames.
This is done by first solving a linear least squares system for the modified per-vertex local frame orientations, and from those
reconstruct the modified vertex positions in a second step. However, since the first system does not consider the positional
constraints, one has to ensure that the positional constraints and the orientation constraints are compatible. While their method
works very well even for large rotations, it exhibits the same translation-insensitivity as the gradient-based methods.

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

12. Numerics

In this section we describe different types of solvers for sparse linear systems. Within this class of systems, we will further
concentrate on symmetric positive definite (so-calledspd) matrices, since exploiting their special structure allows for the most
efficient and most robust implementations. Examples of such matrices are Laplacian system (to be analyzed in Section12.1)
and general least squares systems. However, the general case of a non-symmetric indefinite system is outlined afterwards in
Section12.6.

Following [BBK05], we propose the use of direct solvers for sparse spd systems, since their superior efficiency — although
well known in the field of high performance computing — is often neglected in geometry processing applications. After re-
viewing the commonly known and used direct and iterative solvers, we introduce sparse direct solvers and point out their
advantages.

For the following discussion we restrict ourselves to sparse spd problemsAx = b, with A = AT ∈ IRn×n, x,b ∈ IRn, and
denote byx∗ the exact solutionA−1b. The general case of non-symmetric indefinite systems is then outlined in Section12.6.

12.1. Laplacian Systems

Since Laplacian systems play a major role in several geometry processing applications, like smoothing (Chapter7), conformal
parametrization (Chapter8), and shape deformation (Chapter11), we will shortly describe general Laplacian matrices first.

In each row the matrix∆S contains the weights for the discretization of the Laplace-Beltrami of a functionf : S → IR at one
vertexvi (see Chapter5):

∆S f (vi) =
2

A(vi)
∑

v j∈N1(vi)

(
cotαi j +cotβi j

)(
f
(
v j
)
− f (vi)

)
.

This can be written in matrix notation as
...

∆S f (vi)
...

 = D ·M ·


...

f (vi)
...

 ,

whereD is a diagonal matrix of normalization factorsDii = 2/A(vi), andM is a symmetric matrix containing the cotangent
weights. Since the Laplacian of a vertexvi is definedlocally in terms of its one-ring neighbors, the matrixM is highly sparse
and has non-zeros in theith row only on the diagonal and in those columns corresponding tovi ’s one-ring neighborsN1 (vi).

For a closed mesh, Laplacian systems∆k
SP= B of any orderk can be turned into symmetric ones by moving the first diagonal

matrixD to the right-hand side:

M (DM)k−1 P = D−1B . (36)

Boundary constraints are typically employed by restricting the values at certain vertices, which corresponds to eliminating their
respective rows and columns and hence keeps the matrix symmetric. The case of meshes with boundaries is equivalent to a
patch bounded by constrained vertices and therefore also results in a symmetric matrix. Pinkal and Polthier [PP93] additionally
showed that this system is positive definite, such that the efficient solvers presented in the next section can be applied.

12.2. Dense Direct Solvers

Direct linear system solvers are based on a factorization of the matrixA into matrices of simpler structure, e.g., triangular,
diagonal, or orthogonal matrices. This structure allows for an efficient solution of the factorized system. As a consequence,
once the factorization is computed, it can be used to solve the linear system for several different right hand sides.

The most commonly used examples forgeneralmatricesA are, in the order of increasing numerical robustness and computa-
tional effort, the LU factorization, QR factorization, or the singular value decomposition. However, in the special case of a spd
matrix the Cholesky factorizationA = LL T , with L denoting a lower triangular matrix, should be employed, since it exploits
the symmetry of the matrix and can additionally be shown to be numerically very robust due to the positive definiteness of the
matrixA [GL89b].

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

On the downside, the asymptotic time complexity of all dense direct methods isO(n3) for the factorization andO(n2) for
solving the system based on the pre-computed factorization. Since for the problems we are targeting at,n can be of the order
of 105, the total cubic complexity of dense direct methods is prohibitive. Even if the matrixA is highly sparse, the naïve direct
methods enumerated here are not designed to exploit this structure, hence the factors are dense matrices in general (cf. Fig.55,
top row).

12.3. Iterative Solvers

In contrast to dense direct solvers, iterative methods are able to exploit the sparsity of the matrixA. Since they additionally allow
for a simple implementation [PFTV92], iterative solvers are the de-facto standard method for solving sparse linear systems in
the context of geometric problems. A detailed overview of iterative methods with valuable implementation hints can be found
in [BBC∗94].

Iterative methods compute a converging sequencex(0),x(1), . . . ,x(i) of approximations to the solutionx∗ of the linear system,
i.e., limi→∞ x(i) = x∗. In practice, however, one has to find a suitable criterion to stop the iteration if the current solutionx(i)

is accurate enough, i.e., if the norm of the errore(i) := x∗ − x(i) is less than someε. Since the solutionx∗ is not known
beforehand, the error has to be estimated by considering the residualr (i) := Ax(i)−b. These two are related by theresidual

equationsAe(i) = r (i), leading to an upper bound
∥∥∥e(i)

∥∥∥≤ ∥∥∥A−1
∥∥∥ ·∥∥∥r (i)

∥∥∥, i.e., the norm of the inverse matrix has to be estimated

or approximated in some way (see [BBC∗94]).

In the case of spd matrices the method of conjugate gradients (CG) [GL89b, She94] is suited best, since it provides guaranteed
convergence with monotonically decreasing error. For a spd matrixA the solution ofAx = b is equivalent to the minimization
of the quadratic form

φ(x) :=
1
2

xTAx−bTx .

The CG method successively minimizes this functional along a set of linearly independentA-conjugatesearch directions, such
that the exact solutionx∗ ∈ IRn is found after at mostn steps (neglecting rounding errors). The complexity of each CG iteration
is mainly determined by the matrix-vector productAx, which is of orderO(n) if the matrix is sparse. Given the maximum
number ofn iterations, the total complexity isO(n2) in the worst case, but it is usually better in practice.

As the convergence rate mainly depends on the spectral properties of the matrixA, a proper pre-conditioning scheme should
be used to increase the efficiency and robustness of the iterative scheme. This means that a slightly different systemÃx̃ = b̃ is
solved instead, with̃A = PAPT , x̃ = P−Tx, b̃ = Pb, using a regular pre-conditioning matrixP, that is chosen such thatÃ is
well conditioned [GL89b, BBC∗94]. However, the matrixP is restricted to have a simple structure, since an additional linear
systemPz= r has to be solved each iteration.

The iterative conjugate gradients method manages to decrease the computational complexity fromO(n3) to O(n2) for sparse
matrices. However, this is still too slow to compute exact (or sufficiently accurate) solutions of large and possibly ill-conditioned
systems.

12.4. Multigrid Iterative Solvers

One characteristic problem of most iterative solvers is that they aresmoothers: they attenuate the high frequencies of the error
e(i) very fast, but their convergence stalls if the error is a smooth function. This fact is exploited by multigrid methods, that build
a fine-to-coarse hierarchy{M=M0,M1, . . . ,Mk} of the computation domainM and solve the linear system hierarchically
from coarse to fine [Hac86, BHM00].

After a few (pre-)smoothing iterations on the finest levelM0 the high frequencies of the error are removed and the solver
becomes inefficient. However, the remaining low frequency errore0 = x∗−x0 onM0 corresponds to higher frequencies when
restricted to the coarser levelM1 and therefore can be removed efficiently onM1. Hence the error is solved for using the
residual equationsAe1 = r1 onM1, wherer1 = R0→1r0 is the residual onM0 transferred toM1 by a restriction operator
R0→1. The result is prolongated back toM0 by e0← P1→0e1 and used to correct the current approximation:x0← x0 + e0.
Small high-frequency errors due to the prolongation are finally removed by a few post-smoothing steps onM0. The recursive
application of this two-level approach to the whole hierarchy can be written as

Φi = SµPi+1→i Φi+1 Ri→i+1 Sλ ,

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

M0

M1

M2

M3

Figure 54: A schematic comparison in terms of visited multigrid levels for V-cycle (left), full multigrid with one V-cycle per
level (center), and cascading multigrid (right).

with λ andµ pre- and post-smoothing iterations, respectively. One recursive run is known as aV-cycleiteration.

Another concept is the method ofnested iterations, that exploits the fact that iterative solvers are very efficient if the starting
value is sufficiently close to the actual solution. One starts by computing the exact solution on the coarsest levelMk, which
can be done efficiently since the systemAkxk = bk corresponding to the restriction toMk is small. The prolongated solution
Pk→k−1x∗k is then used as starting value for iterations onMk−1, and this process is repeated until the finest levelM0 is reached
and the solutionx∗0 = x∗ is computed.

The remaining question is how to iteratively solve on each level. The standard method is to use one or two V-cycle iterations,
leading to the so-calledfull multigrid method. However, one can also use an iterative smoothing solver (e.g., Jacobi or CG)
on each level and completely avoid V-cycles. In the latter case the number of iterationsmi on leveli must not be constant, but
instead has to be chosen asmi = mγi to decrease exponentially from coarse to fine [BD96]. Besides the easier implementation,
the advantage of thiscascading multigridmethod is that once a level is computed, it is not involved in further computations and
can be discarded. A comparison of the three methods in terms of visited multigrid levels is given in Fig.54.

Due to the logarithmic number of hierarchy levelsk = O(logn) the full multigrid method and the cascading multigrid method
can both be shown to have linear asymptotic complexity, as opposed to quadratic for non-hierarchical iterative methods. How-
ever, they cannot exploit synergy for multiple right hand sides, which is why factorization-based approaches are clearly prefer-
able in such situations, as we will show in the next section.

Since in our case the discrete computational domainM is an irregular triangle mesh instead of a regular 2D or 3D grid, the
coarsening operator for building the hierarchy is based on mesh decimation techniques [KCS98]. The shape of the resulting
triangles is important for numerical robustness, and the edge lengths on the different levels should mimic the case of regular
grids. Therefore the decimation usually removes edges in the order of increasing lengths, such that the hierarchy levels have
uniform edge lengths and triangles of bounded aspect ratio. The simplification from one hierarchy levelMi to the next coarser
oneMi+1 should additionally be restricted to remove amaximally independent setof vertices, i.e., no two removed vertices
v j ,vl ∈Mi \Mi+1 are connected by an edgeejl ∈Mi . In [AKS05] some more efficient alternatives to this kind of hierarchy
are described.

