
High Quality Surface Generation and

Efficient Multiresolution Editing

Based on Triangle Meshes

Von der Fakultät für Mathematik, Informatik und

Naturwissenschaften der Rheinisch-Westfälischen Technischen

Hochschule Aachen zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Diplom-Mathematiker Mario Botsch

aus Bremen

Berichter: Prof. Dr. Leif Kobbelt

Prof. Dr. Peter Schröder

Tag der mündlichen Prüfung: 11. Juli 2005

Acknowledgments

First of all, I sincerely thank my advisor Leif Kobbelt for guiding and supporting me

throughout all my studies in the last years, for motivating me by his endless enthusiasm,

and for the innumerable discussions we had, which were both inspiring and extremely

helpful.

I also thank Peter Schröder for co-advising this thesis, for his precious hints giving me

a better understanding of the structure of Laplacian matrices, and for motivating me to

further investigate on efficient methods for their solution.

I am grateful to Hans-Peter Seidel, since his lectures in Erlangen were the main moti-

vation for me to start my research in the field of Computer Graphics. Many thanks go

to my friends and former colleagues at the MPI in Saarbrücken, in particular Christian

Rössl, Jens Vorsatz, and Uli Schwanecke.

The team of the Computer Graphics group at the RWTH Aachen supported me a

lot by providing valuable feedback in many fruitful discussions. Special thanks go to

Stephan Bischoff, Alexander Hornung, Martin Habbecke, and Darko Pavic for proof-

reading this thesis and improving it by helpful suggestions.

This thesis would not have been possible in this form without the support and collab-

oration of several people at the BMW group in Munich, in particular Wolf Bartelheimer,

Oliver Theissen, and Peter Hoff.

Finally, I thank my parents for always motivating and supporting me and my beloved

wife Ramona for her infinite amount of love, support, tolerance, and patience, which

enabled me to fully concentrate (maybe too much) on my research work. Danke, Mini!

Contents

1 Introduction 1

2 Surface Representations 5

2.1 Explicit Surface Representations . 6

2.1.1 Spline Surfaces . 7

2.1.2 Subdivision Surfaces . 9

2.1.3 Triangle Meshes . 10

2.2 Implicit Surface Representations . 13

2.3 Conversion Methods . 15

2.3.1 Explicit to Implicit . 16

2.3.2 Implicit to Explicit . 17

3 High-Quality Mesh Generation 21

3.1 Mesh Generation . 21

3.1.1 Explicit Mesh Generation . 22

3.1.2 Volumetric Mesh Generation . 23

3.2 Mesh Optimization . 24

3.2.1 Smoothing . 24

3.2.2 Decimation . 28

3.2.3 Isotropic Remeshing . 31

3.3 Global Error Control . 38

3.3.1 Distance Texture Generation . 41

3.3.2 Triangle Distance Check . 42

3.3.3 Applications . 44

4 Feature-Sensitive Mesh Generation 47

4.1 Approximation Properties and Normal Noise 48

4.2 Feature-Sensitive Iso-Surface Extraction 51

i

Contents

4.2.1 Directed Distance Fields . 52

4.2.2 Extended Marching Cubes . 55

4.2.3 Results . 62

4.3 Feature-Sensitive Resampling of Blend Regions 67

4.3.1 Feature Regions . 69

4.3.2 Sampling pattern for blend regions 70

4.3.3 Interactive Feature Resampling 74

4.3.4 Feature Modeling . 78

4.3.5 Discussion . 79

5 Multiresolution Techniques 81

5.1 Multiresolution Modeling Framework . 82

5.2 Base Surface Generation . 84

5.3 Displacement Vectors . 86

5.4 Displacement Volumes . 88

5.4.1 Volumetric Detail Representation 91

5.4.2 Volumetric Detail Reconstruction 92

5.5 Results . 97

6 Freeform Surface Editing 101

6.1 Existing Freeform Modeling Approaches 103

6.2 Boundary Constraint Modeling . 107

6.2.1 Constrained Surface Optimization 108

6.2.2 Linear System Derivation . 111

6.2.3 Boundary Smoothness . 113

6.2.4 Anisotropic Bending . 116

6.2.5 Precomputed Basis Functions . 120

6.3 Results . 122

7 Numerical Aspects 127

7.1 Robustness . 127

7.2 Laplacian Systems . 129

7.3 Linear System Solvers . 131

7.3.1 Dense Direct Solvers . 132

7.3.2 Iterative Solvers . 133

7.3.3 Multigrid Iterative Solvers . 134

ii

Contents

7.3.4 Sparse Direct Solvers . 137

7.3.5 Non-Symmetric Indefinite Systems 141

7.3.6 Comparison . 142

7.3.7 Applications . 147

8 Conclusion 151

Bibliography 155

Data Sources 169

Curriculum Vitae 171

iii

Contents

iv

1 Introduction

Geometry processing is a steadily growing research field that became increasingly im-

portant during the last years. Digitizing physical prototypes using surface reconstruc-

tion techniques based on structured light or laser scanning has become affordable and

produces accurately and densely sampled models, which often consist of up to several

hundred millions of sample points. Due to their efficient processors and high memory

capacities, current personal computers are able to efficiently process the acquired geom-

etry data, and with the help of optimized graphics hardware even interactive processing

of these datasets is possible nowadays.

A major problem is the large variety of possible data formats used in practice, that

correspond to different surface representations for geometric models. Various represen-

tations are used by different (although collaborating) groups: while designers and CAD

engineers typically work on higher order NURBS surfaces, numerical simulations or rapid

prototyping techniques are based on piecewise linear polygonal meshes.

The necessary and frequent conversions between these surface representations are

both time and resource consuming. Moreover, each conversion step corresponds to a

resampling process and therefore inevitably introduces sampling artifacts and geometric

aliasing. As a consequence, the required conversion steps should be reduced to a min-

imum, which corresponds to using one surface representation for as many as possible

geometry processing tasks. Due to their high flexibility and efficiency, we propose to use

triangle meshes as the main explicit surface representation.

Compared to NURBS surfaces, triangle meshes are far more flexible, since they can

represent surfaces of arbitrary topology without the need to decompose them into several

patches. Moreover, by applying discrete shape optimization based on physical models

to the setting of irregular triangle meshes, a comparable high surface quality can be

achieved. The conceptual simplicity of using triangles as surface primitives furthermore

enables highly efficient implementations of all kinds of geometry processing algorithms.

1

1 Introduction

As a consequence, triangle meshes started to assist or even replace classical NURBS

surfaces in more and more engineering applications.

In this context, however, it is crucial to guarantee a sufficient approximation of the

underlying surface geometry w.r.t. various application-dependent quality criteria and

error tolerances. In the first part of this thesis we therefore focus on high quality sur-

face approximations based on triangle meshes. The mesh generation and optimization

algorithms introduced in Chap. 3 provide all the tools necessary for producing meshes

of superior quality. In Chap. 4 these methods are further extended by feature-sensitive

surface processing techniques, thereby enabling a high quality approximation also of

technical datasets with complex geometric features.

The resulting triangle meshes faithfully approximate the geometry as well as the nor-

mal field of given surfaces up to a prescribed error tolerance. Their tessellation can

additionally be optimized to consist of close-to-equilateral triangles only, thereby en-

abling numerically robust computations. As a consequence, these meshes are very well

suited for use in numerical simulations and other engineering applications.

After discussing the generation and optimization of triangle meshes in the first part,

the second part of the thesis deals with high quality shape deformations. In the concrete

example of iterative optimization of aero dynamics in conceptual car design, for each

optimization cycle the car’s geometry is traditionally modified in a CAD system, and the

resulting surface is converted to a triangle mesh for another CFD simulation. In order

to avoid surface conversions as well as highly complicated CAD systems, these shape

deformations should consequently be performed on the triangle mesh, using modeling

metaphors which are sufficiently intuitive to be used by the CFD engineer himself.

Any practically useful shape deformation technique obviously has to preserve impor-

tant geometric features of the surface, as those are the key component for high quality

surface approximation. Physically plausible preservation of surface details under shape

deformations is provided by multiresolution modeling techniques, which are introduced

and discussed in Chap. 5.

The actual shape editing is computed by our boundary constraint modeling approach

presented in Chap. 6. Since it is based on a constrained minimization of a physically

motivated energy functional, it produces surface deformations of provably high smooth-

ness, which are comparable to surfaces used in CAD systems. However, being completely

2

based on triangle meshes, our multiresolution shape editing framework is intuitive, highly

flexible, and sufficiently fast to process even complex models in real-time.

Since the above variational energy minimization requires several solutions of large

sparse linear systems, important issues concerning numerical robustness and computa-

tional efficiency are finally discussed in Chap. 7, where a detailed comparison of linear

system solvers is given.

Contributions

The two main goals of this thesis are the generation of high quality surface approxima-

tions and their physically plausible and efficient deformation. Our main contributions

to the two topics are:

• High quality mesh generation:

– An efficient isotropic remeshing method with GPU-accelerated error control.

– A feature-sensitive isosurface extraction technique

– A resampling technique for blend regions in technical datasets

• Efficient multiresolution surface editing:

– A multiresolution surface representation based on displacement volumes

– An intuitive framework for high quality real-time shape deformations

3

1 Introduction

Outline

The thesis is structured as follows:

Chapter 2 introduces different classes of shape representations, analyzes their strengths

and drawbacks, and describes conversion algorithms between them.

Chapter 3 presents mesh optimization techniques for improving both the geometry

and the tessellation of a given surface. It also proposes a global error framework

in order to control the geometric deviation throughout all optimization processes.

Chapter 4 introduces feature-sensitive surface generation and remeshing techniques

as the key component for a faithful approximation of the sharp surface features

and highly curved blend regions typically contained in technical datasets.

Chapter 5 starts the second part of the thesis by introducing the concept of multires-

olution modeling and presenting a novel multiresolution surface representation

which provides physically plausible deformations without local self-intersections.

Chapter 6 concentrates on the freeform editing operator of a general multiresolution

modeling framework. Our boundary constraint modeling approach allows for flex-

ible and intuitively controlled deformations and is sufficiently fast for real-time

editing even of complex models.

Chapter 7 finally discusses numerical robustness and performance issues related to

our freeform shape editing. Different classes of linear system solvers are evaluated.

4

2 Surface Representations

The main topics of this thesis are the generation, optimization, and interactive deforma-

tion of surfaces. As a consequence, we are strongly interested in the efficient processing

of all kinds of geometric objects, which requires — analogously to other fields of com-

puter science — the design of suitable data structures. Since in our case the data to

be processed are geometric shapes, each specific problem requires the right shape rep-

resentation to be chosen in order to enable efficient access to the relevant information.

In this context, there are two major classes of surface representations: explicit surfaces

and implicit surfaces.

Explicit surfaces are defined by a vector-valued parameterization function f : Ω→ S,

that maps a two-dimensional parameter domain Ω ⊂ IR2 to the surface S ⊂ IR3. In

contrast, an implicit (or volumetric) surface is implicitly defined to be the zero-set of a

scalar-valued function F : IR3 → IR, i.e., S = {x ∈ IR3 | F (x) = 0}. From an abstract

point of view, parametric surfaces can be considered as the range of a function, while

implicit ones are defined to be the kernel of a function.

Both representations have their own strengths and weaknesses, such that for each

geometric problem the better suited one should be chosen. In order to analyze geometric

operations and their requirements on the surface representation, we classify them into

the following three categories, that have first been defined in this form in [Kob03]:

Evaluation: The sampling of the surface geometry or of other surface attributes, e.g.,

the surface normal field. A typical example is surface rendering.

Query: Spatial queries are used to determine whether or not a given point p ∈ IR3 is

inside or outside of the solid bounded by a surface S, which is a key component for

solid modeling operations. Another typical query is the computation of a point’s

distance to the surface S.

5

2 Surface Representations

Modification: A surface can be modified either in terms of geometry (surface defor-

mation), or in terms of topology, e.g., when different parts of the surface are to be

merged.

We will see in Sect. 2.1 and Sect. 2.2 that explicit and implicit surface representations

have complementary advantages w.r.t. these three kinds of geometric operations, i.e., the

strengths of the one are the drawbacks of the other. Hence, for each specific geometric

problem the more efficient representation should be chosen, which, in turn, requires

efficient conversion routines between the two representations (Sect. 2.3). Consequently

following this idea, highly efficient algorithms can be derived if the strengths of both

representations are combined, e.g., by simultaneously using an explicit and an implicit

representations of the same surface geometry [KB03b, BBK04].

2.1 Explicit Surface Representations

Explicit (or parametric) surface representations have the advantage that their param-

eterization f : Ω → S enables the reduction of several three-dimensional problems on

the surface S to two-dimensional problems in the parameter domain Ω. For instance,

points on the surface can easily be generated by simple function evaluations of f , which

obviously allows for efficient evaluation operations. In a similar manner, geodesic neigh-

borhoods, i.e., neighborhoods on the surface S, can easily be found by considering neigh-

boring points in the parameter domain Ω. A simple composition of f with a deformation

function d : IR3 → IR3 results in an efficient modification of the surface geometry.

On the other hand, generating an explicit surface parameterization f can be very com-

plex, since the parameter domain Ω has to match the topological and metric structure

of the surface S. When changing the shape S, it might even be necessary to update the

parameterization accordingly in order to reflect the respective changes of the underly-

ing geometry: A low-distortion parameterization requires the metrics in S and Ω to be

similar, and hence we have to avoid or adapt to excessive stretching.

However, since the surface S is the range of the parameterization f , its topology can

be controlled explicitly. In turn, changing the topology of an explicit surface S can be

extremely complicated, since the parameterization as well as the domain Ω have to be

adjusted accordingly. The typical inside/outside or distance queries are in general also

6

2.1 Explicit Surface Representations

very expensive on explicit surfaces. Hence, topological modification and spatial queries

can be noticed to be the weak points of explicit surfaces.

The main surface representation used in this thesis is the explicit triangle mesh, be-

cause it provides good approximation properties and allows for efficient processing. But

before describing this discrete surface representation, we first outline the traditional

continuous spline surfaces.

2.1.1 Spline Surfaces

Tensor-product spline surfaces are the standard surface representation of today’s CAD

systems. They are used for constructing high-quality (class A) surfaces from scratch

as well as for later surface deformation tasks. Since tensor-product spline surfaces are

defined in terms of spline curves, we will start with the description of the univariate

curve case first. More details on both spline curves and spline surfaces can be found in

[Far97, PT97, PBP02].

A spline curve f of degree n is a piecewise polynomial curve that is built by con-

necting several polynomial segments of maximal degree n in a smooth Cn−1 manner.

The parameter domain of a spline curve is the union of the segments’ domain intervals

Ii := [ui, ui+1] and is defined by a knot vector u0 ≤ u1 ≤ . . . ≤ uL:

f : [u0, uL]→ IR3, f |Ik
∈ Πn, f ∈ Cn−1 .

The B-spline basis functions Nn
i (u) are an efficient and intuitive basis for spline curves.

The support of these functions is supp(Nn
i) = [ui, ui+n+1], which is why m + 1 = L− n

basis functions {Nn
0 , Nn

m} are needed to cover the whole parameter domain. A three-

dimensional B-spline curve is then represented by

f : [un, um+1]→ IR3, u 7→
m∑

i=0

ciN
n
i (u) .

Here, the control points ci ∈ IR3 define the so-called control polygon of the spline curve.

Because Nn
i (u) >= 0 and

∑
i N

n
i ≡ 1, each curve point f (u) is a convex combination of

the control points ci, i.e., the curve lies within the convex hull of the control polygon.

Due to the small support of the basis functions, each control point has local influence

on the curve only. These two properties cause spline curves to closely follow the control

7

2 Surface Representations

polygon, thereby providing a geometrically intuitive metaphor for modeling curves by

adjusting its control points. The intuitive control point metaphor and the built-in Cn−1

smoothness are the reasons why spline curves are used in almost every CAD system.

The standard approach to generalize spline curves to spline surfaces are tensor-product

surfaces, which are constructed by sliding curves on other curves, resulting in a surface

that is swept in space. The swept curve is represented by a spline curve, whose control

points slide on other spline curves:

f : [un, um+1]× [vn′ , vm′+1] → IR3

(u, v) 7→
m∑

i=0

m′∑
j=0

cijN
n′

j (v)

︸ ︷︷ ︸
=:ci(v)

Nn
i (u) .

The two-dimensional parameter domain of a tensor-product surface is partitioned by two

knot vectors ui and vj, and the geometric realization of the surface is defined by a regular

control lattice
{
cij ∈ IR3 | 0 ≤ i ≤ m, 0 ≤ j ≤ m′

}
. Besides from that, tensor-product

surfaces are basically “curves on curves”, and therefore most of the curve properties

generalize to surfaces.

A tensor-product surface — as the image of a rectangular domain under the parame-

terization f — always represents a rectangular surface patch embedded in IR3. If shapes

of more complicated topological structure are to be represented by spline surfaces, the

model has to be composed of several (possibly trimmed) tensor-product patches.

Local level-of-detail control is another reason for decomposing a surface into several

patches. In the case of spline curves, more degrees of freedom can locally be added by

inserting additional knots ui into the knot vector, resulting in more polynomial segments

with associated control points ci. For tensor-product surfaces, however, inserting a knot

into one of the two knot vectors causes a whole row or column of control points to be

inserted into the regular control lattice. In order to replace this global surface refinement

by a local one, the surface is subdivided into several patches, such that additional knots

can be inserted into the necessary patches only. Recent work on T-splines [SZBN03,

SCF+04], which allow for more general control lattices with T-junctions, could remedy

these deficiencies to some degree, but topologically complicated surfaces still have to be

composed from a large number of patches.

8

2.1 Explicit Surface Representations

Figure 2.1: Subdivision surfaces are generated by an iterative refinement of a coarse

control mesh.

As a consequence of these topological constraints, typical CAD models consist of a

huge collection of surface patches. In order to represent a high quality globally smooth

surface, these patches have to be connected in a smooth manner, leading to additional

geometric constraints, that have to be taken care of throughout all surface processing

phases. The large number of surface patches and the resulting topological and geometric

constraints greatly complicate the surface construction and in particular the later surface

modeling tasks.

2.1.2 Subdivision Surfaces

Subdivision surfaces [ZSD+00] can be considered as a direct generalization of spline

surfaces, since they are also controlled by a coarse scale control mesh, but in contrast

to spline surfaces allow to represent surfaces of arbitrary topology by a single control

mesh. Subdivision surface are generated by a repeated refinement of control meshes:

After each topological refinement step, the positions of the (old and new) vertices are

adjusted based on a set of local averaging rules. A careful analysis of these rules reveals

that in the limit this process results in a surface of provable smoothness (cf. Fig. 2.1).

As a consequence, subdivision surfaces are restricted neither by topological nor by ge-

ometric constraints as spline surfaces are, and their inherent hierarchical structure allows

for highly efficient algorithms. However, subdivision techniques are restricted to surfaces

with so-called semi-regular subdivision connectivity, i.e., surfaces that are (topologically)

the result of repeated refinement of a coarse control mesh. As this constraint is not met

by arbitrary surfaces, those would have to be remeshed to subdivision connectivity in a

preprocessing step [EDD+95, LSS+98, KVLS99, GVSS00]. But as this remeshing corre-

sponds to a resampling of the surface, it usually leads to sampling artifacts and loss of

information. In order to avoid the restrictions caused by these connectivity constraints,

9

2 Surface Representations

our goal is to work on arbitrary triangle meshes, as they provide higher flexibility and

also allow for efficient surface processing.

2.1.3 Triangle Meshes

In contrast to spline surfaces, triangle meshes are neither specified in terms of a surface

parameterization nor do they provide an inherent parameterization as subdivision sur-

faces do. However, triangle meshes are also defined in an explicit manner, and therefore

are categorized to be an explicit surface representation, although not a parametric one.

A triangle mesh consists of a geometric and a topological component, where the latter

can be represented by a set of vertices

V = {v1, . . . , vV }

and a set of triangular faces

F = {f1, . . . , fF} , fi ∈ V × V × V ,

such that each triangle specifies its three vertices from V . However, as we will see below,

it is sometimes more efficient to represent the connectivity of a triangle mesh in terms

of the edges of the respective graph:

E = {e1, . . . , eE} , ei ∈ V × V ,

instead of in terms of faces. The geometric realization of a triangle mesh is specified by

associating a 3D position pi to each vertex vi ∈ V :

P = {p1, . . . ,pV } , pi := p (vi) =

x (vi)

y (vi)

z (vi)

 ∈ IR3 ,

such that each face f ∈ F actually represents a triangle in 3-space specified by its three

vertex positions.

A connected triangle mesh therefore represents a continuous piecewise linear surface.

If a sufficiently smooth surface is approximated by such a piecewise linear function, a

local Tailor expansion reveals that the approximation error is of the order O(h2), with

h denoting the maximum edge length. Due to this quadratic approximation power, the

10

2.1 Explicit Surface Representations

Figure 2.2: Two surface sheets meet at a non-manifold vertex (left). A non-manifold

edge has more than two incident faces (center). The right configuration, although being

non-manifold in the strict sense, can be handled without problems by halfedge data

structures.

error is reduced by a factor of 1/4 by halving the edge lengths. As this also increases

the number of triangles from F to 4F , the approximation error of a triangle mesh is

inversely proportional to the number of its faces. The approximation error depends on

the higher order terms of the Taylor expansion, i.e., mainly on the second derivatives or

the curvature of the underlying smooth surface. From this we can derive that a decent

approximation is possible with just a moderate mesh complexity: The vertex density has

to be locally adapted to the surface curvature, such that flat areas are sparsely sampled,

while in detailed regions the sampling density is sufficiently higher.

In comparison to spline and subdivision surfaces, triangle meshes are not restricted

by geometric, topological, or connectivity constraints, and hence can be considered to

be the most flexible of these surface representations. Being 2-simplices, triangles are

the conceptually simplest primitives for representing surfaces, and thus allow for the

implementation of very efficient geometry processing algorithms. As a consequence,

triangle meshes gained increasing attention in the field of engineering applications during

the last years and have started to assist or even replace classical spline surfaces in this

area.

An important topological characterization of a surface is whether or not it is two-

manifold, which is the case if for each point the surface is locally homeomorphic to a

disk (or a half-disk at boundaries). A triangle mesh is considered to be two-manifold, if

it does neither contain non-manifold edges, non-manifold vertices, nor self-intersections,

where a non-manifold edge has more than two incident triangles and a non-manifold

vertex is generated by pinching two surface sheets together at that vertex, such that

11

2 Surface Representations

the vertex is incident to two fans of triangles (cf. Fig. 2.2). Non-manifold meshes are

in general problematic for surface processing algorithms, since around non-manifold

configurations there is no clearly defined notion of local geodesic neighborhoods.

For the development of efficient algorithms for triangle meshes suitable data structures

have to be found, which should provide fast access to the most frequently accessed kinds

of neighborhood information. An analysis of the typical mesh processing algorithms

and their neighborhood access patterns reveals that the time-critical neighborhood in-

formation is the so-called one-ring neighborhood, i.e., all vertices, edges, or faces being

incident to a given vertex. Fast access to and iteration around a one-ring neighborhood

requires to store and manage the connectivity information at the edges of the mesh in-

stead of at its faces. Even higher efficiency can be achieved by using so-called directed

halfedges to encode the connectivity [CKS98]. Our publicly available implementation of

such a halfedge data structure, which closely follows the design principles of [Ket98], is

OpenMesh [BSBK02, BSM05], which was used to implement all algorithms presented in

this thesis.

Coming back to the previously mentioned three classes of geometric operations, trian-

gle meshes share the typical strengths and drawbacks of explicit representations. Their

elements can easily be enumerated and they are especially designed for efficient access

to geodesic neighborhoods; by changing their vertex positions, geometric shape defor-

mations can easily be performed. However, avoiding excessive stretching of triangles

requires a local restructuring of the tessellation [KBS00], similar to an adjustment of

a surface parameterization. Changing the topology, like cutting parts of the surface or

merging them, is — due to the higher topological flexibility — less complicated than for

spline surfaces, but can still get quite involved. Spatial queries are very expensive for

triangle meshes unless spatial helper data structures are used, which, in turn, can also

be regarded as an additional implicit surface representation.

In contrast to spline or subdivision surfaces, triangle meshes do not provide an explicit

parameterization. Deriving a suitable global parameterization is a non-trivial problem,

since this requires the mesh to be topologically equivalent to a disk. Otherwise, the

mesh has to be opened by a series of carefully placed cuts. The construction of high-

quality stretch-minimizing parameterizations is an active research area, that gained much

attention in the last years [AMD02, DMA02, GGH02, LPRM02].

12

2.2 Implicit Surface Representations

Analogously to other explicit surface representations, the problematic operations for

triangle meshes are spatial queries and topological changes, which will turn out in the

next section to be exactly the strengths of implicit surface representations.

2.2 Implicit Surface Representations

The basic concept behind implicit or volumetric representations of geometric models is

to characterize the whole embedding space of an object by classifying each 3D point

to lie either inside, outside, or exactly on the surface S bounding a solid object. By

this they are independent from the actual surface topology, and because of this volu-

metric representations are preferred in applications where the topology of an object is

complicated or even changes during an operation.

There are different conceptual frameworks for implicit surface representations, like

for instance continuous algebraic surfaces and radial basis functions, or discrete vox-

elizations. In any case, the surface S is defined to be the zero-level iso-surface of a

scalar-valued function F : IR3 → IR. By definition, negative function values of F des-

ignate points inside the object and positive values points outside the surface, i.e., the

iso-surface S separates the inside from the outside of S. As a consequence, geometric

inside/outside queries simplify to function evaluations of F and checking the sign of the

resulting value. The implicit function F for a given surface S is not uniquely deter-

mined, but the most common and most natural implicit representation is the so-called

signed distance function, which maps each 3D point to its signed distance from the sur-

face S. In addition to inside/outside queries, this representation also simplifies distance

computations to simple function evaluations.

On the other hand, enumerating points on the surface or finding geodesic neighbor-

hoods is hardly possible with implicit representations. Moreover, implicit surfaces do

not provide any means of parameterization, which is why it is almost impossible to

consistently paste textures onto evolving implicit surfaces. However, they allow for the

design of algorithms that are free of parameterization artifacts, since they are only based

on intrinsic geometric properties of the surface [Set96, Set99, OF02].

One of the strengths of implicit surfaces is that they can easily change their topology,

which is crucial, for instance, in the context of constructive solid geometry. However, this

13

2 Surface Representations

can also be considered one of their main problems, since there is no general mechanism

to prevent the topology from changing accidentally, i.e., to prevent the surface from

merging or splitting. However, including additional explicit surface information allows

to preserve the topology of an evolving surface, as was shown in [BK03b]. On the

other hand, an implicit surface is a level-set of a potential function, therefore geometric

self-intersections cannot occur.

The parameter domain of the implicit function is the whole 3-space, but in practice

the function F is usually restricted to some bounding box around the surface. In order to

efficiently process volumetric representations, a discrete approximation of the continuous

scalar field F is generated by sampling F on a sufficiently dense grid{
gi,j,k ∈ IR3 | 1 ≤ i ≤ l, 1 ≤ j ≤ m, 1 ≤ k ≤ n

}
.

Hence, the most basic representation is a uniform scalar grid of sampled values Fi,j,k :=

F (gi,j,k), where function values in the interior of voxels are obtained by tri-linear in-

terpolation, which results in quadratic approximation order. However, the memory

consumption of this näıve data structure grows cubically if the precision is increased by

reducing the edge length of grid voxels.

Figure 2.3: Adaptive octree refinement

around the surface S.

Therefore the sampling density is often

adapted to the local geometric significance

in the scalar field F : Since the signed dis-

tance values are most important in the

vicinity of the surface, a higher sampling

rate can be used in these regions only. In-

stead of a uniform 3D grid, a hierarchical

octree is then used to hold the sampled

values [Sam94]. The further refinement of

an octree cell lying completely inside or

outside the object does not improve the

approximation of the surface S. Adap-

tively refining only those cells that are in-

tersected by the surface yields a uniformly

refined crust of leaf cells around the sur-

face and reduces the storage complexity

from cubic to quadratic.

14

2.3 Conversion Methods

If the local refinement is additionally restricted to those cells where the tri-linear

interpolant deviates more than a prescribed tolerance from the actual distance field,

the resulting approximation adapts to the locality of the surface as well as to its shape

complexity [FPRJ00]. Since extreme refinement is only necessary in regions of high

surface curvature, this approach reduces the storage complexity even further and results

in a memory consumption comparable to explicit representations. Similarly, an adaptive

space-decomposition with linear (instead of tri-linear) interpolants at the leaves can be

used [WK03]. Although the asymptotic complexity as well as the approximation power

are the same, the latter method provides slightly better memory efficiency and allows

for simpler algorithms.

If the implicit surface evolves over time, the direction of the surface movement can

locally be restricted to the surface normal direction, leading to the so called level set

surfaces [Set96, Set99, OF02]. Since the direction of motion is fixed, the surface evolution

is fully determined by providing a scalar speed function s (x, t), defining the amount of

movement for each point x at a certain time t. For instance, the distance field to a

given surface can easily be computed by using the isotropic constant speed function

s (x, t) ≡ 1, a fact we will use in Sect. 3.3.

2.3 Conversion Methods

The last sections pointed out that a suitable shape representation has to be chosen in

a problem-dependent manner, as this allows for the most efficient algorithms. In order

to be able to freely choose between explicit and implicit representations of the same

surface geometry, efficient conversion methods between the different representations are

necessary.

Since both kinds of representations are usually finite samplings (triangle meshes in the

explicit case, uniform/adaptive grids in the implicit case), each conversion corresponds

to a re-sampling step. Hence, special care has to be taken in order to minimize the loss

of information during these conversion routines.

15

2 Surface Representations

2.3.1 Explicit to Implicit

The conversion of an explicit surface representation to an implicit one amounts to the

computation of its signed distance field. This can be done very efficiently by voxelization

or 3D scan-conversion techniques [Kau87], but the resulting approximation is piecewise

constant only. More accurate approximations can be achieved by using higher order

implicit surfaces [VG96, YT02].

As a surface’s distance field is in general not smooth everywhere, a piecewise linear or

piecewise tri-linear approximation seems to be the best compromise between approxima-

tion accuracy and computational efficiency. Since our standard explicit representation is

a triangle mesh, the conversion to an implicit representation basically requires the com-

putation of signed distances to the triangle mesh at the nodes of a (uniform or adaptive)

3D grid. This task can efficiently be performed using Fast marching methods [Set96],

as also proposed in [MBWB02].

The marching process is initialized by computing the exact distance values for all grid

nodes in the immediate vicinity of the triangle mesh. Since we want to approximate a

signed distance field, we have to determine for each distance computation whether a grid

node lies inside or outside the object. If g denotes the grid node and c its closest point on

the surface, then the orientation can be derived from the angle between (g− c) and the

normal n(c): g is defined to be inside if (g−c)Tn(c) < 0. The robustness and reliability

of this test strongly depends on the way the normal n(c) is computed. Using barycentric

normal interpolation within triangles’ interiors and computing per-vertex normals using

angle-weighted averaging of face normals was shown to yield correct results [AB03].

After this initialization, a standard fast marching method with constant speed function

s(x) ≡ 1 is used to derive the distance values at the unknown grid nodes. Starting from

the initialized grid nodes, all their immediate neighbors are inserted into a min-heap

based on their distance from the advancing front. After conquering the nearest of these

candidate nodes, all of its non-conquered neighbors are inserted into the heap, and this

process is continued until all grid points have been conquered. Since we want to compute

the distance field in the interior and exterior of the surface, a second marching step with

inverted signs is used to compute the distances at the interior nodes.

16

2.3 Conversion Methods

2.3.2 Implicit to Explicit

An explicit surface can be constructed from an implicit representation by extracting the

zero-level iso-surface of the scalar field F . For the conversion to a triangle mesh, two

sub-problems have to be solved: In a first step a dense set of surface samples has to

be found, that is to be connected in a topologically consistent manner in the second

step, where we distinguish between grid-based and grid-less techniques. Higher order

parametric representations, such as spline surfaces, are usually constructed in a second

step by surface fitting techniques [HDD+94].

Grid-less techniques start with an initial triangle mesh approximating the surface S,

which is then iteratively improved by attracting its vertices to the isosurface S based

on the scalar field F . Combining this attracting force with a regularizing force improves

the aspect ratio of triangles and leads to high quality meshes if the underlying surface

S is smooth [KWT98, LKE98, WDSB00].

In contrast, grid-based methods sample the implicit function on a regular grid and

process each cell of the discrete distance field separately, thereby allowing for trivial

parallelization. For each cell which is intersected by the iso-surface S a surface patch

is generated based on local criteria. The collection of all these small pieces eventually

yields a triangle mesh approximation of the complete iso-surface S. Most grid-based

techniques are conceptually derived from the Marching Cubes algorithm [LC87], which

is the de-facto standard technique for iso-surface extraction.

For each edge intersecting the surface S the Marching Cubes algorithm computes a

sample point which approximates this intersection. In terms of the scalar field F this

means that the sign of F differs at the edge’s endpoints p1 and p2. Since the tri-linear

approximation F is actually linear along the grid edges, the intersection point s can be

found by linear interpolation of the distance values d1 := F (p1) and d2 := F (p2) at the

edge’s endpoints:

s =
|d2|

|d1|+ |d2|
p1 +

|d1|
|d1|+ |d2|

p2 .

The resulting sample points of each cell are then connected to a triangulated surface

patch based on a triangulation look-up table holding all possible configurations of edge

intersections (cf. Fig. 2.4). Since the possible combinatorial configurations are deter-

mined by the signs at a cell’s corners, their number is 28 = 256.

17

2 Surface Representations

Figure 2.4: The 15 base configurations of the Marching Cubes triangulation table. The

other cases can be found by rotation or symmetry.

The Marching Cubes algorithm is a conceptually very simple method and therefore

allows for an efficient implementation. However, due to the regular 3D grid its complexity

grows cubically with the grid resolution, i.e., with the approximation accuracy. Hence,

in practice an adaptive octree should be used instead of the regular grid, such that only

the octree cells which actually intersected the iso-surface are refined further, leading to

a uniformly refined crust around the surface S (cf. Fig. 2.3). Since all leaves are on the

same refinement level, the simple algorithmic structure is preserved.

Many variants of this basic algorithm have been published, which resolve ambigui-

ties [MSS94b, NH91] or suggest alternative ways to approximate the surface samples

[MSS94a]. One of the main advantages of this kind of iso-surface extraction is that the

resulting mesh is guaranteed to be a closed 2-manifold surface. Therefore most methods

for repairing inconsistent non-manifold meshes with possible gaps and holes first convert

the input data to an implicit representation and extract a clean mesh in a second step

[BPK04, Ju04, KBSS01, SOS04].

18

2.3 Conversion Methods

Since applying the Marching Cubes algorithm corresponds to a regular re-sampling of

F , high-frequency geometric details, like sharp edges or corners, will not be captured.