The linear complexity of multi-grid methods allows for the highly efficient solution even of very complex systems. However,
the main problem of these solvers is their quite involved implementation, since special care has to be taken for the hierarchy
building, for special multigrid pre-conditioners, and for the inter-level conversion by restriction and prolongation operators.
Additionally, appropriate numbers of iterations per hierarchy level have to be chosen. These numbers have to be chosen either
by heuristic or experience, since they not only depend on the problem (structure ofA), but also on its specific instance (values
of A). A detailed overview of these techniques is given in [AKS05].

12.5. Sparse Direct Solvers

The use of direct solvers for large sparse linear systems is often neglected, since naïve direct methods have complexityO(n3),
as described above. The problem is that even when the matrixA is sparse, the factorization will not preserve this sparsity, such
that the resulting Cholesky factor is a dense lower triangular matrix.

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

However, an analysis of the factorization process reveals that aband-limitationof the matrixA will be preserved. If the matrix
A = LL T has a certain bandwidthβ then so has its factorL . An even stricter bound is that the so-calledenvelope(the leading
zeros of each row) is preserved [GL81]. This additional structure can be exploited in both the factorization and the solution
process, such that their complexities reduce fromO(n3) andO(n2) to linear complexity in the number of non-zeros nz(A) of
A [GL81]. Since usually nz(A) = O(n), this is the same linear complexity as for multigrid solvers. However, in particular for
multiple right-hand side problems, sparse direct methods turned out to be more efficient compared to multigrid solvers.

If matrices are sparse, but not band-limited or profile-optimized, the first step is to minimize the matrix envelope, which
can be achieved by symmetric row and column permutationsA ← PTAP using a permutation matrixP, i.e., a re-ordering of
the mesh vertices. Although this problem is NP complete, several good heuristics exist, of which we will outline the most
commonly used in the following. All of these methods work on the undirectedadjacency graphAdj(A) corresponding to the
non-zeros ofA, i.e., two nodesi, j ∈ {1, . . . ,n} are connected by an edge if and only ifA i j 6= 0.

The standard method for envelope minimization is theCuthill-McKeealgorithm [CM69], that picks a start node and renum-
bers all its neighbors by traversing the adjacency graph in a greedy breadth-first manner. Reverting this permutation further
improves the re-ordering, leading to thereverse Cuthill-McKeemethod (RCMK) [LS76]. The resultPTAP of this matrix re-
ordering is depicted in the second row of Fig.55.

Since no special pivoting is required for the Cholesky factorization, the non-zero structure of its matrix factorL can symbol-
ically be derived from the non-zero structure of the matrixA alone, or, equivalently, from its adjacency graph. Theminimum
degreealgorithm (MD) and its variants [GL89a, Liu85] directly work on the graph interpretation of the Cholesky factoriza-
tion and try to minimize fill-in elementsL i j 6= 0 = A i j . While the resulting re-orderings do not yield a band-structure (which
implicitly limits fill-in), they usually lead to better results compared to RCMK (cf. Fig.55, third row).

The last class of re-ordering approaches is based on graph partitioning. A matrixA whose adjacency graph hasm separate
connected components can be restructured to a block-diagonal matrix ofmblocks, such that the factorization can be performed
on each block individually. If the adjacency graph is connected, a small subsetSof nodes, whose elimination would separate the
graph into two components of roughly equal size, is found by one of several heuristics [KK98]. This graph-partitioning results
in a matrix consisting of two large diagonal blocks (two connected components) and|S| rows representing their connection
(separatorS). Recursively repeating this process leads to the method ofnested dissection(ND), resulting in matrices of the
typical block structure shown in the bottom row of Fig.55. Besides the obvious fill-in reduction, these systems also allow for
easy parallelization of both the factorization and the solution.

Analogously to the dense direct solvers, the factorization can be exploited to solve for different right hand sides in a very
efficient manner, since only the back-substitution has to be performed again. Moreover, for sparse direct methods no additional
parameters have to be chosen in a problem-dependent manner (like iteration numbers for iterative solvers). The only degree of
freedom is the matrix re-ordering, which only depends on the symbolic structure of the problem and therefore can be chosen
quite easily. A highly efficient implementation is publicly available in the TAUCS library [TCR03] or recently in COLMOD
[DH05].

12.6. Non-Symmetric Indefinite Systems

When the assumptions about the symmetry and positive definiteness of the matrixA are not satisfied, optimal methods like the
Cholesky factorization or conjugate gradients cannot be used. In this section we shortly outline which techniques are applicable
instead.

From the class of iterative solvers the bi-conjugate gradients algorithm (BiCG) is typically used as a replacement of the con-
jugate gradients method [PFTV92]. Although working well in most cases, BiCG does not provide any theoretical convergence
guarantees and has a very irregular non-monotonically decreasing residual error for ill-conditioned systems. On the other hand,
the GMRES method converges monotonically with guarantees, but its computational cost and memory consumption increase
in each iteration [GL89b]. As a good trade-off, the stabilized Bi-CGSTAB [BBC∗94] represents a mixture between the efficient
BiCG and the smoothly converging GMRES; it provides a much smoother convergence and is reasonably efficient and easy to
implement.

When considering dense direct solvers, the Cholesky factorization cannot be used for general matrices. Therefore the LU
factorization is typically employed (instead of QR or SVD), since it is similarly efficient and also extends well to sparse direct
methods. However, (partial) row and column pivoting is essential for the numerical robustness of the LU factorization, since
this avoids zeros on the diagonal during the factorization process.

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

Figure 55: The top row shows the non-zero pattern of a typical500×500matrixA and its Cholesky factorL , corresponding to
a Laplacian system on a triangle mesh. AlthoughA is highly sparse (3502 non-zeros), the factorL is dense (36k non-zeros). The
reverse Cuthill-McKee algorithm minimizes the envelope of the matrix, resulting in 14k non-zeros ofL (2nd row). The minimum
degree ordering avoids fill-in during the factorization, which decreases the number of non-zeros to 6203 (3rd row). The last row
shows the result of a nested dissection method (7142 non-zeros), that allows for parallelization due to its block structure.

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

Similarly to the Cholesky factorization, it can be shown that the LU factorization also preserves the band-width and envelope
of the matrixA. Techniques like the minimum degree algorithm generalize to non-symmetric matrices as well. But as for
dense matrices, the banded LU factorization relies on partial pivoting in order to guarantee numerical stability. In this case,
two competing types of permutations are involved: symbolic permutations for matrix re-ordering and pivoting permutations
ensuring numerical robustness. As these permutations cannot be handled separately, a trade-off between stability and fill-in
minimization has to be found, resulting in a considerably more complex factorization. A highly efficient implementation of a
sparse LU factorization is provided by the SuperLU library [DEG∗99].

12.7. Comparison

In the following we compare the different kinds of linear system solvers for Laplacian as well as for bi-Laplacian systems.
All timings reported in this and the next section were taken on a 3.0GHz Pentium4 running Linux. The iterative solver (CG)
from thegmm++library [RP05] is based on the conjugate gradients method and uses an incompleteLDL T factorization as
preconditioner. The cascading multigrid solver of [BK04a] (MG) performs preconditioned conjugate gradient iterations on each
hierarchy level and additionally exploits SSE instructions in order to solve for up to four right-hand sides simultaneously. The
direct solver (LLT) of the TAUCS library [TCR03] employs nested dissection re-ordering and a sparse complete Cholesky
factorization. Although our linear systems are symmetric, we also compare to the popular SuperLU solver [DEG∗99], which is
based on a sparse LU factorization.

Iterative solvers have the advantage over direct ones that the computation can be stopped as soon as a sufficiently small error
is reached, which — in typical computer graphics applications — does not have to be the highest possible precision. In contrast,
direct methods always compute the exact solution up to numerical round-off errors, which in our application examples actually
was more precise than required. The stopping criteria of the iterative methods have therefore been chosen to yield sufficient
results, such that their quality is comparable to that achieved by direct solvers. The resulting residual errors were allowed to be
about one order of magnitude larger than those of the direct solvers.

Table1 shows timings for the different solvers on Laplacian systems∆SP = B of 10k to 50k and 100k to 500k unknowns.
For each solver three columns of timings are given:

Setup: Computing the cotangent weights for the Laplace discretization and building the matrix structure (done per-level for
the multigrid solver).

Precomputation: Preconditioning (iterative), building the hierarchy by mesh decimation (multigrid), matrix re-ordering and
sparse factorization (direct).

Solution: Solving the linear system for three different right-hand sides corresponding to the x, y, and z components of the free
verticesP.

Due to its effective preconditioner, which computes a sparse incomplete factorization, the iterative solver scales almost
linearly with the system complexity. However, for large and thus ill-conditioned systems it breaks down. Notice that without
preconditioning the solver would not converge for the larger systems. The experiments clearly verify the linear complexity
of multigrid and sparse direct solvers. Once their sparse factorizations are pre-computed, the computational costs for actually
solving the system are about the same for the LU and Cholesky solver. However, they differ significantly in the factorization
performance, because the numerically more robust Cholesky factorization allows for more optimizations, whereas pivoting is
required for the LU factorization to guarantee robustness. This is the reason for the break-down of the LU solver, such that the
multigrid solver is more efficient in terms of total computation time for the larger systems.

Interactive applications often require to solve the same linear system for several right-hand sides (e.g. once per frame), which
typically reflects the change of boundary constraints due to user interaction. For such problems the solution times, i.e., the third
columns of the timings, are more relevant, as they correspond to the per-frame computational costs. Here the precomputation
of a sparse factorization pays off and the direct solvers are clearly superior to the multigrid method.

Table2 shows the same experiments for bi-Laplacian systems∆2
SP = B of the same complexity. In this case, the matrix

setup is more complex, the matrix condition number is squared, and the sparsity decreases from 7 to 19 non-zeros per row.
Due to the higher condition number the iterative solver takes much longer and even fails to converge on large systems. In
contrast, the multigrid solver converges robustly without numerical problems; notice that constructing the multigrid hierarchy
is almost the same as for the Laplacian system (up to one more ring of boundary constraints). The computational costs required
for the sparse factorization are proportional to the increased number of non-zeros per row. The LU factorization additionally
has to incorporate pivoting for numerical stability and failed for larger systems. In contrast, the Cholesky factorization worked
robustly in all experiments.