A refinement of the underlying 3D grid is not capable of removing the resulting alias-

artifacts [KBSS01, BK01a]. We discuss these issues in Chap. 4, where we present a

solution to the aliasing problem by a feature-sensitive surface extraction technique.

19

2 Surface Representations

20

3 High-Quality Mesh Generation

In this chapter we focus on the generation of “good” meshes, that are of sufficient quality

to be used in numerical simulations. The process starts with the generation of an initial

mesh (Sect. 3.1), whose input data may come from a variety of sources, like 3D range-

scanning, medical imaging, a solid modeling software package, or the tessellation of CAD

surfaces initially represented by spline surfaces. However, the initial surfaces are in most

cases not yet suited for further processing in engineering applications. They usually have

to be optimized, e.g., by removing geometric noise, by reducing their complexity, and by

optimizing their triangles’ shapes to have bounded aspect ratio (Sect. 3.2). During the

whole mesh generation and mesh optimization process, a user-specified upper bound on

the approximation error to the original data has to be satisfied (Sect. 3.3), since otherwise

the resulting meshes might deviate too much from the “real” surface geometry to yield

meaningful results in numerical simulations.

A good, although slightly outdated overview of these and other mesh generation and

mesh optimization techniques can be found in our tutorial notes of [KBB+00].

3.1 Mesh Generation

In the following discussion we distinguish the different methods for generating the ini-

tial mesh by the intermediate surface representation they are based on. First, there

are methods which stitch together a collection of acquired surface patches in order to

eventually integrate them into one surface. The intermediate representation of these

patches is an explicit one (Sect. 3.1.1). On the other side are approaches that construct

a signed distance function in a first step, and use an iso-surface extraction algorithm

like Marching Cubes to compute the final surface. These methods are categorized to be

implicit mesh generation techniques (Sect. 3.1.2).

21

3 High-Quality Mesh Generation

Figure 3.1: When the right mesh is to be stitched into the left one (1), first its boundary

vertices are inserted into the left mesh (2). Splitting or flipping of edges leads to a

common boundary polygon (3), such that redundant regions can easily be removed (4).

Finally collapsing short edges in the resulting mesh removes badly shaped triangles (5).

3.1.1 Explicit Mesh Generation

The methods in this category work by integrating a set of triangulated surface patches

into one consistent target model. Typical examples of how to generate the initial surface

patches are the tessellation of the different patches of a spline model, or the patch-

wise acquisition of a model’s geometry by range scanning [CL94]. Conceptually similar

to range scanning is our virtual range scanning method [KB00], which scans a set of

unorganized input points by rendering them from several viewpoints and reading back

the OpenGL z-buffer. After a filtering of the resulting depth values, the back-projection

of all valid pixels (x, y, z(x, y))T of a rendered image yields a regular grid of 3D positions,

similar to a structured range image.

These surface patches are then merged into one single model by a mesh zippering or

mesh stitching technique as proposed in [TL94, KB00] and depicted in Fig. 3.1. After

removing redundant triangles in overlapping regions, the boundaries of the two meshes

are clipped against or intersected with each other in order to generate one common

boundary polygon. This allows to connect the two meshes along this common boundary

line in a consistent manner and thereby merges the two input meshes into one. However,

22

3.1 Mesh Generation

the required intersection of edges and faces inevitably leads to arbitrary small and skinny

triangles, which makes a post-optimization of the edges and triangles in the seam regions

mandatory. Iteratively stitching all source patches one by one finally results in a single

mesh.

For this kind of explicit mesh generation, the original surface patches are parts of the

final mesh, which can be advantageous if they are of high quality, e.g., when they are

built by a feature-aligned tessellation of a CAD surface. The drawback of these methods

is that the stitching of two meshes can produce poorly shaped triangles, requiring a

post-optimization of the seam region. Hence, when there are not too many complicated

seams, i.e., when the surface geometry allows to construct large patches with simple

boundary curves, then the stitching approach is preferable.

3.1.2 Volumetric Mesh Generation

When reconstructing surfaces from scanned data, holes resulting from missing data due

to inevitable occlusions or difficult surface reflectances are a major problem. On the

other side, it is well known that iso-surface extraction methods yield clean two-manifold

surfaces without holes. Therefore, Curless and Levoy [CL96] proposed to construct

an (implicit) global signed distance function from the set of acquired range scans in a

first step and to reconstruct the (explicit) surface using the Marching Cubes algorithm

(Sect. 2.3.2).

Similarly, many approaches for triangulating unorganized point clouds also extract

the kernel surface of a properly generated signed distance field. They differ in how

they reconstruct and represent the implicit distance function, for instance by using a

piecewise linear approximation [HDD+92], radial basis functions [CBC+01], or a spatial

decomposition with separate quadratic approximants in each leaf node [OBA+03].

Besides from their generation from scanned data, implicit distance fields are also the

natural surface representation in the field of constructive solid geometry (CSG) or general

solid modeling [Hof89]. In this context a complex object is built by boolean combinations

of several simpler primitives. If F1(x) and F2(x) denote the signed distance functions

corresponding to two objects S1 and S2, then the following combinations of implicit

functions yield the union, intersection, and difference of the two objects, respectively:

23

3 High-Quality Mesh Generation

FS1∪S2 (x) = min {F1 (x) , F2 (x)}
FS1∩S2 (x) = max {F1 (x) , F2 (x)}
FS1\S2 (x) = max {F1 (x) ,−F2 (x)} .

No matter how and from which data the signed distance field was built from, the

explicit surface is generated by extracting the zero-level iso-surface using a contouring

algorithm like Marching Cubes.

3.2 Mesh Optimization

The methods outlined in the last section provide an initial triangle mesh representation

of a (re-)constructed surface geometry. However, the resulting meshes are in general

not of sufficient quality for further down-stream applications, but instead have to be

optimized w.r.t. different quality criteria depending on the specific target application.

Meshes derived from a physical scanning process inevitably contain a certain amount

of high-frequency measurement noise, which has to be smoothed out by low-pass filter-

ing the geometry (Sect. 3.2.1). After this geometric optimization, further topological

optimizations improve or adjust the tessellation of the surface depending on the appli-

cation’s needs, e.g., by reducing the mesh complexity (Sect. 3.2.2) or by improving the

triangle shapes by remeshing techniques (Sect. 3.2.3).

3.2.1 Smoothing

In a typical mesh optimization pipeline mesh smoothing is mainly used to remove noise

caused by physical measurements from a surface. But the notion of smooth or fair

surfaces is also of major relevance for freeform modeling (Chap. 6) and multi-resolution

modeling (Chap. 5), and hence we discuss mesh smoothing in more detail.

If we consider a triangle mesh as an irregularly sampled signal, then we are interested in

smoothing out the high frequency details (noise) with the constraint to preserve the lower

frequency components (global shape). For a mathematically well-founded treatment of

this problem, standard signal processing techniques are extended to functions defined on

24

3.2 Mesh Optimization

Figure 3.2: This scan of a statue’s face contains typical measurement noise, which can

be removed by low-pass filtering the surface geometry. The bottom row shows selective

smoothing of the region around the eye, the right column depicts a color coding of the

respective mean curvature.

triangle meshes, i.e., on irregularly sampled two-manifold domains of arbitrary topology.

This will allow us to smooth arbitrary scalar functions f : S → IR on meshes. A

smoothing of the surface geometry can then be achieved by a component-wise smoothing

of the piecewise linear geometric realization function p (v) = (x (v) , y (v) , z (v))T (cf.

Fig. 3.2).

Ideal low-pass filtering means to transform the signal f from spatial domain to fre-

quency domain using the (discrete) Fourier transform, to discard the high frequency

components, and to map the truncated signal back to spatial domain by the inverse

Fourier transform. The orthonormal basis functions of the frequency domain are built

from scaled and shifted sine waves. Having the property that their second derivatives

are multiples of themselves, these functions can be found to be the eigenfunctions of the

Laplace operator ∆f (u, v) = div (∇f (u, v)) = fuu (u, v) + fvv (u, v).

Since we are considering the Laplace of functions defined on a two-manifold surface S,

the Laplace-Beltrami operator ∆S [dC76] actually has to be used. Assuming a proper

25

3 High-Quality Mesh Generation

generalization and discretization of the Laplace-Beltrami on discrete triangle meshes,

the ideal filtering framework could be transferred to meshes as well. However, it would

be too expensive for complex meshes in terms of both computation time and memory

consumption.

Therefore Taubin [Tau95] proposed to low-pass filter the surface signal f by a convo-

lution with a Gaussian filter kernel instead. This low-pass filter is equivalent to iterative

Laplacian smoothing [Tau95, KCVS98], that is defined by the following simple update

rule for each vertex vi ∈ V :

f (vi) ← f (vi) + λ∆Sf (vi) , (3.1)

were 0 < λ < 1 denotes a time-step or damping factor, that has to be less than 1 to

guarantee convergence. Another approach to mesh smoothing was given by Desbrun et

al. [DMSB99] by formulating surface smoothing as a diffusion process:

∂f (vi)

∂t
= λ∆Sf (vi) . (3.2)

When the signal to be smoothed is the surface geometry itself, this means that in each

time-step each vertex is moved by a scalar multiple of its Laplace-Beltrami, leading to

the so-called mean curvature flow [dC76]:

∂ p (vi)

∂t
= λ∆Sp (vi) = −2 λ H(vi)n(vi) .

Smoothing is then performed by integrating this PDE over time. In this context,

the simple Laplacian smoothing update (3.1) corresponds to an explicit forward Euler

integration of the PDE (3.2), requiring a time-step λ < 1 to ensure convergence. To

allow for arbitrary large time-steps, Desbrun et al. proposed to use an implicit integration

instead. The price to pay is that this approach requires to solve the following sparse linear

system in each time-step, where fn = (. . . , f (vi) , . . .) denotes the vector containing the

surface signal sampled at the vertices vi ∈ V at time-step n:

(I − λ∆S) f
n+1 = fn . (3.3)

The last missing component is a proper generalization of the Laplace-Beltrami opera-

tor to discrete triangle meshes, i.e., for each vertex v ∈ V . Taubin [Tau95] proposed the

uniform discretization of the Laplace

∆unif (v) :=
1

|N1 (v)|
∑

vi∈N1(v)

(f (vi)− f (v)) , (3.4)

26

3.2 Mesh Optimization

v
A(v)

v2

v

vi
βi

αi

vi+1

vi-1

v1

v3

v4
v5

v6

Figure 3.3: The Laplace-Beltrami ∆Sf (v) of a vertex v ∈ V is computed by a linear

combination of its function value f (v) and those of its one-ring neighbors f (vi). The

corresponding weights are given by the cotangent values of αi and βi and the Voronoi

area A (v).

where the sum is taken over all one-ring neighbors vi ∈ N1 (v) (cf. Fig. 3.3). However,

this discretization does not take any local geometry of the domain mesh (edge lengths

or angles) into account and hence cannot give a sufficient approximation for irregular

tessellations. In case of smoothing a planar (and hence perfectly smooth) triangulation,

e.g., this operator may still shift vertices within the surface by moving each vertex to

the barycenter of its neighbors. Although this leads to an improvement of the triangle

shapes, it is a bad approximation to the Laplacian of the geometry (which should be

parallel to the surface normal: ∆Sp (v) = −2 H(v) n(v)). A better (and the current

standard) discretization was proposed in [PP93, DMSB99, MDSB03]:

∆Sf (v) :=
2

A (v)

∑
vi∈N1(v)

(cotαi + cotβi) (f (vi)− f (v)) ,

where αi = 6 (p (v) ,p (vi−1) ,p (vi)), βi = 6 (p (v) ,p (vi+1) ,p (vi)), and A (v) denotes

the Voronoi area around the vertex v (cf. Fig. 3.3). We discuss the linear system (3.3)

required for the mean curvature flow integration and present efficient techniques for its

solution in in Chap. 7.

27

3 High-Quality Mesh Generation

Figure 3.4: Mesh decimation removes geometric redundancy by reducing the sampling

density in flat surface regions. In this example a tessellated CAD surface was reduced

from 260k triangles to 35k triangles while satisfying a user-defined error bound of 3mm

for the positions and 3 degrees for the normal deviation.

3.2.2 Decimation

One problem of most surface reconstruction schemes is that they produce meshes of

enormous complexity. Most mesh generation algorithms allow the user to control the

output complexity by globally adjusting the resolution, e.g., for the scanning device or

for an intermediate volumetric grid representation. However, this resolution can only be

changed globally and hence one either loses relevant geometric detail (if the resolution

is set too low) or flat surface regions are extremely oversampled (if the resolution is

too high). Locally adapting the resolution is difficult since this requires to detect the

presence of fine detail, i.e., to estimate the surface curvature, before the surface is actually

generated.

To avoid these difficulties, the mesh resolution is chosen as high as possible in order to

capture as much geometric detail as possible [LPC+00], thereby leading to very complex

meshes, whose sampling densities do not reflect the geometric complexity of the under-

lying surface. As a consequence, these meshes contain a large amount of redundancy,

such that their complexity can be reduced significantly by mesh decimation techniques

without losing relevant geometric details (cf. Fig. 3.4).

28

3.2 Mesh Optimization

Figure 3.5: The halfedge collapse removes one vertex, two triangles, and three edges.

From the large set of different mesh decimation approaches [Gar99], we will focus

on incremental decimation based on halfedge collapses [KCS98], since this allows for

the most fine-grained control over the simplification process. These methods iteratively

remove one vertex (and hence two faces, three edges) by a halfedge collapse at a time

(cf. Fig. 3.5). This atomic vertex removal operation is repeated until either the target

complexity is reached or a prescribed error tolerance would be violated by any additional

collapse.

The two decisions that mainly influence the decimation results are what halfedges to

collapse, and in which order to collapse them. Between all possible collapses, a set of

binary criteria is used to filter out the unwanted ones: each candidate halfedge collapse

is simulated and the resulting local configuration is tested not to violate the legality

criterion, e.g., a geometric error bound. All valid collapses (that pass the binary tests)

are sorted w.r.t. a set of continuous criteria. The highest-rated valid halfedge collapse

is then performed and the costs of affected candidate collapses in its local neighborhood

are re-evaluated and re-sorted. Hence, the decimation is guided and controlled by the

different criteria. We list the most important ones below, that can all be used both for

a binary legality check and as a continuous sorting priority.

Error Control If the decimated model is to be used in engineering applications, then

the approximation error has to be bounded in most cases. The intuitive — but usually

too complex — error measure is the two-sided Hausdorff distance [KLS96]. However, in

the case of scanned models, Kobbelt et al. [KCS98] argue that the one-sided Hausdorff

distance from the original sample points is a sufficient error criterion, similar to scattered

data approximation. A very efficient but only approximate error measure is given by

the so-called quadric error metric [GH97], that approximates the L∞ distance from a

29

3 High-Quality Mesh Generation

set of triangles by the L2 distance from a set of planes. We will discuss more general

error control mechanisms, that can be used to bound the global error of an arbitrary

mesh processing algorithm, in Sect. 3.3.

Normal deviation Bounding the approximation error results in an adaptation of the

vertex density to the surface curvature. This alone, however, cannot guarantee a suf-

ficient preservation of sharp or highly curved surface features. The visual appearance

of these features depends on the lighting, i.e., on the surface normals. But even when

the approximation error is tightly bound, the normal field of the resulting surface may

still deviate significantly [KBSS01]. As a consequence, the error of the normal field ap-

proximation has to be bound as well, if geometric features are to be faithfully preserved

[BK01a]. Recently, Cohen-Steiner et al. [CSAD04] even use the L2 normal error alone

as a measure of geometric deviation. Transferring this idea to the mesh decimation set-

ting, we use the accumulated deviation of triangle normals as a continuous decimation

priority and the geometric approximation error as binary legality criterion, leading to a

high quality approximation within a certain error bound, that minimizes the deviation

of the surface normal field.

Triangle roundness The robustness of numerical computations on triangle meshes

strongly depends on the triangles’ shapes: For degenerate triangles neither area nor

normal vectors or other derivative information can be computed, while equilateral tri-

angles are optimal for numerical stability. Since it is in general very complex to remove

these degeneracies from a given triangle mesh [BK01b], one should consequently avoid

creating them. Hence, if a decimated mesh is to be used for any kind of numerical

simulation, then the shape of the triangles has to be controlled in order to avoid skinny

triangles. There are several ways to measure (and hence to control) the roundness of a

triangle, e.g., the ratio of the radius of the triangle’s circum-circle to its shortest edge

length, or the ratio of its longest edge to its shortest height (so called aspect ratio).

Edge Length If the shape quality of the resulting mesh is more important than an

efficient approximation in terms of approximation error for a given vertex budget, then

high variations in edge length should be avoided. Sorting the candidate halfedge collapses

by increasing edge length and controlling the triangle roundness like in the previous

30

3.2 Mesh Optimization

paragraph leads to high quality tessellations that are especially suited for numerical

computations.

Building a mesh decimation framework based on the described components allows to

generate coarser approximations with exact control over the approximation error, the

deviation of the surface normal field, and the roundness of triangles. Using a decimation

based on halfedge collapses, the vertices of the resulting coarser meshes are a subset of

the original vertices. This can be seen as an advantage, since as much as possible of

the original surface information is preserved, but it also limits the degrees of freedom

for generating superior tessellations. If triangle shape is the overall priority, then more

general remeshing schemes may be better suited, as shown in the next section.

3.2.3 Isotropic Remeshing

In contrast to mesh decimation, which removes vertices from an existing triangulation,

remeshing methods are more general, because they can also insert new vertices into the

mesh in order to have more degrees of freedom for optimizing the tessellation. Therefore

remeshing techniques can be thought of to spread new vertices over a given surface

and to connect them in a topologically consistent manner, e.g., by building a kind of

Voronoi diagram and Delaunay triangulation on the surface [EDD+95]. While there are

many possible remeshing objectives, we will concentrate on isotropic remeshing, i.e., on

generating a uniform sampling with all triangles being close to equilateral.

If a global parameterization of the surface is available, this problem can be reduced to

a re-sampling and re-triangulation of the two-dimensional parameter domain [ACSD+03,

ACdVDI03, AMD02]. However, as mentioned in Sect. 2.1.3, the construction of a suit-

able global parameterization is an equally hard problem. In order to avoid the expensive

global parameterization step, several authors base the remeshing on local mesh oper-

ations (cf. Fig. 3.6) and local patch parameterizations instead [WW94, KBS00, SG03,

SAG03, VRS03].

Surazhsky et al. [SG03] first adjust the number of vertices to a given target complexity

by edge collapses or edge splits. Then the vertices are moved on the surface such that

all triangle areas are equalized, possibly leading to very skinny triangles. Therefore the

triangulation is improved by a sequence of edge flips which increase the minimal inner

angle. Finally, an angle-based vertex relocation tries to move vertices on the surface in

31

3 High-Quality Mesh Generation

Edge
Collapse

Edge
Split

Edge
Flip

Vertex
Relocation

Figure 3.6: The different local mesh operations used for remeshing.

order to equalize all inner triangle angles. In [SAG03] this method has been combined

with [ACdVDI03] to generate a centroidal Voronoi diagram on the surface, the dual of

which yields an extremely regular tessellation. These techniques lead to regular high

quality triangulations, but are computationally very expensive.

In our remeshing approach [BK04b], we follow the more intuitive and conceptually

simpler remeshing framework of [KBS00, VRS03] instead. Given a target edge length l,

we iteratively perform the following steps to generate a regularly remeshed surface:

1. Edge length equalization by edge splits and edge collapses.

2. Valence regularization by edge flips.

3. Improving the vertex distribution by tangential smoothing.

Usually, 5–10 iterations of these three steps are sufficient to yield a high quality remeshed

surface.

The use of local remeshing operators (instead of a global parameterization) allows for

a highly efficient implementation, whose computational effort depends on the complexity

and degeneracy of the input mesh and on the target edge length l. Hence, it is hard

to give precise timings, but as a general rule of thumb, typical meshes of about 100k

triangles can be processed within 5–10 seconds.

In the following we describe the three remeshing phases in more detail.

32

3.2 Mesh Optimization

Figure 3.7: The irregular input mesh of 100k triangles (left) has been remeshed in about

5s using sequences of local operations. While the edge length thresholds
(

1
2
l, 2l

)
lead

to local vertex clusters (center), the optimal thresholds
(

4
5
l, 4

3
l
)

result in a very uniform

sampling (right).

Edge length equalization

In order to bring the edge lengths closer to the target edge length l, we intuitively split

edges being too long and collapse edges being to short. In a first pass we split all edges

at their midpoints that are longer than lmax. After that we collapse all edges shorter

than lmin into their midpoint (cf. Fig. 3.6). As a result the edge lengths get closer to l.

The important question is how to choose the two thresholds lmin < l < lmax.

The intuitive thresholds would be l/2 and 2l, but this still leaves a noticeable variation

of edge lengths, resulting in a clustering of vertices in certain mesh regions (cf. Fig. 3.7,

center). However, optimal thresholds can easily be derived by considering the average

local edge length deviation before and after an edge split or edge collapse, respectively

(cf. Fig. 3.8). Splitting an edge of length lmax improves the local situation if |lmax − l| >∣∣∣1
2
lmax − l

∣∣∣, leading to an upper threshold of lmax = 4
3
l. The lower bound lmin = 4

5
l is

derived similarly from |lmin − l| >
∣∣∣3
2
lmin − l

∣∣∣. The meshes obtained from these optimal

thresholds provide a superior uniformity of edge lengths (cf. Fig. 3.7, right).

33

3 High-Quality Mesh Generation

lmax

1

2
lmax

3

2
lmin

lmin lmin lmin

1

2
lmax

3

2
lmin

Figure 3.8: These local configurations can be used to derive the (heuristically) optimal

values for the edge length thresholds lmin and lmax.

Connectivity regularization

The Euler characteristic for polygon meshes [Cox89] states that in a perfectly regular

triangulation the valence of inner vertices is 6 and that of boundary vertices is 4. If we

flip an edge between two triangles, four vertices are affected (cf. Fig. 3.6): The valences

of two vertices are increased by one, the valences of the other two vertices are decreased

by one. The regularity of vertex valences can therefore be improved by flipping all the

edges for which this operation reduces the valence excess

∑
vi∈V

(valence (vi)− optimal valence (vi))
2

from the optimal valences 6 and 4, respectively.

Tangential smoothing

In this step vertices are moved on the surface in order to further improve their distri-

bution and achieve a more uniform surface sampling. As mentioned in Sect. 3.2.1, mesh

smoothing using the uniform discretization of the Laplacian (Eq. (3.4)) does not only

smooth the geometry, but additionally improves the tessellation by moving each vertex

to the barycenter of its one-ring neighbors:

p (vi)← p (vi) + λ∆uni p (vi) .

Restricting this operation to vertex movements within the surface preserves the geom-

etry and only improves the vertex distribution. This can be achieved by either using local

34

3.2 Mesh Optimization

parameterizations [SG03, SAG03, VRS03] or by projecting the Laplacian update vector

back into the tangent plane (given by the vertex normal n (vi)) [WDSB00, BK04b]:

p (vi)← p (vi) + λ
(
I − n (vi)n (vi)

T
)

∆uni p (vi) .

Due to the local linear approximation this simple method does not manage to keep the

vertices exactly on the original surface, therefore a post-processing step is added at the

end of the remeshing procedure that orthogonally projects each vertex back onto the

original reference surface.

Area-weighted tangential smoothing

The method presented so far yields a regular remeshing result with all edge lengths being

close to the target value l and all inner triangle angles being close to 60◦. However, as

we showed in [BK04b], the uniformity of the vertex distribution can still be improved,

since it does not only depend on the edge lengths, but also on the Voronoi area around

each vertex (cf. Fig. 3.3).

These areas may still differ noticeably, since a vertex of valence k is surrounded by k

almost equilateral triangles with edge lengths close to l. As a consequence, a vertex of

valence 7 will have a larger Voronoi area than a vertex of valence 6 or 5. By consequence,

all irregular vertices (with valences different from 6) result in a locally imbalanced sam-

pling density. This means that we have to trade-off equilateral triangles against equal

Voronoi areas, i.e., equalized vertex distributions.

To account for this we propose a fine-tuning by an area-based tangential smoothing.

Each vertex vi is assigned a gravity that equals its Voronoi area A (vi). Our adjusted

tangential smoothing moves each vertex to the gravity-weighted centroid of its one-ring

neighbors

∆grav p (v) :=
1∑

vi∈N1(v) A (vi)

∑
vi∈N1(v)

A (vi) (p (vi)− p (v)) .

To ensure a tangential smoothing on the surface, the update vector is again projected

into the tangent plane. Vertices with large Voronoi area have a higher gravity and

therefore attract their surrounding vertices, thereby reducing their own area. Usually

very few (about 5) iterations of this area-weighted tangential smoothing are sufficient to

reduce the total variation of vertex areas by a factor of about 5 (cf. Fig. 3.9).

35

3 High-Quality Mesh Generation

Figure 3.9: Area-weighted tangential smoothing equalizes the Voronoi areas of vertices

and thereby improves their global distribution. From left to right: original mesh, näıve

thresholds
(

1
2
, 2
)
, optimal thresholds

(
4
5
, 4

3

)
, and optimal thresholds plus area-weighted

smoothing. The images show a color coding of the Voronoi areas (top row) and their

respective histograms (bottom row). The respective relative mean deviations from the

target edge length are 148%, 55%, 27%, and 21%. The mean deviations of inner angles

from 60◦ are 26.6◦, 6.7◦, 4.0◦, and 5.6◦. The relative mean deviations from the mean

Voronoi area are 65%, 34%, 13%, and 4%.

Feature-sensitive remeshing

The main objective for the presented isotropic remeshing is the generation of a high

quality tessellation with close-to equilateral triangles. However, if the original surface

is a technical dataset containing sharp geometric features, these have to be preserved

faithfully. Since the remeshing is performed by a set of local geometric or topological

operations, slightly adjusting these operators easily allows for a feature-sensitive variant

of the remeshing algorithm.

Following the general ideas of Vorsatz et al. [VRS03], a set of feature edges and feature

vertices is marked on the original surface based on the dihedral angle between adjacent

triangles. These feature lines can be preserved by the following simple rules:

36

3.2 Mesh Optimization

Figure 3.10: The iterative remeshing can easily be modified to preserve sharp features

by using special rules for the processing of feature edges or feature vertices for each local

remeshing operator.

• Corner vertices, i.e., vertices with more than two incident feature edges, have to

be preserved and are excluded from all topological and geometric operations.

• Vertices on feature edges are only collapsed along their two incident feature edges.

Non-feature vertices, however, are allowed to be collapsed into a feature vertex.

• Splitting a feature edge creates two new features edges and one new feature vertex.

• A feature edge is never flipped. In order to avoid caps opposite to feature edges a

special edge split has to be used instead.

• The tangential smoothing of vertices on feature edges is restricted to a univariate

smoothing along the corresponding feature lines.

These simple rules cause almost no performance penalty and allow for a high quality

isotropic remeshing of technical datasets. As an example a feature-sensitive remeshing

of a decimated version of the well-known fandisk dataset is shown in Fig. 3.10.

37

3 High-Quality Mesh Generation

3.3 Global Error Control

The last sections showed that most meshes resulting from a surface reconstruction pro-

cess, no matter whether an explicit or implicit approach was chosen, have to be optimized

in several ways before they are ready to be used in engineering applications. Especially

for this kind of applications, a prescribed approximation tolerance to the original ref-

erence geometry must not be violated, otherwise the simulation’s results might become

meaningless. As a consequence, it is crucial to provide an exact or at least conservative

global error bound for all mesh processing algorithms that are applied to the mesh.

As the results of the different mesh optimizations are often hard to predict, they

are usually applied repeatedly to (regions of) the input mesh in any order. Even if

each of these mesh optimization algorithms provides its own (local) error bound, these

individual errors can accumulate during multiple optimization loops, especially if several

optimization algorithms are applied alternatingly. Additionally, the individual error

measures usually exploit the fact that only a small region of the mesh is modified at

one time. For instance, the one-sided Hausdorff distance for mesh decimation [KCS98]

can only be computed at reasonable cost, because each halfedge collapse removes just

one vertex and all remaining vertices are a subset of the original ones. Hence, only the

distances from the already removed vertices to the current mesh have to be considered.

However, as soon as different methods are interleaved, these locality assumptions break

down. For example, one smoothing iteration changes the positions of all vertices, and

one re-meshing step can affect the complete mesh connectivity.

In order to prevent such kind of error accu-

mulation, a global approximation error to the

initial reference geometry has to be taken into

account. To allow for greatest flexibility, this

global error measure should be independent of

the individual algorithms to be applied to the

mesh. This is provided by the concept of toler-

ance volumes or simplification envelopes : An

envelope of user-specified thickness εmax (the

error tolerance) encloses the reference geome-

try, and for each mesh modification the vertices

and triangles are tested to stay within this tol-

38

3.3 Global Error Control

dA(·) < ε

dB(A)

A

B

Figure 3.11: The gray tolerance volume around the original surface A guarantees the

decimated surface B to stay within a distance dA (B) < ε to A. However, this does in

general not bound the Hausdorff distance dB (A) from A to B, as shown by the thick

arrow.

erance volume, thus guaranteeing an upper bound on the one-sided Hausdorff distance

from the current mesh to the original data. Notice that this error measure is not the

same as the one-sided Hausdorff error from the original data to the current mesh as used

for mesh decimation (Sect. 3.2.2), but it turned out to be sufficient for all our test cases

(cf. Fig. 3.11).

This error measure was used for the simplification envelopes of Cohen et al. [CVM+96].

In their work polygonal meshes are used for constructing the simplification envelope and

for performing the inside tests for given candidate triangles. Both problems are hard to

solve robustly using triangle meshes, as the tolerance volumes corresponds to Minkowski

sums of the reference surface and a sphere of radius εmax, and they are bounded by two

offset surfaces in positive and negative normal direction. As a consequence, their method

is both algorithmically and computationally very complex.

When comparing the strengths and drawbacks of explicit and implicit surface rep-

resentations (see Chap. 2), the latter ones are clearly preferable for constructing the

tolerance volumes as well as for the required distance queries for candidate triangles.

Zelinka and Garland [ZG02] therefore proposed to discretize the characteristic function

of the tolerance volume into a uniform binary permission grid . In order to check a

candidate triangle it is rasterized into the grid and tested to pass only through “valid”

grid cells that lie completely inside the tolerance volume. A drawback of this otherwise

39

3 High-Quality Mesh Generation

very efficient method is that the resulting piecewise constant approximation suffers from

aliasing artifacts. To reduce these artifacts, a rather fine grid resolution is needed, which,

in turn, is limited by its cubic memory growth.

A more memory efficient representation was proposed by Frisken et al. [FPRJ00], using

an adaptively sampled piecewise tri-linear approximation of the signed distance field

(ADF). An also piecewise linear, but C−1 approximation of the distance field was shown

to lead to an even further reduction of memory consumption [WK03]. Although these

two approaches consume significantly fewer memory, testing whether a given triangle

lies within an approximation tolerance gets more complicated. For instance, restricting

an ADF to a candidate triangle results in a piecewise cubic distance function, whose

maximum has to be found.

In [BBVK04] we propose an approach that can be categorized to lie between permis-

sion grids and the latter two methods. Similar to permission grids, we sample the signed

distance function on a regular grid. However, by using a piecewise tri-linear approxi-

mation instead of a piecewise constant one, the higher approximation order allows us

to work with coarser grid resolutions. Although the distance test for a given triangle

is more complicated than in [ZG02], it is simpler compared to [FPRJ00, WK03], since

we sample on a regular grid. To check a given candidate triangle, the distance func-

tion has to be evaluated and examined on that triangle, which amounts to a tri-linear

interpolation of distance values within the cells of the regular 3D grid.

However, this tri-linear interpolation task is exactly what texture units of modern

graphics hardware have been optimized for. We therefore propose to represent the

piecewise tri-linear distance volume by a three-dimensional texture, as this allows us

to exploit the hardware acceleration of modern graphics processors (GPUs). Testing

whether a given triangle lies within the tolerance volume then basically amounts to

rendering it using the pre-computed 3D distance texture. The required voxelization and

tri-linear interpolation will automatically and efficiently be performed by the GPU. The

rapidly increasing computational power of GPUs and their flexible programmability in

terms of vertex and pixel shaders makes GPUs very suitable for complex streamable

computations and even triggered the new GPGPU research field [BGH+04].

An additional obvious application of our approach is the accurate and efficient visu-

alization of the approximation error between two meshes by color-coding the respective

per-pixel distance values using high quality post-classification transfer functions known

40

3.3 Global Error Control

from direct volume rendering [RS01]. In comparison to a 2D texture based error vi-

sualization like in Metro [CRS98], we do not have to pre-compute a per-triangle error

texture, but exploit the 3D texturing hardware instead. As a result, we can even visual-

ize the distance of a dynamically changing mesh to a reference surface at a rate of 15M

triangles/sec.

In Sect. 3.3.1 we first present the initial generation of the 3D distance texture. Sect. 3.3.2

then describes the implementation of a generic distance check for a given triangle on the

GPU. A slightly more detailed explanation with additional implementation notes can

be found in [BBVK04]. Using these ingredients our method can be encapsulated into

an easy-to-use module for distance checks, which can be incorporated into any mesh

processing algorithm, of which we show a few examples in Sect. 3.3.3.

3.3.1 Distance Texture Generation

Given an initial reference surface represented by a triangle mesh, a piecewise linear

approximation of its signed distance field is computed on a regular 3D grid by a fast

marching method as described in Sect. 2.3.1. In the case of models with boundaries,

we can simply fall back to a unsigned distance fields instead of a signed ones, which

leads to a small over-estimation of the error by h/2 in grid cells that are intersected

by the reference surface (h denoting the edge length of grid cells). For reasonable grid

resolutions, this over-estimation does not lead to problems.

The accuracy of the distance field approximation is determined by the grid resolution

R, or by the edge length h, respectively. The tri-linear approximation within a grid cell

may under-estimate the exact error by at most one half of the cell diagonal in the worst

case. Hence, the user-specified error tolerance is adjusted to

εmax ← εmax −
√

3

2
h

in order to take this into account. Since the distance field is smooth in most regions,

and since it is approximated by a piecewise linear function, the approximation error de-

creases like O(h2) when increasing the grid resolution [Dav75]. In contrast, the piecewise

constant approximation of [ZG02] improves just linearly. This allows us to use coarser

grid resolutions compared to them, as we will see in Sect. 3.3.3.

41

3 High-Quality Mesh Generation

The resulting regular grid of distance values now has to be used as an OpenGL 3D tex-

ture. Until recently, the texture size had to be a power of two in each dimension, but this

restriction has been removed by the OpenGL extension ARB texture non power of two.