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

10k 20k 30k 40k 50k
0

2

4

6

8

10

12

Matrix Dimension

∆1 T
ot

al
 T

im
e

(s
)

CG
MG
LU
LLT

100k 200k 300k 400k 500k
0

50

100

150

Matrix Dimension

∆1 T
ot

al
 T

im
e

(s
)

CG
MG
LU
LLT

10k 20k 30k 40k 50k
0

0.2

0.4

0.6

0.8

1

Matrix Dimension

∆1 3
 S

ol
ut

io
ns

 T
im

e
(s

)

CG
MG
LU
LLT

100k 200k 300k 400k 500k
0

10

20

30

40

50

Matrix Dimension

∆1 3
 S

ol
ut

io
ns

 T
im

e
(s

)

CG
MG
LU
LLT

Size Iterative CG Multigrid LU LLT

10k 0.11/1.56/0.08 0.15/0.65/0.09 0.07/0.22/0.01 0.07/0.14/0.03
20k 0.21/3.36/0.21 0.32/1.38/0.19 0.14/0.62/0.03 0.14/0.31/0.06
30k 0.32/5.26/0.38 0.49/2.20/0.27 0.22/1.19/0.05 0.22/0.53/0.09
40k 0.44/6.86/0.56 0.65/3.07/0.33 0.30/1.80/0.06 0.31/0.75/0.12
50k 0.56/9.18/0.98 0.92/4.00/0.57 0.38/2.79/0.10 0.39/1.00/0.15

100k 1.15/16.0/3.19 1.73/8.10/0.96 0.79/5.66/0.21 0.80/2.26/0.31
200k 2.27/33.2/11.6 3.50/16.4/1.91 1.56/18.5/0.52 1.59/5.38/0.65
300k 3.36/50.7/23.6 5.60/24.6/3.54 2.29/30.0/0.83 2.35/9.10/1.00
400k 4.35/69.1/37.3 7.13/32.5/4.48 2.97/50.8/1.21 3.02/12.9/1.37
500k 5.42/87.3/47.4 8.70/40.2/5.57 3.69/68.4/1.54 3.74/17.4/1.74

Table 1: Comparison of different solvers for Laplacian systems∆SP = B of 10k to 50k and 100k to 500k free verticesP. The
three timings for each solver represent matrix setup, pre-computation, and three solutions for the x, y, and z components ofP.
The graphs in the upper row show the total computation times (sum of all three columns). The center row depicts the solution
times only (3rd column), as those typically determine the per-frame cost in interactive applications.

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

10k 20k 30k 40k 50k
0

5

10

15

20

25

30

35

40

45

Matrix Dimension

∆2 T
ot

al
 T

im
e

(s
)

CG
MG
LU
LLT

100k 200k 300k 400k 500k
10

20

30

40

50

60

70

80

90

Matrix Dimension

∆2 T
ot

al
 T

im
e

(s
)

MG
LLT

10k 20k 30k 40k 50k
0

2

4

6

8

10

12

Matrix Dimension

∆2 3
 S

ol
ut

io
ns

 T
im

e
(s

)

CG
MG
LU
LLT

100k 200k 300k 400k 500k
0

5

10

15

20

25

Matrix Dimension

∆2 3
 S

ol
ut

io
ns

 T
im

e
(s

)

MG
LLT

Size Iterative CG Multigrid LU LLT

10k 0.33/5.78/0.44 0.40/0.65/0.48 0.24/1.68/0.03 0.24/0.35/0.04
20k 0.64/12.4/1.50 0.96/1.37/0.84 0.49/4.50/0.08 0.49/0.82/0.09
30k 1.04/19.0/5.46 1.40/2.26/1.23 0.77/9.15/0.13 0.78/1.45/0.15
40k 1.43/26.3/10.6 1.69/3.08/1.47 1.07/16.2/0.20 1.08/2.05/0.21
50k 1.84/33.3/8.95 2.82/4.05/2.34 1.42/22.9/0.26 1.42/2.82/0.28

100k — 4.60/8.13/4.08 2.86/92.8/0.73 2.88/7.29/0.62
200k — 9.19/16.6/8.50 — 5.54/18.2/1.32
300k — 17.0/24.8/16.0 — 8.13/31.2/2.07
400k — 19.7/32.6/19.0 — 10.4/44.5/2.82
500k — 24.1/40.3/23.4 — 12.9/60.4/3.60

Table 2: Comparison of different solvers for bi-Laplacian systems∆2
SP = B of 10k to 50k and 100k to 500k free verticesP. The

three timings for each solver represent matrix setup, pre-computation, and three solutions for the components ofP. The graphs
in the upper row again show the total computation times, while the center row depicts the solution times only (3rd column). For
the larger systems, the iterative solver and the sparse LU factorization fail to compute a solution.

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

The memory consumption of the multigrid method is mainly determined by the meshes representing the different hierarchy
levels. In contrast, the memory required for the Cholesky factorization depends significantly on the sparsity of the matrix, too.
On the 500k example the multigrid method and the direct solver need about 1GB and 600MB for the Laplacian system, and
about 1.1GB and 1.2GB for the bi-Laplacian system. Hence, the direct solver would not be capable of factorizing Laplacian
systems of higher order on current PCs, while the multigrid method would succeed.

These comparisons show that direct solvers are a valuable and efficient alternative to multigrid methods even if the linear
systems are highly complex. In all experiments the sparse Cholesky solver was faster than the multigrid method, and if the
system has to be solved for multiple right-hand sides, the precomputation of a sparse factorization is even more beneficial.

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

Speaker Biographies

Stephan Bischoffgraduated in 1999 with a master’s in computer science from the University of Karlsruhe, Germany. He then
worked at the graphics group of the Max-Planck-Institute for Computer Science in Saarbrücken, Germany. In 2001 he joined the
Computer Graphics Group at the Aachen University of Technology, Germany, where he is working as a research associate with
Prof. Dr. Leif Kobbelt and is currently pursuing his PhD. He is an experienced speaker and presented courses at Eurographics
and Shape Modeling International. His research interests focus on freeform shape representations for efficient geometry pro-
cessing, topology control techniques for level-set surfaces, reconstruction of medical data sets and the restoration and healing
of CAD models.

Mario Botsch is a post-doctoral research associate at the Computer Graphics Laboratory of ETH Zürich. He received his MS
in Mathematics and Computer Science from the University of Erlangen, Germany, in 1999. From 1999 to 2000 he worked as
research associate at the Max-Planck Institute for Computer Science in Saarbrücken, Germany. From 2001 to 2005 he worked
as research associate and PhD candidate with Prof. Dr. Leif Kobbelt at the RWTH Aachen University of Technology, from
where he received his PhD in 2005. Dr. Botsch has served on the program committees of Solid and Physical Modeling and
the Symposium on Point-Based Graphics, of which he is paper co-chair this year. He is an experienced speaker and presented
courses at Eurographics and Shape Modeling International. His research interests include geometry processing in general, and
mesh generation, mesh optimization, and multiresolution shape editing in particular.

Leif Kobbelt is a full Professor of Computer Science and the Head of the Computer Graphics group at the RWTH Aachen
University of Technology, Germany. His research interests include all areas of Computer Graphics and Geometry Processing
with a focus on multiresolution and freeform modeling, 3D model optimization, as well as the efficient handling of polygonal
mesh data. He was a senior researcher at the Max-Planck Institute for Computer Science in Saarbrücken, Germany, from 1999 to
2000 after he received his Habilitation degree from the University of Erlangen, where he worked from 1996 to 1999. In 1995/96
he spent a post-doc year at the University of Wisconsin, Madison. He received his PhD and MS degrees from the University
of Karlsruhe, Germany, in 1994 and 1992, respectively. Dr. Kobbelt’s research work during the last years resulted in numerous
publications in top scientific journals and international conferences. He is invited regularly to give keynote presentations and
tutorial lectures. For his contributions he received several scientific awards. He has ongoing collaborations with colleagues in
Europe, North America, and Asia, and frequently serves on international program committees. He organized and co-chaired
several workshops and conferences.

Mark Pauly is an assistant professor at the computer science department of ETH Zurich, Switzerland. From August 2003 to
March 2005 he was a postdoctoral scholar at Stanford University, where he also held a position as visiting assistant professor
during the summer of 2005. He received his Ph.D. degree in 2003 from ETH Zurich and his M.S. degree in computer science
in 1999 from the Technical University of Kaiserslautern, Germany. Dr. Pauly has served on various program committees in-
cluding ACM SIGGRAPH, Eurographics, and the Symposium on Geometry Processing, and has co-chaired the Symposium on
Point-Based Graphics. He is an experienced speaker and has previously presented courses at SIGGRAPH and Eurographics.
His research interests include geometry processing, multi-scale shape modeling and analysis, physics-based animation, and
computational geometry.

Christian Rössl is a postdoctoral associate with the Institut National de Recherche en Informatique et en Automatique (INRIA)
in Sophia-Antipolis, France. He received his MS in Computer Science from the University of Erlangen, Germany, in 1999. From
1999 to 2005 he worked as a research associate and PhD candidate with Prof. Dr. Hans-Peter Seidel at the Computer Graphics
department of the Max-Planck Institute for Computer Science in Saarbrücken, Germany, from where he received his PhD in
2005. He is an experienced speaker and presented a course at Eurographics. His research interests focus on geometry processing
and scientific visualization, including shape modeling and analysis, mesh generation, surface parametrization and spline models.

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

References

[AB03] AANÆS H., BÆRENTZENJ. A.: Pseudo-normals for signed distance computation. InProc. of Vision, Modeling and
Visualization 03(2003), pp. 407–413.10

[ACD∗03] ALLIEZ P., COHEN-STEINER D., DEVILLERS O., LÉVY B., DESBRUN M.: Anisotropic polygonal remeshing.
In Proc. of ACM SIGGRAPH 03(2003), pp. 485–493.35, 68

[ACWK04] ANGELIDIS A., CANI M.-P., WYVILL G., KING S.: Swirling-Sweepers: constant-volume modeling. InProc.
of Pacific Graphics 04(2004), pp. 10–15.75

[AdVDI03] ALLIEZ P., DE VERDIÈRE E. C., DEVILLERS O., ISENBURG M.: Isotropic surface remeshing. InProc. of
Shape Modeling International(2003), pp. 49–58.65

[AK04] AMENTA N., KIL Y.: Defining point-set surfaces. InProc. of ACM SIGGRAPH 04(2004). 29

[AKS05] AKSOYLU B., KHODAKOVSKY A., SCHRÖDER P.: Multilevel Solvers for Unstructured Surface Meshes.SIAM
Journal on Scientific Computing 26, 4 (2005), 1146–1165.88

[Ale00] ALEXA M.: Merging polyhedral shapes with scattered features. InThe Visual Computer, vol. 16(1). Springer, 2000,
pp. 26–37. 53

[Ale02] ALEXA M.: Wiener filtering of meshes. InShape Modeling International(2002), pp. 51–60.47

[AMD02] ALLIEZ P., MEYER M., DESBRUNM.: Interactive geometry remeshing. InProc. of ACM SIGGRAPH 02(2002),
pp. 347–354.64

[AUGA05] ALLIEZ P., UCELLI G., GOTSMAN C., ATTENE M.: Recent advances in remeshing of surfaces. State-of-the-art
report, 2005.63

[AWC04] ANGELIDIS A., WYVILL G., CANI M.-P.: Sweepers: Swept user-defined tools for modeling by deformation. In
Proc. of Shape Modeling International 04(2004), pp. 63–73.75

[BAFS94] BURCHARD H. G., AYERS J. A., FREY W. H., SAPIDIS N. S.: Approximation with aesthetic constraints. In
Designing Fair Curves and Surfaces(1994), pp. 3–28.36

[Bar02] BARASH D.: A fundamental relationship between bilateral filtering, adaptive smoothing, and the nonlinear diffusion
equation.IEEE Trans. Pattern Anal. Mach. Intell 24, 6 (2002), 844–847.47

[Bau72] BAUMGART B. G.: Winged-edge polyhedron representation. Technical Report STAN-CS320, Computer Science
Department, Stanford University, 1972.13

[BBC∗94] BARRETT R., BERRY M., CHAN T. F., DEMMEL J., DONATO J., DONGARRA J., EIJKHOUT V., POZO R.,
ROMINE C., DER VORST H. V.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd
Edition. SIAM, Philadelphia, PA, 1994.87, 89

[BBK05] BOTSCH M., BOMMES D., KOBBELT L.: Efficient linear system solvers for geometry processing. In11th IMA
conference on the Mathematics of Surfaces(2005). 86

[BBVK04] BOTSCH M., BOMMES D., VOGEL C., KOBBELT L.: GPU-based tolerance volumes for mesh processing. In
Proc. of Pacific Graphics 04(2004). 9

[BD96] BORNEMANN F. A., DEUFLHARD P.: The cascading multigrid method for elliptic problems.Num. Math. 75, 2
(1996), 135–152.88

[BGK92] BRECHBÜHLER C., GERIG G., KÜBLER O.: Towards representation of 3d shape: global surface parametrization.
In IAPR: Proc. of the international workshop on Visual form: analysis and recognition(1992), pp. 79–88.53

[BHM00] BRIGGSW. L., HENSONV. E., MCCORMICK S. F.:A Multigrid Tutorial, 2nd ed. SIAM, 2000.87

[BK97] BAREQUET G., KUMAR S.: Repairing CAD models. InProc. IEEE Visualization(1997), pp. 363–370.22, 25

[BK03a] BENDELS G. H., KLEIN R.: Mesh forging: editing of 3D-meshes using implicitly defined occluders. InSymposium
on Geometry Processing(2003), pp. 207–217.76

[BK03b] BOTSCH M., KOBBELT L.: Multiresolution surface representation based on displacement volumes. InProc. of
Eurographics 03(2003), pp. 483–491.83

[BK04a] BOTSCHM., KOBBELT L.: An intuitive framework for real-time freeform modeling. InProc. of ACM SIGGRAPH
04 (2004), pp. 630–634.77, 78, 80, 91

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

[BK04b] BOTSCH M., KOBBELT L.: A remeshing approach to multiresolution modeling. InProc. of Eurographics sympo-
sium on Geometry Processing 04(2004), pp. 189–196.65, 66

[BK05a] BISCHOFF S., KOBBELT L.: Structure preserving CAD model repair.Computer Graphics Forum (Proc. Euro-
graphics 05) 24, 3 (2005), 527–536.22

[BK05b] BOTSCH M., KOBBELT L.: Real-time shape editing using radial basis functions. InProc. of Eurographics 05
(2005), pp. 611–621.80

[BNK02] BORODIN P., NOVOTNI M., KLEIN R.: Progressive gap closing for mesh repairing. InAdvances in Modelling,
Animation and Rendering, Vince J., Earnshaw R., (Eds.). Springer Verlag, 2002, pp. 201–213.22, 25

[BO01] BELYAEV A. G., OHTAKE Y.: Nonlinear diffusion of normals for crease enhancement. InVision Geometry X, SPIE
Annual Meeting(2001), pp. 42–47.46

[Bot05a] BOTSCH M.: Extended marching cubes implementation. http://www-i8.informatik.rwth-
aachen.de/software/software.html, 2002–2005.11

[Bot05b] BOTSCH M.: High Quality Surface Generation and Efficient Multiresolution Editing Based on Triangle Meshes.
PhD thesis, RWTH Aachen University, 2005.67

[BPK05] BISCHOFFS., PAVIC D., KOBBELT L.: Automatic restoration of polygon models.Transactions on Graphics 24, 4
(2005), 1332–1352.21, 26

[BS95] BAREQUET G., SHARIR M.: Filling gaps in the boundary of a polyhedron.Computer-Aided Geometric Design 12, 2
(1995), 207–229.22, 23, 25

[BS05a] BOBENKO A. I., SPRINGBORN B. A.: A discrete Laplace-Beltrami operator for simplicial surfaces. Inpreprint
(2005). 34

[BS05b] BOBERNKO A. I., SCHRÖDERP.: Discrete Willmore flow. InSymposium on Geometry Processing(2005), pp. 101–
110. 47

[BSM05] BOTSCH M., SOVAKAR A., MARINOV M.: OpenMesh implementation. http://www.openmesh.org, 2002–2005.
11

[BV93] BATTISTA G. D., VISMARA L.: Angles of planar triangular graphs.SIAM Journal on Discrete Mathematics 9, 3
(1993), 349–359.51

[BX03] BAJAJ C. L., XU G.: Anisotropic diffusion of surfaces and functions on surfaces.ACM Transactions on Graphics
22, 1 (2003), 4–32.46

[BZK04] BORODIN P., ZACHMANN G., KLEIN R.: Consistent normal orientation for polygonal meshes.Proc. Computer
Graphics International (CGI)(2004), 18–25.22, 23

[CAD04] COHEN-STEINER D., ALLIEZ P., DESBRUN M.: Variational shape approximation. InProc. of ACM SIGGRAPH
04 (2004), pp. 905–914.70, 71

[CBC∗01] CARR J. C., BEATSON R. K., CHERRIE J. B., MITCHELL T. J., FRIGHT W. R., MCCALLUM B. C., EVANS

T. R.: Reconstruction and representation of 3D objects with radial basis functions. InProc. of ACM SIGGRAPH 01(2001),
pp. 67–76. 80

[CD02] COHEN-STEINER D., DESBRUNM.: Hindsight: LSCM and DNCP are one and the same, 2002.51

[CDR00] CLARENZ U., DIEWALD U., RUMPF M.: Anisotropic geometric diffusion in surface processing. InIEEE Visual-
ization(2000), pp. 397–406.46

[Chu97] CHUNG F.: Spectrac Graph Theory. American Mathematical Society, 1997.43

[CKS98] CAMPAGNA S., KOBBELT L., SEIDEL H.-P.: Directed edges — a scalable representation for triangle meshes.ACM
Journal of Graphics Tools 3, 4 (1998). 13, 15

[CL93] CARBAL B., LEEDOM L. C.: Imaging vector fields using line integral convolution. InSIGGRAPH 93 Conference
Proceedings(1993), pp. 263–274.39

[CL96] CURLESSB., LEVOY M.: A volumetric method for building complex models from range images. InProc. of ACM
SIGGRAPH 96(1996), pp. 303–312.21

[CLR04] CLARENZ U., LITKE N., RUMPF M.: Axioms and variational problems in surface parameterization. InComputer
Aided Geometric Design(2004), pp. 727–749.52

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

[CM69] CUTHILL E., MCKEE J.: Reducing the bandwidth of sparse symmetric matrices. InProc. of the 24th ACM National
Conference(1969), pp. 157–172.89

[CM03] COHEN-STEINER D., MORVAN J.-M.: Restricted Delaunay triangulations and normal cycle. InProc. of ACM
symposium on Compututational geometry ’03(2003), pp. 237–246.35

[CMR∗99] CIGNONI P., MONTANI C., ROCCHINI C., SCOPIGNOR., TARINI M.: Preserving attribute values on simplified
meshes by re–sampling detail textures. InThe Visual Computer(1999), pp. 519–539.61

[CMS98] CIGNONI P., MONTANI C., SCOPIGNO R.: A comparison of mesh simplification algorithms. InComputers &
Graphics(1998), pp. 37–54.56

[COM98] COHEN J., OLANO M., MANOCHA D.: Appearance–preserving simplification. InProc. of SIGGRAPH 98(1998),
pp. 115–122.61

[Cox89] COXETER H. S. M.: Introduction to Geometry, 2nd ed. Wiley, 1989.7

[CP03] CAZALS F., POUGET M.: Estimating differential quantities using polynomial fitting of osculating jets. InSymposium
on Geometry Processing(2003), pp. 177–187.33

[CRS98] CIGNONI P., ROCCHINI C., SCOPIGNO R.: Metro: measuring error on simplified surfaces.Computer Graphics
Forum 17(2)(1998), 167–174.60

[CS99] CHOPPD., SETHIAN J.: Motion by intrinsic laplacian of curvature. InInterfaces and Free Boundaries 1(1999). 47