For better memory efficiency unsigned byte values should be stored in the distance tex-

ture by mapping the range [−εmax, εmax] to the integers {0, . . . , 255}, leading to an 8 bit

quantization of the acceptable error values. Although this turned out to be sufficient in

all experiments, higher precision integer values or even floating point textures can also

be used.

3.3.2 Triangle Distance Check

Given a candidate triangle, an error check as well as an error visualization can now be

performed by simply rendering this triangle using the pre-computed 3D distance texture.

The triangle will automatically be rasterized and the distance values will be fetched from

the 3D distance texture using tri-linear interpolation.

p

o
(R+1)h

Rh In order to properly access the texture, 3D texture

coordinates have to be computed from the relative po-

sition of a vertex w.r.t. the grid. Since OpenGL assigns

texture coordinates to the centers of grid cells (texels),

instead of to the grid nodes (see [SA03], p. 134), the

texture coordinate t(p) associated to a 3D point p is

its relative position w.r.t. a grid extended by h/2 in

each dimension:

t(p) =
p− o +

(
h
2
, h

2
, h

2

)T

(R + 1)h
,

where h again denotes the edge length of a cell, R the grid resolution, and o the lower left

front corner of the grid. The on-the-fly computation of texture coordinates can easily

be mapped to the GPU using a small vertex shader [LKM01].

The setup described so far can already be used for pixel-accurate distance visual-

ization. A transfer function which maps the interpolated distance values to a given

color range can be represented by a second RGB texture, such that a dependent tex-

ture lookup results in the desired color coding of per-pixel distance values (cf. Fig. 3.13).

42

3.3 Global Error Control

x

y

z
x

y

p1, t1
(0,0), t1

p3, t3

p2, t2

(0,L), t2

(L,0), t3

3D 2D

Figure 3.12: Since the pixel colors, i.e., the distance values, depend on the interpolated

texture coordinates ti only, the vertex positions pi can be changed to the simple 2D

setup on the right hand side.

This corresponds to high quality post-classification methods frequently used in hardware-

accelerated direct volume rendering [RS01].

Basically the same idea is used to test whether or not a given triangle lies completely

within a tolerance volume around the reference surface: a special color is assigned to

distance values greater than the prescribed tolerance, the candidate triangle is rendered

and the framebuffer is examined for this color. As described above, rendering a triangle

using the distance texture will automatically interpolate the distance function during

rasterization. Notice that the resulting per-pixel distance values depend on the 3D

texture coordinates only, such that the vertex positions can be adjusted as long as the

texture coordinates stay the same.

However, when checking a given triangle by rendering it, one has to make sure that

it is visible and that sufficiently many pixels are generated by its rasterization. Instead

of adjusting the camera position to view perpendicular on each candidate triangle, we

simply render the 2D triangle ((0, 0), (L, 0), (0, L)), but still use the correct texture

coordinates t(pi) computed from the corresponding 3D positions (cf. Fig. 3.12). In

order to have a sufficient resolution in the rasterization of the candidate triangle, and

hence a sufficient sampling of the distance field, the edge length L is determined such

43

3 High-Quality Mesh Generation

that the pixel resolution meets the texture resolution. If p0, p1 and p2 denote the

positions of the triangle’s vertices, this edge length is

L =
⌈
1

h
·max {‖p0 − p1‖ , ‖p1 − p2‖ , ‖p2 − p0‖}

⌉
.

In order to detect pixels violating the error bound εmax we use a transfer function

assigning a completely transparent color (α = 0) to distance values less than or equal

to εmax and an opaque color (α = 1) otherwise. Hence, as soon as one pixel is rendered,

the candidate triangle violates the error bound. This, however, can easily be checked

using occlusion queries (ARB occlusion query), which return the number of pixels being

rendered during a query period.

3.3.3 Applications

The distance texture generation and the generic triangle test can be encapsulated within

an easy-to-use global error module. After initializing the distance texture by specifying

a reference triangle mesh, the error tolerance εmax, and the grid resolution, an arbitrary

list of triangles can be tested. In addition, the distance texture can also be used to

visualize the error by color-coding per-pixel distances.

We integrated this global error plug-in into mesh decimation and mesh smoothing

applications (cf. Fig. 3.13). For mesh decimation, a candidate halfedge collapse is tested

against the error bound by simulating the collapse and rendering the one-ring triangles

of the remaining vertex (cf. Fig. 3.5). The mesh smoothing algorithm, as described in

Sect. 3.2.1, computes an update vector for each vertex based on its Laplacian. For each

vertex this update step is simulated and its one-ring triangles are tested to stay within

the error bound by rendering them.

For rating the efficiency of GPU-based tolerance volumes, we compared the mesh dec-

imation to a one-sided Hausdorff error decimation [KCS98] and to the permission grids

of Zelinka and Garland [ZG02]. Our new method is faster by a factor of about 2 com-

pared to the Hausdorff decimation, and faster by a factor of 1.6 than permission grids.

Although this improvement is not too impressive, our method can be used for any mesh

processing algorithm, in contrast to the one-sided Hausdorff error, that is specialized for

mesh decimation. In comparison to permission grids, we achieve comparable decimation

results with a grid resolution R being 1
3.5

of theirs, due to our better approximation of

44

3.3 Global Error Control

Figure 3.13: The GPU-based tolerance volumes can easily be encapsulated into a frame-

work for error control and error visualization, that can be used by any mesh processing

algorithm. The images show examples for mesh decimation (left) and mesh smoothing

(right).

the distance field. Although we use one byte for each grid node instead of one bit only,

our memory consumption is still smaller by a factor of about 6.

We also integrated the tolerance volumes into an interactive free-form modeling tool

(cf. Fig. 3.14). One drawback of its otherwise intuitive user interface is that it is hard

to predict by which amount the surface is changed when some of its points are dragged

around. After integrating the global error module, the distance visualization gives real-

time feedback to the designer at a rate of about 15M triangles/sec, such that precise

deformations can be performed at no additional cost. In addition, a global error check

can be applied to all triangles being affected by a deformation using one global query

only. Blocking a deformation that would otherwise violate the error tolerance ensures

that the deformed model does not deviate too much from its initial state.

These examples point out that the GPU-based tolerance volumes are an efficient and

versatile tool for controlling and visualizing the deviation of one mesh to a reference

surface. Besides its high efficiency, one of the main advantages of this approach is that

it is both easy to use and easy to implement, since all complicated algorithmic tasks are

performed by the graphics card. Although texture memory is practically more limited

45

3 High-Quality Mesh Generation

Figure 3.14: The GPU-based tolerance volumes provide real-time visual feedback to

the designer during a surface deformation process, no matter which kind of surface

deformation technique is used.

than main memory, the possible grid resolutions have proven to be sufficient due to the

piecewise linear distance field approximation.

Additionally, the GPU tolerance volumes can be used in combination with any ge-

ometry representation that can be rasterized and rendered by OpenGL, possibly at the

cost of computing the texture coordinates on a per-pixel level. One particularly inter-

esting alternative to triangle meshes are point-sampled geometry representations, that

have become more and more popular within the last years due to the steadily increasing

complexities of range-scanned models [KB04]. Exploiting the programmability of mod-

ern GPUs, these datasets can nowadays be visualized with the same quality and similar

performance as provided by rendering triangle meshes [BK03c, BSK04, BHZK05]. As a

consequence, our real-time distance checking and distance visualization can directly be

transferred to point-sampled geometries.

46

4 Feature-Sensitive Mesh Generation

In Chap. 2 we pointed out that triangle meshes are an extremely flexible and pow-

erful surface representation. The mesh generation and mesh optimization algorithms

presented in Chap. 3 additionally showed that triangle meshes allow for efficient sur-

face processing and provide high quality approximations of geometric shapes. Because

of these strengths, polygonal meshes are increasingly often used in engineering applica-

tions and numerical simulations. In this context one has to guarantee that meshes which

are to be used for simulations are sufficiently good approximations of their continuous

physical counterparts. In the presence of sharp or highly curved features, a high-quality

approximation of these geometric features becomes even more important, since they are

usually very relevant for the simulation and will therefore have a strong influence on the

results.

Unfortunately, faithfully representing sharp or strongly bent surface features, like

edges or corners in technical datasets, is also the most complicated sub-task in surface

approximation [KB03a]. Since the key to successfully using polygonal meshes in engi-

neering applications is a high quality representation of these geometric features, we first

review the approximation properties of polygonal meshes in the presence of features in

Sect. 4.1.

We described in Sect. 3.2 that mesh optimization methods like decimation or general

remeshing can quite easily be extended to properly preserve existing sharp surface fea-

tures by tagging feature edges based on their dihedral angle and defining special rules for

their treatment. This, however, requires the sharp features to exist in the initial mesh, a

condition that is not satisfied in most cases: The majority of mesh generation methods is

based on an intermediate implicit surface representation and uses a contouring method

like Marching Cubes to extract the surface mesh (see Sect. 3.1.2). As briefly mentioned

in Sect. 2.3.2, this may lead to severe alias-artifacts in the vicinity of sharp features,

since the standard Marching Cubes is not a feature-sensitive algorithm. In Sect. 4.2 we

47

4 Feature-Sensitive Mesh Generation

will therefore describe this problem in more detail and present a solution by enhancing

the standard Marching Cubes algorithm to detect and reconstruct sharp features.

Surface features that are not sharp, but highly curved, are similarly complicated

configurations for surface approximation techniques. These features cannot simply be

detected by a curvature discontinuity, like a large dihedral angle, and therefore are

usually not preserved by mesh processing methods. In Sect. 4.3 we derive an optimal

sampling pattern for blend regions in technical datasets, which are a typical example for

such features, and use this pattern to re-sample existing meshes, such that alias artifacts

are effectively reduced.

4.1 Approximation Properties and Normal Noise

From approximation theory it is known that approximating a smooth (sufficiently dif-

ferentiable) surface S by a piecewise linear and continuous interpolantM (a polygonal

mesh) converges with quadratic approximation order. However, in the vicinity of sharp

features the surface S is no longer differentiable, since normal vectors are not continuous

across that feature. This loss of differentiability causes the approximation power to drop

down to linear order, leading to much slower convergence in these areas.

Since sharply curved features correspond to high frequencies of the surface S and

since the polygonal meshM is a finite discrete sampling of this surface, signal processing

theory tells us that the sampling density has to sufficiently adapt to the signal’s frequency

spectrum; otherwise it will not be possible to capture all geometric features and the

surface will be affected by aliasing artifacts. Following these principles, the sampling

density ofM has to be adjusted to the curvature of the underlying surface S, i.e., coarser

sampling can be used in smooth and flat areas, but the vertex density has to be increased

in highly curved regions of the surface.

Unfortunately, the degenerate case of sharp features of S corresponds to an infinitely

high curvature or frequency, requiring (in theory) an infinitely dense sampling in their

vicinity. As Fig. 4.1 clearly depicts, increasing the sampling density results in a sequence

of meshes that converge point-wise to S, but whose normal vectors will never converge

to the correct normals of S. Hence, refining the mesh will in fact not remove the

alias-artifacts, it will just shift them to a higher frequency band. Algorithms requiring

48

4.1 Approximation Properties and Normal Noise

Figure 4.1: Alias error at high-frequency geometric details. By refining the mesh,

the effect becomes less and less visible due to the convergence of the mesh M to the

continuous surface S, but the problem is not really solved, since the normal vectors of

M do not converge to the normals of S. The resulting alias-errors can only be removed

by placing samples exactly on the sharp features.

derivative information like normal vectors will then give anything but reliable results

in these cases. Such methods may be as simple as surface shading, showing specular

artifacts, or more sophisticated simulations like computational fluid dynamics (CFD),

where these randomly tilted normals may cause erroneous turbulences.

Since already small perturbations of nearby vertex positions can cause large devia-

tions of normal vectors, the approximation error alone is not a sufficient measure for

reconstruction quality. Considering the piecewise linear nature of triangle meshes, the

global sampling pattern also has to be taken into account — in addition to individual

vertex positions only. In [BK01a], we therefore define that a mesh M is a high-quality

approximation of a surface S, if the mesh normals of M are a subset of the real sur-

face normals of S. If instead the normal vectors are randomly tilted away from the

correct direction, we refer to this effect as normal noise, similar to surface noise being

a high-frequency perturbation of vertex positions (cf. Figs. 4.1 and 4.2). The process of

reducing or even removing these alias-artifacts is then called surface anti-aliasing.

The amount of normal noise is also a measure for surface quality: high quality surfaces

in geometric modeling and CAD are usually characterized by a low variation of curvature,

also called fairness [MS92, WW92]. In the discrete setting of polygonal meshes one way

to derive a discrete analogon to the concept of surface curvature is to consider the

normal jump across an edge, i.e., the dihedral angle between the normals of two incident

faces. If the triangle mesh is an orientable manifold, one can additionally distinguish

49

4 Feature-Sensitive Mesh Generation

Figure 4.2: Different approximations of a cube and a cylinder and their corresponding

histograms of normal jumps. Meshes obtained from a feature-sensitive sampling process

provide a high approximation quality and are characterized by few peeks in the his-

togram, corresponding to the different principal curvatures of the underlying surfaces.

In contrast, the randomly sampled meshes — although having a higher sampling density

— are of lower quality, because they are affected by normal noise.

between convex normal jumps (positive sign) and concave normal jumps (negative sign).

A triangle mesh is then said to be of high quality if the variation of its normal jumps is

low. For low quality meshes with a strong variation of normal jumps we are back to the

notion of normal noise again (cf. Fig. 4.2).

This shows that geometric features are on the one hand the most significant mesh

regions for many applications and that they are on the other hand the most difficult

regions from an approximation point of view. If we are given a fixed vertex budget and

since all samples have to be placed on the surface, the only remaining degrees of freedom

are to move the vertices within the surface, i.e., to choose the sampling pattern.

The only way to generate meshes of superior quality and free of normal noise is to have

this sampling pattern aligned to the surface features. Sect. 4.3 shows that for strongly

curved features the mesh has to be aligned to the principal curvature directions of the

underlying geometry. In the extreme case of infinitely sharp features, surface samples

consequently have to be placed exactly on the respective feature edges or corners to

50

4.2 Feature-Sensitive Iso-Surface Extraction

get rid of the alias-artifacts. Building on this fact, we first derive a feature-sensitive

iso-surface extraction as an enhancement of the standard Marching Cubes algorithm in

the following section.

4.2 Feature-Sensitive Iso-Surface Extraction

As mentioned in Sect. 2.3.2, the Marching Cubes algorithm (MC) is the widely-used

standard technique for extracting iso-surfaces from volumetric representations. It is

used in many different areas, like medical imaging, CSG solid modeling, and implicit

mesh generation. While the organic structures in medical datasets are mostly smooth,

the surfaces generated in the latter two cases will contain sharp features in general.

The problem with all Marching-Cubes-like grid-based algorithms is that they are not

capable of reconstructing sharp surface features, but instead lead to severe alias artifacts

in the vicinity of those features in the reconstructed surface. This is due to the fact that

these algorithms process discrete volume data and that the sampling of the implicit

surface F (x) = 0 is performed on the basis of a regular spatial grid.

Fig. 4.3 shows this effect on the well-known fandisk model, which has been converted to

an implicit representation by sampling its signed distance field on a uniform 65×65×65

grid. Using the standard MC algorithm to convert the implicit representation back to

an explicit triangle mesh leads to severe alias artifacts and normal noise near the sharp

features of the original geometry. As shown in the last section, refining the underlying

3D grid will only reduce the size of these artifacts, but will not solve the basic alias

problem (cf. Fig. 4.1).

In [KBSS01] we therefore proposed two enhancements of the standard MC algorithm

that allow us to faithfully reconstruct sharp features. The use of directed distance fields

enables the computation of exact surface samples on the grid edges, which is not possible

using the standard scalar valued distances (Sect. 4.2.1). Second, the extended Marching

Cubes algorithm (EMC) robustly detects and reconstructs features within grid cells based

on the distance field’s gradient information (Sect. 4.2.2). Both components can be used

independently to improve the surface extraction, but the best results are obtained by

combining both components (cf. Fig. 4.3, right). Since the simple algorithmic structure of

51

4 Feature-Sensitive Mesh Generation

Figure 4.3: Two reconstructions of the “fandisk” dataset from a 65× 65× 65 sampling

of its signed distance field. The standard Marching Cubes algorithm leads to severe alias

artifacts near sharp features (left), whereas our feature-sensitive iso-surface extraction

faithfully reconstructs them (right).

the MC is preserved, our feature-sensitive isosurface extraction can replace the standard

MC in many applications, which we demonstrate in Sect. 4.2.3.

4.2.1 Directed Distance Fields

When discussing implicit surfaces in Sect. 2.2, it turned out that from all possible implicit

functions representing the outer surface S of a solid object, the signed distance field is the

most natural one. In order to apply the standard MC algorithm, the signed distance field

F is sampled on a (uniform or adaptive) spatial grid with nodes gi,j,k = (ih, jh, kh)T ,

and the resulting distance values di,j,k := F (gi,j,k) are tri-linearly interpolated within

the cells’ interiors.

For each edge intersected by the zero-level isosurface S, a sample point approximating

this intersection is computed by a linear combination of its endpoints’ distance values

(see Sect. 2.3.2). However, the resulting samples are not necessarily close to S in the

vicinity of sharp features, as shown in a two-dimensional example in Fig. 4.4. Since

both grid points find their closest surface point (i.e., their minimum distance) in differ-

52

4.2 Feature-Sensitive Iso-Surface Extraction

Figure 4.4: Consider two neighboring grid points in the vicinity of a sharp corner of the

contour S. Sampling the scalar-valued distance function F at both grid points (circles)

and estimating the sample point by linear interpolation leads to a bad estimation (black)

of the true intersection point between the contour S and the cell edge (left). Using

directed distance values at each grid point allows to compute exact intersection points

of the contour S with the grid’s edges (right).

ent directions, which cannot be captured by scalar valued distances, the simple linear

interpolation fails. Fig. 4.5 shows the same effect on a three dimensional example.

The distance field approximation can be improved by using a different discretization

of F , the so-called directed distance field. Since the MC algorithm computes sample

points on the grid edges only, it is sufficient to also restrict the approximation of F to

these edges. The directed distance field stores at each grid point gi,j,k three directed

distances in positive x, y, and z direction instead of the scalar valued distances di,j,k,

i.e.,

di,j,k =

distx (gi,j,k, S)

disty (gi,j,k, S)

distz (gi,j,k, S)

 .

The sign of the distance values again indicates whether a grid point lies inside or outside

of the object, and hence the processing of directed distance fields is basically identical to

that of scalar distance fields. For instance, the min/max computations for the boolean

operations of CSG modeling (see Sect. 2.2) just have to be applied component-wise to

the directed distances.

The MC algorithm can be applied to the directed distance field data structure without

significant modifications. The local configuration can still be derived from the sign

pattern at the cell’s corners, since the three directed distances at one grid point always

have the same sign (inside/outside status). In order to compute an intersection point on

an edge, its position can now be determined exactly by the directed distances along that

53

4 Feature-Sensitive Mesh Generation

Figure 4.5: The center and right surfaces are generated by the MC algorithm applied

to the uniformly sampled distance field of the object on the left. In the center, scalar

distance values are stored for each grid point, while on the right three directed distances

are stored to enable exact surface sampling. This reduces the alias errors to a small

region around the feature.

edge. For instance, the intersection point s for the cell edge between gi,j,k and gi+1,j,k is

computed by

s =

(
1− |di,j,k[x]|

h

)
gi,j,k +

|di,j,k[x]|
h

gi+1,j,k .

Although storing the directed distances di,j,k increases the memory consumption by

a factor of three, it provides sample points lying exactly on the surface S to the MC

algorithm (cf. Fig. 4.4, right). As demonstrated in Fig. 4.5, this significantly improves

the quality of the extracted surface in the immediate vicinity of sharp features.

As another advantage, the computational effort for generating directed distance fields

is actually lower than for scalar distance fields in the case of typical shape represen-

tations. Instead of searching for the minimum distance in all directions, the directed

distances can be computed by ray casting along the grid axes, therefore all the acceler-

ation techniques for fast ray-tracing can be exploited [AK89]. There are two different

options for generating the directed distance field: If each cell edge is processed sepa-

rately, the locality of the interrogation due to the small edge length can be exploited.

On the other side, axis-aligned rays can be shot through whole rows of grid points,

e.g., g0,j,k, . . . ,gn,j,k. All intersections along this ray are then used to store the directed

distances at the corresponding grid points.

54

4.2 Feature-Sensitive Iso-Surface Extraction

For implicit surfaces the ray intersection requires a univariate root finding scheme

[KB89], which becomes particularly simple, as we only search along the x, y, or z

axis. Due to the small edge length sufficiently good starting values guarantee a fast

convergence of Newton-type iterations. Hence, the ray intersection is much simpler than

a closest point search [BBB+97]. In the case of polygonal meshes, straightforward ray

casting methods can be applied and accelerated by spatial data structures [Sam94]. If the

input data is just a point cloud, like for volumetric surface generation (see Sect. 3.1.2),

then each point has to be equipped with a properly oriented normal vector in order

to define a signed distance field [ABK98, HDD+92]. Ray intersections can then be

computed like presented in [SJ00, AA03].

4.2.2 Extended Marching Cubes

Even with the exact surface samples provided by the directed distance field, the alias

artifacts at sharp features of the underlying surface S remain, since the standard MC

algorithm computes these samples on a globally uniform grid. Locally adapting the sam-

pling grid to the features of an object is critical, since this would sacrifice the simplicity

and hence the efficiency of the basic algorithm. We therefore propose to detect sharp

features within grid cells and to reconstruct them by placing additional sample points

on the sharp feature in the cell’s interior.

The feature detection and sampling is based on using the local gradient ∇F to ex-

trapolate the behavior of the surface near features. Fig. 4.6 depicts the technique in

two dimensions: Instead of directly connecting the sample points on the cell edges, the

contour’s normals are used to compute a linear local approximation (tangent element)

for each intersection point. The intersection of the two tangents yields an additional

sample point close to the sharp feature, such that including this additional sample into

the contour approximation results in a much better reconstruction.

This simple technique works, because a reasonable geometric model — although not

being differentiable near a sharp feature — can still be assumed to be piecewise differen-

tiable. Hence, using point and normal information to generate tangent elements yields

good approximations on both sides of the feature, such that the intersection of these

approximations gives a good estimate of the actual feature position.

55

4 Feature-Sensitive Mesh Generation

Figure 4.6: By using point and normal information on both sides of the sharp feature

one can find a good estimate for the feature point at the intersection of the tangent

elements. The dashed line is the result the standard Marching Cubes algorithm would

produce.

It was pointed out in Sect. 4.1 that the approximation order of a piecewise linear

mesh is O(h2), but that near sharp features the surface is not differentiable and hence

the approximation order drops down to O(h). Using the tangent element approximation,

however, increases the local convergence rate in feature cells, since the quadratic order

approximation is done on both sides of the feature separately.

Figure 4.7: Feature samples are classified

as either edges (green) or corners (red).

In our extended Marching Cubes algo-

rithm we generalize this univariate feature

point extrapolation technique to surfaces.

In this case the situation is more com-

plicated, since different types of features

have to be handled in a different manner.

These types are feature edges, where two

smooth surface regions meet along a sharp

feature line, and feature corners, where

more than two smooth components meet

or, equivalently, where more than two fea-

ture edges intersect (cf. Fig. 4.7). Just like

the standard MC, the extended algorithm

processes each cell separately. Each cell is

checked whether a feature is present and

if yes, which type of feature it is.

56

4.2 Feature-Sensitive Iso-Surface Extraction

Figure 4.8: The feature sensitive sampling in the extended Marching Cubes algorithm

works in three steps. First, the cells/patches that contain a feature are identified (left).

Then one new sample is included per cell (center) and finally one round of edge flipping

reconstructs the feature edges (right).

If the cell does not contain a sharp feature, a local patch is generated using the

standard MC triangulation look-up table. However, if a feature is detected, the gradient

information at the edge intersection points is used to define local tangent elements, the

(pseudo-)intersection of which yields one new sample point lying close to the feature.

This additional sample is included into the reconstructed surface using a triangle fan

(instead of the standard triangulation) (cf. Fig. 4.8). Hence, the global uniform sampling

grid can still be used to compute points on the surface S, but additional sample points

are included in those cells where sharp features are detected. By this, the extended

MC combines the advantages of regular data structures with the flexibility of adaptive

sampling.

Since the feature samples are inserted into the mesh as the center of a triangle fan

without considering neighboring cells, the tessellation of the resulting mesh does not

reflect the presence of feature line. However, this can easily be adjusted in a post-

processing step by flipping all mesh edges where this modification connects two feature

samples after the flip. The edge flipping does not produce any undesired side effects since

the restriction to one feature sample per cell guarantees their sufficient separation. After

the flipping, the edges connecting feature samples provide an explicit representation of

the feature lines within the triangle mesh (cf. Fig. 4.8). Fig. 4.9 shows the results of the

extended MC algorithm for the same dataset that has been used in Fig. 4.5.

57

4 Feature-Sensitive Mesh Generation

Figure 4.9: The original object on the left is converted into a volume representation

with the same resolution as in Fig. 4.5. In the center and on the right we applied the

extended Marching Cubes algorithm with feature sensitive sampling. The necessary

gradient information is estimated from the discrete scalar distance field in the center

and evaluated exactly from the directed distance field on the right. The result of the

combination of the directed distance field with the extended Marching Cubes algorithm

is indistinguishable from the original.

After this general description of the algorithm, the remaining technical questions are

how to do the feature classification and how to compute the feature sample point. There

are different ways to implement this functionality, where we designed our solution to not

contain any unintuitive parameter and to find the optimal position for the feature sample.

Surface normals

The feature detection and feature sampling both need additional information about the

surface S. In addition to the position of the sample points, their normal vectors are

required to construct the local tangent elements. The directed distances have been

shown to provide exact sample points at the edge intersections. For the surface normal

information the gradient of the distance field now also has to be evaluated exactly.

If an analytic implicit function F is known for the surface S, then its gradient can be

evaluated exactly at any location, using either symbolic or numerical partial derivatives.

For the evaluation of the directed distance to a polygon mesh, intersection points with

axis-aligned rays are computed. The gradient of the distance field at these points is

simply the normal vector of the intersected triangle. When computing ray intersections

58

4.2 Feature-Sensitive Iso-Surface Extraction

with a point cloud, the scattered points are replaced by tangent elements, hence the

situation is the same as for polygonal meshes: the gradient is the normal vector of

the point whose tangent disk was intersected. If only discretized scalar distances are

available out of some pre-process, the original implicit function F cannot be accessed.

In this case, the gradient has to be estimated from the tri-linear interpolation of the

scalar distance values.

Feature detection

Let s0, . . . , sn be surface samples obtained by intersecting the edges of a grid cell with

the surface S defined by F (x, y, z) = 0. If the constellation of the edge/surface inter-

section indicates (according to the standard MC table) the occurrence of more than one

connected component, then we assume that the si are a subset of the edge intersections

corresponding to the same component. In this case, the grouping of the si is done based

on the MC table. In cells with several unconnected components the edge detection and

feature sampling is applied for each component separately.

Let ni be the unit surfaces normals of S at si, i.e., the normalized gradients of F .

The goal is to detect if the surface patch of S corresponding to the samples si contains

a sharp feature. One simple but quite effective and intuitive heuristic to do this is to

compute the opening angle of the normal cone spanned by the ni:

θ := max
i, j
{ 6 (ni,nj)} = acos

(
min
i, j

{
nT

i nj

})
.

If θ is larger than some threshold angle θsharp, then the surface is expected to have a

sharp feature. In this case, let n0 and n1 be the two normals which enclose the largest

angle and let

n∗ :=
n0 × n1

‖n0 × n1‖

be the normal vector of the plane spanned by n0 and n1. In order to determine whether

the detected feature is an edge or a corner point (cf. Fig. 4.7), the maximum deviation

of the normals ni from the plane spanned by n0 and n1 is computed by

ϕ := max
i

{
π

2
− acos

(∣∣∣nT
i n∗

∣∣∣)}
and tested against some threshold ϕcorner.

59

4 Feature-Sensitive Mesh Generation

These simple criteria proved to be quite effective in all applications reported in

Sect. 4.2.3. The two parameters θsharp and ϕcorner are very intuitive, since they can

be considered as threshold angles that measure the sharpness of a feature. The thresh-

old θsharp can be chosen quite small, say θsharp = 25◦, if the gradient data is not too

noisy. For stability reasons in the subsequent calculations, however, it is advisable to

choose the corner threshold ϕcorner large enough, say ϕcorner = 45◦, in order to reduce

the number of erroneous classifications. This is necessary to distinguish between sharp

corners and curved feature lines. In all our experiments, the feature detection worked

robustly without being too sensitive to the particular choice of the threshold parameters.

Feature sampling

If the current cell is classified either as a feature line (θ > θsharp, ϕ ≤ ϕcorner) or as

a feature corner (θ > θsharp, ϕ > ϕcorner), a sample point has to be found as close as

possible to the feature. As explained above, a tangent element is generated from each

sample si and its normal ni, and the feature sample is placed at the intersection of all

tangent elements. This means that the new sample p tries to solve the linear system

nT

0
...

nT
n

︸ ︷︷ ︸

=:N

p =

nT

0 s0

...

nT
nsn

 . (4.1)

In general, this system is overdetermined, since there are usually more than three

edge intersections in each cell. However, at feature edges it can also happen that this

system is underdetermined, since at a perfect feature edge the tangent elements (si,ni)

are all sampled from two different planes, and hence the matrix of normal vectors has

(numerically) only rank two.

To avoid the handling of special cases, we solve the system (4.1) using the pseudo-

inverse based on the singular value decomposition (SVD) of the matrix N [GL89b]. If

the feature is classified as corner, then this is a very stable way to compute the optimal

feature sample point in the least squares sense, i.e., to find the point p where the sum

of squared deviations from all tangent elements takes on its minimum, similar to the

quadric error metric used for mesh decimation [GH97].

60

4.2 Feature-Sensitive Iso-Surface Extraction

If the feature is classified as an edge, one of the singular values is expected to vanish,

since the feature line lies in both tangent planes. However, on real data this will hardly

happen, since the gradients are affected by arithmetic noise, or the surface might be

slightly curved. Since the angle-based feature classification decided for an edge, the

smallest singular value of N is explicitly clamped to zero, thus enforcing the proper

structure of the (now) rank deficient system (4.1) and thus stabilizing its solution.

The pseudo-inverse of the modified matrix Ñ yields the least norm solution of the

underdetermined system, i.e., the point p on the feature line which is closest to the

origin. For this point to lie in a reasonable configuration to the samples si, a coordinate

transform is applied to the samples before setting up the system (4.1), such that their

barycenter is the origin.

The two steps required for the feature sampling are the angle-based feature classifi-

cation and the pseudo-intersection of tangent planes by a SVD of the matrix N . It is

tempting to try to read off the feature classification directly from N ’s singular values, as

it has been done in [JLSW02]. However, it turned out that this is a very unreliable cri-

terion, since the singular values not only depend on the angles between the normals, but

also on their distribution. A feature edge can cause up to seven edge intersections belong-

ing to the same surface component. A priori it is not known how many of those samples

lie on either side of the feature. This makes the SVD classification quite unreliable, since

the matrix [n0,n0,n0,n0,n0,n1] has a very different singular value distribution than the

matrix [n0,n0,n0,n1,n1,n1].

Figure 4.10: The tangent extrapola-

tion may also fail in certain situations.

There are also cases where our heuristic

of extrapolating and intersecting tangent ele-

ments may fail (cf. Fig. 4.10). These situations

occur mainly due to insufficient grid resolution

and hence can be resolved by extracting the

iso-surface on a higher refinement level of the

grid. In order to avoid extremely stretched tri-

angles in cases where the reconstructed sample

point does not lie within its grid cell, the new

feature point can also be projected back into

its grid cell or one simply does not add a fea-

ture sample at all for such cell configurations.

61

4 Feature-Sensitive Mesh Generation

4.2.3 Results

The application examples presented in this section demonstrate the flexibility and effec-

tiveness of our improved surface extraction scheme. In principle, the extended MC can

always replace the original MC algorithm, since it has the same algorithmic structure

and processes the same type of input data.

Obviously, the standard MC scheme will always outperform the extended version,

since the extended MC has to do more involved computations for each cell. However,

the feature sampling has to be done only in those cells where a feature configuration

has been detected, and their number will increase only linearly with the grid refinement.

For the technical examples shown in this section, the computational overhead is about

20%–40%. These examples contain about 10% more triangles compared to the standard

MC’s results, since the same refinement level was used for both algorithms. However,

the necessary refinement level for a given accuracy is usually lower for the extended MC,

since the feature sampling reduces the approximation error significantly.

The classical application area for volume representations is the design of solid objects

by boolean operations (see Sect. 3.1.2). Feature sensitive sampling is very important

in this context, since the sharp edges and corners indicate intersections of basic objects

and carry significant design information (cf. Fig. 4.11).

Figure 4.11: This figure shows a CSG example where the hollow letters are subtracted

from a cube-shaped base object. The right image shows the pieces that are generated

in the interior of the cube by the three cuts.

62

4.2 Feature-Sensitive Iso-Surface Extraction

Figure 4.12: The result of a milling simulation computed by CSG techniques. The

upper image shows the surface extracted by the standard MC algorithm, the lower

image shows the extended MC surface. The sharp ridges are better visible due to the

clearly reduced alias.

A very important practical application of this technique is the simulation of milling

processes, where a milling tool is traced along a path and its envelope is to be generated.

This application is very demanding for the solid modeling method, since the envelope

surface usually intersects itself many times. The sharp ridges, that are characteristic for

surfaces generated by a milling machine, carry crucial information, since they are used

to rate the quality of the NC program (cf. Fig. 4.12).

63

4 Feature-Sensitive Mesh Generation

Figure 4.13: Triangle mesh reconstruction from a 3D scan of a bust of Max Planck

consisting of 200k scattered points. In comparison to the result of the standard MC

(left), the extended MC surface is less blurred and shows much more details around the

mouth (right).

As described in Sect. 3.1.2, one well-established approach to surface reconstruction

from unstructured point clouds is to estimate a signed distance function and then to

apply the MC algorithm [HDD+92]. Since it is possible to compute directed distances

and gradient information from point clouds with associated normal vectors, the extended

MC can also be applied in this setting. Fig. 4.13 shows a surface reconstructed from a

dataset of 200k scanned points.

Since scattered point datasets often come from a 3D scanning device, they are usually

disturbed by noise, which affects the quality of the resulting 3D models and has to be

removed by mesh smoothing techniques (see Sect. 3.2.1). For meshes generated by the

extended MC algorithm, some mesh vertices and mesh edges are additionally tagged

as feature points and feature edges, respectively. This information can be exploited in

order to further improve the surface quality in a smoothing step by applying a univariate

smoothing scheme to the feature lines and a bivariate smoothing scheme to the non-

feature areas (cf. Fig. 4.14).

Polygonal meshes which are generated at some intermediate stage of an industrial

CAD process often have a bad quality. To make this data accessible to applications

other than mere display, their tessellations have to be optimized by remeshing algo-

64

4.2 Feature-Sensitive Iso-Surface Extraction

Figure 4.14: The left image shows a high resolution result of the extended MC applied

to the point cloud of Fig. 4.13. Low-pass filtering the mesh while taking the feature

information into account leads to the result on the right. All sharp features are well

preserved, while in the non-feature areas noise is effectively removed.

rithms (see Sect. 3.2.3). As an alternative, one can also convert a CAD model into a

volumetric representation, such that applying the extended MC algorithm to this vol-

ume gives a re-meshed version of the original with a more uniform vertex distribution.

Similar to the feature sensitive smoothing, the additional feature information in the

output can be exploited to control the behavior of a mesh decimation post-process (see

Sect. 3.2.2). This results in effectively decimated meshes that preserve the relevant

feature information (cf. Fig. 4.15).

The extended MC together with the directed distance field presents an important

enhancement of standard MC like techniques. By exploiting gradient information of the

distance field this method is able to reliably detect and classify sharp feature regions on

the surface and to accurately sample these features in order to reduce alias artifacts.

However, a major problem of MC techniques is the high complexity of the resulting

meshes due to the uniform over-sampling. Instead of decimating these meshes in a post-

processing step, for instance by piping them through an out-of-core mesh decimation

process [WK04], it would be better to directly extract an adaptively sampled mesh.

65

4 Feature-Sensitive Mesh Generation

Figure 4.15: Remeshing of a polygonal mesh. The top left mesh has been generated

from a CAD model and shows a very bad distribution of triangles. The distance field

of the model was sampled on a 1293 grid and the surface was reconstructed using the

standard MC algorithm, leading to severe alias artifacts (top right). The lower left

image shows that in the result of the extended MC all sharp features are reconstructed

correctly. The lower right image finally shows the result of a feature-preserving mesh

decimation algorithm (error tolerance 1%).

Combining the general idea of the extended MC with the surface nets of Frisken et al.

[FPRJ00], Ju et al. [JLSW02] proposed the dual contouring approach, which works on an

adaptive octree and allows for the extraction of adaptive meshes. However, the approach

as described in their paper leads to non-manifold situations for those cell configurations

where MC would build more than one patch per cell. Hence, these cases have to be

specially handled to guarantee a clean two-manifold output.

An example implementation of the extended MC based on our OpenMesh data struc-

ture [BSM05] can be downloaded from [Bot05]. Since we did not optimize the extended

MC code for computation speed, there should be room for improvements in the different

phases of our current implementation. As the algorithm processes each cell individually

(like the standard MC), a parallelization should be straightforward.

66

4.3 Feature-Sensitive Resampling of Blend Regions

4.3 Feature-Sensitive Resampling of Blend Regions

The last section pointed out that in order to avoid alias artifacts in the representation of

sharp features, samples have to be placed exactly on these features and the triangulation

has to be adjusted, such that feature samples are connected along their corresponding

feature lines. In this section we generalize this principle to rounded features, that are

not sharp, but highly curved in an anisotropic manner, like the typical cylindrical blend

regions in technical datasets, which we describe in Sect. 4.3.1.

The input models for numerical simulations, like computational fluid dynamics (CFD),

are typically derived by a reverse engineering process. These meshes may initially contain

several millions of sample points in order to not loose relevant geometric detail at the

early stages of the reconstruction process. As a consequence, they have to be decimated

down to a complexity the target application is able to handle. Most geometry-based

decimation schemes are greedy algorithms that only consider the local shape to decide

about which vertex to remove in the next step (see Sect. 3.2.2). As a consequence,

there is no direct control of the distribution and alignment of the mesh vertices on the

surface. Although the sampling density may locally adapt to the surface curvature, there

is no possibility to achieve global effects, like an alignment of the triangulation to highly

curved features in the geometry.

The meshes resulting from such a decimation process often turn out to be inappropri-

ate for sophisticated downstream applications like numerical simulations, because the

(weighted) random distribution of vertices results in severe alias errors, which can lead

to erroneous simulation results and become visible as shading artifacts (cf. Fig. 4.16).

Those alias errors are again caused by the fact that, although the decimated triangle

mesh stays point-wise within some tolerance to the original data, the normal vectors

can deviate significantly. The resulting normal noise becomes particularly evident in the

vicinity of feature lines, where the two principal curvatures differ strongly.

The only way to solve this geometric alias problem in surface reconstruction is to

choose the “right” sampling pattern, i.e., to globally adjust the distribution and align-

ment of mesh vertices, such that the normal vectors of the triangles are a sufficient

approximation of the normal vectors of the original surface.

In an early approach we enhanced our virtual range scanning technique [KB00] (as

described in Sect. 3.1.1) by a feature-aligned sampling pattern [BRK00]. Instead of re-

67

4 Feature-Sensitive Mesh Generation

Figure 4.16: Geometric aliasing such as normal noise becomes clearly visible under spec-

ular shading. The top image shows an original 3D-scan of a feature region. Although

the point positions have been sampled at high precision, the normals of the resulting

mesh deviate strongly from the normals of the original surface. Applying mesh deci-

mation (center) improves the situation slightly, since the triangles are stretched along

the feature, but the normal noise is still disturbing. In the bottom image we apply our

alias-reducing feature resampling. Although the mesh resolution has not changed, the

quality has improved due to effective normal noise elimination. The right column shows

the histograms of the respective normal jumps.

68

4.3 Feature-Sensitive Resampling of Blend Regions

projecting each pixel after rendering the surface into the z-buffer (leading to a regular

grid of 3D points), only a subset of the pixels is used, that is specified by a 2D sam-

pling pattern in the image space of the z-buffer. The special feature-aligned pattern is

constructed from the projection of lines of minimum and maximum curvature directions

into the image plane. Although following the right principles, this approach is obviously

limited by working on an intermediate two-dimensional image representation.

In [BK01a] we then proposed an object-space solution to this sampling problem that

is described in this section. After deriving a sampling pattern for blend regions that

minimizes normal noise (Sect. 4.3.2), we present an interactive technique to re-sample

feature regions of given triangle meshes, such that the alias artifacts are strongly re-

duced (Sect. 4.3.3, cf. Fig. 4.16). We advocate for an integration of this technique into

a semi-automatic setup, since we consider the problem of detecting feature regions to be

independent from the actual (re-)sampling problem. For industrial surface design appli-

cations, manual feature detection is acceptable and even preferred by most designers.

4.3.1 Feature Regions

In the boundary representation of geomet-

ric (solid) models three types of surface re-

gions can be distinguished: geometric primi-

tives (e.g., parts of spheres, cylinders, or tori),

freeform surfaces (smooth surface patches of

general shape), and blends, that are used to

join the other surface parts in order to obtain

a consistent representation of a closed solid,

like shown in the figure to the side.

A blend surface can be thought of as being generated either by rolling a ball of

varying or constant radius over the gap between two surface segments or by sweeping

a profile curve along the two opposite boundaries (cf. Fig. 4.17). In the extreme case,

a blend can degenerate to a sharp feature curve, at which two surface segments meet

with discontinuous tangent planes. They correspond to rolling ball blends with balls of

vanishing radius.

69

4 Feature-Sensitive Mesh Generation

Figure 4.17: Feature regions on a complex surface usually emerge from blending two

separate patches along their corresponding boundaries. The two patches on the left

can be joined by computing their intersection, leading to a sharp feature line (center

left). Alternatively we can roll a ball of prescribed radius (center right) or sweep a more

complicated profile along a center curve (right).

When sampling a surface, the sampling density has to adapt to the local curvature

distribution in order to capture all (and only) relevant geometric details. Obviously, in

highly curved regions, where the principal curvatures κ1 and κ2 are both large, the sam-

pling has to be denser than in regions where both principal curvatures are small. If the

magnitude of the curvatures does not differ too much, then an isotropic sampling pattern

is sufficient. However, since two principal curvatures characterize the local curvature,

an optimal sampling pattern has different densities in the corresponding principal direc-

tions. Hence, in feature regions — characterized by κ1 � κ2 — an anisotropic sampling

pattern that is aligned to the principal directions has to be used.

In terms of the above classification into primitives, freeform patches, and blends, the

feature regions are usually the blend areas where, e.g., a sphere of radius 1/κ2 rolls along

a curve with curvature κ ≈ κ1 � κ2.

4.3.2 Sampling pattern for blend regions

Fig. 4.16 clearly depicts that the weighted random distribution of surface samples, as

it typically emerges from mesh decimation, does not yield satisfactory results in feature

regions due to normal noise. In this section, we present a simple sampling pattern

for feature regions that reduces normal noise, i.e., the variation of normal jumps, to a

minimum.

70

4.3 Feature-Sensitive Resampling of Blend Regions

It is easy to see that random sampling generally leads to significant normal noise.

Consider, e.g., the simple example of a cylinder as shown in Fig. 4.2. Placing the

samples randomly on the surface causes an uncontrollable tilt of the triangle normals

away from the original surface normals, which are all orthogonal to the cylinder axis.

The generic configuration of a triangle’s normal vector being orthogonal to the cylinder

axis only occurs if the triangle’s embedding plane intersects the cylinder in two parallel

lines. Since the triangle is spanned by three surface samples, these samples also have to

lie on those two lines. This implies that a triangle is free of normal noise if and only if

one of its edges is parallel to the cylinder axis.

Now consider a sampling pattern where all samples lie on a set of lines which are

parallel to the cylinder axis and distributed equally around the cylinder. Each strip

between two of those lines can be tessellated by a planar triangulation. As a consequence,

the normal jumps between triangles are either zero (within the same strip) or a constant

angle that only depends on the number of strips. Hence, the normal noise is minimal.

The two different values of normal jumps correspond to the two principal curvatures of

the cylinder.

This idea is now generalized in order to derive a sampling pattern for surfaces that are

part of an envelope generated by moving a sphere of constant radius along a space curve.

In Sect. 4.3.4 the same sampling pattern will be applied to even more general profile

sweep surfaces to empirically demonstrate that this still results in superior quality meshes

compared to random sampling, although zero normal noise can no longer be guaranteed

in this generalized setting.

The envelope of a moving sphere can be defined alternatively by a center curve c(t)

along which a planar circle profile is moved. The normal of the circle’s embedding plane

at a time step t0 is defined by the tangent c′(t0) of the center curve. The sweep surface

itself is the collection of all profiles at different time steps t ∈ [a, b]. We assume that the

minimum curvature radius of the center curve c is larger than the radius of the circle

profile to avoid the discussion of surface degeneracies.

According to the above definition we can distinguish two natural directions on such

a sweep surface: one along the center line and one around the center line. We can use

these directions for a natural parameterization S(t, u) with t varying along and u around

the center curve. In this parameterization, the iso-curves with constant parameter t0 are

circles around the center c(t0). Iso-curves with constant parameter u0 are the trajectories

71

4 Feature-Sensitive Mesh Generation

Figure 4.18: By discretizing the sweep profile the the original envelope surface is

approximated by a collection of n ruled surface patches Ri. Since the circular profile

is replaced by a regular n-gon, which moves orthogonally to its embedding plane, all

normal jumps between neighboring strips are constantly equal to 2π/n.

along which a specific point on the circle profile moves. Obviously, the trajectories are

offset-curves to the center curve and consequently the iso-curves with respect to the

parameter t and u intersect perpendicularly. In fact, it can be shown that the iso-

curves are the principal curvature lines of the sweep surface [dC76]. Another important

property of the trajectories, which will be used later on, is that they have constant

Euclidean distance as well as constant geodesic distance to each other.

The sampling pattern for the sweep surface has to discretize the parameter domain in

t and u direction. We start by discretizing the moving profile itself, i.e., we approximate

the circle S(0, u) by a closed polygon (p0, . . . ,pn−1) with pi = S(0, i/n). Sweeping this

closed polygon instead of the circle results in a surface that consists of n ruled surface

patches

Ri(t, u) = (1− u) S
(
t,

i

n

)
+ u S

(
t,

i + 1

n

)
.

The trajectories along which the points pi move are perpendicular to the profiles. Hence,

if the swept polygon is discretized by a regular n-gon, then the normal jump between

neighboring ruled patches Ri is exactly 2 π/n everywhere (cf. Fig. 4.18). As a conse-

quence, we have a constant normal jump, i.e., zero variation.

72

4.3 Feature-Sensitive Resampling of Blend Regions

Next, the ruled surfaces Ri have to be discretized in t direction along the feature,

which corresponds to a triangulation of these patches, i.e., of the strips enclosed between

the trajectories. Since the trajectories are lines of minimal curvature, triangles within

the same strip have a small normal jump only. However, the constant normal jump

property of the n-gon sweep should be preserved as good as possible. If a center curve

segment c([t0, t1]) is approximated by a straight line, the resulting patch Ri([t0, t1], [0, 1])

is approximated by a bilinear surface patch. Since the approximation error of the line

segment to the center curve decreases like O(|t1 − t0|2), even for general center curves the

surface patch Ri([t0, t1], [0, 1]) can locally be approximated by a bilinear patch, such that

the quadrilateral spanned by the four points Ri(t0, 0), Ri(t0, 1), Ri(t1, 0), and Ri(t1, 1)

is almost planar.

Consequently, no matter how the quadrilateral is split into two triangles, no significant

normal jump will be generated between these triangles. In addition, the normal jumps

between neighboring quadrilaterals generated from Ri([t0, t1], [0, 1]) and Ri+1([t0, t1], [0, 1])

is approximately 2π/n, since the two quads are generated by two incident edges (pi,pi+1,pi+2)

of the swept n-gon at time steps t0 and t1, respectively. Hence, it turns out that the

regular triangulation for each strip, which uses the sample pairs Ri(tj, 0) and Ri(tj, 1)

for any sequence of parameter values tj, does not introduce significant normal noise.

Moreover, it can be shown that any modification of this triangulation only increases the

normal noise.

Consider, e.g., the four samples a = S(t0, i/n), b = S(t1, i/n), c = S(t2, (i − 1)/n),

and d = S(t3, (i + 1)/n), which define two triangles T1 = (a,b, c) and T2 = (d,b, a)

in neighboring strips. If the trajectories S(t, (i − 1)/n), S(t, i/n), and S(t, (i + 1)/n)

are no straight lines, then the normal angle between T1 and T2 can differ significantly

from the optimal value 2π/n when we choose the parameter values t2 and t3 from the

interior of the interval [t0, t1] (cf. Fig. 4.19). This local deviation of the normal jump

from the average 2π/n propagates around the swept surface, because the sum of the

normal jumps along a planar contour around the center line has to be equal to 2π.

In conclusion of this section we find that the key to an anti-aliased sampling pattern

on spherical sweeps is to arrange the surface samples pi,j = S(ti, uj) such that the the

points (pi,j)j build a regular n-gon around the center curve and the samples (pi,j)i lie

on trajectories.

73

4 Feature-Sensitive Mesh Generation

Figure 4.19: In both images, the feature region is reconstructed by placing the samples

along the trajectories. One the left, the samples are “synchronized” in the orthogonal

direction (i.e., along the contours) as well, leading a noise free appearance. One the

right, the phase on every other trajectory is shifted, thus provoking normal noise.

4.3.3 Interactive Feature Resampling

In the last section we showed that a rolling-ball blend should be triangulated based

on a sampling pattern that is aligned to the principal curvature directions (trajectories

and circle profiles) in order to minimize normal noise. However, sampling an existing

feature with unknown center curve c from a given triangle mesh is a different situation:

unless we are dealing with a sharp feature (i.e., its radius equals zero) the center curve

does not lie on the given surface, neither do we know the radius of the profile that was

swept along it. Instead, the surface data only provides the resulting blend. In order to

reverse-engineer the feature and to resample it in an anti-aliased manner, the sampling

pattern has to be generated without explicitly knowing the parameterization S(t, u).

The sampling grid is generated using a fishbone-like structure: first a spine curve T0

is constructed to be approximately aligned along the feature, and then rib curves Ui are

traced to branch off perpendicularly from it (and hence are aligned around the feature).

In terms of the last section, the spine T0 corresponds to a trajectory on the sweeping

profile, while the ribs Ui represent the contour at different time steps. Each rib Ui is

then sampled uniformly with respect to an arc-length parameterization, resulting in a

set of sample points pi,j. Connecting the jth sample from each rib therefore results in

a curve Tj with constant geodesic distance from the spine. This implies that the curve

Tj is another trajectory, and it follows that a regular triangulation of the samples pi,j

has the properties derived in the previous section.

74

4.3 Feature-Sensitive Resampling of Blend Regions

Figure 4.20: This sequence of images gives a rough overview of the resampling proce-

dure. The spine is generated by interpolating user selected surface points and a set of

ribs is created by intersecting the surface with a set of planes being orthogonal to the

spine (left). Univariate feature snapping is used to re-position the spine exactly on a

sharp feature line and two additional trajectories are created (center left). A uniform

sampling of the rib curves allows for a regular triangulation of the feature region. The

alignment of the sampling grid to the ribs in one direction and to the trajectories in the

orthogonal direction guarantees an anti-aliased reconstruction (center right). Finally,

the resampled mesh is stitched into the target mesh (right).

Consequently, the resampled patch is an anti-aliased approximation of the feature

region, that can be inserted into the target mesh by some mesh-stitching method [KB00].

Notice that the target mesh does not need to be the same mesh as the one that was

sampled from. Instead, the target mesh can be enhanced by stitching in alias-reduced

patches that were sampled from the best available geometry, i.e., from the original non-

decimated range scans. In the following we explain the basic steps of the resampling

procedure in more detail (cf. Fig. 4.20).

The initial spine is constructed interactively: The designer sketches the feature by

picking a few positions on an estimated trajectory and the spine curve is then auto-

matically generated by smoothly interpolating or approximating these points. Since the

spine curve is not required to lie exactly on the surface, this procedure allows to gen-

erate smooth spine curves even if the underlying surface data is noisy. The only soft

requirement for the resulting spine curve is that it should be an approximate offset of a

trajectory.

75

4 Feature-Sensitive Mesh Generation

To generate the rib curves, the spine T0 is sampled either uniformly or with a

curvature-dependent step width. For each of the sample points ti a rib curve Ui is

created by intersecting the given surface with the plane positioned at ti and orthogonal

to the spine’s tangent (cf. Fig. 4.20, left). This special rib generation is the reason why

the spine does not have to lie exactly on the surface. As a consequence, each rib is a

planar polygon that exactly lies on the surface. If the given surface is a polygonal mesh,

the plane intersection can be implemented by a simple local marching scheme, such that

the computation costs do not depend on the overall complexity of the mesh.

To create a new trajectory the user selects one or more interpolation points on different

ribs. Starting from such a point, the new trajectory is constructed by marching from

rib to rib. The corresponding points on the neighboring ribs can be identified according

to several different criteria:

• The point having the same geodesic distance to an already existing trajectory can

be chosen, thereby mimicking the offset curve property of trajectories.

• One can proceed in orthogonal direction to the current rib, to mimic the principal

direction property of trajectories.

• The local curvature maximum can be chosen in order to trace a sharp feature

line. This is a convenient method to snap the spine to a feature line if the initial

spine did not fit (cf. Fig. 4.20, center left). Notice that the snapping only requires

univariate feature detection on each rib curve.

• A given set of points can simply be interpolated by a smooth curve, which provides

full manual control to the designer.

In case of the spine snapping the ribs might have to be recomputed by intersecting

the surface with a new set of planes being orthogonal to the new spine (cf. Fig. 4.20,

center left). This technique is particularly useful in practice, since it allows the designer

to precisely select sharp feature lines on a CAD model without having to pick points

exactly on the feature by himself.

If the original surface geometry is noisy, both the rib curves and the new trajectories

will be noisy as well. However, due to the enhanced structural information, univariate

smoothing can now be applied to these curves, which is far more efficient than bivariate

surface smoothing. By using additional trajectories as C0 or C1 boundary constraints for

76

4.3 Feature-Sensitive Resampling of Blend Regions

Figure 4.21: At strongly curved features the ribs may intersect each other. Giving up

the requirement that the ribs have to be orthogonal to the trajectories, one can still find

a decent triangulation with reduced normal noise.

the smoothing of rib curves, sharp features can also be preserved during the smoothing

process.

In the beginning we assumed that the curvature κ1 of the center curve is small. If

this is not the case, then strongly curved features may lead to overlapping rib curves,

as shown in Fig. 4.21. To still be able to generate an anti-aliased triangulation in

this case, the requirement of ribs being orthogonal to trajectories has to be weakened.

For a given fishbone (= spine samples ti plus ribs Ui) two additional trajectories with

constant geodesic distance from the spine are generated by connecting the left and right

endpoints of all ribs, {li} and {ri}, respectively. In the presence of overlapping ribs,

these trajectories have kinks and loops (cf. Fig. 4.21, center left). Applying a simple

low-pass filtering operator to the outer two trajectories straightens out these degeneracies

(cf. Fig. 4.21, center right). After this filtering, each three points (li, ti, ri), which are

associated with the ith rib, define a tilted plane. Intersecting the given surface with

those new planes results in new ribs which no longer overlap (cf. Fig. 4.21, right).

The last step of the resampling procedure is to compute equidistant samples on each

rib with respect to the arc-length parameterization. Those samples have the property

that they are (trivially) aligned to the ribs (= contours), but are also aligned to the

trajectories, since the jth sample on each ribs has the same geodesic distance to any

other trajectory (cf. Fig. 4.20, center right). Hence the sampling grid matches the

requirements from the previous section and therefore results in an anti-aliased surface

reconstruction. The resampling procedure is concluded by stitching the new patch into

the original mesh (cf. Fig. 4.20, right).

77

4 Feature-Sensitive Mesh Generation

Figure 4.22: Feature modeling using the fishbone-metaphor. The sharp feature of

Fig. 4.20 has been rounded to a prescribed radius by univariate modeling operations

on each rib (left). More complex modeling operations are possible if we exchange the

circular profile for a more complicated one (center). The rounded feature in the right

image is sharpened by setting the blend radius for the rib profiles to zero for the upper

ring and to a small but non-zero value for the lower ring.

4.3.4 Feature Modeling

The fishbone metaphor does not only provide a resampling of the geometry that strongly

reduces normal noise, the additional structural information can also be used for higher

level feature modeling. In general, any two neighboring trajectories can be used to “cut

out” the parts of the ribs enclosed by them, such that these parts can be replaced by a

general 2D Hermite interpolant for each rib.

Changing the characteristics of a feature is a very frequent operation in product de-

sign. For example, in CFD simulations it is often necessary to vary the sharpness of a

feature (i.e., the radius of a rolling ball blend) to verify the impact on the overall aero

dynamics. Rounding and sharpening are the operations which increase or decrease the

blend radius along a feature. On a fishbone-wise resampled feature region such model-

ing operations are very easy to implement, due to the perfect alignment of the sampling

grid to trajectories and ribs. Since the ribs are known to be planar, this reduces the

78

4.3 Feature-Sensitive Resampling of Blend Regions

feature modeling to 2D operations on each rib curve separately. Even more complicated

profile sweeps can be constructed by simply replacing the moving profile by a generic

2D Hermite interpolant (cf. Fig. 4.22).

We applied the surface anti-aliasing technique in the context of CFD simulation for

conceptual car design to a detailed mesh model of the BMW Z8 car. The normal noise

contained in the models after the triangulation and decimation phase could effectively

be removed. Some results are shown in Fig. 4.23.

4.3.5 Discussion

The last sections pointed out that in order to reduce normal noise, i.e., the variation of

normal jumps, the sampling pattern has to be aligned to the principal curvature direc-

tions of the underlying geometry. Our interactive fishbone re-sampling metaphor does

exactly this by placing sample points along different trajectories in a phase-synchronized

manner. The amount of normal noise in a triangle mesh can be regarded as a discrete

fairness measure, similar to the surfaces of minimal curvature variation used in CAGD

to generate high quality surfaces.

We restricted our resampling to feature and blend regions of technical datasets. How-

ever, such an anisotropic remeshing can also be applied to whole models in order to

generate a tessellation that reflects the structure of the underlying geometry better than

random sampling obtained by range scanning [ACSD+03, MK04]. In this context, lines

of minimum and maximum curvature are traced over the surface in a first step. The

intersection points of these lines yield the new surface samples, that are then connected

and decomposed into quads and triangles. A piecewise linear approximation with ele-

ments that are aligned to the principal curvature directions and scaled according to the

principal curvatures provides an (asymptotically) optimal L2 approximation of height

fields, and also of surface normal fields. This fact was very recently exploited for the

high quality variational shape approximation of Cohen-Steiner et al. [CSAD04].

79

4 Feature-Sensitive Mesh Generation

Figure 4.23: We applied the resampling and surface anti-aliasing technique to a detailed

BMW Z8 model, which is supposed to be used for CFD simulation. The normal noise

in the vicinity of the feature regions of the decimated model (bottom left) can cause nu-

merical instabilities and erroneous turbulences. In the remeshed feature regions around

the driver’s window the normal noise is almost completely removed. The other parts of

the model have not been resampled. A closeup of this model was shown in Fig. 4.16.

80

5 Multiresolution Techniques

In this chapter we introduce the multiresolution techniques needed for a general mul-

tiresolution modeling framework. In this context, the term multiresolution refers to

modeling or editing a given surface at different scales or different levels of detail. This

means, that on the one hand, the designer has to be able to edit the surface at the

finest possible resolution, which is defined by the distribution and density of the mesh

vertices. On the other hand, a multiresolution modeling framework also has to provide

global deformations, like bending or stretching of the model.

The latter case is the more challenging one, since a global shape deformation of a given

model additionally has to preserve all the fine surface details in an intuitive and phys-

ically plausible manner (cf. Fig. 5.1). Hence, after generating faithful approximations

of technical datasets using the feature-sensitive surface processing methods described in

the first part of the thesis, we now have to find surface deformation techniques that are

also feature-aware. Because of this feature preservation the multiresolution modeling

Figure 5.1: Multiresolution modeling has to provide global surface deformations with

a physically plausible and intuitive preservation of all the fine details and sharp features

of the surface.

81

5 Multiresolution Techniques

Figure 5.2: A multiresolution deformation of a sine wave. A frequency decomposition

yields the dashed line as its low frequency component (left). Bending this line and adding

the higher frequencies back onto it results in the desired global shape deformation (right).

paradigm has proven to be the most effective shape deformation concept when it comes

to the modeling of highly complex surface, like those derived from a 3D scanning process.

5.1 Multiresolution Modeling Framework

In order to enable a deformation of the global shape of an object while at the same

time preserving its fine details, a frequency decomposition of the object is performed.

In the section on surface smoothing (Sect. 3.2.1) we have seen that signal processing

techniques, like low-pass filtering and the notion of frequencies, can be generalized to

(signals on) surfaces. In this setting the fine surface details correspond to the high

frequencies of the surface signal and the global shape is represented by its low frequency

components. But in contrast to surface smoothing we now want to explicitly modify

the low frequencies and preserve the high frequency details, resulting in the desired

multiresolution deformation. Fig. 5.2 shows a simple 2D example of this concept.

The complete multiresolution editing process is depicted in Fig. 5.3. In a first step a

low-frequency representation of the given surface S is computed by removing the high

frequencies, yielding a smooth base surface B. The geometric details D = S 	 B, i.e.,

the fine surface features that have been removed, represent the high frequencies of S and

are stored as detail information. By this we are able to reconstruct the original surface

S by adding the geometric details back onto the base surface: S = B ⊕ D. The special

operators 	 and ⊕ are called the decomposition and the reconstruction operator of the

multiresolution framework, respectively.

82

5.1 Multiresolution Modeling Framework

Geometric
Details

Multiresolution Editing

De
co

m
po

sit
io

n Reconstruction

S S
′

B
′

B

Editing

Figure 5.3: A general multiresolution editing framework consists of thee main operators:

the decomposition operator, that separates the low and high frequencies, the editing

operator, that deforms the low frequency component, and the reconstruction operator,

that adds the details back onto the modified base surface. Since the lower part of this

scheme is hidden in the multiresolution kernel, only the multiresolution edit in the top

row is visible to the designer.

83

5 Multiresolution Techniques

This multiresolution surface representation is now enhanced by an editing operator,

that is used to deform the smooth base surface B into a modified version B′. Adding

the geometric details onto the deformed base surface then results in a multiresolution

editing S 7→ S ′ = B′ ⊕D.

Notice that in general more than one decomposition step is used to generate a hierarchy

of meshes S = S0,S1, . . . ,Sk = B with decreasing geometric complexity. In this case

the frequencies that are lost from one level Si to the next smoother one Si+1 are stored

as geometric details Di+1 = Si 	 Si+1, such that after deforming the base surface to

B′, the modified original surface can be reconstructed by S ′ = B′⊕k−1
i=0 Dk−i. Since the

generalization to several hierarchy levels is straightforward, we restrict our explanations

to the simpler case of a two-band decomposition, as shown in Fig. 5.3.

A complete multiresolution editing framework therefore has to provide the three basic

operators shown in Fig. 5.3: The decomposition operator (detail analysis), the freeform

editing operator (shape deformation), and the reconstruction operator (detail synthesis).

In the remainder of this chapter we focus on multiresolution surfaces, i.e., the detail

representation and the corresponding decomposition and reconstruction operators. After

introducing the standard detail representation displacement vectors, we present our new

representation for multiresolution models called displacement volumes, that is based on

volume elements enclosed between the original surface S and the base surface B. This

representation provides a more natural behavior of the surface details and effectively

avoids local self-intersections of the modified surface S ′. The freeform editing operator

is described afterwards in Chap. 6.

5.2 Base Surface Generation

The first step for the generation of a multiresolution representation is the computation

of the smooth base surface B from the original surface S, or, in general, the creation of

a hierarchy of meshes S = S0, . . . ,Sk = B with decreasing geometric level of detail.

Subdivison surfaces are generated by a repeated refinement of a coarse control mesh,

which in the limit converges to a (piecewise) smooth surface (see Sect. 2.1.2). They are

an inherent multiresolution surface representation, because each refinement level adds

more geometric detail to the subdivision surface. The major drawback is that subdivision

84

5.2 Base Surface Generation

techniques are restricted to surfaces of semi-regular connectivity, which either limits the

range of input models, or requires a complete remeshing of the surface. Moreover, the

layout of the initial control mesh is extremely important for later modeling operations,

as we will see in Chap. 6. As a consequence, a sufficient initial patch layout usually has

to be manually specified by an experienced designer.

Because of these restrictions, our goal is to work on arbitrary triangle meshes, as they

allow for higher flexibility in all surface processing phases. We have seen in Sect. 3.2.1

that the amount of geometric detail in a mesh corresponds to its frequency spectrum,

such that meshes corresponding to hierarchy levels of less details can be derived by

successive low-pass filtering [KCVS98, KVS99, GSS99].

In [KVS99] Kobbelt et al. proposed to decimate the mesh S by collapsing all edges

being shorter than a prescribed threshold εi, and then to re-insert the removed vertices

again, but this time at positions determined by a discrete fairing scheme [Kob97], leading

to a mesh Si of the same connectivity as S, but with less geometric detail.

If standard low-pass filtering is to be used for the hierarchy creation, then the speed

of typical iterative smoothing schemes is locally a function of the vertex density. In

the case of an extremely irregular input mesh S, this might lead to an unwanted slower

filtering of densely sampled regions. One possible solution is to isotropically resample the

mesh before the low-pass filtering, leading to a more regular and more robust smoothing

process, as we will show in Chap. 7.

Since usually only a part of the surface is to be deformed, we can also restrict to

remove the high frequencies in this active region only. As we will shown in Chap. 6, the

low frequency base surface can then be computed by a constrained minimization of a

curvature energy functional, resulting in a surface that interpolates the fixed boundaries

of the active region in a C2 manner and is maximally smooth in its interior.

No matter how the smooth base surface B is computed, the difference in geometric

detail S	B has to be encoded as local detail information D. In the following we discuss

two different kinds of representations for the detail information, that are displacement

vectors and displacement volumes.

85

5 Multiresolution Techniques

Figure 5.4: Representing the displacements w.r.t. the global coordinate system does

not lead to the desired result (left). The geometrically intuitive solution is achieved by

storing the detail w.r.t. local frames which rotate according to the local tangent plane’s

rotation of B (right).

5.3 Displacement Vectors

The standard representation for multiresolution details is a displacement of the base

surface B, i.e., the detail information is a vector valued displacement function d : B →
IR3, that associates a displacement vector d(b) with each point b on the base surface.

Hence, the detailed surface S can be reconstructed from the base surface B by S =

{b + d(b) | b ∈ B}.

Although the realization of this representation seems to be straightforward, special

attention has to be paid to the representation of the displacement field. Expressing the

displacements w.r.t. a global coordinate system does not lead to the expected results (cf.

Fig. 5.4, left). When the base surface B is deformed to B′, the displacements have to

be rotated according to the local rotations of the base surface’s tangent plane in order

to guarantee a plausible detail reconstruction S ′. Hence, the displacements have to be

expressed in so-called local frames [FB88, FB95], that consist of the surface normal and

two perpendicular tangent vectors (cf. Fig. 5.4, right).

The typical discretization of the displacement field is to restrict the base mesh B to

have the same connectivity as the detailed surface S, such that each vertex vi ∈ VS with

position pi := pS (vi) ∈ S has an associated base point bi := b (vi) := pB (vi) ∈ B. The

corresponding displacement vector di := d (vi) := (pi − bi) is then stored in the local

frame of B at the point bi. This detail representation was used by Zorin et al. [ZSS97]

86

5.3 Displacement Vectors

in the context of multiresolution subdivision surfaces and by Guskov et al. [GSS99] for

multiresolution hierarchies on arbitrary irregular meshes.

The problem of these general displacement vectors is the tangential component of the

local frame encoding. Using the normal vector as one axis of the local frame is geomet-

rically very intuitive, but the two vectors spanning the tangent plane are not uniquely

determined. Therefore some heuristic has to be found to fix the possible rotation of the

local frame around the normal vector, e.g., by choosing the first tangent vector to be

the projection of the first incident edge into the tangent plane. However, depending on

the transformation B 7→ B′ the same heuristic applied to B′ might not lead to intuitive

results. The second problem is that the tangential component does not carry geomet-

ric information, but can be regarded as a parameterization artifact instead. Elongated

displacement vectors due to large tangential components may therefore cause stability

problems or lead to non-intuitive reconstructions, as discussed in [KVS99].

Suppressing the tangential component and enforcing the displacement vectors to be

parallel to the normal of the base surface leads to so-called normal displacements. As

the displacements are in general not parallel to the surface normal, generating normal

displacements has to involve some kind of resampling. Shooting rays in normal direction

from each base vertex bi ∈ B and deriving new vertex positions pi ∈ S at their inter-

sections with the detailed surface leads to a resampling of the latter [GVSS00, LMH00].