[CVM∗96] COHEN J., VARSHNEY A., MANOCHA D., TURK G., WEBER H., AGARWAL P., BROOKS, JR. F. P., WRIGHT

W.: Simplification envelopes. InProc. of ACM SIGGRAPH 96(1996), pp. 119–128.60

[DBG∗06] DONG S., BREMER P.-T., GARLAND M., PASCUCCI V., HART J.: Spectral surface quadrangulation.ACM
Transactions on Graphics (Proc. SIGGRAPH)(2006). 65

[dC76] DO CARMO M. P.: Differential Geometry of Curves and Surfaces. Prentice Hall, 1976.31, 32

[DEG∗99] DEMMEL J. W., EISENSTAT S. C., GILBERT J. R., LI X. S., LIU J. W. H.: A supernodal approach to sparse
partial pivoting.SIAM Journal on Matrix Analysis and Applications 20, 3 (1999), 720–755.91

[DH05] DAVIS T. A., HAGER W.: Cholmod: supernodal sparse cholesky factorization and update/downdate.
http://www.cise.ufl.edu/research/sparse/cholmod, 2005.89

[DKG05] DONG S., KIRCHER S., GARLAND M.: Harmonic functions for quadrilateral remeshing of arbitrary manifolds.
Computer Aided Geometry Design, Special Issue on Geometry Processing 22, 5 (2005), 392–423.70

[DMA02] DESBRUNM., MEYER M., ALLIEZ P.: Intrinsic parameterizations of surface meshes.Computer Graphics Forum
(Proc. Eurographics) 21, 3 (2002), 209–218.51, 52

[DMGL02] DAVIS J., MARSCHNERS., GARR M., LEVOY M.: Filling holes in complex surfaces using volumetric diffusion.
In Proc. International Symposium on 3D Data Processing, Visualization, Transmission(2002), pp. 428–438.21

[DMK03] DEGENER P., MESETH J., KLEIN R.: An adaptable surface parameterization method.Proc. 9th International
Meshing Roundtable(2003), 201–213.52

[DMSB99] DESBRUNM., MEYER M., SCHRÖDERP., BARR A. H.: Implicit fairing of irregular meshes using diffusion and
curvature flow. InProc. of ACM SIGGRAPH 99(1999), pp. 317–324.33, 44, 45

[DMSB00] DESBRUN M., MEYER M., SCHRÖDER P., BARR A. H.: Anisotropic Feature-Preserving denoising of height
fields and images. InProc. of Graphics Interface(2000), pp. 145–152.46

[Duc77] DUCHON J.: Spline minimizing rotation-invariant semi-norms in Sobolev spaces. InConstructive Theory of Func-
tions of Several Variables, Schempp W., Zeller K., (Eds.), no. 571 in Lecture Notes in Mathematics. Springer Verlag, 1977,
pp. 85–100.80

[EDD∗95] ECK M., DEROSE T., DUCHAMP T., HOPPEH., LOUNSBERY M., STUETZLE W.: Multiresolution analysis of
arbitrary meshes. InProc. of ACM SIGGRAPH 95(1995), pp. 173–182.6, 50, 54, 56, 61, 64

[Far97] FARIN G.: Curves and Surfaces for Computer Aided Geometric Design, 4th ed. Academic Press, 1997.6

[FB88] FORSEYD. R., BARTELS R. H.: Hierarchical B-spline refinement. InProc. of ACM SIGGRAPH 88(1988), pp. 205–
212. 81

[FB95] FORSEYD., BARTELS R. H.: Surface fitting with hierarchical splines.ACM Transactions on Graphics 14, 2 (1995),
134–161. 81

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

[FDC03] FLEISHMAN S., DRORI I., COHEN-OR D.: Bilateral mesh denoising.ACM Transactions on Graphics (Proc.
SIGGRAPH) 22, 3 (2003), 950–953.47

[FH03] FLORIANI L. D., HUI A.: A scalable data structure for three-dimensional non-manifold objects. InSymposium on
Geometry Processing(2003), pp. 72–82.13

[FH05a] FLOATER M. S., HORMANN K.: Surface parameterization: a tutorial and survey. InAdvances in Multiresolution for
Geometric Modelling, Dodgson N. A., Floater M. S.„ Sabin M. A., (Eds.), Mathematics and Visualization. Springer, Berlin,
Heidelberg, 2005, pp. 157–186.49, 50, 51, 52

[FH05b] FLORIANI L. D., HUI .: Data structures for simplicial complexes: An analysis and A comparison. InSymposium
on Geometry Processing(2005), pp. 119–128.13

[FHR02] FLOATER M. S., HORMANN K., REIMERS M.: Parameterization of manifold triangulations. InApproximation
Theory X: Abstract and Classical Analysis, Chui C. K., Schumaker L. L.„ Stöckler J., (Eds.). Vanderbilt University Press,
2002, pp. 197–209.54

[Flo97] FLOATER M. S.: Parametrization and smooth approximation of surface triangulations.Computer Aided Geometric
Design 14, 3 (1997), 231–250.51

[Flo03a] FLOATER M. S.: Mean value coordinates.Computer Aided Geometric Design 20, 1 (2003), 19–27.34, 51

[Flo03b] FLOATER M. S.: One-to-one piecewise linear mappings over triangulations.Math. Comput. 72, 242 (2003), 685–
696. 50, 51

[FPRJ00] FRISKEN S., PERRY R., ROCKWOOD A., JONEST.: Adaptively sampled distance fields: A general representation
of shape for computer graphics. InProc. of ACM SIGGRAPH 00(2000), pp. 249–254.9, 10

[FSD05] FRIEDEL I., SCHRÖDER P., DESBRUN M.: Unconstrained spherical parameterization. InSIGGRAPH technical
sketch(2005). 53

[GGH02] GU X., GORTLER S. J., HOPPEH.: Geometry images. InProc. of ACM SIGGRAPH 02(2002), pp. 355–361.64

[GGK02] GOTSMAN C., GUMHOLD S., KOBBELT L.: Simplification and compression of 3d meshes. InTutorials on
multiresolution in geometric modeling, A. Iske E. Quak M. F., (Ed.). Springer, 2002.56

[GGS03] GOTSMAN C., GU X., SHEFFERA.: Fundamentals of spherical parameterization for 3D meshes.ACM Transac-
tions on Graphics (Proc. SIGGRAPH) 22, 3 (2003), 358–363.53

[GGT05] GORTLER S. J., GOTSMAN C., THURSTON D.: One-forms on meshes and applications to 3d mesh parameteriza-
tion. Computer Aided Geometric Design(2005). 54

[GH97] GARLAND M., HECKBERT P.: Surface simplification using quadric error metrics. InProc. of ACM SIGGRAPH 97
(1997), pp. 209–216.58, 60, 61

[GH98] GARLAND M., HECKBERT P.: Simplifying surfaces with color and texture using quadric error metrics. InIEEE
Visualization Conference Proceedings(1998). 61

[GI04] GOLDFEATHER J., INTERRANTE V.: A novel cubic-order algorithm for approximating principal directions vectors.
ACM Transactions on Graphics 23, 1 (2004), 45–63.33

[GK03] GRESSA., KLEIN R.: Efficient representation and extraction of 2-manifold isosurfaces using kd-trees. InProc. 11th
Pacific Conference on Computer Graphics and Applications (PG 2003)(2003), pp. 364–376.21

[GL81] GEORGEA., L IU J. W. H.: Computer solution of large sparse positive definite matrices. Prentice Hall, 1981.89

[GL89a] GEORGEA., L IU J. W. H.: The evolution of the minimum degree ordering algorithm.SIAM Review 31, 1 (1989),
1–19. 89

[GL89b] GOLUB G. H., LOAN C. F. V.: Matrix Computations. Johns Hopkins University Press, Baltimore, 1989.85, 86,
87, 89

[GLW96] GREINER G., LOOS J., WESSELINK W.: Data dependent thin plate energy and its use in interactive surface
modeling. InProc. of Eurographics 96(1996), pp. 175–186.45

[Gre94] GREINER G.: Variational design and fairing of spline surfaces. InProc. of Eurographics 94(1994), pp. 143–154.
45

[GS85] GUIBAS L., STOLFI J.: Primitives for the manipulation of general subdivisions and computation of voronoi diagrams.
ACM Transactions on Graphics 4, 2 (Apr. 1985), 74–123.13

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

[GSS99] GUSKOV I., SWELDENS W., SCHRÖDER P.: Multiresolution signal processing for meshes. InProc. of ACM
SIGGRAPH 99(1999), pp. 325–334.81

[GTLH01] GUÉZIEC A., TAUBIN G., LAZARUS F., HORN B.: Cutting and stitching: Converting sets of polygons to manifold
surfaces.IEEE Transactions on Visualization and Computer Graphics 7, 2 (2001), 136–151.24

[Gus02] GUSKOV I.: An anisotropic mesh parameterization scheme. InIMR (2002), pp. 325–332.55

[GVSS00] GUSKOV I., V IDIMCE K., SWELDENS W., SCHRÖDER P.: Normal meshes. InProc. of ACM SIGGRAPH 00
(2000), pp. 95–102.6, 64, 81

[GW01] GUSKOV I., WOOD Z. J.: Topological noise removal. InProc. of Graphics Interface 2001(2001), pp. 19–26.22,
25

[GWC∗04] GU X., WANG Y., CHAN T. F., THOMPSONP. M., YAU S.-T.: Genus zero surface conformal mapping and its
application to brain surface mapping.IEEE Trans. Med. Imaging 23, 8 (2004), 949–958.53

[GY02] GU X., YAU S.-T.: Computing conformal structures of surfaces.Communications in Information and Systems 2
(2002), 121–146.53

[GY03] GU X., YAU S.-T.: Global conformal surface parameterization. InSymposium on Geometry Processing(2003),
pp. 127–137.54

[Hac86] HACKBUSCH W.: Multi-Grid Methods and Applications. Springer Verlag, 1986.87

[HAT∗00] HAKER S., ANGENENT S., TANNENBAUM A., K IKINIS R., SAPIRO G., HALLE M.: Conformal surface param-
eterization for texture mapping.IEEE Transactions on Visualization and Computer Graphics 6, 2 (2000), 181–189. 51,
53