Because S is a detailed surface with high frequency features, such a resampling is likely

to introduce alias artifacts.

Therefore Kobbelt et al. [KVS99] go the other direction: For each vertex position

pi ∈ S they find a base point bi ∈ B (now not necessarily a vertex of B!), such that the

displacements are normal to B, i.e., pi = bi + hi · n(b′i). This avoids a resampling of

S and therefore allows for the preservation of all of its sharp features. First, a globally

continuous linear normal field on B is generated by barycentric interpolation of its vertex

normals, similar to Phong shading for high quality rendering. This guarantees that for

each point pi ∈ S a base point bi for a normal displacement exists, and it can be found

efficiently by a local search based on Newton iterations.

These normal displacements are then encoded by their length hi and by the base

point bi, which is represented parametrically by a triangle index and its barycentric

coordinates within that triangle. After modifying the base surface, the new base point

b′i ∈ B′ is determined by this parametric information, and the corresponding point

87

5 Multiresolution Techniques

p′i ∈ S ′ is reconstructed by p′i = b′i+hi ·n(b′i). Once the normal displacements have been

generated in the decomposition phase, the required per-frame reconstruction operator is

extremely efficient, since it basically involves computing the linear normal field on the

deformed base surface, that is needed anyway for rendering the modified surface.

5.4 Displacement Volumes

A major problem of the well established displacement vectors is that they are handled

individually, i.e., they are not coupled in any way. While this approach usually leads to

sufficient detail reconstructions for translational or rotational modifications, it results in

an unnatural change of volume as soon as the base surface is bent. Consider the prisms

that are spanned by the original triangles of S over the base surface B: Bending the base

surface changes their opening angles and thereby alters the prism volumes. Since the

volume enclosed between the base surface and the detailed surface is intuitively supposed

to stay constant, this behavior does not fully satisfy the plausibility requirements of detail

preservation (cf. Fig. 5.5).

A more severe problem of uncoupled displacement vectors is that they do not provide

any mechanism to prevent self-intersections. This problem comes in two different forms:

global and local self-intersections. The global form is a variant of the general collision

detection problem, that occurs when the deforming surface touches itself. Obviously,

the detection and handling of global self-intersections has to be taken care of by the

freeform editing operator, since the semantics of a global collision depends on the design

intended and go beyond the task of plausible detail preservation.

The local self-intersection phenomenon, however, has a different nature. As shown in

Fig. 5.6, these difficulties typically arise when the base surface is deformed in a concave

manner. Where a local self-intersection occurs, the surface is not colliding with itself,

but it is folding over itself. Expressed in terms of the prisms spanned by the displace-

ment vectors, local self-intersections occur when one or more of these prisms degenerate.

Notice that for global self-intersections usually no individual prisms degenerate. Local

self-intersections are primarily due to the detail vector displacement and consequently

have to be fixed by the reconstruction operator.

88

5.4 Displacement Volumes

Figure 5.5: A multiresolution deformation of a sine wave is done by bending its base line

(dashed) and reconstructing the corresponding detailed surface (solid). Since displace-

ment vectors are handled individually, the resulting surface shows an unnatural change

of the volume enclosed between base and detailed surface (bottom left). Displacement

volumes provide a natural coupling of the displacements, that results in a more natural

behavior and prevents local self-intersections (bottom right).

An obvious way to address this issue is to shift the displacement vectors in tangential

direction. However, this has to be done in a way that adheres to the plausibility of

the detail preservation. Adjusting the displacements individually or propagating the

tangential shift by some diffusion operator applied to the displacement vectors will most

probably distort the geometric detail in a non-plausible way.

Both problems, the unnatural change of volume and local self-intersections, are ad-

dressed by our new detail encoding scheme, that is based on displacement volumes

instead of displacement vectors [BK03d]. Each triangle of the original detailed mesh S
spans a prism over the base surface B, and the volumes of these prisms are used as detail

coefficients. For a modified base surface B′ the reconstruction operator then has to find

a new detailed mesh S ′ that has the same connectivity as S and spans the same prism

volumes.

This notion of volume preservation provides a physical interpretation for the plausi-

bility of the detail preservation: The detail is supposed to mimic the behavior of elastic

89

5 Multiresolution Techniques

Figure 5.6: Multiresolution editing enables global deformations with intuitive detail

preservation. However, detail reconstruction based on displacement vectors may lead

to a non-plausible change of volume and even to local self-intersections for concave

modifications (center). Displacement volumes instead reconstruct a more natural, non-

intersecting surface (right).

but incompressible materials. The multiresolution model will deform like a soft but in-

compressible layer attached to a rigid skeleton (cf. Fig. 5.5). Displacement volumes can

also effectively avoid local self-intersections (where the surface of a prism would inter-

penetrate itself), since prisms can shear, i.e., their top triangles can move tangentially,

without changing their volume (cf. Fig. 5.6).

A similar idea was used by Lee et al. [LTW95], who presented a multi-layer tis-

sue model for facial animation, that is based on a mass-spring system extended by an

approximate volume preservation. Volume differences due to facial deformations are

compensated for by adjusting the prisms’ heights, i.e., by shifting vertices in normal

direction only. However, this means that exactly the tangential movements required to

prevent local self-intersections are suppressed.

Another method to preserve the geometric detail in a physically plausible manner

would be using general finite element methods (FEM). However, this requires substantial

computations, that are usually simplified by linearizing elasticities, which, in turn, leads

to problems for large rotational modifications. Moreover, the standard FEM formulation

is not well-defined when simulating strict incompressibility. As a consequence, the so

called mixed formulation has to be used for exact volume preservation, leading to more

complicated systems of equations [Bat95].

90

5.4 Displacement Volumes

In order to achieve a high quality surface reconstruction in CAD-like editing applica-

tions, the system of volume constraints should be solved exactly, instead of computing

an approximation only. Moreover, for a generally applicable approach we cannot rely

on the quality and regularity of the meshes to be processed, but instead have to be

able to robustly handle complex irregular meshes and allow for arbitrarily large scale

modifications. As shown in the next sections, these requirements are satisfied by dis-

placement volumes. Given an original surface S and its low frequency base surface B,

the first step is the detail analysis, which amounts to compute and store the prism vol-

umes (Sect. 5.4.1). The corresponding reconstruction operator and its implementation

is then described in Sect. 5.4.2.

5.4.1 Volumetric Detail Representation

In the initial state, i.e., before the modification, we can assume that the geometric

difference between S and B can be represented by normal displacements, as described

in Sect. 5.3. Hence, it is possible to find a base point bi ∈ B for each vertex position

pi ∈ S, such that di = (pi − bi) is perpendicular to B.

Each triangle (pi,pj,pk) of S to-

gether with the corresponding base points

(bi,bj,bk) on B spans a triangular prism.

Notice that the quadrilateral faces on the

sides of these prisms are non-planar in

general and are therefore consistently split

into four triangles each by inserting the

centroid of their vertices. This guaran-

tees that neighboring prisms use the same

tessellation of their common quadrilateral

face, and hence no artificial asymmetries

are introduced.

91

5 Multiresolution Techniques

After this splitting, the boundary surface of each prism is given by 14 triangles, and

the volume of the prism can easily be calculated as a sum of oriented tetrahedra volumes

(spanned by the origin and the respective triangle) by

V =
1

6

14∑
i=1

det [ui,vi,wi] ,

where the ui, vi, and wi are the coordinate vectors of the corners of the respective

triangles. The geometric detail information which is lost when switching from S to B is

stored as the initial volumes V ∗
j for each triangle fj ∈ FS of S.

If during the reconstruction phase the volume of a prism is to be changed by shifting

one of its vertices pj ∈ S, it is most effective to move it into the direction of the

volume gradient, since this yields the maximum volume change for the minimum vertex

displacement. Let u0, . . . ,u4 be a cyclic enumeration of the prism corners that are

directly connected to pj, then the volume gradient is

∇j V :=
∂V

∂pj

=
1

6

4∑
i=0

ui × u(i+1)mod 5 , (5.1)

and the vertex pj has to be shifted by

rj = ε
∇j V

‖∇j V ‖2

if the prism volume is to be modified by ε.

5.4.2 Volumetric Detail Reconstruction

After the base surface B is deformed to B′ by the editing operator of the multiresolution

modeling framework, the detailed surface S ′ has to be reconstructed from B′ and the

geometric details, i.e., the displacement volumes. This means that we have to find a mesh

S ′, such that the volumes Vj of the prisms spanned between S ′ and B′ are identical to

the volumes V ∗
j enclosed between the original surfaces S and B.

The correlation between B and B′ has to be established by the editing operator. In our

case, it is enough to know the positions of the new base points b′i ∈ B′ that correspond

to the base points bi ∈ B. If the editing operator does not change the surface tessellation

and hence the connectivities of B and B′ are identical, then the correlation between bi

and b′i is simply given by the barycentric coordinates of bi with respect to its containing

triangle in B.

92

5.4 Displacement Volumes

Volume Preservation

With the transformed base points b′i ∈ B′ the new prisms
(
p′i,p

′
j,p

′
k,b

′
i,b

′
j,b

′
k

)
can

be defined, that depend on the yet unknown vertex positions p′i ∈ S ′. Since for each

triangle fj in S ′ the volume Vj of its corresponding prism should equal the initial value

V ∗
j , the global volume error can be measured by the functional

E (S ′) :=
∑

fj∈FS′

(
V ∗

j − Vj

)2
,

that accumulates the squared errors of all prism volumes. The detail reconstruction

problem then basically amounts to the minimization of this error functional, which can

be done by a gradient descent method [PFTV92]. The required gradient of E (S ′) w.r.t.

a vertex pi ∈ S ′ consists of the partial derivatives of ∇i Vj from (5.1):

∂E

∂pi

= −
∑
j∈Pi

2
(
V ∗

j − Vj

)
∇i Vj ,

where the sum is built over all prisms incident to pi.

Finding good starting values for the iterative gradient descent is not trivial, since

self-intersections in the initial configuration should be avoided. Extremely bad starting

values will otherwise cause the iterative minimization to get stuck in a local minimum.

A reasonable assumption is that the modified base surface B′ has no self-intersections

itself. Since the base points b′i are lying on this surface, and since there is a one-to-one

correspondence with the vertices p′i, starting from an initial mesh S ′ with p′i = b′i will

yield a clean initial configuration. This mesh actually corresponds to the solution of the

volume preservation if all target volumes are scaled down to zero.

Based on this observation, the iterative volume preservation scheme is interleaved with

scaling steps of the prism volumes. All target prism volumes V ∗
j are initially scaled down

by a factor 0 < h0 < 1 and the iterative volume preservation scheme is applied using b′i
as starting values. Upon convergence the factor is increased to h1 < h2 < . . . until the

scaling 1 is reached. After each volume scaling step hk 7→ hk+1, the positions p′i of the

previous round can be used as starting values for the next round.

Regularization

An analysis of the iterative volume preservation scheme reveals that the solution S ′ is

not well-defined. Simply counting the degrees of freedom shows that each vertex of S ′

93

5 Multiresolution Techniques

Figure 5.7: Constraining the prism volumes still leaves one degree of freedom per vertex.

All three configurations preserve the target volumes, but may contain perturbations in

normal direction (center) or tangential direction (right). These perturbations usually

affect the highest frequency band.

yields three free parameters, while each triangle of S ′ puts one constraint. Since the

number of triangles is approximately two times the number of vertices, it turns out that

for a mesh S ′ with m vertices (and hence 2m triangles) the solution is underdetermined

by 3m − 2m = m degrees of freedom. As a consequence, the above iterative scheme

will converge to a solution, but not necessarily to the best one. Hence, a regularization

force has to be added which pushes the iterative scheme towards a better solution of

this underdetermined optimization problem.

A suitable regularization force for the displacement volume reconstruction can be

found by examining the set of candidate meshes S ′ satisfying the volume constraints

(cf. Fig. 5.7). Intuitively, each volume constraint fixes the average height of the corre-

sponding prism’s top face over the base face, which is equivalent to fixing the height

of the centroid of the top triangle. As a consequence, small perturbations in normal

direction lead to meshes which also satisfy the volume constraints, but exhibit rotations

of the triangles around their centroids (cf. Fig. 5.7, center). Additional perturbations in

tangential direction may be compensated for by adjusting the offset heights (cf. Fig. 5.7,

right). This reveals that the variations among different volume preserving candidates are

mostly on the highest frequency band and are therefore easily eliminated by a properly

designed low-pass filter.

In order to reduce the influence of the base surface B′ on the action of the regularization

force, the low-pass filter is applied to the displacement vectors d′i := p′i−b′i instead of to

the points p′i. Since its impact on the convergence behavior of the volume preservation

should also be limited, different filters are applied to the tangential component of the

displacements and to the length component. Both filters make use of the fact that the

94

5.4 Displacement Volumes

deformation of the base surface is smooth and hence local variations of displacements

caused by local bending of the base surface are small.

A natural regularization is to push the minimization towards a volume preserving

solution S ′ that has the least distortion in surface metric from the original surface S.

As shown in [PP93, DMA02], a discrete harmonic parameterization can be computed

by Laplacian smoothing of the two-dimensional parameter values using the metric (i.e.,

the Laplace-Beltrami operator) of the 3D surface (Sect. 3.2.1). In the remeshing section

is was also shown that tangential smoothing can be used to improve the regularity

of a triangulation (Sect. 3.2.3). These two approaches are combined into a tangential

Laplacian smoothing operator on S ′ using the surface metric of the original surface S:

p′i ← p′i + λ
(
I − n (p′i)n (p′i)

T
)

∆S (p′i) .

This relaxation operator moves the vertices p′i in their respective tangent planes in order

to minimize the metric distortion to the original surface S.

For the regularization of the normal components, i.e., the lengths of the displace-

ments d′i := ‖p′i − b′i‖, a correlation between neighboring base points has to be found.

Let di := ‖pi − bi‖ be the length of the displacements in the initial configuration (S,B)

before the modification. Since the volume enclosed between these surfaces is to be pre-

served by (S ′,B′), the thickness of the incompressible layer is locally a function of the

base surface stretch. Since the base surface stretch smoothly varies over B′ (smooth de-

formation), the scaling of the d′i will also vary smoothly, i.e., there exists a smooth scalar

function s : B → IR, such that the lengths of the displacements after the deformation are

approximately d′i ≈ si di with si := s(bi).

It follows that the regularizing filter for the displacement lengths should push the

solution d′i towards si di for some unknown but smooth function s. Instead of minimizing

the absolute differences d′i − si di, the relative differences d′i/di − si are minimized. To

obtain a smoothing filter, the Laplace operator is applied, this time using the metric of

the original base surface B:

∆B

(
d′i
di

− si

)
= ∆B

(
d′i
di

)
−∆B (si) ≈ ∆B

(
d′i
di

)
,

where the term ∆B (s) can be neglected under the assumption that s is smooth. The

requirement ∆B (d′i/di) = 0 immediately leads to the simple filter

d′i ← d′i + λ di ∆B

(
d′i
di

)
.

95

5 Multiresolution Techniques

This filter regularizes the length of the displacement vectors by taking the original lengths

di into account. Notice that the lengths di are used in the regularization only: They

help to stabilize, but they do not affect the volume preservation.

A standard method to combine the regularization forces with the volume optimization

would be using Lagrangian multipliers, leading to a constrained minimization problem.

However, for efficiency reasons several iterations of (unconstrained) volume optimization

are interleaved with one regularization step. Similar to augmented Lagrangian methods

the weight of the volume optimization over the regularization is increased during the

optimization process.

The initial lack of constraints in the volume preservation may result in solutions con-

taining self-intersections. These self-intersections, however, represent high frequencies

in the surface and therefore are easily avoided by the regularization process. By conse-

quence, when starting from a clean initial configuration, the regularization forces drive

the iterative scheme to a volume preserving solution without perturbations in surface

metric and displacement lengths, and therefore without self-intersections. Although

we have no theoretical guarantees for a removal of all self-intersections, the described

approach worked robustly in all our examples.

Implementation

The volume optimization as well as the regularization are relaxation methods. A well

known result from numerical analysis states that these types of processes tend to rapidly

smooth out high-frequency errors, but their convergence rate for the lower frequencies

of the error is impractically slow [Hac86].

Therefore a hierarchical cascading multi-grid approach is used to increase the over-

all rate of convergence (see Chap. 7). Starting from S, multiple levels of decreasing

topological complexity are constructed by mesh decimation (see Sect. 3.2.2). Using the

solutions computed on coarse levels as initial values for the optimization on finer levels

leads to an efficient solver for the volume optimization. The complexity of the resulting

hierarchical reconstruction operator is close to linear in the number of prisms, i.e., in

the number of triangles of S. One multigrid cycle can solve for about 14k prism volume

constraints per second on a 2.8GHz Pentium4 processor. Since each prism is decomposed

into 14 tetrahedra, this corresponds to about 200k tetrahedron volumes per second. As

96

5.5 Results

described in the last section, the hierarchical volume optimization has to be solved on

several volume scales h0 < . . . < hk = 1 in order to robustly handle self-intersections,

with k typically ranging from 5 to 8 depending on the complexity of the modification.

However, even when using this hierarchical solver, the overall computational complex-

ity is too high for this reconstruction operator to be used for interactive mesh editing of

complex models at interactive response times. In [MDM+02] deformations were simu-

lated on a rather coarse volumetric tetrahedral mesh, but a finer triangle mesh was used

to represent the skin surface of the model. In a similar way the volume optimization

can be restricted to the coarse levels of the multigrid hierarchy only, such that the posi-

tions p′i on the finest level are derived by the regularization forces alone, resulting in a

speed-up of about 20% in our experiments.

We therefore propose to use this simpler technique (or even switch to displacement

vectors) during the user’s mouse motion in order to achieve faster response times, and

to switch back to the exact computation once the user releases the mouse. In addi-

tion, since the volume optimization is based on a straightforward but rather inefficient

gradient descent method, further performance gains can be expected by using a more

sophisticated minimization scheme in the future.

5.5 Results

In this section the general behavior of the displacement volumes is shown on examples for

synthetic and real-world datasets. In general, one can differentiate between convex and

concave modifications. A convex modification of the base surface increases the opening

angles of the volume prisms, causing the respective volumes to grow and the detailed

surface to stretch. Therefore the volume preservation typically decreases the offset’s

height in these areas in order to decrease the volumes down to their original values.

Concave modifications of B compress the volume prisms by decreasing their opening

angles. Depending on the detail length and the local curvature of B′, this may lead to

self-intersections of the detailed surface S ′. The volume preservation will therefore have

to expand the prisms both in normal and tangential directions (cf. Fig. 5.3).

Fig. 5.8 shows a multiresolution bending of a cylinder and a cuboid. The models in

the top row are reconstructed by normal displacements and show an unnatural increase

97

5 Multiresolution Techniques

Figure 5.8: A cylinder and a cuboid bended by 90 degrees. Displacement vectors

lead to unnatural changes in volume and self-intersections (top row), while displacement

volumes manage to solve both problems (bottom row). In addition to this, displace

volumes preserve high-frequency geometric details (bottom right).

of volume in the convex parts and self-intersections in concave regions. In the first

column the detailed surfaces S ′ are rendered transparently in order to also show the

base surface B′. Displacement volumes avoid local self-intersections and preserve the

volume, resulting in a more plausible detail reconstruction. The cuboid example addi-

tionally demonstrates that the reconstruction operator correctly handles high-frequency

geometric detail, since the sharp edges are preserved and deformed in a very natural

manner.

The two models shown in Fig. 5.8 are synthetic regular triangulations of moderate

complexity. The following examples demonstrate the effectiveness and robustness of the

volumetric detail representation for complex irregular meshes. Fig. 5.9 shows a scanned

toy model of Tinky-Winky. When bending its arm, the normal-displaced surface self-

intersects almost immediately, since the layer between base and detailed surface is rather

thick and hence the displacement vectors are long. The depicted position contains severe

98

5.5 Results

self-intersections in the normal-displaced setting, that are completely removed by the

volumetric reconstruction operator.

In the example shown in Fig. 5.10, the left leg of Michelangelo’s David is bent, which

was cut out of a decimated version of the model and consists of 33k triangles. Again,

normal displacements lead to self-intersections, while displacement volumes do not. Al-

though this example is not anatomically correct (no different material properties are

used to simulate different tissues), it effectively avoids self-intersections.

These examples show that the basic idea behind displacement volumes — keeping the

volume enclosed between S and B constant — results in a more natural detail preser-

vation of the deformed surfaces, mimicking the behavior of elastic but incompressible

materials. In combination with the properly designed regularization force, displacement

volumes also effectively avoid local self-intersections in the reconstructed detailed surface.

Depending on the application, this can be extremely important, since self-intersecting

surfaces are not orientable, i.e., they do not provide a clearly defined interior and exte-

rior. As a consequence, there is no implicit representation for them, which prevents the

use of all volumetric techniques presented in the first part of this thesis.

99

5 Multiresolution Techniques

Figure 5.9: A scanned toy model was modified to bend its arm. Here displacement

vectors create self-intersections immediately, while displacement volumes enable also

larger scale modifications with natural detail preservation.

Figure 5.10: The left leg of Michelangelo’s David is bended. In contrast to displacement

vectors displacement volumes effectively avoid self-intersections at the hollow of the knee.

100

6 Freeform Surface Editing

After introducing different multiresolution surface representations in Chap. 5, we will

now discuss the freeform editing operator as the last missing piece for a complete mul-

tiresolution modeling framework (see Sect. 5.1). The boundary constraint modeling ap-

proach we are going to present provides flexible and precise shape control and allows for

real-time deformations even of highly complex meshes [BK04a].

All the methods presented in this chapter can be used to generate smooth surfaces, or

to deform a given surface in a smooth manner. However, they do not take special care of

sharp surface features and do not provide any means of local frame detail preservation.

Consequently, these freeform editing techniques should be integrated into a multires-

olution modeling framework, as described in the last chapter, in order to allow for a

physically plausible deformation of technical datasets.

The fundamental problem of freeform editing is that the models to be deformed as well

as the shape deformations to be applied to them can become highly complex. Surfaces

obtained by reverse engineering of physical objects or by tessellating CAD models may

easily consist of several millions of triangles. Although mesh decimation can be used

to lower this complexity, the requirement of faithfully preserving the geometric features

puts a limit to the simplification process. In a similar way the geometric complexity

of the intended deformation is growing in parallel to the amount of geometric detail

contained in the surface.

In the resulting complex space of possible geometric shapes, esthetically pleasing sur-

faces are sometimes lying surprisingly close to unacceptable ones. As a consequence, the

designer usually has to explore the different possible shape deformations in an interac-

tive manner. Unfortunately, the user interfaces for controlling such shape deformations

are still very limited on today’s systems. Although there exist sophisticated interaction

technologies like haptic input devices, immersive displays [SPS01], or two-handed input

metaphors [LKG+03], they did not replace the standard modeling workstation, that is

101

6 Freeform Surface Editing

still controlled by a mouse and a 2D screen and can be found in every industrial design

company.

To compensate for the limited user interface, intuitive modeling metaphors for con-

veying the intended shape deformation to the modeling system have to be found and

used. The control point paradigm of spline and subdivision surfaces is a well-accepted

technique, that has proven to provide intuitive means of geometry specification and

deformation (see Sect. 2.1.1 and Sect. 2.1.2). In an interactive modeling session, the

designer usually drags control points in 3-space, which provide three degrees of freedom

each to model local translations. For more complex shape deformations, like rotations,

several control points have to be dragged sequentially or simultaneously. An easier and

more convenient user interface is offered by more general manipulator objects, so-called

control handles, that provide nine degrees of freedom for specifying translations, rota-

tions, and scalings.

In order to derive a mathematical formulation for the surface deformation process, let

us denote by S the given shape, that the designer wants to modify into another shape S ′.
Notice that if the freeform editing operator is eventually integrated into a multiresolution

modeling system, it would rather be used to deform the original base surface B into a

new version B′, such that the deformed surface S ′ would be reconstructed from B′ and

the high frequency geometric details (see Chap. 5). However, for a clearer notation we

will denote the original surface and its deformed version by S and S ′, respectively.

The process of deforming S into S ′ by dragging control points or control handles can

be formulated as

S ′ = S + B (δC) , (6.1)

where B represents an abstract basis function, and δC represents the change of position

and orientation of the control handles. For a modeling tool based on NURBS surfaces,

e.g., B would represent the set of tensor-product basis functions and δC the displacement

vectors by which we shift the corresponding control points (see Sect. 2.1.1).

A complex shape modification requires the term B (δC) to become complex, which can

be achieved in two fundamentally different ways. The first option is to require a complex

change of the control handles C, i.e., a complex user interaction, for instance by providing

a complicated manipulator object with many degrees of freedom, or by adjusting a large

number of control points. The alternative is to allow the user interaction δC to be simple,

but then the necessary complexity has to be incorporated into the basis functions B.

102

6.1 Existing Freeform Modeling Approaches

Our goal is to keep the user interaction simple and intuitive, first, in order to com-

pensate for the limited user interface, but also to allow even non-experienced users to

perform sophisticated shape deformations. Therefore we will use special basis functions,

that are custom-tailored to the intended shape deformation. We will see in the remain-

der of this chapter, that this means we have to be able to define an arbitrary support

region for the shape deformation and to control smoothness, stiffness, and even bending

behavior of the surface.

In turn, when restricting to a simple user interaction the possible types of modifications

are limited by the abstract basis functions B that our system associates with the control

handles. Taking this into consideration, we review existing freeform modeling approaches

in the next section.

6.1 Existing Freeform Modeling Approaches

The traditional surface representation for CAGD are spline surfaces, that are controlled

by the intuitive control point metaphor and provide high quality smooth surfaces. How-

ever, it was shown in Sect. 2.1.1 that spline surfaces are restricted to rectangular do-

mains, and that complex surfaces therefore have to be composed by a large number

of (possibly trimmed) spline patches. Subdivision surfaces can be considered as direct

generalization of splines to surfaces of arbitrary topology, since the vertices of the coarse

subdivision base mesh act like the control points of a spline surface, and, depending of

the subdivision scheme, the iterated surface refinement even converges to a spline surface

(Sect. 2.1.2).

In both cases, a smooth basis function is associated with every control point, such

that each control point translation adds a smooth bump of either rectangular (splines) or

polygonal support (subdivision surfaces) to the surface (cf. Fig. 6.1, top left). Every more

sophisticated modeling operation has to be composed from these smooth elementary

modifications. In the setting of Eq. (6.1), this corresponds to simple basis functions

B of fixed support and fixed smoothness, and therefore a highly complex δC, i.e., a

highly complex user interaction, is necessary. This is one of the reasons why it takes

skilled experts to operate a typical CAD system. Nevertheless, it is the widely accepted

standard and implemented in many NURBS or subdivision based modeling frameworks.

103

6 Freeform Surface Editing

Figure 6.1: A modeling example using a bi-cubic tensor-product spline surface. Each

control point is associated with a smooth basis function of fixed rectangular support

(top left). This fixed support and the fixed regular placement of the control points, resp.

basis functions, prevents a precise support specification (top right) and can lead to alias

artifacts in the resulting surface, that are revealed by more sensitive surface shading

(bottom left) and a mean curvature plot (bottom right).

But there are more problems regarding spline and subdivision modeling besides the

complex user interaction. Any modification has to be composed of smooth bumps result-

ing from the movement of the respective control points. As a consequence, the support

of the deformation is the union of the individual basis functions’ supports. As the posi-

tions of these basis functions are fixed to the initial grid of control points, this prohibits

a fine-grained control of the desired support region. Moreover, the composition of fixed

basis functions located on a fixed grid might lead to alias artifacts in the resulting sur-

face, as shown in the bottom row of Fig. 6.1. Because the placement of control points

also defines the degrees of freedom for modeling operations, the initial patch layout is

extremely important and usually has to be done by an experienced designer.

An important limitation of this approach and other modeling frameworks is that the

underlying mathematical surface representation is tightly linked to the basis functions

that are used for the surface deformation, i.e., to the type and number of control handles.

This problem is also more than obvious if our geometry representation is based on

104

6.1 Existing Freeform Modeling Approaches

Figure 6.2: In the freeform deformation approach a regular 3D control lattice is used

to specify a volumetric displacement function (left). Similar to tensor-product spline

surfaces, the tri-variate tensor-product splines can also lead to alias artifacts in the

deformed surface (right).

unstructured triangle meshes, since here, shifting a (control) vertex just adds a tiny hat

function to the surface. To overcome this limitation, the deformation basis functions

consequently have to be independent of the actual surface representation.

The standard method to achieve this separation of surface representation and surface

deformation is to use a volumetric deformation function d : IR3 → IR3 for transforming

each surface sample: S ′ = {d (p) |p ∈ S}. The most prominent example for this kind

of approaches is the freeform deformation technique [SP86, Coq90, MJ96], where the

deformation function is represented by a tri-variate tensor-product spline function, that

can intuitively be deformed by a regular 3D control lattice (cf. Fig. 6.2, left).

While this is an intuitive modeling metaphor, it does not provide significantly more

degrees of freedom and still leads to smooth bumps over simple support regions. Analo-

gously to tensor-product spline surfaces, the volumetric spline basis functions are again

located on a fixed regular grid, resulting in the same kind of alias artifacts in the de-

formed surface (cf. Fig. 6.2, right). In terms of Eq. (6.1), volumetric freeform deformation

also corresponds to simple basis functions B and consequently requires complex control

point adjustments. Additionally, the support of a volumetric modification is difficult to

predict and control, as it is determined by intersecting the support of volumetric basis

functions with the surface to be modified.

105

6 Freeform Surface Editing

Figure 6.3: A sphere is deformed by lifting a closed handle polygon. Propagating

this translation of the control handle based on geodesic distance causes a dent in the

interior of the handle polygon (left). Using a partition-of-unity approach avoids the dent

by rigidly transforming of the interior part (center). The most intuitive solution of a

smooth interpolation (right), however, cannot be achieved with this kind of approach.

Another large class of deformation approaches directly transforms a user-defined han-

dle region and propagates this deformation outwards over the mesh [SF98, PKKG03,

BK03a]. This corresponds to defining a scalar field on the surface that is used to damp

the handle transformation and whose values are 1 at the handle region (full deforma-

tion) and decrease as a function of Euclidean or geodesic distance from the handle. As

shown in Fig. 6.3, such distance-based propagation cannot yield the geometrically most

intuitive solution, that would be the interpolation of the (transformed) handle region by

a high quality smooth surface.

The necessary smooth deformation of a surface with prescribed boundary conditions is

most elegantly modeled by an energy minimization principle [MS92, WW92, KCVS98].

The surface is assumed to behave like a physical skin, which stretches and bends as forces

are acting on it. Mathematically, this behavior can be captured by an energy functional

which penalizes stretch or bending. Then the optimal surface is the one that minimizes

this energy while satisfying all the prescribed boundary conditions. The advantage of

this formulation is that it allows to take arbitrary boundary conditions into account

and that the optimal solution is known to have certain smoothness properties. When

changing the boundary conditions, the optimal surface changes accordingly and this is

why we call this approach boundary constraint modeling (BCM).

106

6.2 Boundary Constraint Modeling

Because of its flexibility and high surface quality we also use the boundary constraint

modeling approach. We adopt the modeling metaphor of Kobbelt et al. [KCVS98] and

extend it to meet the central requirements of our modeling system. The very recent

boundary constraint modeling approaches of [LSCO+04, SCOL+04, YZX+04] are also

very similar to [KCVS98], since they are based on the same partial differential equations

and hence yield comparable results. However, these approaches differ in the way the

multiresolution details are encoded and how the boundary constraints are specified by the

designer. In contrast to them, we are able to obtain more flexible and more precise shape

control by explicitly controlling the smoothness and bending behavior of the surface.

Additionally, a pre-computation of a set of linear basis functions allows us to achieve

real-time feedback even when modifying complex surface areas.

6.2 Boundary Constraint Modeling

As shown in Eq. (6.1), a freeform modification is performed by adding an abstract basis

function B to the current surface S. To be able to control even complex deformations by

a simple user interaction, this basis function has to be custom-tailored to the intended

shape deformation. For the specification of a particular modification’s basis function,

we have to define its support, i.e., the region of the surface S that should be affected by

the modification, and its characteristic shape.

We will see below that our BCM approach allows us to specify interpolation constraints

for an arbitrary set of vertices. As a consequence, this allows for a maximally precise

specification of the support region on a per-vertex basis. The support is chosen to be

an arbitrary surface region (a set of vertices), that may be convex or non-convex, with

an arbitrary boundary curve, such that it can easily be aligned to any feature on the

surface. A simple and intuitive way to let the designer specify this region is to draw

onto the surface either its outline or the complete region using some painting metaphor.

In order to map the control of the modification to a 9-DoF manipulator object, the

user selects a second region, the handle region, in the interior of the support region

(cf. Fig. 6.4, left). The manipulator is then rigidly attached to this surface patch, such

that moving the manipulator moves the surface patch accordingly. The remaining part

of the surface, i.e., support region minus handle region, is supposed to smoothly bend

according to the translation, rotation and scaling of the handle region (cf. Fig. 6.4).

107

6 Freeform Surface Editing

Figure 6.4: In our modeling metaphor, we define a custom tailored basis function by

selecting a support region (blue/dark) and a handle region (green/light). If the handle

region is transformed (by moving the manipulator object) the support region is bent to

smoothly interpolate its inner and outer boundaries.

6.2.1 Constrained Surface Optimization

A physically plausible bending behavior of the surface is achieved by considering the fixed

vertices and handle vertices as interpolation constraints and determining the remaining

degrees of freedom (the support region) by a constrained minimization of a so-called

fairness functional [MS92, WW92, KCVS98]. This functional punishes high curvature

and therefore its minimization leads to surfaces that interpolate the constraints, but are

otherwise free of unnecessary details, thereby following the principle of simplest shape

[Sap94]. During a modeling session, each time the designer transforms the handle by

moving the manipulator, the boundary constraints for the optimization are changed and

the support region is re-computed to minimize its bending energy.

A geometrically very intuitive measure for the bending energy of a surface S is the

so-called thin-plate energy, that is computed by integrating over the squared principal

curvatures of S:

ETP (S) =
∫
x∈S

κ2
1 (x) + κ2

2 (x) dx . (6.2)

However, this functional is highly non-linear, since it is based on intrinsic surface cur-

vatures, and therefore its minimization is computationally too expensive for interactive

modeling applications.

108

6.2 Boundary Constraint Modeling

For efficiency reasons, ETP is therefore approximated by replacing the intrinsic cur-

vatures κ1 and κ2 by second order partial derivatives w.r.t. a surface parameterization

f : Ω→ IR3:

ẼTP (f) =
∫
x∈Ω
‖fuu (x)‖2 + 2 ‖fuv (x)‖2 + ‖fvv (x)‖2 dx . (6.3)

Since both energy functionals are, e.g., invariant to rigid motions, proper boundary

constraints have to be imposed on them. These constraints are given by the fixed vertices

and handle vertices of the surface, that define C0 and C1 interpolation constraints at

the boundary δΩ of the support region. If we denote by BC the space of functions

f : Ω → IR3 that satisfy the given boundary constraints, then we are looking for the

optimal surface S∗ defined by its parameterization

f∗ := argmin
f∈BC

ẼTP (f) .