[HDD∗93] HOPPEH., DEROSE T., DUCHAMP T., MCDONALD J., STUETZLE W.: Mesh optimization. InSIGGRAPH 93
Conference Proceedings(1993), pp. 19–26.59

[HG00] HORMANN K., GREINER G.: MIPS: An efficient global parametrization method. InCurve and Surface Design:
Saint-Malo 1999, Laurent P.-J., Sablonnière P.„ Schumaker L. L., (Eds.). Vanderbilt University Press, 2000, pp. 153–162.
51, 52

[HGC99] HORMANN K., GREINER G., CAMPAGNA S.: Hierarchical parametrization of triangulated surfaces. InProc. of
Vision, Modeling, and Visualization(1999), pp. 219–226.51

[HHK92] HSU W. M., HUGHES J. F., KAUFMAN H.: Direct manipulation of free-form deformations. InProc. of ACM
SIGGRAPH 92(1992), pp. 177–184.79

[HHS∗92] HAGEN H., HAHMANN S., SCHREIBERT., NAKAYIMA Y., WÖRDENWEBERB., HOLLEMANN -GRUNDSTEDT

P.: Surface interrogation algorithms.IEEE Computer Graphics and Applications 12, 5 (1992), 53–60.36

[Hop96] HOPPEH.: Progressive meshes. InProc. of ACM SIGGRAPH 96(1996), pp. 99–108.56, 59

[HP04] HILDEBRANDT K., POLTHIER K.: Anisotropic filtering of non-linear surface features.Computupter Graphics Forum
(Proc. Eurographics) 23, 3 (2004), 391–400.35, 46

[HSZ87] HARALICK R. M., STERNBERG S. R., ZHUANG X.: Image analysis using mathematical morphology.IEEE
Transactions on Pattern Analysis and Machine Intelligence 9, 4 (1987), 532–550.26

[HWC∗05] HO C.-C., WU F.-C., CHEN B.-Y., CHUANG Y.-Y., OUHYOUNG M.: Cubical marching squares: Adaptive
feature preserving surface extraction from volume data. InProc. of Eurographics 05(2005). 11

[ILGS03] ISENBURG M., L INDSTROM P., GUMHOLD S., SNOEYINK J.: Large mesh simplification using processing se-
quences. InProc. of IEEE Visualization(2003), pp. 465–472.62

[JDD03] JONES T. R., DURAND F., DESBRUN M.: Non-iterative, feature-preserving mesh smoothing.ACM Transactions
on Graphics (Proc. SIGGRAPH) 22, 3 (2003), 943–949.46, 47

[JKS05] JULIUS D., KRAEVOY V., SHEFFER A.: D-charts: Quasi-developable mesh segmentation.Computer Graphics
Forum (Proc. Eurographics) 24, 3 (2005), 581–590.73

[JLSW02] JU T., LASASSOF., SCHAEFER S., WARREN J.: Dual contouring of hermite data. InProc. of ACM SIGGRAPH
02 (2002), pp. 339–346.11

[Ju04] JU T.: Robust repair of polygonal models. InProc. ACM SIGGRAPH 04(2004), pp. 888–895.28

[Kau87] KAUFMAN A.: Efficient algorithms for 3D scan-conversion of parametric curves, surfaces, and volumes. InProc.
of ACM SIGGRAPH 87(1987), pp. 171–179.10

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

[KBS00] KOBBELT L., BAREUTHER T., SEIDEL H.-P.: Multiresolution shape deformations for meshes with dynamic vertex
connectivity. InProc. of Eurographics 00(2000), pp. 249–260.65

[KBSS01] KOBBELT L., BOTSCH M., SCHWANECKE U., SEIDEL H.-P.: Feature sensitive surface extraction from volume
data. InProc. of ACM SIGGRAPH 01(2001), pp. 57–66.11

[KCS98] KOBBELT L., CAMPAGNA S., SEIDEL H.-P.: A general framework for mesh decimation. InProc. of Graphics
Interface 98(1998), pp. 43–50.59, 88

[KCVS98] KOBBELT L., CAMPAGNA S., VORSATZ J., SEIDEL H.-P.: Interactive multi-resolution modeling on arbitrary
meshes. InProc. of ACM SIGGRAPH 98(1998), pp. 105–114.45, 77

[Ket98] KETTNER L.: Using generic programming for designing a data structure for polyhedral surfaces. In14th Annual
ACM Symp. on Computational Geometry(1998). 13

[KG00] KARNI Z., GOTSMAN C.: Spectral compression of mesh geometry. InProc. of ACM SIGGRAPH(2000), pp. 279–
286. 43

[KGG05] KARNI Z., GOTSMAN C., GORTLER S. J.: Free-boundary linear parameterization of 3d meshes in the presence of
constraints. InShape Modeling International(2005). 54

[KK98] KARYPIS G., KUMAR V.: A fast and high quality multilevel scheme for partitioning irregular graphs.SIAM Journal
of Sci. Comput. 20, 1 (1998), 359–392.89

[Kli80] KLINCSEK G.: Minimal triangulation of polygonal domains.Annals of Discrete Mathemathics 9(1980), 121–123.
21, 23

[KLS96] KLEIN R., LIEBICH G., STRASSERW.: Mesh reduction with error control. InProc. of Visualization 96(1996),
pp. 311–318.60

[KLS03] KHODAKOVSKY A., L ITKE N., SCHRÖDER P.: Globally smooth parameterizations with low distortion.ACM
Transactions on Graphics (Proc. SIGGRAPH) 22, 3 (2003), 350–357.54, 65

[Kob97] KOBBELT L.: Discrete fairing. InProc. on 7th IMA Conference on the Mathematics of Surfaces(1997), pp. 101–131.
45, 77

[Kob03] KOBBELT L.: Freeform shape representations for efficient geometry processing. Invited Talk at Eurographics 2003,
2003. 5

[KS04] KRAEVOY V., SHEFFERA.: Cross-parameterization and compatible remeshing of 3D models.ACM Transactions on
Graphics 23, 3 (2004), 861–869.54

[KSS06] KHAREVYCH L., SPRINGBORNB., SCHRÖDERP.: Discrete conformal mappings via circle patterns.ACM Trans-
actions on Graphics 25, 2 (2006), to appear.52, 54

[KT03] KATZ S., TAL A.: Hierarchical mesh decomposition using fuzzy clustering and cuts.ACM Transactions on Graphics
(Proc. SIGGRAPH) 22, 3 (2003), 954–961.74

[KVLS99a] KOBBELT L., VORSATZ J., LABSIK U., SEIDEL H.-P.: A shrink wrapping approach to remeshing polygonal
surfaces. InProc. of Eurographics 99(1999), pp. 119–130.6, 53

[KVLS99b] KOBBELT L., VORSATZ J., LABSIK U., SEIDEL H.-P.: A shrink wrapping approach to remeshing polygonal
surfaces.Computer Graphics Forum (EG 99 proc.) 18(1999), 119–130.64

[KVS99] KOBBELT L., VORSATZ J., SEIDEL H.-P.: Multiresolution hierarchies on unstructured triangle meshes.Comput.
Geom. Theory Appl. 14, 1-3 (1999), 5–24.81

[LBS05] LANGER T., BELYAEV A., SEIDEL H.-P.: Exact and approximate quadratures for curvature tensor estimation.
Extended Abstract, 2005.33

[LC87] LORENSENW. E., CLINE H. E.: Marching cubes: a high resolution 3D surface construction algorithm. InProc. of
ACM SIGGRAPH 87(1987), pp. 163–170.10

[Lév01] LÉVY B.: Constrained texture mapping for polygonal meshes. InProc. SIGGRAPH(2001), pp. 417–424.54

[LHSW03] LOSASSOF., HOPPEH., SCHAEFER S., WARREN J.: Smooth geometry images. InEurographics Symposium
on Geometry Processing(2003), pp. 138–145.64

[Lie03] L IEPA P.: Filling holes in meshes. InSymposium on Geometry Processing(2003), pp. 200–205.21, 23

[Lin00] L INDSTROM P.: Out-of-core simplification of large polygonal models. InProc. of ACM SIGGRAPH 00(2000),
pp. 259–262.58, 61, 62

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

[Liu85] L IU J. W. H.: Modification of the minimum-degree algorithm by multiple elimination.ACM Trans. Math. Softw. 11,
2 (1985), 141–153.89

[LMH00] LEE A., MORETON H., HOPPE H.: Displaced subdivision surfaces. InProc. of ACM SIGGRAPH 00(2000),
pp. 85–94. 81

[LPRM02a] LÉVY B., PETITJEAN S., RAY N., MAILLOT J.: Least squares conformal maps for automatic texture atlas
generation. InProc. of ACM SIGGRAPH 02(2002), pp. 362–371.51, 52

[LPRM02b] LÉVY B., PETITJEAN S., RAY N., MAILLOT J.: Least squares conformal maps for automatic texture atlas
generation.ACM Transactions on Graphics 21, 3(2002), 362–371.52

[LS76] L IU J. W. H., SHERMAN A. H.: Comparative analysis of the Cuthill-McKee and the reverse Cuthill-McKee ordering
algorithms for sparse matrices.SIAM J. Numerical Analysis 2, 13 (1976), 198–213.89

[LS01] L INDSTROM P., SILVA C.: A memory insensitive technique for large model simplification. InIEEE Visualization ’01
(2001). 61

[LSC∗04] L IPMAN Y., SORKINE O., COHEN-OR D., LEVIN D., RÖSSL C., SEIDEL H.-P.: Differential coordinates for
interactive mesh editing. InProc. of Shape Modeling International 04(2004), pp. 181–190.85

[LSLC05] L IPMAN Y., SORKINE O., LEVIN D., COHEN-OR D.: Linear rotation-invariant coordinates for meshes. InProc.
of ACM SIGGRAPH 05(2005), pp. 479–487.85

[LSS∗98] LEE A. W. F., SWELDENS W., SCHRÖDER P., COWSAR L., DOBKIN D.: MAPS: Multiresolution adaptive
parameterization of surfaces. InProc. of ACM SIGGRAPH 98(1998), pp. 95–104.6, 54, 64

[Man88] MANTYLA M.: An introduction to solid modeling. Computer Science Press, 1988.13