In order to efficiently compute the solution of the above minimization problem, vari-

ational calculus is applied to derive the Euler-Lagrange PDE that characterizes the

minimizer f∗ of ẼTP [Kob97]:

∆2 f∗ (x) = 0, ∀x ∈ Ω \ δΩ , (6.4)

again with proper C1 constraints on the boundary δΩ. Hence, the optimal surface

S∗ can directly be computed by solving (6.4), which is usually more efficient than a

minimization of the energy functional (6.3).

The quality of the parameterization-dependent approximation ẼTP to the exact ge-

ometric intrinsic ETP — and hence the fairness of the resulting surface S∗ — strongly

depends on the parameterization used. This parameterization should be chosen as close

as possible to isometric, since then the second partial derivatives yield a good approxi-

mation to the intrinsic principal curvatures. In the optimal case of an isometric param-

eterization, the functionals ETP and ẼTP are identical.

Finding a close-to-isometric surface parameterization f∗ for the yet unknown solution

S∗ of the minimization problem is not possible. However, following the general idea

of the data-dependent fairness functionals of Greiner et al. [Gre94, GLW96], the initial

surface S (instead of a planar region Ω ⊂ IR2) can be used as parameter domain. If the

optimal surface S∗ is not too far from the initial S, i.e., if the surface deformation is not

109

6 Freeform Surface Editing

too extreme, then the parameterization f∗ : S → S∗ will be close to isometric. This can,

e.g., be achieved by decomposing any large scale deformation into a sequence of smaller

ones.

When S is used as parameter domain, the parameterizations f are functions over

the reference surface S, and therefore the partial derivatives of f have to be computed

using the gradient ∇S induced by the metric of S [dC76]. Analogously, the Laplace

operator used in the Euler-Lagrange PDE (6.4) should also be based on this surface

metric, i.e., it should be replaced by the Laplace-Beltrami operator ∆S f = divS∇S f

w.r.t. the reference surface S:

∆2
S f∗ (x) = 0, ∀x ∈ Ω \ δΩ . (6.5)

Notice that the resulting minimizer surfaces satisfying ∆2
S f = 0 are also limiting

surfaces of explicit bi-Laplacian smoothing

f (vi) ← f (vi)− λ ∆2
S f (vi)

as well as of the fourth order surface diffusion flow [DMSB99]

∂ f (vi)

∂t
= −λ ∆2

S f (vi) ,

since the local update vectors, i.e., the squared Laplacians, vanish for S∗. This tight

connection between Laplacian surface smoothing (see Sect. 3.2.1) and constrained sur-

face optimization gives another reason why both approaches yield high quality smooth

surfaces.

But in contrast to the implicit fairing approach, the Laplace-Beltrami is always com-

puted w.r.t. the initial reference surface S, i.e., the surface metric is not updated, which

corresponds to the simplification of the non-linear ETP (6.2) to the linearized ẼTP (6.3).

However, this can also be regarded as an advantage, since the resulting surface S∗ will

have a low metric distortion to S. The physical interpretation is that S∗ on the one hand

minimizes its bending energy, but on the other hand is also influenced by the material

stretching due to the deformation of the initial state S.

Besides the thin-plate energy, that punishes high surface curvature, one can also

consider other functionals of different order, which results in a different bending be-

havior, corresponding to a different stiffness of the surface. The membrane energy

110

6.2 Boundary Constraint Modeling

Figure 6.5: The order k of the energy functional and of the corresponding Euler-

Lagrange PDE ∆k
S f = 0 defines the stiffness of the surface in the support region and the

maximum smoothness Ck−1 of the boundary conditions. From left to right: membrane

surface (k = 1), thin-plate surface (k = 2), minimum variation surface (k = 3).

∫
x∈Ω ‖fu (x)‖2 + ‖fv (x)‖2 dx measures surface area and their minimizers can be char-

acterized analogously by the second order PDE ∆S f = 0. The so-called minimum

variation surfaces [MS92] minimize the integral over curvature derivatives and therefore

yield surfaces with a uniform (mean) curvature distribution. They can be computed by

solving the sixth order PDE ∆3
S f = 0. The different surface types obtained by these

three energy functionals are shown in Fig. 6.5, where it can also be seen that surfaces

derived from ∆k
S f = 0 interpolate boundary constraints of order Ck−1.

6.2.2 Linear System Derivation

Since our underlying surface representation is a triangle mesh, the Euler-Lagrange PDEs

∆k
S f = 0 have to be discretized. Like in Sect. 3.2.1 the Laplace-Beltrami discretization

of [DMSB99, MDSB03] is used and higher order Laplacians are defined recursively by

∆k
S f (vv) := ∆S

(
∆k−1
S f (vi)

)
,

∆0
S f (vi) := f (vi) ,

(6.6)

such that the kth order Laplacian of a vertex vi depends on its k-ring neighborhood.

111

6 Freeform Surface Editing

With this discrete Laplace operator, the PDE ∆k
S f = 0 together with its boundary

constraints leads to the following sparse linear system to be solved:

∆k
S

0 I 0

0 0 I

P

F

H

 =

0

F

H

 , (6.7)

where P = (p1, . . . ,pn)T ∈ IRn×3 is the vector of free vertices in the support region,

F = (f1, . . . , fl)
T ∈ IRl×3 are the fixed vertices outside the support region and H =

(h1, . . . ,hm)T ∈ IRm×3 are the vertices of the handle region. These sets of vertices

correspond to the blue, gray and green surface regions shown in Fig. 6.4, respectively.

Solving this system yields the optimal surface S∗ as a sampling of its parameterization

at the vertex positions pi = f∗ (vi).

Since the vertex sets F and H are fixed, they impose the boundary conditions on the

system. Notice that the necessary Ck−1 boundary constraints are not specified explicitly,

e.g., by prescribing the values of ∆j
S f , 0 ≤ j < k, at the boundary. Instead, they are

implicitly prescribed by the first k rings of fixed vertices and handle vertices around the

support region, since these define the higher order Laplacians. As a consequence, only

the first k rings of constraints F ∪H are required for the solution of Eq. (6.7).

Also notice that multiple independent handle regions, each controlled by its own

manipulator widget, are no problem for the presented approach. In that case, the set of

handle vertices H just has to be split into several components, such that each of them

can be transformed independently by the designer. Because this is just a different user

interface for specifying the boundary constraints, the energy minimization as well as the

linear system (6.7) are not affected by this generalization.

The optimality conditions and the boundary conditions are combined into one equa-

tion for the sake of a simpler notation only. For the actual solution of the linear system,

the constraints F and H should be moved to the right hand side of the system, which

eliminates their corresponding rows and columns from the matrix, such that only the

upper left n × n block remains. Whenever the designer moves the handle region, the

vertices in H change their position and provide a new right hand side for the linear sys-

tem. By solving it again the new vertex positions in P are computed as a linear function

of H and F . We analyze the structure of these linear systems and propose robust and

efficient ways of solving them in Chap. 7.

112

6.2 Boundary Constraint Modeling

The modeling framework described so far basically resembles the approach of Kobbelt

et al. [KCVS98]. However, one important difference is the choice of the Laplace oper-

ator and its discretization. The uniform Laplace operator used in [KCVS98] is a bad

approximation in the case of irregular tessellations, where it causes tangential vertex

movements within the surface and low fairness due to geometric artifacts. In contrast,

the data-dependent Laplace-Beltrami operator ∆S , that is discretized using the cotan-

gent weights of the reference surface S, is almost independent of the triangulation and

leads to high quality surface of superior fairness (cf. Fig. 6.6).

Since the approach of Kobbelt et al. [KCVS98] was primarily targeted at conceptual

design, it is not readily suitable for deformations of technical models in engineering

applications. In the following we therefore propose extensions that yield more precise

control over the surface and allow for the real-time solution of the presented linear

systems even for complex models.

6.2.3 Boundary Smoothness

When specifying the deformation basis function B, a very important characteristic is its

boundary smoothness, that determines how smooth the deformed surface region blends

with the fixed part of the surface and the transformed handle region.

When prescribing the required k rings of fixed vertices, surfaces derived by solving

∆k
S f = 0 can be shown to interpolate boundary conditions of the order Ck−1, which

can clearly be seen in Fig. 6.5. However, there are many cases in which this default

behavior does not lead to the desired results, e.g., when different smoothness values for

the inner and outer boundaries are intended. Fig. 6.7 shows examples for minimum

variation surfaces derived from ∆3
S f = 0 with C0 and C2 boundary constraints.

Since k rings of boundary constraints are required to guarantee a Ck−1 boundary

smoothness, a lower order continuity can be achieved by somehow neglecting the influ-

ence of the outer rings of boundary constraints. But as all k rings of constrained vertices

are necessary to properly compute the kth order Laplacians of the outmost ring of free

vertices P , these constraints cannot simply be removed. One the other hand, the recur-

sive computation of ∆k
S f for the free vertices P only requires the lower order Laplacians

∆k−1
S f , . . . , ∆0

S f at the first ring of constrained vertices — which are, in turn, defined

by the other k − 1 rings of constraints.

113

6 Freeform Surface Editing

Figure 6.6: The original surface S (left) has an irregular tessellation with higher vertex

density in the region of the mouth and the nose. This mesh is smoothed by minimizing

ẼTP , i.e., by solving Eq. (6.7). Using the uniform Laplace discretization ∆uni in this

linear system results in geometric surface artifacts and strong tangential movements

within the surface (center). The cotangent discretization of the data-dependent Laplace-

Beltrami operator ∆S avoids tangential movements and leads to the expected fair surface

(right).

114

6.2 Boundary Constraint Modeling

Figure 6.7: In our framework the smoothness conditions at the inner and outer bound-

ary of the support region can be controlled independently and continuously blended

between C0 and C2. From left to right: C2 at inner and outer boundary, C0 at inner

and C2 at outer, as well as C2 at inner and C0 at outer boundary.

However, by explicitly setting ∆j
S f (fi) = ∆j

S f (hi) = 0, s < j < k, for the boundary

vertices F ∪H, only the first s rings of constrained vertices affect the solution and the

remaining outer k − s rings are neglected. As a consequence, the resulting boundary

continuity is Cs.

A more fine-grained control of the boundary smoothness can be achieved by blending

the continuities between C0 and Ck−1 using a real-valued smoothness parameter c (vi) ∈
[0, k − 1] for the constrained vertices vi ∈ F ∪H. The recursive definition of the higher

order Laplacian from Eq. (6.6) is extended by damping values λi ∈ [0, 1] in order to take

this per-vertex smoothness value into account:

∆̄k
S f (vi) := ∆S

(
λk−1 (vi) · ∆̄k−1

S f (vi)
)

∆̄1
S f (vi) := ∆S f (vi)

λk (vi) :=

1, c (vi) > k

c (vi)− k, k − 1 ≤ c ≤ k

0, c (vi) < k − 1

.

For instance, minimum variation surfaces are computed based on third order Lapla-

cians. When using the modified Laplace operator

∆̄3
S f (vi) = ∆S (λ2 ·∆S (λ1 ·∆S f (vi))) ,

the boundary smoothness can continuously be blended between C0 and C1 (λ2 = 0,

λ1 ∈ [0, 1]) and between C1 and C2 (λ2 ∈ [0, 1], λ1 = 1).

115

6 Freeform Surface Editing

C
0

C
1

C
2

C
0.2

Figure 6.8: The continuous boundary smoothness can be controlled on a per-vertex

basis. This allows to specify different continuities for arbitrary segments of the inner

and outer boundaries of the support region.

This continuous boundary smoothness can precisely be controlled on a per-vertex

basis, such that different continuities can easily be specified for different segments of

the inner and outer boundary of the support region, as shown in Fig. 6.8. The user

interaction for specifying the boundary smoothness is still easy and intuitive: First a

(segment of a) boundary is selected and then the desired smoothness is chosen within

[0, k − 1] using a slider widget.

6.2.4 Anisotropic Bending

One of the major goals of our freeform modeling framework is a simple yet powerful

user interface, allowing the designer to specify even complex deformations by just a few

intuitive parameters. The support and handle regions can easily and precisely be defined

by painting them onto the surface, and their choice intuitively controls the extend and

the “fullness” of the deformation, respectively. The characteristic shape of the surface

is mainly determined by the surface stiffness (i.e., the energy functional) and by the

boundary continuities. However, the framework described so far may still lead to rather

counter-intuitive deformation results in the case of an anisotropically shaped support

region, as we will show below.

Each time the designer changes the boundary constraints by dragging the manipulator,

the deformed surface S ′ is derived by minimizing the chosen energy functional, i.e.,

116

6.2 Boundary Constraint Modeling

Figure 6.9: A simple modeling example using isotropic (left) and anisotropic (right)

basis functions. The better adaptation of the anisotropic shape deformation to the

support’s shape results in a more natural bending behavior.

by solving the Laplacian system (6.7) for the new right-hand side. Consequently, the

Laplace operator and its discretization have a large impact on the resulting surface (cf.

Fig. 6.6), and the Laplace-Beltrami ∆S w.r.t. the original undeformed surface S was

shown to yield high quality fair surfaces.

Just as the two-dimensional Laplace operator governs the uniform heat propagation

in the plane, the above Laplace-Beltrami operator models a geodesically uniform prop-

agation of the handle transformation over the support region. Due to this geodesically

isotropic diffusion, the resulting optimal surface will also bend isotropically, i.e., the

elementary modifications are mainly shaped like circular bumps, even if the shape of the

support is anisotropically stretched (cf. Fig. 6.9, left).

Because the shape of the support region is considered as a design parameter for spec-

ifying the basis function of the intended deformation, a bending behavior that better

adapts to the shape of the support would be much more intuitive. As shown in Fig. 6.9,

the basis functions look more natural if the impact of the handle transformation is prop-

agated through the support region, such that its “iso-contours” hit the outer boundary

at the same time and with approximately the same slope.

Since the reason for this behavior is the isotropic Laplace operator, one way to achieve

an anisotropic deformation would be to use an anisotropic formulation of the Laplacian.

This, however, would complicate the overall computation and have a negative impact

on the possible rate of interactivity. In contrast, we propose to switch back to a two-

dimensional parameter domain Ω and to properly adjust this domain, respectively the

117

6 Freeform Surface Editing

surface parameterizations f , such that the Laplacian ∆Ω f w.r.t. this domain results in

the desired anisotropic bending behavior (cf. Fig. 6.9, right). The overall process is

depicted in Fig. 6.10.

In a first step a parameterization of the support region f : Ω → S is computed,

such that the resulting optimal surface f∗ with ∆Ω f∗ = 0 is close to the isometric re-

sult derived by solving ∆S f = 0. This initial parameterization of the support region

is computed using the Least Squares Conformal Map (LSCM) approach of Lévy et al.

[LPRM02], yielding as parameter domain Ω a planar triangulation with identical con-

nectivity, i.e., a flattened version of the support region. Because the resulting conformal

parameterization minimizes (angular) distortion, the two-dimensional domain Ω will be

anisotropically stretched in a similar way as the support region is in 3D.

Then a principal component analysis on the planar triangulation Ω is computed in

order to scale it along its principal axes, such that its diameter is approximately the same

in each direction. The scaled parameter domain Ω′ now corresponds to parameterizations

f : Ω′ → S that are no longer conformal, but contain a certain amount of stretch.

This, however, is exactly the stretching that is intended for the anisotropic deformation.

Hence, using Ω′ as the underlying parameter domain and solving ∆Ω′ f = 0 for the

optimal surface will result in the desired anisotropic bending behavior.

The special parameterizations Ω′ → S can therefore be considered to “factor out”

the anisotropy, such that w.r.t. these parameterizations the standard isotropic Laplace

operator can be used. This means, that once the parameterization is generated, the

computational complexity for deriving the optimal surface is the same as in the simple

isotropic case. As the only difference the cotangent weights of the discrete Laplacian are

computed on the planar triangulation Ω instead of being derived from the 3D surface S.

Since the special parameterization has to be computed only once after selecting the

support region (instead of each time the handle is moved), it can be regarded as a

pre-computation process. Nevertheless, its computation should be sufficiently fast to

be useful in an interactive modeling application. Computing the initial LSCM param-

eterization requires the solution of a large sparse linear least squares system. In order

to accelerate the iterative solver used in [LPRM02], Ray and Lévy [RL03] propose a

hierarchical multi-grid solver. However, using a sparse Cholesky solver as described in

Chap. 7 has the same asymptotic linear complexity, but is faster by a factor of about 4

compared to the results presented in [RL03] (see Sect. 7.3.7).

118

6.2 Boundary Constraint Modeling

LSCM

scale

isotropic

anisotropic

Ω

Ω
′

∆S f = 0

∆Ω′ f = 0

Figure 6.10: The isotropic Laplace-Beltrami operator ∆S leads to isotropic defor-

mations even for anisotropically shaped support regions (top row). Starting from a

conformal parameterization Ω → S, a scaled version is computed to have an isotropic

support region Ω′ ⊂ IR2 (left column). The special parameterizations Ω′ → S factor out

the anisotropy, such that the isotropic Laplace w.r.t. the domain Ω′ results in the more

natural anisotropic bending behavior (bottom row).

119

6 Freeform Surface Editing

Figure 6.11: Non-disk shaped anisotropic deformation are possible using multiple han-

dles. The left cap (green/light) is defined as a handle component that is not to be moved.

By this the union of support and handle regions is a topological disk.

Notice that this parameterization restricts the shape of the support region to topolog-

ical disks. However, it is possible to generate modifications with more general support

regions by adding “dummy” handle regions that are not to be moved, such that the union

of support and handle regions is eventually homeomorphic to a disk (cf. Fig. 6.11). An-

other possibility would be not to scale the two-dimensional domain Ω, but to use a

pre-scaled version of S as parameter domain, in which the support region has uniform

isotropic extend, leading to anisotropic deformation w.r.t. Euclidean distance in 3D.

However, if the support is not sufficiently flat (e.g., at edges or corners), the results

are less intuitive compared to the geodesically anisotropic deformation proposed above.

Notice that arbitrary complex support regions can be used if we restrict to the isotropic

Laplacian, because this completely avoids the parametrization step.

6.2.5 Precomputed Basis Functions

The freeform modeling technique described so far requires to solve the linear system (6.7)

for the free vertex positions P whenever the designer moves the manipulator (and hence

the handle region). Even if a highly efficient solver is used for this task (see Chap. 7), the

frame rate will not be sufficiently high, especially when surfaces of minimum curvature

variation are computed and the number of vertices in the support region is on the order

of 104 or higher.

By pre-computing a special set of basis functions, that directly correspond to the

degrees of freedom of the manipulator, the per-frame computational costs can be reduced

significantly. If we denote by L the matrix of Eq. (6.7), the solution of this system can be

120

6.2 Boundary Constraint Modeling

expressed explicitly in terms of the inverse matrix L−1. Hence, the set of basis functions

is represented by (a combination of) the column vectors of L−1. The explicit solution of

(6.7) is
P

F

H

 = L−1

0

F

H

 = L−1

0

F

0

 + L−1

0

0

H

 , (6.8)

where the first term on the right hand side is constant, since the fixed vertices F are

constant, and the second term depends on the vertices in the handle region. In a similar

manner, James and Pai [JP99] as well as Debrun et al. [DMA02] also used pre-computed

basis functions based on the columns of inverse matrices in order to accelerate the

solution of boundary constrained problems. However, for a complex deformation with a

large number of handle vertices m = |H|, this pre-computation amounts to solving the

linear system m times, which is computationally far too expensive.

But notice that in our case, due to the custom-tailored basis functions, we can restrict

to simple user interactions, i.e., to simple transformations of the control handle region.

During interactive shape editing, a 9-DoF manipulator is used, which provides an intu-

itive interface to control an affine map t : IR3 → IR3, that is applied to the vertices H

of the handle region. We can define a local affine coordinate system, spanned by four

affinely independent points a, b, c, and d, that is attached to the manipulator in its

initial state. Then there exists a matrix Q ∈ IRm×4 (m = |H|) containing the handle

points’ affine coordinates w.r.t. the affine frame (a,b, c,d) ∈ IR3×4:

H = Q (a,b, c,d)T .

Due to affine invariance, the transformed handle points t (H) can also be expressed by

applying the affine map t to the affine frame, i.e.,

t (H) = t
(
Q (a,b, c,d)T

)
= Q (t (a) , t (b) , t (c) , t (d))T .

As a consequence we can rewrite (6.8) as
P

F

H

 = L−1

0

F

0

 + L−1

0

0

Q

 (a,b, c,d)T .

This means that we only have to solve the system (6.7) in a pre-processing step

for 7 different right hand sides: the three columns of (0, F, 0)T and the four columns of

121

6 Freeform Surface Editing

(0, 0, Q)T . This results in a pre-computed constant term C := L−1 (0, F, 0)T and a “basis

function” matrix B := L−1 (0, 0, Q)T . Whenever the designer moves the manipulator,

the affine frame is (affinely) transformed to (a′,b′, c′,d′)T , and the solution of the linear

system (6.7) can simply be computed by

P ′

F

H

 = C + B (a′,b′, c′,d′)
T

, (6.9)

which can be done in real-time even for highly complex meshes.

Writing Eq. (6.9) in terms of surface updates and removing the constraints from the

notation leads to

P ′ = P + B (δa, δb, δc, δd)T︸ ︷︷ ︸
=:δC

.

Comparing this to Eq. (6.1), we see that B is exactly the matrix representation of the ab-

stract basis function for the deformation. Its four columns correspond to the four points

of the affine frame, i.e., to the degrees of freedom of the affine handle transformation T .

As mentioned in Sect. 6.2.2, multiple independent handle regions can be used by split-

ting H into several components H1, . . . , Hn, such that each handle can be transformed

by its own manipulator widget. In this case, a separate basis function Bi is computed

for each handle region Hi, such that the pre-computation requires to solve the linear

system (6.7) 3 + 4n times. The solution S∗ is then computed accordingly by evaluating

the basis functions using their corresponding (modified) affine frames:

P ′ = C +
n∑

i=1

Bi (a
′
i,b

′
i, c

′
i,d

′
i)

T
.

6.3 Results

We integrated the presented freeform modeling technique into a multiresolution modeling

framework as described in Chap. 5. In addition to the freeform editing, the decomposi-

tion operator is also based on BCM, as shown in Fig. 6.12. The multiresolution details

are encoded either as normal displacements (high performance) or as displacement vol-

umes (higher quality).

122

6.3 Results

Geometric
Details

Region
Selection

Dragging

Sm
oo
th
in
g

Region
Mapping

Freeform
Modeling

De
co
m
po
sit
io
n Reconstruction

User Interaction
M

ultiresolution Kernel

S S
′

B
′B

Figure 6.12: Overview of the complete multiresolution modeling framework. In a pre-

process the original surface S is smoothed to get a base surface without high frequencies

(lower left), which provides smoother and hence more reliable boundary conditions.

After the region selection, an energy minimization is used to remove the remaining

middle frequencies from the support region on the base surface, yielding the surface

B, whose difference to S is then encoded as geometric details D = S 	 B. Whenever

the handle is moved, the support region of the base surface is re-computed by solving

Eq. (6.7), i.e., by evaluating the basis function (6.9), yielding the modified base surface

B′. The deformed detailed surface S ′ is finally reconstructed from B′ and the geometric

details: S ′ = B′ ⊕D.

123

6 Freeform Surface Editing

Figure 6.13: Multiresolution deformation of the sillboard using flexible boundary con-

ditions and the anisotropic bending behavior. After lowering the sillboard, the unwanted

point of inflection (bottom left) is avoided by reducing the continuity constraint at the

handle region to C0. Switching from the isotropic discretization of the Laplace operator

(bottom center) to the anisotropic one finally leads to the intended natural displacement

propagation (bottom right).

The actual multiresolution modeling is performed in two steps of interaction. First,

the designer defines the basis functions for the deformation by

1. selecting support and handle regions,

2. controlling the stiffness by the choice of the energy functional,

3. specifying the (segment-wise) boundary continuities,

4. and choosing either isotropic or anisotropic bending behavior.

After that, each handle region can be transformed by a manipulator widget, leading to

a new base surface B′ and the deformed surface S ′ is finally reconstructed by adding the

geometric details onto B′.

In an industrial evaluation typical shape deformations in the context of CFD simu-

lation for conceptual car design were successfully tested. One of these deformations is

shown in Fig. 6.13, where the sillboard of a car is to be lowered. Exploiting the flexibil-

ity provided by continuous boundary smoothness avoids the generation of an unwanted

point of inflection along the feature line. In order to achieve a natural displacement

propagation over the support region, the anisotropic Laplace discretization is required.

124

6.3 Results

Figure 6.14: Using multiple independent handle components allows to stretch the

hood while also rigidly preserving the circular shape of the wheel houses. This kind

of deformation would be very difficult using a volumetric deformation technique like

freeform deformation.

All fine surface features are well preserved due to the multiresolution decomposition and

reconstruction.

Fig. 6.14 shows an example of a complex modification of a car’s hood. Multiple

independent handle regions are placed at the wheel houses and the grill, thereby allowing

to stretch the hood while keeping the wheel houses circular. The active region consists

of 35k vertices (support and handles), where the number of support vertices, i.e., the

unknowns P of the linear system, is 17k. The pre-processing includes 3 + 3 · 4 = 15

solutions of Eq. (6.7) (in order to compute the basis functions), the multiresolution

decomposition and detail encoding. Using the efficient solvers described in Chap. 7,

the total precomputation time was less than 4s on an Intel Pentium4 3GHz. In each

frame the base surface B′ is computed by evaluating the three basis function (8ms), the

surface S ′ is reconstructed by normal displacements (18ms), and the final normal field

is computed for surface rendering (11ms). Including the rendering of this 250k triangle

model, the surface editing can be done with 13fps.

A possible extension of this modeling metaphor would be to use non-affine handle

transformations, e.g., to select a curve on the surface and to deform this handle curve in

a non-rigid manner. Although this prevents the use of pre-computed basis functions, the

general framework can still be applied, since only the boundary constraints are specified

in a different manner. As a consequence, the linear system (6.7) has to be solved each

frame, which can be done efficiently using the factorization-based solvers presented in

the next chapter. However, although both techniques have linear complexity, the per-

frame solution slows down the computation of the BCM surfaces by a factor of about

10, such that the total effective frame rate is halved.

125

6 Freeform Surface Editing

126

7 Numerical Aspects

The last chapter described the theoretical foundations of our boundary constraint freeform

modeling metaphor [BK04a] by introducing the different energy functionals as well as the

Euler-Lagrange PDEs characterizing their minimizer surfaces, and by discretizing these

PDEs to linear systems of Laplacians, which have to be solved in order to compute

the optimal BCM surface. In this chapter we analyze the structure of these Lapla-

cian systems, since they are frequently used in surface smoothing [Tau95, DMSB99],

surface parameterization [PP93, DMA02], and surface modeling [KCVS98, LSCO+04,

SCOL+04, YZX+04, BK04a].

In the context of our multiresolution modeling framework, we have to solve the linear

system of Eq. (6.7) of first, second, or third order Laplacians either in each frame, or

several times for the pre-computation of the deformation’s basis functions. In both cases,

the main goals from a numerical point of view are robustness and efficiency, such that

the surface deformation works flawlessly even on numerically demanding meshes and is

sufficiently fast to be used in interactive applications.

We start by discussing numerical robustness issues in Sect. 7.1, and after an analysis of

general Laplacian systems (Sect. 7.2) we describe and compare different classes of linear

system solvers in Sect. 7.3, since those are responsible for the computational efficiency

of our interactive modeling system.

7.1 Robustness

The numerical robustness of computations on discrete triangle meshes is mostly related

to the shape of the triangles: Equilateral triangles allow for stable computations, while

for degenerate triangles neither area nor derivative information like normal vectors can

127

7 Numerical Aspects

be evaluated robustly. For our multiresolution modeling system, this causes the editing

operator as well as the reconstruction operator to break down for degenerate meshes.

The failure of the reconstruction operator is obvious, since normal displacements re-

quire a well-defined normal field on the base surface to derive the (modified) detailed

surface as a displacement in normal direction from the base surface (see Sect. 5.3).

The freeform editing operator has to solve the linear system ∆k
SP = B for proper

boundary constraints B, with k typically ranging from 1 to 3. The matrix ∆S contains in

each row the cotangent values and Voronoi areas used to discretize the Laplace-Beltrami

∆S f (vi) of a vector-valued function f , which is in most cases the geometric realization

f (vi) = p (vi) =: pi (see Sect. 3.2.1). In the context of conformal parameterizations,

this matrix was shown to be non-singular and positive definite as long as no triangle

areas are vanishing [PP93]. In the presence of degenerate triangles, however, the matrix

is singular, and hence the freeform editing operator cannot compute a solution.

As we described in Chap. 5, and as it is depicted in Fig. 5.3 and Fig. 6.12, two differ-

ent surfaces are involved in a general multiresolution modeling framework: The detailed

surface S and the base surface B. Notice that these two surfaces play fundamentally dif-

ferent roles in the modeling process. The former is the mesh the designer interacts with,

while the latter is generally hidden from the user and is internally used for computing

the deformations. As a consequence, the requirements on these two surfaces also differ.

The original surface S has to provide a high-quality approximation to the actual surface

geometry and represents its fine details and sharp features by a possibly hand-crafted

triangulation. On the other hand, since all numerical computations are performed on

the base mesh B only, its structure is mainly responsible for robustness and efficiency.

Our main observation in [BK04b] is that the tessellations of S and B are not restricted

to be identical if a suitable representation for the multiresolution details is chosen. As

shown in Chap. 5, both normal displacements and displacement volumes do not require

the base points qi ∈ B, corresponding to the vertex positions pi ∈ S, to be vertices of

the base surface. They can instead be arbitrary surface points on B, i.e., they are also

allowed to lie in the interior of triangles.

As a consequence, the triangulation of the base surface is independent of the trian-

gulation of the detailed surface and can therefore be considered as an additional degree

of freedom, which can be adjusted in order to improve the robustness of the multireso-

lution modeling process. Notice that the base surface B is smooth by construction and

128

7.2 Laplacian Systems

hence contains no high-frequency details. By consequence, a remeshing or resampling

of B can be performed without introducing geometric aliasing artifacts. In contrast, the

original surface S generally does contain sharp features, therefore a näıve remeshing is

prohibitive, as it could destroy a feature-aligned triangulation.

Applying the isotropic remeshing technique presented in Sect. 3.2.3 to the base surface

results in a highly regular tessellation with close-to-equilateral triangles. Since this

effectively removes degenerate triangles, the Laplace matrix of this new tessellation is

regular and positive definite. The inner triangle angles are close to 60◦, such that the

respective cotangent weights are positive, which guarantees stability and convergence.

Additionally, the discretization of the Laplace-Beltrami yields a better approximation to

the its exact continuous counterpart if the triangulation does not contain obtuse angles

[MDSB03].

Hence, isotropic remeshing of the smooth base surface is clearly preferable from a nu-

merical point of view, since it improves the matrix conditioning and increases the overall

robustness. The discrete Laplace-Beltrami used for computing the optimal surfaces was

demonstrated in Fig. 6.6 not to depend on the triangulation of the surface (in contrast to

the uniform Laplace discretization). Hence, the isotropic remeshing can safely be used,

since while increasing numerical stability, it will not affect the shape of the resulting

surface.

The remeshing also allows for a highly efficient implementation, since the base sur-

face is known to be smooth and therefore no special care has to be taken to preserve

sharp features, such that meshes of about 100k triangles can be remeshed in about 5s.

In a typical modeling session, the isotropic remeshing has to be performed only once

after loading the model and generating the base surface by a pre-smoothing process (cf.

Fig. 6.12). It can therefore be considered as an additional pre-processing step, such that

the computational overhead caused by it is usually negligible.

7.2 Laplacian Systems

The performance of our modeling system is determined by how fast we can solve the

corresponding linear systems, which depends on the kind of solver we use for this task.

129

7 Numerical Aspects

As the class of applicable solvers depends on the properties of the corresponding matrix,

we take a closer look at the Laplacian matrices ∆k
S first.

In each row the matrix ∆S contains the weights for the discretization of the Laplace-

Beltrami of a function f : S → IR at one vertex vi (see Sect. 3.2.1):

∆S f (vi) =
2

A (vi)

∑
vj∈N1(vi)

(cotαij + cotβij) (f (vj)− f (vi)) .

Again, f denotes the signal to be smoothed, and in order to compute a smooth sur-

face, it is chosen component-wise to be the geometric realization function p (vi) =

(x(vi), y(vi), z(vi))
T . In matrix notation the vector of the Laplacians of f (vi) can be

written as
...

∆Sf (vi)
...

 = D ·M ·

...

f (vi)
...

 ,

where D is a diagonal matrix containing the normalization factors Dii = 2/A (vi), and

M is a symmetric matrix of cotangent weights

Mij =

0 i 6= j , j 6∈ N1 (vi)

cotαij + cotβij, i 6= j , j ∈ N1 (vi)

−∑vj∈N1(vi) (cotαij + cotβij) i = j

.

Since the Laplacian of a vertex vi is defined locally in terms of its one-ring neighbors,

the matrix M is highly sparse and has non-zeros in the ith row only on the diagonal

and in those columns corresponding to vi’s one-ring neighbors N1 (vi). Due to the Euler

characteristic for triangle meshes, this results in about 7 non-zeros per row in average.

Analogously, higher order Laplacian matrices ∆k
S have non-zeros for the k-ring neighbors

Nk (vi), which are, e.g., about 19 for k = 2 and 37 for k = 3.

For a closed mesh without boundaries, Laplacian systems ∆k
SP = B of any order k can

be turned into symmetric ones by moving the first diagonal matrix D to the right-hand

side:

M (DM)k−1 P = D−1B . (7.1)

Boundary constraints are typically employed by restricting the positions of certain ver-

tices C (e.g., the handle and fixed vertices in Sect. 6.2.2), which corresponds to eliminat-

ing their respective rows and columns and hence keeps the matrix symmetric. The case

130

7.3 Linear System Solvers

of meshes with boundaries is equivalent to a patch bounded by constrained vertices and

therefore also results in a symmetric matrix. Pinkal and Polthier [PP93] additionally

showed that this system is positive definite, such that the efficient solvers presented in

the next section can be applied.

In order to use the continuous per-vertex boundary continuity introduced in Sect. 6.2.3,

the scaling matrices Λj with (Λj)ii = λj (vi) have to be incorporated, such that the linear

system (7.1) changes to

M (Λk−1DM) · · · (Λ1DM) P = D−1B .

Notice that even if the scaling factors λj (vi) 6= 1 for the constrained vertices vi ∈ C

only and if all constraints C are moved to the right-hand side, the above matrix is only

symmetric if all Λj are equal. This is always the case for thin-plate surfaces (k = 2),

but for minimum variation surfaces (k = 3) it is only true for C0 and C2 boundary

continuity, since then both scaling factors λ1 (vi) = λ2 (vi) are either 0 or 1, respectively.

Scaling values which are equal, but different from 0 or 1, have no geometric meaning

and are therefore useless.

As a consequence, we can mainly concentrate on symmetric positive definite Laplacian

systems in the following discussion, but we also have to consider the non-symmetric case

for the segment-wise boundary continuities.

7.3 Linear System Solvers

In this section we describe different types of solvers for sparse linear systems. Within

this class of systems, we will further concentrate on symmetric positive definite (so-

called spd) matrices, like for instance the Laplacian systems analyzed in the last section,

since exploiting their special structure allows for the most efficient and most robust

implementations. However, the general case of a non-symmetric indefinite system is

outlined afterwards in Sect. 7.3.5.

Following our discussion from [BBK05], we propose the use of direct solvers for sparse

spd systems, since their superior efficiency — although well known in the field of high

performance computing — is often neglected in geometry processing applications. After

reviewing the commonly known and used direct and iterative solvers, we introduce sparse

direct solvers and point out their advantages.

131

7 Numerical Aspects

An important point to be considered is whether the linear systems are solved just once

or several times, e.g., for different right hand sides. Since most problems are separable

w.r.t. the coordinate components, they can be solved component-wise for x, y, and z

using the same system matrix. Multiple right-hand side problems also naturally occur in

applications where the user interactively changes boundary constraints, e.g., in surface

editing. Notice that there is another situation for solving a sequence of similar systems:

when decomposing a non-linear problem into a sequence of linear systems, the values of

the matrix entries usually change in each iteration, but its structure, i.e., the pattern of

non-zero elements {(i, j) |Aij 6= 0}, stays the same. In both cases — solving for multiple

right hand sides or matrices of identical structure — this additional information should

be exploited as much as possible, e.g., by investing pre-computation time in some kind

of factorization or preconditioning.

For the following discussion we restrict ourselves to sparse spd problems Ax = b, with

A = AT ∈ IRn×n, x,b ∈ IRn, and denote by x∗ the exact solution A−1b. The general

case of non-symmetric indefinite systems is then outlined in Sect. 7.3.5.

7.3.1 Dense Direct Solvers

Direct linear system solvers are based on a factorization of the matrix A into matrices

of simpler structure, e.g., triangular, diagonal, or orthogonal matrices. This structure

allows for an efficient solution of the factorized system. As a consequence, once the

factorization is computed, it can be used to solve the linear system for several different

right hand sides.

The most commonly used examples for general matrices A are, in the order of in-

creasing numerical robustness and computational effort, the LU factorization, QR fac-

torization, or the singular value decomposition. However, in the special case of a spd

matrix the Cholesky factorization A = LLT , with L denoting a lower triangular matrix,

should be employed, since it exploits the symmetry of the matrix and can additionally

be shown to be numerically very robust due to the positive definiteness of the matrix A

[GL89b].

On the downside, the asymptotic time complexity of all dense direct methods is O(n3)

for the factorization and O(n2) for solving the system based on the pre-computed fac-

torization. Since for the problems we are targeting at, n can be of the order of 105, the

132

7.3 Linear System Solvers

total cubic complexity of dense direct methods is prohibitive. Even if the matrix A is

highly sparse, the näıve direct methods enumerated here are not designed to exploit this

structure, hence the factors are dense matrices in general (cf. Fig. 7.2, top row).

7.3.2 Iterative Solvers

In contrast to dense direct solvers, iterative methods are able to exploit the sparsity

of the matrix A. Since they additionally allow for a simple implementation [PFTV92],

iterative solvers are the de-facto standard method for solving sparse linear systems in the

context of geometric problems. A detailed overview of iterative methods with valuable

implementation hints can be found in [BBC+94].

Iterative methods compute a converging sequence x(0),x(1), . . . ,x(i) of approximations

to the solution x∗ of the linear system, i.e., limi→∞ x(i) = x∗. In practice, however,

one has to find a suitable criterion to stop the iteration if the current solution x(i) is

accurate enough, i.e., if the norm of the error e(i) := x∗ − x(i) is less than some ε. Since

the solution x∗ is not known beforehand, the error has to be estimated by considering the

residual r(i) := Ax(i) − b. These two are related by the residual equations Ae(i) = r(i),

leading to an upper bound
∥∥∥e(i)

∥∥∥ ≤ ‖A−1‖ ·
∥∥∥r(i)

∥∥∥, i.e., the norm of the inverse matrix

has to be estimated or approximated in some way (see [BBC+94]).

The simplest examples for iterative solvers are the Jacobi and Gauss-Seidel methods.

They belong to the class of static iterative methods, whose update steps can be written

as x(i+1) = Mx(i) +c with constant M and c, such that the solution x∗ is the fixed point

of this iteration. An analysis of the eigenstructure of the update matrices M reveals

that both methods rapidly remove the high frequencies of the error, but the iteration

stalls if the error is a smooth function. By consequence, the convergence to the exact

solution x∗ is usually too slow in practice. As an additional drawback these methods

only converge for a restricted set of matrices, e.g., for diagonally dominant ones.

Non-stationary iterative solvers are more powerful, and for spd matrices the method

of conjugate gradients (CG) [HS52, GL89b] is suited best, since it provides guaranteed

convergence with monotonically decreasing error. For a spd matrix A the solution of

Ax = b is equivalent to the minimization of the quadratic form

φ (x) :=
1

2
xT Ax− bTx .

133

7 Numerical Aspects

The CG method successively minimizes this functional along a set of linearly independent

search directions p(i), such that

x(i) = argmin
{
φ (x)

∣∣∣x ∈ x0 + span
{
p(1), . . . ,p(i)

}}
.

Due to the nestedness of these spaces the error decreases monotonically, and the exact

solution x∗ ∈ IRn is found after at most n steps (neglecting rounding errors). Minimizing

φ by gradient descent results in inefficient zigzag paths in steep valleys of φ, which

correspond to strongly differing eigenvalues of A. In order to cancel out the effect of

A’s eigenvalues on the search directions pi, those are chosen to be A-conjugate, i.e.,

orthogonal w.r.t. the scalar product induced by A: pT
j Api = 0 for i 6= j [She94]. The

computation of and minimization along these optimal search directions can be performed

efficiently and with a constant memory consumption.

The complexity of each CG iteration is mainly determined by the matrix-vector prod-

uct Ax, which is of order O(n) if the matrix is sparse. Given the maximum number of

n iterations, the total complexity is O(n2) in the worst case, but it is usually better in

practice.

As the convergence rate mainly depends on the spectral properties of the matrix A, a

proper pre-conditioning scheme should be used to increase the efficiency and robustness

of the iterative scheme. This means that a slightly different system Ãx̃ = b̃ is solved

instead, with Ã = PAP T , x̃ = P−Tx, b̃ = Pb, using a regular pre-conditioning matrix

P , that is chosen such that Ã is well conditioned [GL89b, BBC+94]. However, the matrix

P is restricted to have a simple structure, since an additional linear system Pz = r has

to be solved each iteration.

The iterative conjugate gradients method manages to decrease the computational

complexity from O(n3) to O(n2) for sparse matrices. However, this is still too slow to

compute exact (or sufficiently accurate) solutions of large linear systems, in particular if

the systems are numerically ill-conditioned, like for instance the higher order Laplacian

systems used in variational surface modeling [KCVS98, BK04a].

7.3.3 Multigrid Iterative Solvers

As mentioned in the last section, one characteristic problem of most iterative solvers

is that they are smoothers : they attenuate the high frequencies of the error e(i) very

134

7.3 Linear System Solvers

fast, but their convergence stalls if the error is a smooth function. This fact is exploited

by multigrid methods, that build a fine-to-coarse hierarchy {M =M0,M1, . . . ,Mk} of

the computation domain M and solve the linear system hierarchically from coarse to

fine [Hac86, BHM00].

After a few (pre-)smoothing iterations on the finest level M0 the high frequencies of

the error are removed and the solver becomes inefficient. However, the remaining low

frequency error e0 = x∗ − x0 on M0 corresponds to higher frequencies when restricted

to the coarser level M1 and therefore can be removed efficiently on M1. Hence the

error is solved for using the residual equations Ae1 = r1 on M1, where r1 = R0→1r0

is the residual on M0 transfered to M1 by a restriction operator R0→1. The result is

prolongated back toM0 by e0 ← P1→0e1 and used to correct the current approximation:

x0 ← x0+e0. Small high-frequency errors due to the prolongation are finally removed by

a few post-smoothing steps onM0. The recursive application of this two-level approach

to the whole hierarchy can be written as

Φi = Sµ Pi+1→i Φi+1 Ri→i+1 Sλ ,

with λ and µ pre- and post-smoothing iterations, respectively. One recursive run is

known as a V-cycle iteration.

Another concept is the method of nested iterations, that exploits the fact that iterative

solvers are very efficient if the starting value is sufficiently close to the actual solution.

One starts by computing the exact solution on the coarsest level Mk, which can be

done efficiently since the system Akxk = bk corresponding to the restriction to Mk is

small. The prolongated solution Pk→k−1x
∗
k is then used as starting value for iterations on

Mk−1, and this process is repeated until the finest levelM0 is reached and the solution

x∗0 = x∗ is computed.

The remaining question is how to iteratively solve on each level. The standard method

is to use one or two V-cycle iterations, leading to the so-called full multigrid method.

However, one can also use an iterative smoothing solver (e.g., Jacobi or CG) on each

level and completely avoid V-cycles. In the latter case the number of iterations mi on

level i must not be constant, but instead has to be chosen as mi = m γi to decrease expo-

nentially from coarse to fine [BD96]. Besides the easier implementation, the advantage

of this cascading multigrid method is that once a level is computed, it is not involved

in further computations and can be discarded. A comparison of the three methods in

terms of visited multigrid levels is given in Fig. 7.1.

135

7 Numerical Aspects

M0

M1

M2

M3

Figure 7.1: A schematic comparison in terms of visited multigrid levels for V-cycle

(left), full multigrid with one V-cycle per level (center), and cascading multigrid (right).

Due to the logarithmic number of hierarchy levels k = O(log n) the full multigrid

method and the cascading multigrid method can both be shown to have linear asymptotic

complexity, as opposed to quadratic for non-hierarchical iterative methods. However,

they cannot exploit synergy for multiple right hand sides, which is why factorization-

based approaches are clearly preferable in such situations, as we will show in the next

section.

Since in our case the discrete computational domainM is an irregular triangle mesh

instead of a regular 2D or 3D grid, the coarsening operator for building the hierarchy is

based on mesh decimation techniques [KCS98]. The shape of the resulting triangles is

important for numerical robustness, and the edge lengths on the different levels should

mimic the case of regular grids. Therefore the decimation usually removes edges in the

order of increasing lengths, such that the hierarchy levels have uniform edge lengths and

triangles of bounded aspect ratio.

The simplification from one hierarchy level Mi to the next coarser one Mi+1 should

additionally be restricted to remove a maximally independent set of vertices, i.e., no

two removed vertices vj, vl ∈ Mi \ Mi+1 are connected by an edge ejl ∈ Mi. In

[AKS05b] some more efficient alternatives to this standard Dobkin-Kirkpatric hierarchy

are described. In order to achieve higher performance, we do not change the simple way

the hierarchy is constructed, but instead solve the linear system on every second or third

level only, and use the prolongation operator alone on all in-between levels.

136

7.3 Linear System Solvers

The linear complexity of multi-grid methods allows for the highly efficient solution

even of very complex systems. However, the main problem of these solvers is their quite

involved implementation, since special care has to be taken for the hierarchy building, for

special multigrid pre-conditioners, and for the inter-level conversion by restriction and

prolongation operators. A detailed overview of these techniques is given in [AKS05b].

Additionally, the number of iterations per hierarchy level have to be chosen: This

includes the number of V-cycles and pre- and post-smoothing iterations per V-cycle for

the full multigrid method, or m and γ for the cascading multigrid approach. These

numbers have to be chosen either by heuristic or experience, since they not only de-

pend on the problem (structure of A), but also on its specific instance (values of A).

Nevertheless, if iterative solvers are to be used, multigrid methods are the only way

to achieve acceptable running times when solving large systems, as has been shown in

[KCVS98, RL03, AKS05b].

7.3.4 Sparse Direct Solvers

The use of direct solvers for large sparse linear systems is often neglected, since näıve

direct methods have complexity O(n3), as described above. The problem is that even

when the matrix A is sparse, the factorization will not preserve this sparsity, such that

the resulting Cholesky factor is a dense lower triangular matrix.

However, an analysis of the factorization process reveals that a band-limitation of the

matrix A will be preserved. Following [GL81], we define the bandwidth β (A) in terms

of the bandwidth of its ith row

β (A) := max
1≤i≤n

{βi (A)} with βi (A) := i− min
1≤j≤i

{j | Aij 6= 0} .

If the matrix A = LLT has bandwidth β (A) then so has its factor L. An even stricter

bound is that also the so-called envelope or profile

Env(A) := {(i, j) | 0 < i− j ≤ βi (A)}

is preserved, i.e., no additional non-zeros (so-called fill-in elements) are generated outside

the envelope.

137

7 Numerical Aspects

This additional structure can be exploited in both the factorization and the solution

process, such that their complexities reduce from O(n3) and O(n2) to linear complexity in

the number of non-zeros nz(A) of A [GL81]. Since usually nz(A) = O(n), this is the same

linear complexity as for multigrid solvers. However, in the graphics-related examples we

will show in Sect. 7.3.7, sparse direct methods turned out to be more efficient compared

to multigrid solvers, in particular for multiple right-hand side problems.

Since we assume the matrices to be sparse, but not band-limited or profile-optimized,

the first step is to minimize the matrix envelope, which can be achieved by symmetric

row and column permutations A ← P T AP using a permutation matrix P , i.e., a re-

ordering of the mesh vertices. Although this problem is NP complete, several good

heuristics exist, of which we will present the most commonly used in the following. All

of these methods work on the undirected adjacency graph Adj(A) corresponding to the

non-zeros of A, i.e., two nodes i, j ∈ {1, . . . , n} are connected by an edge if and only if

Aij 6= 0.

The standard method for envelope minimization is the Cuthill-McKee algorithm [CM69],

that picks a start node and renumbers all its neighbors by traversing the adjacency graph

in a breadth-first manner, using a greedy selection in order of increasing valence. It has

further been proven in [LS76] that reverting this permutation leads to better re-orderings,

such that usually the reverse Cuthill-McKee method (RCMK) is employed. The result

P T AP of this matrix re-ordering is depicted in the second row of Fig. 7.2.

Since no special pivoting is required for the Cholesky factorization, the non-zero struc-

ture of its matrix factor L can symbolically be derived from the non-zero structure of

the matrix A alone, or, equivalently, from its adjacency graph. The graph interpretation

of the Cholesky factorization is to successively eliminate the node with the lowest index

from the graph and connect all its immediate neighbors to each other. The additional

edges eij generated in this so-called elimination graph correspond to the fill-in elements

Lij 6= 0 = Aij.

In order to minimize fill-in the strategy of the minimum degree algorithm (MD) and

its variants [GL89a, Liu85] is to remove the nodes with smallest valence first from the

elimination graph, since this causes the least number of additional pairwise connections.

Many efficiency optimizations of this method exist, the most prominent of which is the

super-nodal approach: instead of removing eliminated nodes from the graph, neighboring

eliminated nodes are clustered to so-called super-nodes, allowing for more efficient graph

138

7.3 Linear System Solvers

Figure 7.2: The top row shows the non-zero pattern of a typical 500 × 500 matrix

A and its Cholesky factor L, corresponding to a Laplacian system on a triangle mesh.

Although A is highly sparse (3502 non-zeros), the factor L is dense (36k non-zeros).

The reverse Cuthill-McKee algorithm minimizes the envelope of the matrix, resulting

in 14k non-zeros of L (2nd row). The minimum degree ordering avoids fill-in during

the factorization, which decreases the number of non-zeros to 6203 (3rd row). The last

row shows the result of a nested dissection method (7142 non-zeros), that allows for

parallelization due to its block structure.

139

7 Numerical Aspects

updates. The resulting minimum degree re-orderings do not lead to some kind of a band-

structure (which implicitly limits fill-in), but instead directly minimize the fill-in of L

(cf. Fig. 7.2, third row).

The last class of re-ordering approaches is based on graph partitioning. Consider a

matrix A whose adjacency graph has m separate connected components. Such a matrix

can be restructured to a block-diagonal matrix of m blocks, such that the factorization

can be performed on each block individually. If the adjacency graph is connected, a small

subset S of nodes, whose elimination would separate the graph into two components of

roughly equal size, is found by one of several heuristics [KK98]. This graph-partitioning

results in a matrix consisting of two large diagonal blocks (two connected components)

and |S| rows representing their connection (separator S). Recursively repeating this

process leads to the method of nested dissection (ND), resulting in matrices of the

typical block structure shown in the bottom row of Fig. 7.2. Besides the obvious fill-in

reduction, these systems also allow for easy parallelization of both the factorization and

the solution.

For the comparison of the different matrix re-ordering strategies a rather small matrix

was used in Fig. 7.2 to allow for clearer visualization. On an analogous 5k × 5k matrix

the number of non-zeros nz(L) decreases from 2.3M to 451k, 106k, and 104k by applying

the RCMK, MD, and ND method, respectively. The timings to obtain those re-orderings

are 17ms, 12ms, and 38ms. It can further be observed that for larger systems the nested

dissection method [KK98] generally leads to the best results.

One important advantage of the Cholesky factorization is that the non-zero structure

of the factor L can be determined from Adj(A) without any numerical computations.

This allows us to setup of an efficient static data structure for L before the actual numer-

ical factorization, which is therefore called symbolic factorization. Since suitable data

structures and proper memory layout are crucial for efficient numerical computations,

this two-step factorization process allows for significant optimizations.

Analogously to the dense direct solvers, the factorization can be exploited to solve

for different right hand sides in a very efficient manner. In addition to this, whenever

the matrix A is changed, such that its non-zero structure Adj(A) is preserved, then the

matrix re-ordering as well as the symbolic factorization can obviously be re-used. Solving

the modified system therefore only requires to re-compute the numerical factorization

and performing the back-substitution, which typically saves about 50% of the total

140

7.3 Linear System Solvers

computation time for solving the modified system. As we will show in Sect. 7.3.7, this

allows for an efficient implementation of a large class of algorithms that decompose a non-

linear problem into a sequence of similar linear ones, like for instance the implicit fairing

approach [DMSB99] or the Levenberg-Marquardt optimization for non-linear problems

[PFTV92, GMW81].

Another advantage of sparse direct methods is that no additional parameters have

to be chosen in a problem-dependent manner, as for instance the different numbers of

iterations for the multigrid solvers. The only degree of freedom is the matrix re-ordering,

but this only depends on the symbolic structure of the problem and therefore can be

chosen quite easily. For more details and implementation notes the reader is referred

to the book of George and Liu [GL81]; a highly efficient implementation is publicly

available in the TAUCS library [TCR03].

7.3.5 Non-Symmetric Indefinite Systems

When the assumptions about the symmetry and positive definiteness of the matrix A

are not satisfied, optimal methods like the Cholesky factorization or conjugate gradients

cannot be used. In this section we shortly outline which techniques are applicable

instead.

From the class of iterative solvers the bi-conjugate gradients algorithm (BiCG) is

typically used as a replacement of the conjugate gradients method [PFTV92]. Al-

though working well in most cases, BiCG does not provide any theoretical convergence

guarantees and has a very irregular non-monotonically decreasing residual error for ill-

conditioned systems. On the other hand, the GMRES method converges monotonically

with guarantees, but its computational cost and memory consumption increase in each

iteration [GL89b]. As a good trade-off, the stabilized Bi-CGSTAB [BBC+94] represents

a mixture between the efficient BiCG and the smoothly converging GMRES; it provides

a much smoother convergence and is reasonably efficient and easy to implement.

When considering dense direct solvers, the Cholesky factorization cannot be used for

general matrices. Therefore the LU factorization is typically employed (instead of QR

or SVD), since it is similarly efficient and also extends well to sparse direct methods.

However, (partial) row and column pivoting is essential for the numerical robustness of

141

7 Numerical Aspects

the LU factorization, since this avoids zeros on the diagonal during the factorization

process.

Similarly to the Cholesky factorization, it can be shown that the LU factorization

also preserves the band-width and envelope of the matrix A. Techniques like the mini-

mum degree algorithm generalize to non-symmetric matrices as well. But as for dense

matrices, the banded LU factorization relies on partial pivoting in order to guarantee

numerical stability. In this case, two competing types of permutations are involved:

symbolic permutations for matrix re-ordering and pivoting permutations ensuring nu-

merical robustness. As these permutations cannot be handled separately, a trade-off

between stability and fill-in minimization has to be found, resulting in a significantly

more complex factorization process.

As a consequence, the re-ordering depends on the numerical values of the matrix

entires, such that an exact symbolic factorization like in the Cholesky case is not possible.

In order to nevertheless be able to setup a static data structure, a more conservative

envelope is typically used, such that pivoting within this structure is still possible. A

highly efficient implementation of a sparse LU factorization is provided by the SuperLU

library [DEG+99].

7.3.6 Comparison

In the following we compare the different kinds of linear system solvers for Laplacian

as well as for bi-Laplacian systems. All timings reported in this and the next section

were taken on a 3.0GHz Pentium4 running Linux. The iterative solver (CG) from the

gmm++ library [RP05] is based on the conjugate gradients method and uses an incomplete

LDLT factorization as preconditioner. Our cascading multigrid solver (MG) performs

preconditioned conjugate gradient iterations on each hierarchy level and additionally

exploits SSE instructions in order to solve for up to four right-hand sides simultaneously.

The direct solver (LLT) of the TAUCS library [TCR03] employs nested dissection re-

ordering and a sparse complete Cholesky factorization. Although our linear systems are

symmetric, we also compare to the popular SuperLU solver [DEG+99], which is based

on a sparse LU factorization, for the sake of completeness.

Iterative solvers have the advantage over direct ones that the computation can be

stopped as soon as a sufficiently small error is reached, which — in typical computer

142

7.3 Linear System Solvers

graphics applications — does not have to be the highest possible precision. In contrast,

direct methods always compute the exact solution up to numerical round-off errors,

which in our application examples actually was more precise than required. The stopping

criteria of the iterative methods have therefore been chosen to yield sufficient results,

such that their quality is comparable to that achieved by direct solvers. The resulting

residual errors were allowed to be about one order of magnitude larger than those of the

direct solvers. While the latter achieved an average residual error of 10−7 and 10−5 for

Laplacian and bi-Laplacian systems, respectively, the iterative solvers were stopped at

an error of 10−6 and 10−4.

Table 7.1 shows timings for the different solvers on Laplacian systems ∆SP = B of 10k

to 50k and 100k to 500k unknowns, i.e., free vertices P . For each solver three columns

of timings are given:

Setup: Computing the cotangent weights for the Laplace discretization and building

the matrix structure (done per-level for the multigrid solver).

Precomputation: Preconditioning (iterative), building the hierarchy by mesh deci-

mation (multigrid), matrix re-ordering and sparse factorization (direct).

Solution: Solving the linear system for three different right-hand sides corresponding

to the x, y, and z components of the free vertices P .

Due to its effective preconditioner, which computes a sparse incomplete factorization,

the iterative solver scales almost linearly with the system complexity. However, for large

and thus ill-conditioned systems it breaks down. Notice that without preconditioning

the solver would not converge for the larger systems.

The experiments clearly verify the linear complexity of multigrid and sparse direct

solvers. Once their sparse factorizations are pre-computed, the computational costs for

actually solving the system are about the same for the LU and Cholesky solver. However,

they differ significantly in the factorization performance, because the numerically more

robust Cholesky factorization allows for more optimizations, whereas pivoting is required

for the LU factorization to guarantee robustness. This is the reason for the break-

down of the LU solver, such that the multigrid solver is more efficient in terms of total

computation time for the larger systems.

143

7 Numerical Aspects

10k 20k 30k 40k 50k
0

2

4

6

8

10

12

Matrix Dimension

∆1 T
ot

al
 T

im
e

(s
)

CG
MG
LU
LLT

100k 200k 300k 400k 500k
0

50

100

150

Matrix Dimension

∆1 T
ot

al
 T

im
e

(s
)

CG
MG
LU
LLT

10k 20k 30k 40k 50k
0

0.2

0.4

0.6

0.8

1

Matrix Dimension

∆1 3
 S

ol
ut

io
ns

 T
im

e
(s

)

CG
MG
LU
LLT

100k 200k 300k 400k 500k
0

10

20

30

40

50

Matrix Dimension

∆1 3
 S

ol
ut

io
ns

 T
im

e
(s

)

CG
MG
LU
LLT

Size Iterative Multigrid LU Cholesky

10k 0.11/1.56/0.08 0.15/0.65/0.09 0.07/0.22/0.01 0.07/0.14/0.03
20k 0.21/3.36/0.21 0.32/1.38/0.19 0.14/0.62/0.03 0.14/0.31/0.06
30k 0.32/5.26/0.38 0.49/2.20/0.27 0.22/1.19/0.05 0.22/0.53/0.09
40k 0.44/6.86/0.56 0.65/3.07/0.33 0.30/1.80/0.06 0.31/0.75/0.12
50k 0.56/9.18/0.98 0.92/4.00/0.57 0.38/2.79/0.10 0.39/1.00/0.15

100k 1.15/16.0/3.19 1.73/8.10/0.96 0.79/5.66/0.21 0.80/2.26/0.31
200k 2.27/33.2/11.6 3.50/16.4/1.91 1.56/18.5/0.52 1.59/5.38/0.65
300k 3.36/50.7/23.6 5.60/24.6/3.54 2.29/30.0/0.83 2.35/9.10/1.00
400k 4.35/69.1/37.3 7.13/32.5/4.48 2.97/50.8/1.21 3.02/12.9/1.37
500k 5.42/87.3/47.4 8.70/40.2/5.57 3.69/68.4/1.54 3.74/17.4/1.74

Table 7.1: Comparison of different solvers for Laplacian systems ∆SP = B of 10k to

50k and 100k to 500k free vertices P . The three timings for each solver represent matrix

setup, pre-computation, and three solutions for the x, y, and z components of P . The

graphs in the upper row show the total computation times (sum of all three columns).

The center row depicts the solution times only (3rd column), as those typically determine

the per-frame cost in interactive applications.

144

7.3 Linear System Solvers

10k 20k 30k 40k 50k
0

5

10

15

20

25

30

35

40

45

Matrix Dimension

∆2 T
ot

al
 T

im
e

(s
)

CG
MG
LU
LLT

100k 200k 300k 400k 500k
10

20

30

40

50

60

70

80

90

Matrix Dimension

∆2 T
ot

al
 T

im
e

(s
)

MG
LLT

10k 20k 30k 40k 50k
0

2

4

6

8

10

12

Matrix Dimension

∆2 3
 S

ol
ut

io
ns

 T
im

e
(s

)

CG
MG
LU
LLT

100k 200k 300k 400k 500k
0

5

10

15

20

25

Matrix Dimension

∆2 3
 S

ol
ut

io
ns

 T
im

e
(s

)

MG
LLT

Size Iterative Multigrid LU Cholesky

10k 0.33/5.78/0.44 0.40/0.65/0.48 0.24/1.68/0.03 0.24/0.35/0.04
20k 0.64/12.4/1.50 0.96/1.37/0.84 0.49/4.50/0.08 0.49/0.82/0.09
30k 1.04/19.0/5.46 1.40/2.26/1.23 0.77/9.15/0.13 0.78/1.45/0.15
40k 1.43/26.3/10.6 1.69/3.08/1.47 1.07/16.2/0.20 1.08/2.05/0.21
50k 1.84/33.3/8.95 2.82/4.05/2.34 1.42/22.9/0.26 1.42/2.82/0.28

100k — 4.60/8.13/4.08 2.86/92.8/0.73 2.88/7.29/0.62
200k — 9.19/16.6/8.50 — 5.54/18.2/1.32
300k — 17.0/24.8/16.0 — 8.13/31.2/2.07
400k — 19.7/32.6/19.0 — 10.4/44.5/2.82
500k — 24.1/40.3/23.4 — 12.9/60.4/3.60

Table 7.2: Comparison of different solvers for bi-Laplacian systems ∆2
SP = B of 10k to

50k and 100k to 500k free vertices P . The three timings for each solver represent matrix

setup, pre-computation, and three solutions for the components of P . The graphs in

the upper row again show the total computation times, while the center row depicts the

solution times only (3rd column). For the larger systems, the iterative solver and the

sparse LU factorization fail to compute a solution.

145

7 Numerical Aspects

Interactive applications often require to solve the same linear system for several right-

hand sides (e.g. once per frame), which typically reflects the change of boundary con-

straints due to user interaction. For such problems the solution times, i.e., the third

columns of the timings, are more relevant, as they correspond to the per-frame compu-

tational costs. Here the precomputation of a sparse factorization pays off and the direct

solvers are clearly superior to the multigrid method.

Table 7.2 shows the same experiments for bi-Laplacian systems ∆2
SX = B of the same

complexity. In this case, the matrix setup is more complex, the matrix condition number

is squared, and the sparsity decreases from 7 to 19 non-zeros per row.

Due to the higher condition number the iterative solver takes much longer and even

fails to converge on large systems. In contrast, the multigrid solver converges robustly

without numerical problems; notice that constructing the multigrid hierarchy is almost

the same as for the Laplacian system (up to one more ring of boundary constraints).

The computational costs required for the sparse factorization are proportional to the

increased number of non-zeros per row. The LU factorization additionally has to incor-

porate pivoting for numerical stability and failed for larger systems. In contrast, the

Cholesky factorization worked robustly in all our experiments.

If we focus on the solution times for the bi-Laplacian systems and compare them to

the Laplacian systems, we observe that the direct solver scales with the sparsity of the

matrix, while the number of iterations required for the multigrid solver depends on the

(squared) matrix condition. In our experiments it turned out that the performance gap

between multigrid and direct methods is even larger for bi-Laplacian systems.

We also analyzed the memory consumption of the multigrid method and the sparse

Cholesky solver, although both methods were optimized more for performance than for

memory requirements. The memory consumption of the multigrid method is mainly

determined by the meshes representing the different hierarchy levels. In contrast, the

memory required for the Cholesky factorization depends significantly on the sparsity

of the matrix, too. On the 500k example the multigrid method and the direct solver

need about 1GB and 600MB for the Laplacian system, and about 1.1GB and 1.2GB for

the bi-Laplacian system. Hence, the direct solver would not be capable of factorizing

Laplacian systems of higher order on current PCs, while the multigrid method would

succeed.

146

7.3 Linear System Solvers

Figure 7.3: Multiresolution modeling allows a low-frequency change of the global shape

based on the change of a smooth base surface, that is computed by solving a bi-Laplacian

system ∆2
SP = B.

These comparisons show that direct solvers are a valuable and efficient alternative to

multigrid methods even if the linear systems are highly complex. In all our experiments

the sparse Cholesky solver was faster than the multigrid method, and if the system has

to be solved for multiple right-hand sides, the precomputation of a sparse factorization

is even more beneficial.

7.3.7 Applications

In this section we show several geometry processing applications that benefit from the use

of sparse direct solvers. Most applications are based on solving Laplacian or bi-Laplacian

systems, thus their characteristic behavior for different complexities or different solvers

can be transferred from the experiments of the last section.

Surface Modeling

The first application is our freeform modeling approach (see Chap. 6), which requires

to compute (the change of) a smooth base surface by solving higher order Laplacian

systems ∆k
SP = B, k ∈ {2, 3}, three times for the x, y, and z coordinates of the

unconstrained (dark/blue) vertices P (cf. Fig. 7.3). Each time the designer drags some

points on the surface, the boundary constraints change and the linear system has to

be solved for another right-hand side in order to compute the deformed surface. As a

consequence, this approach greatly benefits from the sparse factorization solvers. The

147

7 Numerical Aspects

Figure 7.4: Two different parameterizations of a car model: discrete conformal param-

eterization with fixed boundary (left), least squares conformal map with free boundary

(right). Both parameterizations are computed by solving a sparse spd system for the

free 2D parameter values associated to the mesh vertices.

precomputation of basis functions for the deformation (Sect. 6.2.5) also requires to solve

the linear system for several right-hand sides, such that this precomputation gets more

efficient, too.

Conformal Parameterization

Computing a conformal parameterization [PP93, DMA02] with fixed boundary vertices

requires the solution of a Laplacian system ∆SP = B for x and y (cf. Fig. 7.4, left). In

[AKS05b] a highly elaborate multigrid solver has been derived by evaluating different

kinds of multigrid hierarchies and preconditioning strategies. This solver was then used

for the parameterization of large meshes, where it takes only 37s for 580k free vertices

on a 2.8GHz Pentium4. This time includes loading the system from disk, building the

hierarchy, and solving the system for the x coordinate [Aks05a]. Our implementation

based on the sparse Cholesky solver takes 28s for for the parameterization of 600k

vertices on a 3.0GHz Pentium4, including matrix setup, re-ordering, factorization, and

two solutions.

148

7.3 Linear System Solvers

Least Squares Conformal Maps

In the approach of [LPRM02] a conformal parameterization is not computed by mini-

mizing the discrete Dirichlet energy, but instead by solving a system of Cauchy-Riemann

equations for each face (cf. Fig. 7.4, right). Since the number of faces F is about twice

the number of vertices V , this system is overdetermined and hence solved in the least

squares sense using the normal equations, leading to a spd matrix of dimension 2V ×2V ,

which is similar in structure to a Laplacian matrix. Since the iterative solver used in

the original paper [LPRM02] was not capable of parameterizing large meshes, the use of

multigrid methods was proposed in [RL03]. On an 1.2GHz Pentium4 their hierarchical

approach takes 18s, 31s, and 704s for meshes of 18k, 36k, and 560k vertices, respectively.

On a comparable machine (Athlon 1.2GHz) the direct sparse solver is about 4–5 times

faster; on the 3.0GHz machine these parameterizations can be computed in 1.4s, 3.2s,

and 95s, respectively.

Implicit Smoothing

In the implicit fairing approach [DMSB99] meshes are smoothed by an integration of the

PDE ∂ xi/∂t = λ∆Sxi, leading to the so-called mean curvature flow (see Sect. 3.2.1).

Using semi-implicit integration, this non-linear problem is decomposed into a sequence

of linear ones, such that in each time-step the Laplace discretization ∆P (i) is updated

and the Laplacian system (I − λ∆P (i)) P (i+1) = P (i) is solved. In this case the matrix re-

ordering and the symbolic factorization can be kept and just the numerical factorization

and the solution have to be computed. In our experiments this saved 40%–60% of the

solver time per iteration.