[MDSB03] MEYER M., DESBRUN M., SCHRÖDERP., BARR A. H.: Discrete differential-geometry operators for triangu-
lated 2-manifolds. InVisualization and Mathematics III, Hege H.-C., Polthier K., (Eds.). Springer-Verlag, Heidelberg, 2003,
pp. 35–57. 33

[MF97] MURALI T. M., FUNKHOUSERT. A.: Consistent solid and boundary representations from arbitrary polygonal data.
In Proc. Symposium on Interactive 3D Graphics(1997), pp. 155–162.21, 27

[MK04] MARINOV M., KOBBELT L.: Direct anisotropic quad-dominant remeshing. InProc. of Pacific Graphics 04(2004),
pp. 207–216.69

[MK05] MARINOV M., KOBBELT L.: Automatic generation of structure preserving multiresolution models.Computer
Graphics Forum (Eurographics proceedings) 24, 3 (2005), 479–486.72

[MK06] MARINOV M., KOBBELT L.: Structure recovery via hybrid variational surface approximation.Computer Graphics
Forum (Eurographics proceedings) to appear(2006). 64, 73, 74

[MS92] MORETON H. P., SÉQUIN C. H.: Functional optimization for fair surface design. InProc. of ACM SIGGRAPH 92
(1992), pp. 167–176.33, 45, 47, 77, 80

[MSS94] MONTANI C., SCATENI R., SCOPIGNO R.: A modified look-up table for implicit disambiguation of marching
cubes.The Visual Computer 10, 6 (1994), 353–355.11

[MYC∗01] MORSEB. S., YOO T. S., CHEN D. T., RHEINGANS P., SUBRAMANIAN K. R.: Interpolating implicit surfaces
from scattered surface data using compactly supported radial basis functions. InProc. of Shape Modeling & Applications 01
(2001), pp. 89–98.80

[NT03] NOORUDDIN F., TURK G.: Simplification and repair of polygonal models using volumetric techniques.IEEE
Transactions on Visualization and Computer Graphics 9, 2 (2003), 191–205.21, 26

[OB04] OHTAKE Y., BELYAEV A.: Ridge-valley lines on meshes via implicit surface fitting. InProc. SIGGRAPH(2004),
pp. 609–612.33

[OBB00] OHTAKE Y., BELYAEV A., BOGAEVSKI I. A.: Polyhedral surface smoothing with simultaneous mesh regulariza-
tion. In Proc. of Geometric Modeling and Processing(2000), pp. 229–237.44

[OBS02] OHTAKE Y., BELYAEV A. G., SEIDEL H.-P.: Mesh smoothing by adaptive and anisotropic gaussian filter applied
to mesh normals. InProc. Vision, Modeling, and Visualization (VMV)(2002), pp. 203–210.46

[OBS04] OHTAKE Y., BELYAEV A., SEIDEL H.-P.: 3D scattered data approximation with adaptive compactly supported
radial basis functions. InProc. of Shape Modeling International 04(2004). 80

[O’R94] O’ROURKE J.: Computational geometry in C. Cambridge University Press, Cambridge, 1994.13

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

[PBP02] PRAUTZSCH H., BOEHM W., PALUSZNY M.: Bézier and B-Spline Techniques. Springer Verlag, 2002.6

[PC04] PEYRÉ G., COHEN L.: Surface segmentation using geodesic centroidal tesselation. InProceedings 3DPVT’04
(2004), pp. 995–1002.65

[Pet01] PETITJEAN S.: A survey of methods for recovering quadrics in triangle meshes.ACM Computing Surveys 34, 2
(2001). 33

[PFTV92] PRESS W. H., FLANNERY B. P., TEUKOLSKY S. A., VETTERLING W. T.: Numerical Recipes: The Art of
Scientific Computing, 2nd ed. Cambridge University Press, 1992.87, 89

[PG01] PAULY M., GROSSM.: Spectral processing of point-sampled geometry. InProc. of ACM SIGGRAPH 01(2001). 47

[PGK02] PAULY M., GROSSM., KOBBELT L.: Efficient simplification of point-sampled surfaces. InProc. of IEEE Visual-
ization 02(2002). 56

[PH03] PRAUN E., HOPPE H.: Spherical parametrization and remeshing.ACM Transactions on Graphics 22, 3 (2003),
340–349. 53, 54

[PKKG03] PAULY M., KEISER R., KOBBELT L., GROSSM.: Shape modeling with point-sampled geometry. InProc. of
ACM SIGGRAPH 03(2003), pp. 641–650.76, 79

[PKS∗01] PAGE D. L., KOSCHAN A., SUN Y., PAIK J., ABIDI A.: Robust crease detection and curvature estimation of
piecewise smooth surfaces from triangle mesh approximations using normal voting. InProceedings on Computer Vision and
Pattern Recongition(2001). 33

[PM90] PERONA P., MALIK J.: Scale-space and edge detection using anisotropic diffusion.IEEE Transactions on Pattern
Analysis and Machine Intelligence 12, 7 (1990), 629–639.46

[PMG∗05] PAULY M., M ITRA N., GIESENJ., GROSSM., GUIBAS L. J.: Example-based 3d scan completion. InSymposium
on Geometry Processing(2005). 21

[PP93] PINKALL U., POLTHIER K.: Computing discrete minimal surfaces and their conjugates.Experimental Mathematics
2, 1 (1993), 15–36.33, 50, 51, 86

[PR05] PODOLAK J., RUSINKIEWICZ S.: Atomic volumes for mesh completion. InSymposium on Geometry Processing
(2005). 21

[PSS01] PRAUN E., SWELDENS W., SCHRÖDER P.: Consistent mesh parameterizations. InProc. SIGGRAPH(2001),
pp. 179–184.54

[PSZ01] PENG J., STRELA V., ZORIN D.: A simple algorithm for surface denoising. InIEEE Visualization(2001), pp. 107–
112. 47

[PT97] PIEGL L. A., T ILLER W.: The NURBS Book, 2nd ed. Springer, 1997.6

[QBH∗00] QUICKEN M., BRECHBÜHLERC., HUG J., BLATTMAN H., SZÉKELY G.: Parameterization of closed surfaces for
parametric surface description. InIEEE Conference on Computer Vision and Pattern Recognition (CVPR)(2000), pp. 354–
360. 54

[RB93] ROSSIGNAC J., BORREL P.: Multi-resolution 3D approximations for rendering complex scenes. InModeling in
Computer Graphics, Falcidieno B., Kunii T. L., (Eds.). Springer Verlag, 1993, pp. 455–465.56

[RLL∗05] RAY N., LI W. C., LÉVY B., SHEFFERA., ALLIEZ P.: Periodic global parameterization. In(preprint) (2005).
54, 65

[RP05] RENARD Y., POMMIER J.: Gmm++: a generic template matrix C++ library. http://www-gmm.insa-
toulouse.fr/getfem/gmm_intro, 2005.91

[Rus04] RUSINKIEWICZ S.: Estimating curvatures and their derivatives on triangle meshes. InSymposium on 3D Data
Processing, Visualization, and Transmission (3DPVT)(2004). 34, 35

[SAG03] SURAZHSKY V., ALLIEZ P., GOTSMAN C.: Isotropic remeshing of surfaces: a local parameterization approach. In
Proc. of 12th International Meshing Roundtable(2003). 64, 65

[Sam94] SAMET H.: The Design and Analysis of Spatial Data Structures. Addison–Wesley, 1994.9

[Sap94] SAPIDIS N. S.: Designing Fair Curves and Surfaces: Shape Quality in Geometric Modeling and Computer-Aided
Design. SIAM, 1994. 41

[SAPH04] SCHREINERJ., ASIRVATHAM A., PRAUN E., HOPPEH.: Inter-surface mapping.ACM Transactions on Graphics
23, 3 (2004), 870–877.54

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

[SCGL02] SORKINE O., COHEN-OR D., GOLDENTHAL R., LISCHINSKI D.: Bounded-distortion piecewise mesh parame-
terization. InProc. IEEE Visualization(2002), pp. 355–362.52

[Sch97] SCHROEDERW.: A topology modifying progressive decimation algorithm. InIEEE Visualization ’97 Conference
Proceedings(1997), pp. 205–212.60

[SCL∗04] SORKINE O., COHEN-OR D., LIPMAN Y., ALEXA M., RÖSSL C., SEIDEL H.-P.: Laplacian surface editing. In
Proc. of Eurographics symposium on Geometry Processing 04(2004), pp. 179–188.85

[SCT03] SORKINE O., COHEN-OR D., TOLEDO S.: High-pass quantization for mesh encoding. InSymposium on Geometry
Processing(2003), pp. 42–51.43

[SD92] SHOEMAKE K., DUFF T.: Matrix animation and polar decomposition. InProc. of Graphics Interface 92(1992),
pp. 258–264.76

[SdS00] SHEFFER A., DE STURLER E.: Parameterization of faceted surfaces for meshing using angle based flattening.
Engineering with Computers 17, 3 (2000), 326–337.51

[Set96] SETHIAN J.: A fast marching level set method for monotonically advancing fronts. InProc. of the National Academy
of Science(1996), vol. 93, pp. 1591–1595.10

[SG01] SHAFFER E., GARLAND M.: Efficient adaptive simplification of massive meshes. InProc. of IEEE Visualization
(2001), pp. 127–134.62

[SG03a] SHEFFERA., GOTSMAN C.: Matchmaker: constructing constrained texture maps.ACM Transactions on Graphics
22, 3 (2003), 326–333.54

[SG03b] SURAZHSKY V., GOTSMAN C.: Explicit surface remeshing. InProc. of Eurographics/ACM SIGGRAPH symposium
on Geometry processing 03(2003), pp. 20–30.64, 65

[SGD03] SHEFFER A., GOTSMAN C., DYN N.: Robust spherical parameterization of triangular meshes. InProc. of 4th
Israel-Korea Binational Workshop on Geometric Modeling and Computer Graphics(2003), pp. 94–99.53

[She94] SHEWCHUK J. R.: An Introduction to the Conjugate Gradient Method Without the Agonizing Pain. Tech. rep.,
Carnegie Mellon University, 1994.87

[She97] SHEWCHUK J. R.: Delaunay refinement mesh generation. PhD thesis, Carnegie Mellon University, Pittsburg, 1997.
63

[She02] SHEWCHUK J. R.: What is a good linear element? Interpolation, conditioning, and quality measures. InEleventh
International Meshing Roundtable(2002), pp. 115–126.40, 63

[SK00] SCHNEIDER R., KOBBELT L.: Generating fair meshes withG1 boundary conditions. InProc. of Geometric Modeling
and Processing 2000 (GMP-00)(2000), pp. 251–261.47

[SK01] SCHNEIDER R., KOBBELT L.: Geometric fairing of irregular meshes for free-form surface design.Computer Aided
Geometric Design 18, 4 (2001), 359–379.47

[SKR02] SZYMCZAK A., K ING D., ROSSIGNACJ.: Piecewise regular meshes: Construction and compression.Graphical
Models 64, 3–4 (2002), 183–198.64

[SLMB04] SHEFFERA., LÉVY B., MOGILNITSKY M., BOGOMYAKOV A.: ABF++ : Fast and robust angle based flattening.
ACM Transactions on Graphics(Apr 2004). 52

[SOS04] SHEN C., O’BRIEN J. F., SHEWCHUK J. R.: Interpolating and approximating implicit surfaces from polygon soup.
In Proc. of ACM SIGGRAPH 04(2004), pp. 896–904.21, 29

[SP86] SEDERBERGT. W., PARRY S. R.: Free-form deformation of solid geometric models. InProc. of ACM SIGGRAPH
86 (1986), pp. 151–159.79

[SP04] SUMNER R. W., POPOVIĆ J.: Deformation transfer for triangle meshes. InProc. of ACM SIGGRAPH 04(2004),
pp. 399–405.85

[SSGH01] SANDER P. V., SNYDER J., GORTLER S. J., HOPPEH.: Texture mapping progressive meshes. InComputer
Graphics (Proc. SIGGRAPH)(2001), pp. 409–416.52

[SWG∗03] SANDER P., WOOD Z., GORTLER S., SNYDER J., HOPPEH.: Multi-chart geometry images. InEurographics
Symposium on Geometry Processing(2003), pp. 146–155.64, 71

[SYGS05] SABA S., YAVNEH I., GOTSMAN C., SHEFFERA.: Practical spherical embedding of manifold triangle meshes.
In Proc. Shape Modeling International(2005), pp. 258–267.53

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

[SZL92] SCHROEDERW., ZARGE J., LORENSENW.: Decimation of triangle meshes. InProc. of SIGGRAPH 92(1992),
pp. 65–70. 59, 60

[Tau95a] TAUBIN G.: Estimating the tensor of curvature of a surface from a polyhedral approximation. InProceedings
International Conference on Computer Vision(1995), pp. 902–907.33

[Tau95b] TAUBIN G.: A signal processing approach to fair surface design. InProc. of ACM SIGGRAPH 95(1995), pp. 351–
358. 33, 43

[Tau00] TAUBIN G.: Geometric signal processing on polygonal meshes. InEurographics 00 State of the Art Report(2000).
43

[Tau01] TAUBIN G.: Linear anisotropic mesh filtering. InIBM Research Report RC2213(2001). 46

[TCR03] TOLEDO S., CHEN D., ROTKIN V.: Taucs: A library of sparse linear solvers. http://www.tau.ac.il/∼stoledo/taucs,
2003. 89, 91

[TG98] TOUMA C., GOTSMAN C.: Triangle mesh compression. InProc. of Graphics Interface(1998), pp. 26–34.64

[THCM04] TARINI M., HORMANN K., CIGNONI P., MONTANI C.: PolyCube-Maps.ACM Transactions on Graphics 23, 3
(2004), 853–860.54

[TL94] TURK G., LEVOY M.: Zippered polygon meshes from range images. InProc. of ACM SIGGRAPH 94(1994),
pp. 311–318.21

[TM98] TOMASI C., MANDUCHI R.: Bilateral filtering for gray and color images. InICCV (1998), pp. 839–846.47

[TRZS04] THEISEL H., RÖSSLC., ZAYER R., SEIDEL H.-P.: Normal based estimation of the curvature tensor for triangular
meshes. InPacific Conference on Computer Graphics and Applications(2004), pp. 288–297.34

[TSS∗04] TEWARI G., SNYDER J., SANDER P. V., GORTLER S. J., HOPPEH.: Signal-specialized parameterization for
piecewise linear reconstruction. InSymposium on Geometry Processing(2004), pp. 57–66.55

[Tur92] TURK G.: Re-tiling polygonal surfaces. InProc. of ACM SIGGRAPH 92(1992), pp. 55–64.64

[Tut63] TUTTE W. T.: How to draw a graph.Proc. London Mathematical Society 13(1963), 743–768.51

[TWBO02] TASDIZEN T., WHITAKER R., BURCHARD P., OSHERS.: Geometric surface smoothing via anisotropic diffusion
of normals. InIEEE Visualization(2002), pp. 125–132.46

[TZG96] TAUBIN G., ZHANG T., GOLUB G.: Optimal surface smoothing as filter design. InEuropean Conference on
Computer Vision (ECCV Vol. 1)(1996), pp. 283–292.43

[VC04] VALETTE S., CHASSERYJ.-M.: Approximated centroidal voronoi diagrams for uniform polygonal mesh coarsening.
Computer Graphics Forum (Eurographics proceedings) 23, 3 (2004), 381–389.65

[VMM99] VOLLMER J., MENCL R., , MÖLLER H.: Improved laplacian smoothing of noisy surface meshes.Computer
Graphics Forum (Proc. Eurographics) 18, 3 (1999), 131–138.45

[VRS03] VORSATZ J., RÖSSL C., SEIDEL H.-P.: Dynamic remeshing and applications. InProc. of Solid Modeling and
Applications(2003), pp. 167–175.65, 67

[WB01] WATANABE K., BELYAEV A.: Detection of salient curvature features on polygonal surfaces. InProc. Eurographics
(2001), pp. 385–392.33

[Wei98] WEICKERT J.: Anisotropic Diffusion in Image Processing. Teubner, 1998.46

[WHDS04] WOOD Z., HOPPE H., DESBRUN M., SCHRÖDER P.: Removing excess topology from isosurfaces.ACM
Transactions on Graphics 23, 2 (2004), 190–208.22

[WK03] WU J., KOBBELT L.: Piecewise linear approximation of signed distance fields. InProc. of Vision, Modeling, and
Visualization 03(2003), pp. 513–520.9, 10

[WK04] WU J., KOBBELT L.: A stream algorithm for the decimation of massive meshes. InProc. of Graphics Interface 03
(2004), pp. 185–192.61, 62

[WK05] WU J., KOBBELT L.: Structure recovery via hybrid variational surface approximation.Computer Graphics Forum
(Eurographics proceedings) 24, 3 (2005), 277–284.73

[WW92] WELCH W., WITKIN A.: Variational surface modeling. InProc. of ACM SIGGRAPH 92(1992), pp. 157–166.45,
77

c© The Eurographics Association 2006.

M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

[WW94] WELCH W., WITKIN A.: Free-form shape design using triangulated surfaces. InProc. of ACM SIGGRAPH 94
(1994), pp. 247–256.33, 45

[YBP97] Y IFAN C., BEIER K.-P., PAPAGEORGIOU D.: Direct highlight line modification on nurbs surfaces.Computer
Aided Geometric Design 14, 6 (1997), 583–601.36

[YBS04] YOSHIZAWA S., BELYAEV A. G., SEIDEL H.-P.: A fast and simple stretch-minimizing mesh parameterization. In
Proc. Shape Modeling International(2004), pp. 200–208.52

[YZX ∗04] YU Y., ZHOU K., XU D., SHI X., BAO H., GUO B., SHUM H.-Y.: Mesh editing with Poisson-based gradient
field manipulation. InProc. of ACM SIGGRAPH 04(2004), pp. 644–651.46, 84, 85

[ZKK02] ZIGELMAN G., KIMMEL R., KIRYATI N.: Texture mapping using surface flattening via multidimensional scaling.
IEEE Transcations on Visualization and Computer Graphics 8, 2 (2002), 198–207.54

[ZMT05] ZHANG E., MISCHAIKOW K., TURK G.: Feature-based surface parameterization and texture mapping.ACM
Transactions on Graphics 24, 1 (2005), 1–27.55

[ZRKS05] ZAYER R., RÖSSL C., KARNI Z., SEIDEL H.-P.: Harmonic guidance for surface deformation. InProc. of
Eurographics 05(2005), pp. 601–609.76, 84, 85

[ZRS04a] ZAYER R., RÖSSL C., SEIDEL H.-P.: Efficient iterative solvers for angle based flattening. InVision, Modeling,
and Visualization (VMV)(2004), pp. 347–354.52

[ZRS04b] ZAYER R., RÖSSL C., SEIDEL H.-P.: Variations of angle based flattening. InAdvances in Multiresolution for
Geometric Modelling, Dodgson N. A., Floater M. S.„ Sabin M. A., (Eds.), Mathematics and Visualization. Springer, Berlin,
Heidelberg, 2004, pp. 187–199.51

[ZRS05a] ZAYER R., RÖSSLC., SEIDEL H.-P.: Discrete tensorial quasi-harmonic maps. InProc. Shape Modeling Interna-
tional (2005), pp. 276–285.34, 52, 54

[ZRS05b] ZAYER R., RÖSSL C., SEIDEL H.-P.: Setting the boundary free: A composite approach to surface parameteriza-
tion. In Symposium on Geometry Processing(2005), pp. 91–100.52, 53

[ZRS06] ZAYER R., RÖSSL C., SEIDEL H.-.: Curvilinear spherical parameterization. InShape Modeling International
(SMI) (2006), p. to appear.54

[ZSD∗00] ZORIN D., SCHRÖDERP., DEROSET., KOBBELT L., LEVIN A., SWELDENS W.: Subdivision for modeling and
animation. InCourse notes of ACM SIGGRAPH 00(2000). 6

[ZSS97] ZORIN D., SCHRÖDERP., SWELDENS W.: Interactive multiresolution mesh editing. InProc. of ACM SIGGRAPH
97 (1997), pp. 259–268.64, 81

c© The Eurographics Association 2006.