Discussion

In this section we discussed and compared different classes of linear system solvers for

large sparse symmetric positive matrices, and pointed out that sparse direct solvers are

a valuable alternative to the usually employed multigrid methods, since they turned out

to be more efficient and easier to use in all our experiments. Although the class of spd

matrices seems to be quite restricted, many frequently encountered geometry processing

problems lead to this kind of systems or can easily be reformulated in this form. As we

demonstrated in our experiments, all these applications benefit considerably from the

use of sparse direct solvers.

149

7 Numerical Aspects

150

8 Conclusion

In this thesis we proposed techniques for the generation and optimization of triangle

meshes as well as methods for high quality surface deformation. In the following we

summarize our main contributions, present the results of an industrial evaluation, and

conclude with a discussion of promising future research directions.

The goal of the first part of this work was the approximation of technical datasets

by triangle meshes, which should be of sufficiently high quality to be used in numerical

simulations. In this context, the quality of a triangle mesh approximation is determined

by several factors: First, it has to provide a close approximation of the original surface

geometry, since otherwise the results of numerical simulations are meaningless. Second,

its mesh topology, i.e., the surface tessellation, has to be carefully controlled and adjusted

in order to not contain numerically critical degenerate triangles.

One constraint for successfully approximating technical datasets is the faithful recon-

struction of both sharp geometric features and anisotropically curved blend regions. Our

feature-sensitive mesh generation and resampling algorithms represent important con-

tributions to this research field and were shown to yield superior results with a minimum

amount of geometric aliasing or normal noise.

Our feature-preserving isotropic remeshing approach optimizes the tessellation of a

triangle mesh for close-to-equilateral triangles, which allows for numerically stable com-

putations. While our results are comparable to existing high quality isotropic remeshing

techniques, the running times are considerably faster, since computationally expensive

parameterizations are not required. Guaranteeing an upper bound on the geometric de-

viation throughout all mesh optimization processes is crucial, and our GPU-accelerated

tolerance volumes represent an efficient technique to do so. Since it does not interfere

with the geometry processing algorithms, this framework is generally applicable.

151

8 Conclusion

The multiresolution surface deformation techniques presented in the second part of

this thesis allow for high quality deformations that preserve all important surface details

in an intuitive and natural manner. Our multiresolution surface representation based

on displacement volumes provides physically more plausible detail reconstructions com-

pared to the standard displacement vector representation. Moreover, it effectively avoids

local self-intersections, which is crucial for producing and preserving orientable manifold

surfaces.

The “heart” of a multiresolution modeling framework is the editing operator, since

it is responsible for the overall flexibility, smoothness, and ease of use. Our boundary

constraint modeling approach is based on mathematically well understood concepts of

surface optimization and results in deformations which interpolate arbitrary per-vertex

displacements (high flexibility) and otherwise exhibit minimal bending energy (high

smoothness). Its fine-grained control of boundary continuities and anisotropic surface

behavior turned out to be very important in practical evaluations. The proposed pre-

computation of deformation basis functions finally enables shape editing in real-time

even of complex surfaces.

Since many geometry processing problems discussed in this thesis can be formulated

as the solution of one or several large sparse linear systems, a key ingredient for efficient

algorithms is a fast linear system solver. In a detailed comparison of different classes of

solvers we found sparse direct solvers to be preferable for our applications, since they

are easy to use and provide high performance. Although these methods are well known

in the field of high performance computing, they have been rarely applied to geometry

processing problems.

Large parts of this thesis were developed during an industrial cooperation with the

CFD department of the BMW group in Munich, which provided us with the valuable

opportunity to verify that the presented results are not only of theoretical interest,

but also solve relevant “real-world” problems in a reliable and efficient manner. The

majority of the proposed algorithms have been combined into a flexible and powerful

geometry processing toolkit for repairing, optimizing, and multiresolution editing of

triangle meshes.

The geometry deformations typically applied for optimizing a car’s aero dynamics are

usually performed in a CAD system. However, our toolkit now enables CFD engineers to

directly prepare, optimize, and deform the triangle mesh to be used for simulations later

152

on, which consequently avoids expensive surface conversions. Because of the superior

flexibility of unstructured triangle meshes compared to NURBS surfaces, and due to our

intuitive and efficient modeling metaphor, the desired deformations, which initially took

highly skilled CAD specialists up to several days, can now be done by the CFD engineer

in a few hours.

Promising directions for future research can be found in all topics addressed in this

thesis. In the context of high quality surface generation, anisotropic remeshing and

shape approximation techniques produce meshes that very well capture the structure of

the underlying surface geometry [ACSD+03, MK04, CSAD04]. As these approaches are

computationally quite involved, it would be interesting to investigate which quality can

be achieved by an anisotropic version of our efficient isotropic remeshing technique.

One advantage which can also be considered a problem of the presented freeform

modeling technique is that it computes a deformation field on the surface. While this

provides a fine-grained control of the surface deformation, it also requires a certain

minimum tessellation or sampling quality in order to guarantee sufficient robustness, as

pointed out in Chap. 7. In contrast to this, space deformation techniques do not depend

on the underlying surface representation and hence are not affected by its quality aspects.

As these methods can additionally be applied to most explicit geometry representations

in a unified manner, a promising approach would be to derive a space deformation

method based on the same variational shape optimization principles as our surface-

based approach, hence providing the same quality as well as flexibility, but avoiding the

above mentioned drawbacks.

153

8 Conclusion

154

Bibliography

[AA03] A. Adamson and M. Alexa. Approximating and intersecting surfaces from

points. In Proc. of Eurographics Symposium on Geometry Processing 03,

pages 245–254, 2003.

[AB03] H. Aanæs and J. A. Bærentzen. Pseudo-normals for signed distance compu-

tation. In Proc. of Vision, Modeling and Visualization 03, pages 407–413,

2003.

[ABK98] N. Amenta, M. Bern, and M. Kamvysselis. A new Voronoi-based surface

reconstruction algorithm. In Proc. of ACM SIGGRAPH 98, pages 415–422,

1998.

[ACdVDI03] P. Alliez, É. Colin de Verdière, O. Devillers, and M. Isenburg. Isotropic

surface remeshing. In Proc. of Shape Modeling International 03, pages

49–58, 2003.

[ACSD+03] P. Alliez, D. Cohen-Steiner, O. Devillers, B. Lévy, and M. Desbrun.

Anisotropic polygonal remeshing. In Proc. of ACM SIGGRAPH 03, pages

485–493, 2003.

[AK89] J. Arvo and D. Kirk. An introduction to ray tracing, chapter A survey of

ray tracing acceleration techniques, pages 201–262. Academic Press, 1989.

[Aks05a] B. Aksoylu. Personal communication, 2005.

[AKS05b] B. Aksoylu, A. Khodakovsky, and P. Schröder. Multilevel Solvers for

Unstructured Surface Meshes. SIAM Journal on Scientific Computing,

26(4):1146–1165, 2005.

[AMD02] P. Alliez, M. Meyer, and M. Desbrun. Interactive geometry remeshing. In

Proc. of ACM SIGGRAPH 02, pages 347–354, 2002.

155

Bibliography

[Bat95] K.-J. Bathe. Finite Element Procedures. Prentice Hall, 1995.

[BBB+97] J. Bloomental, C. Bajaj, J. Blinn, M. Cani-Gascuel, A. Rockwood,

B. Wyvill, and G. Wyvill. Introduction to implicit surfaces. Morgan Kauf-

mann Publishers, 1997.

[BBC+94] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra,

V. Eijkhout, R. Pozo, C. Romine, and H. Van der Vorst. Templates for

the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd

Edition. SIAM, Philadelphia, PA, 1994.

[BBK04] S. Bischoff, M. Botsch, and L. Kobbelt. Freeform shape representations

for efficient geometry processing. In Course Notes of Shape Modeling In-

ternational, 2004.

[BBK05] M. Botsch, D. Bommes, and L. Kobbelt. Efficient linear system solvers

for geometry processing. In 11th IMA conference on the Mathematics of

Surfaces, 2005.

[BBVK04] M. Botsch, D. Bommes, C. Vogel, and L. Kobbelt. GPU-based tolerance

volumes for mesh processing. In Proc. of Pacific Graphics 04, 2004.

[BD96] F. A. Bornemann and P. Deuflhard. The cascading multigrid method for

elliptic problems. Num. Math., 75(2):135–152, 1996.

[BGH+04] I. Buck, N. Govindaraju, M. Harris, J. Krüger, A. E. Lefohn, D. Luebke,

T. J. Purcell, and C. Woolley. GPGPU: General-purpose computation on

graphics hardware. In Course notes of ACM SIGGRAPH 04, 2004.

[BHM00] W. L. Briggs, V. E. Henson, and S. F. McCormick. A Multigrid Tutorial.

SIAM, 2nd edition, 2000.

[BHZK05] M. Botsch, A. Hornung, M. Zwicker, and L. Kobbelt. High quality sur-

face splatting on today’s GPUs. In Proc. of symposium on Point-Based

Graphics 05, pages 17–24, 2005.

[BK01a] M. Botsch and L. Kobbelt. Resampling feature and blend regions in polyg-

onal meshes for surface anti-aliasing. In Proc. of Eurographics 01, pages

402–410, 2001.

156

Bibliography

[BK01b] M. Botsch and L. Kobbelt. A robust procedure to eliminate degenerate

faces from triangle meshes. In Proc. of Vision, Modeling, and Visualization

01, pages 283–289, 2001.

[BK03a] G. H. Bendels and R. Klein. Mesh forging: editing of 3D-meshes using im-

plicitly defined occluders. In Proc. of the Eurographics/ACM SIGGRAPH

symposium on Geometry processing, pages 207–217, 2003.

[BK03b] S. Bischoff and L. Kobbelt. Sub-voxel topology control for level-set sur-

faces. In Proc. of Eurographics 03, pages 273–280, 2003.

[BK03c] M. Botsch and L. Kobbelt. High-quality point-based rendering on modern

GPUs. In Proc. of Pacific Graphics 03, pages 335–343, 2003.

[BK03d] M. Botsch and L. Kobbelt. Multiresolution surface representation based on

displacement volumes. In Proc. of Eurographics 03, pages 483–491, 2003.

[BK04a] M. Botsch and L. Kobbelt. An intuitive framework for real-time freeform

modeling. In Proc. of ACM SIGGRAPH 04, pages 630–634, 2004.

[BK04b] M. Botsch and L. Kobbelt. A remeshing approach to multiresolution mod-

eling. In Proc. of Eurographics symposium on Geometry Processing 04,

pages 189–196, 2004.

[Bot05] M. Botsch. Extended marching cubes implementation. http://www-

i8.informatik.rwth-aachen.de/software/software.html, 2002–2005.

[BPK04] S. Bischoff, D. Pavic, and L. Kobbelt. Automatic restoration of polygon

models. Preprint, 2004.

[BRK00] M. Botsch, C. Rössl, and L. Kobbelt. Feature sensitive sampling for in-

teractive remeshing. In Proc. of Vision, Modeling and Visualization 00,

pages 129–136, 2000.

[BSBK02] M. Botsch, S. Steinberg, S. Bischoff, and L. Kobbelt. Openmesh — a

generic and efficient polygon mesh data structure. In Proc. of OpenSG

symposium 02, 2002.

[BSK04] M. Botsch, M. Spernat, and L. Kobbelt. Phong splatting. In Proc. of

symposium on Point-Based Graphics 04, 2004.

157

Bibliography

[BSM05] M. Botsch, A. Sovakar, and M. Marinov. OpenMesh implementation.

http://www.openmesh.org, 2002–2005.

[CBC+01] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright,

B. C. McCallum, and T. R. Evans. Reconstruction and representation of

3D objects with radial basis functions. In Proc. of ACM SIGGRAPH 01,

pages 67–76, 2001.

[CKS98] S. Campagna, L. Kobbelt, and H.-P. Seidel. Directed edges — a scalable

representation for triangle meshes. ACM Journal of Graphics Tools, 3(4),

1998.

[CL94] B. Curless and M. Levoy. Better optical triangulation through spacetime

analysis. In Proc. of the 5th International Conference on Computer Vision,

page 987, 1994.

[CL96] B. Curless and M. Levoy. A volumetric method for building complex mod-

els from range images. In Proc. of ACM SIGGRAPH 96, pages 303–312,

1996.

[CM69] E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric

matrices. In Proc. of the 24th ACM National Conference, pages 157–172,

1969.

[Coq90] S. Coquillart. Extended free-form deformation: a sculpturing tool for 3D

geometric modeling. In Proc. of ACM SIGGRAPH 90, pages 187–196,

1990.

[Cox89] H. S. M. Coxeter. Introduction to Geometry. Wiley, 2nd edition, 1989.

[CRS98] P. Cignoni, C. Rocchini, and R. Scopigno. Metro: measuring error on

simplified surfaces. Computer Graphics Forum, 17(2):167–174, 1998.

[CSAD04] D. Cohen-Steiner, P. Alliez, and M. Desbrun. Variational shape approxi-

mation. In Proc. of ACM SIGGRAPH 04, pages 905–914, 2004.

[CVM+96] J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber, P. Agarwal, F. P.

Brooks, Jr., and W. Wright. Simplification envelopes. In Proc. of ACM

SIGGRAPH 96, pages 119–128, 1996.

158

Bibliography

[Dav75] P. Davis. Interpolation and Approximation. Dover Publications, 1975.

[dC76] M. P. do Carmo. Differential Geometry of Curves and Surfaces. Prentice

Hall, 1976.

[DEG+99] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. H. Liu. A

supernodal approach to sparse partial pivoting. SIAM Journal on Matrix

Analysis and Applications, 20(3):720–755, 1999.

[DMA02] M. Desbrun, M. Meyer, and P. Alliez. Intrinsic parameterizations of surface

meshes. In Proc. of Eurographics 02, pages 209–218, 2002.

[DMSB99] M. Desbrun, M. Meyer, P. Schröder, and A. H. Barr. Implicit fairing

of irregular meshes using diffusion and curvature flow. In Proc. of ACM

SIGGRAPH 99, pages 317–324, 1999.

[EDD+95] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuet-

zle. Multiresolution analysis of arbitrary meshes. In Proc. of ACM SIG-

GRAPH 95, pages 173–182, 1995.

[Far97] G. Farin. Curves and Surfaces for Computer Aided Geometric Design.

Academic Press, 4th edition, 1997.

[FB88] D. R. Forsey and R. H. Bartels. Hierarchical B-spline refinement. In Proc.

of ACM SIGGRAPH 88, pages 205–212, 1988.

[FB95] D. Forsey and R. H. Bartels. Surface fitting with hierarchical splines. ACM

Transactions on Graphics, 14(2):134–161, 1995.

[FPRJ00] S. Frisken, R. Perry, A. Rockwood, and T. Jones. Adaptively sampled

distance fields: A general representation of shape for computer graphics.

In Proc. of ACM SIGGRAPH 00, pages 249–254, 2000.

[Gar99] M. Garland. Multiresolution modeling: Survey & future opportunities. In

Eurographics State of the Art Report 99, 1999.

[GGH02] X. Gu, S. J. Gortler, and H. Hoppe. Geometry images. In Proc. of ACM

SIGGRAPH 02, pages 355–361, 2002.

[GH97] M. Garland and P. Heckbert. Surface simplification using quadric error

metrics. In Proc. of ACM SIGGRAPH 97, pages 209–216, 1997.

159

Bibliography

[GL81] A. George and J. W. H. Liu. Computer solution of large sparse positive

definite matrices. Prentice Hall, 1981.

[GL89a] A. George and J. W. H. Liu. The evolution of the minimum degree ordering

algorithm. SIAM Review, 31(1):1–19, 1989.

[GL89b] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins

University Press, Baltimore, 1989.

[GLW96] G. Greiner, J. Loos, and W. Wesselink. Data dependent thin plate energy

and its use in interactive surface modeling. In Proc. of Eurographics 96,

pages 175–186, 1996.

[GMW81] P. R. Gill, W. Murray, and M.H. Wright. Practical Optimization. Academic

Press, 1981.

[Gre94] G. Greiner. Variational design and fairing of spline surfaces. In Proc. of

Eurographics 94, pages 143–154, 1994.

[GSS99] I. Guskov, W. Sweldens, and P. Schröder. Multiresolution signal processing

for meshes. In Proc. of ACM SIGGRAPH 99, pages 325–334, 1999.

[GVSS00] I. Guskov, K. Vidimce, W. Sweldens, and P. Schröder. Normal meshes. In

Proc. of ACM SIGGRAPH 00, pages 95–102, 2000.

[Hac86] W. Hackbusch. Multi-Grid Methods and Applications. Springer Verlag,

1986.

[HDD+92] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Surface

reconstruction from unorganized points. In Proc. of ACM SIGGRAPH 92,

pages 71–78, 1992.

[HDD+94] H. Hoppe, T. DeRose, T. Duchamp, M. Halstead, H. Jin, J. McDonald,

J. Schweitzer, and W. Stuetzle. Piecewise smooth surface reconstruction.

In Proc. of ACM SIGGRAPH 94, pages 295–302, 1994.

[Hof89] C. M. Hoffmann. Geometric and solid modeling: An introduction. Morgan

Kaufmann Publishers, 1989.

[HS52] M. Hestenes and E. Stiefel. Method of conjugate gradients for solving

linear systems. J. Res. Nat. Bur. Stand., 49:409–436, 1952.

160

Bibliography

[JLSW02] T. Ju, F. Lasasso, S. Schaefer, and J. Warren. Dual contouring of hermite

data. In Proc. of ACM SIGGRAPH 02, pages 339–346, 2002.

[JP99] D. L. James and D. K. Pai. ArtDefo: accurate real time deformable objects.

In Proc. of ACM SIGGRAPH 99, pages 65–72, 1999.

[Ju04] T. Ju. Robust repair of polygonal models. In Proc. of ACM SIGGRAPH

04, pages 888–895, 2004.

[Kau87] A. Kaufman. Efficient algorithms for 3D scan-conversion of parametric

curves, surfaces, and volumes. In Proc. of ACM SIGGRAPH 87, pages

171–179, 1987.

[KB89] D. Kalra and A. Barr. Guaranteed ray intersections with implicit surfaces.

In Proc. of ACM SIGGRAPH 89, pages 297–306, 1989.

[KB00] L. Kobbelt and M. Botsch. An interactive approach to point cloud trian-

gulation. In Proc. of Eurographics 00, pages 479–487, 2000.

[KB03a] L. Kobbelt and M. Botsch. Feature sensitive mesh processing. In Proc. of

19th spring conference on Computer graphics, pages 17–22, 2003.

[KB03b] L. Kobbelt and M. Botsch. Freeform shape representations for efficient

geometry processing. In Proc. of Shape Modeling International 03, pages

111–118, 2003.

[KB04] L. Kobbelt and M. Botsch. A survey of point-based techniques in computer

graphics. Computers & Graphics, 28(6):801–814, 2004.

[KBB+00] L. Kobbelt, S. Bischoff, M. Botsch, K. Kähler, C. Rössl, R. Schneider, and

J. Vorsatz. Geometric modeling based on polygonal meshes. In Eurograph-

ics Tutorial Notes 00, 2000.

[KBS00] L. Kobbelt, T. Bareuther, and H.-P. Seidel. Multiresolution shape deforma-

tions for meshes with dynamic vertex connectivity. In Proc. of Eurographics

00, pages 249–260, 2000.

[KBSS01] L. Kobbelt, M. Botsch, U. Schwanecke, and H.-P. Seidel. Feature sensitive

surface extraction from volume data. In Proc. of ACM SIGGRAPH 01,

pages 57–66, 2001.

161

Bibliography

[KCS98] L. Kobbelt, S. Campagna, and H.-P. Seidel. A general framework for mesh

decimation. In Proc. of Graphics Interface 98, pages 43–50, 1998.

[KCVS98] L. Kobbelt, S. Campagna, J. Vorsatz, and H.-P. Seidel. Interactive multi-

resolution modeling on arbitrary meshes. In Proc. of ACM SIGGRAPH

98, pages 105–114, 1998.

[Ket98] L. Kettner. Using generic programming for designing a data structure

for polyhedral surfaces. In 14th Annual ACM Symp. on Computational

Geometry, 1998.

[KK98] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for

partitioning irregular graphs. SIAM Journal of Sci. Comput., 20(1):359–

392, 1998.

[KLS96] R. Klein, G. Liebich, and W. Straßer. Mesh reduction with error control.

In Proc. of Visualization 96, pages 311–318, 1996.

[Kob97] L. Kobbelt. Discrete fairing. In Proc. on 7th IMA Conference on the

Mathematics of Surfaces, pages 101–131, 1997.

[Kob03] L. Kobbelt. Freeform shape representations for efficient geometry process-

ing. Invited Talk at Eurographics 2003, 2003.

[KVLS99] L. Kobbelt, J. Vorsatz, U. Labsik, and H.-P. Seidel. A shrink wrapping

approach to remeshing polygonal surfaces. In Proc. of Eurographics 99,

pages 119–130, 1999.

[KVS99] L. Kobbelt, J. Vorsatz, and H.-P. Seidel. Multiresolution hierarchies on

unstructured triangle meshes. Comput. Geom. Theory Appl., 14(1-3):5–

24, 1999.

[KWT98] M. Kass, A. Witkin, and D. Terzopoulus. Snakes: active contour models.

International Journal of Computer Vision, 4(1):321–313, 1998.

[LC87] W. E. Lorensen and H. E. Cline. Marching cubes: a high resolution 3D

surface construction algorithm. In Proc. of ACM SIGGRAPH 87, pages

163–170, 1987.

162

Bibliography

[Liu85] J. W. H. Liu. Modification of the minimum-degree algorithm by multiple

elimination. ACM Trans. Math. Softw., 11(2):141–153, 1985.

[LKE98] C. Lürig, L. Kobbelt, and T. Ertl. Deformable surfaces for feature based

indirect volume rendering. In Proc. of Computer Graphics International

98, pages 752–760, 1998.

[LKG+03] I. Llamas, B. Kim, J. Gargus, J. Rossignac, and C. D. Shaw. Twister: a

space-warp operator for the two-handed editing of 3D shapes. In Proc. of

ACM SIGGRAPH 03, pages 663–668, 2003.

[LKM01] E. Lindholm, M. Kilgard, and H. Moreton. A user-programmable vertex

engine. In Proc. of ACM SIGGRAPH 01, pages 149–158, 2001.

[LMH00] A. Lee, H. Moreton, and H. Hoppe. Displaced subdivision surfaces. In

Proc. of ACM SIGGRAPH 00, pages 85–94, 2000.

[LPC+00] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira,

M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, and D. Fulk.

The digital Michelangelo project: 3D scanning of large statues. In Proc.

of ACM SIGGRAPH 00, pages 131–144, 2000.

[LPRM02] B. Lévy, S. Petitjean, N. Ray, and J. Maillot. Least squares conformal maps

for automatic texture atlas generation. In Proc. of ACM SIGGRAPH 02,

pages 362–371, 2002.

[LS76] J. W. H. Liu and A. H. Sherman. Comparative analysis of the Cuthill-

McKee and the reverse Cuthill-McKee ordering algorithms for sparse ma-

trices. SIAM J. Numerical Analysis, 2(13):198–213, 1976.

[LSCO+04] Y. Lipman, O. Sorkine, D. Cohen-Or, D. Levin, C. Rössl, and H.-P. Seidel.

Differential coordinates for interactive mesh editing. In Proc. of Shape

Modeling International 04, pages 181–190, 2004.

[LSS+98] A. W. F. Lee, W. Sweldens, P. Schröder, L. Cowsar, and D. Dobkin. MAPS:

Multiresolution adaptive parameterization of surfaces. In Proc. of ACM

SIGGRAPH 98, pages 95–104, 1998.

[LTW95] Y. Lee, D. Terzopoulos, and K. Waters. Realistic modeling for facial ani-

mation. In Proc. of ACM SIGGRAPH 95, pages 55–62, 1995.

163

Bibliography

[MBWB02] K. Museth, D. E. Breen, R. T. Whitaker, and A. H. Barr. Level set surface

editing operators. In Proc. of ACM SIGGRAPH 02, pages 330–338, 2002.

[MDM+02] M. Müller, J. Dorsey, L. McMillan, R. Jagnow, and B. Cutler. Stable

real-time deformations. In Proc. of the ACM SIGGRAPH symposium on

Computer animation, pages 49–54, 2002.

[MDSB03] M. Meyer, M. Desbrun, P. Schröder, and A. H. Barr. Discrete differential-

geometry operators for triangulated 2-manifolds. In Hans-Christian Hege

and Konrad Polthier, editors, Visualization and Mathematics III, pages

35–57. Springer-Verlag, Heidelberg, 2003.

[MJ96] R. MacCracken and K. I. Joy. Free-form deformations with lattices of

arbitrary topology. In Proc. of ACM SIGGRAPH 95, pages 181–188, 1996.

[MK04] M. Marinov and L. Kobbelt. Direct anisotropic quad-dominant remeshing.

In Proc. of Pacific Graphics 04, pages 207–216, 2004.

[MS92] H. P. Moreton and C. H. Séquin. Functional optimization for fair surface

design. In Proc. of ACM SIGGRAPH 92, pages 167–176, 1992.

[MSS94a] C. Montani, R. Scateni, and R. Scopigno. Discretized marching cubes. In

Proc. of Visualization 94, pages 281–287, 1994.

[MSS94b] C. Montani, R. Scateni, and R. Scopigno. A modified look-up table for im-

plicit disambiguation of marching cubes. The Visual Computer, (10):353–

355, 1994.

[NH91] G. Nielson and B. Hamann. The asymptotic decider: resolving the ambi-

guity in marching cubes. In Proc. of Visualization 91, pages 83–91, 1991.

[OBA+03] Y. Ohtake, A. Belyaev, M. Alexa, G. Turk, and H.-P. Seidel. Multi-level

partition of unity implicits. In Proc. of ACM SIGGRAPH 03, pages 463–

470, 2003.

[OF02] J. S. Osher and R. P. Fedkiw. Level Set Methods and Dynamic Implicit

Surfaces. Springer, 2002.

[PBP02] H. Prautzsch, W. Boehm, and M. Paluszny. Bézier and B-Spline Tech-

niques. Springer Verlag, 2002.

164

Bibliography

[PFTV92] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Nu-

merical Recipes: The Art of Scientific Computing. Cambridge University

Press, 2nd edition, 1992.

[PKKG03] M. Pauly, R. Keiser, L. Kobbelt, and M. Gross. Shape modeling with

point-sampled geometry. In Proc. of ACM SIGGRAPH 03, pages 641–

650, 2003.

[PP93] U. Pinkall and K. Polthier. Computing discrete minimal surfaces and their

conjugates. Experimental Mathematics, 2(1):15–36, 1993.

[PT97] L. A. Piegl and W. Tiller. The NURBS Book. Springer, 2nd edition, 1997.

[RL03] N. Ray and B. Levy. Hierarchical Least Squares Conformal Map. In Proc.

of Pacific Graphics 03, pages 263–270, 2003.

[RP05] Y. Renard and J. Pommier. Gmm++: a generic template matrix C++ library.

http://www-gmm.insa-toulouse.fr/getfem/gmm intro, 2005.

[RS01] C. Rezk-Salama. Volume Rendering Techniques for General Purpose

Graphics Hardware. PhD thesis, University of Erlangen-Nürnberg, 2001.

[SA03] M. Segal and K. Akeley. The OpenGL Graphics System: A Specification

(Version 1.5). http://www.opengl.org, 2003.

[SAG03] V. Surazhsky, P. Alliez, and C. Gotsman. Isotropic remeshing of surfaces:

a local parameterization approach. In Proc. of 12th International Meshing

Roundtable, 2003.

[Sam94] H. Samet. The Design and Analysis of Spatial Data Structures. Addison–

Wesley, 1994.

[Sap94] N. S. Sapidis. Designing Fair Curves and Surfaces: Shape Quality in Ge-

ometric Modeling and Computer-Aided Design. SIAM, 1994.

[SCF+04] T. W. Sederberg, D. L. Cardon, G. T. Finnigan, N. S. North, J. Zheng,

and T. Lyche. T-spline simplification and local refinement. In Proc. of

ACM SIGGRAPH 04, pages 276–283, 2004.

165

Bibliography

[SCOL+04] O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rössl, and H.-P. Sei-

del. Laplacian surface editing. In Proc. of Eurographics symposium on

Geometry Processing 04, pages 179–188, 2004.

[Set96] J. Sethian. A fast marching level set method for monotonically advancing

fronts. In Proc. of the National Academy of Science, volume 93, pages

1591–1595, 1996.

[Set99] J. Sethian. Level Set Methods and Fast Marching Methods. Cambridge

University Press, 1999.

[SF98] K. Singh and E. Fiume. Wires: A geometric deformation technique. In

Proc. of ACM SIGGRAPH 98, pages 405–414, 1998.

[SG03] V. Surazhsky and C. Gotsman. Explicit surface remeshing. In Proc. of

Eurographics/ACM SIGGRAPH symposium on Geometry processing 03,

pages 20–30, 2003.

[She94] J. R. Shewchuk. An introduction to the conjugate gradient method without

the agonizing pain. Technical report, Carnegie Mellon University, 1994.

[SJ00] G. Schaufler and H. Wann Jensen. Ray tracing point sampled geometry.

In Proc. of Eurographics Workshop on Rendering Techniques 00, pages

319–328, 2000.

[SOS04] C. Shen, J. F. O’Brien, and J. R. Shewchuk. Interpolating and approxi-

mating implicit surfaces from polygon soup. In Proc. of ACM SIGGRAPH

04, pages 896–904, 2004.

[SP86] T. W. Sederberg and S. R. Parry. Free-form deformation of solid geometric

models. In Proc. of ACM SIGGRAPH 86, pages 151–159, 1986.

[SPS01] S. Schkolne, M. Pruett, and P. Schröder. Surface drawing: creating organic

3D shapes with the hand and tangible tools. In Proc. of the SIGCHI

conference on Human factors in computing systems, pages 261–268. ACM

Press, 2001.

[SZBN03] T. W. Sederberg, J. Zheng, A. Bakenov, and A. Nasri. T-splines and

T-NURCCs. In Proc. of ACM SIGGRAPH 03, pages 477–484, 2003.

166

Bibliography

[Tau95] G. Taubin. A signal processing approach to fair surface design. In Proc.

of ACM SIGGRAPH 95, pages 351–358, 1995.

[TCR03] S. Toledo, D. Chen, and V. Rotkin. Taucs: A library of sparse linear

solvers. http://www.tau.ac.il/∼stoledo/taucs, 2003.

[TL94] G. Turk and M. Levoy. Zippered polygon meshes from range images. In

Proc. of ACM SIGGRAPH 94, pages 311–318, 1994.

[VG96] L. Velho and J. Gomez. Approximate conversion of parametric to implicit

surfaces. In Proc. of Eurographics 96, pages 327–337, 1996.

[VRS03] J. Vorsatz, C. Rössl, and H.-P. Seidel. Dynamic remeshing and applica-

tions. In Proc. of Solid Modeling and Applications, pages 167–175, 2003.

[WDSB00] Z. Wood, M. Desbrun, P. Schröder, and D. Breen. Semi-regular mesh

extraction from volumes. In Proc. of Visualization 00, pages 275–282,

2000.

[WK03] J. Wu and L. Kobbelt. Piecewise linear approximation of signed distance

fields. In Proc. of Vision, Modeling, and Visualization 03, pages 513–520,

2003.

[WK04] J. Wu and L. Kobbelt. A stream algorithm for the decimation of massive

meshes. In Proc. of Graphics Interface 03, pages 185–192, 2004.

[WW92] W. Welch and A. Witkin. Variational surface modeling. In Proc. of ACM

SIGGRAPH 92, pages 157–166, 1992.

[WW94] W. Welch and A. Witkin. Free-form shape design using triangulated sur-

faces. In Proc. of ACM SIGGRAPH 94, pages 247–256, 1994.

[YT02] G. Yngve and G. Turk. Robust creation of implicit surfaces from polygo-

nal meshes. IEEE Transactions on Visualization and Computer Graphics,

8(4):346–359, 2002.

[YZX+04] Yizhou Yu, Kun Zhou, Dong Xu, Xiaohan Shi, Hujun Bao, Baining Guo,

and Heung-Yeung Shum. Mesh editing with Poisson-based gradient field

manipulation. In Proc. of ACM SIGGRAPH 04, pages 644–651, 2004.

167

Bibliography

[ZG02] S. Zelinka and M. Garland. Permission grids: Practical, error-bounded

simplification. In ACM Transactions on Graphics, pages 207–229, 2002.

[ZSD+00] D. Zorin, P. Schröder, T. DeRose, L. Kobbelt, A. Levin, and W. Sweldens.

Subdivision for modeling and animation. In Course notes of ACM SIG-

GRAPH 00, 2000.

[ZSS97] D. Zorin, P. Schröder, and W. Sweldens. Interactive multiresolution mesh

editing. In Proc. of ACM SIGGRAPH 97, pages 259–268, 1997.

168

Data Sources

The following list specifies the origins of the models used in this thesis that have not been

created by the author nor his colleagues at the RWTH Aachen or his former colleagues

at the MPI Saarbrücken:

The bunny model is courtesy of the Stan-

ford 3D Scanning Repository, Stanford Uni-

versity, USA.

The David model is courtesy of Marc Levoy,

Digital Michelangelo Project, Stanford Uni-

versity, USA.

The Fandisk model is courtesy of Hugues

Hoppe, Microsoft Research, USA.

The BMW car models are courtesy of the

BMW group, Munich, Germany.

169

Data Sources

170

Curriculum Vitae

Personal data

Mario Botsch

Computer Graphics Group

RWTH Aachen, Germany

Phone: ++49-241-8021-817

Email: botsch@cs.rwth-aachen.de

21.01.1974 Born in Bremen, Germany

Oct. 1994 – Apr. 1999 Study of mathematics at the University of Erlangen-

Nürnberg. Finished with diploma of mathematics

(with honours).

Mai 1999 – Dec. 2000 Ph.D. student at the Max Planck Institute for Com-

puter Science, Saarbrücken, supervised by Dr. Leif

Kobbelt and Prof. Dr. Hans-Peter Seidel.

Jan. 2001 – Jul. 2005 Ph.D. student at the Computer Graphics Group,

RWTH Aachen, supervised by Prof. Dr. Leif Kobbelt.

Finished with degree “Dr. rer. nat.” (with honours).

Publications

Diploma Thesis, University of Erlangen-Nürnberg, 1999

Mario Botsch: 3D Gesichtsmodellierung zur Operationsplanung, supervised by

Prof. Dr. Thomas Sauer, Prof. Dr. med. Dr. med. dent. M. Farmand.

171

Curriculum Vitae

Eurographics 2000

Leif Kobbelt, Mario Botsch: An interactive approach to point cloud triangulation,

pages 479–487.

Vision, Modeling & Visualization 2000

Mario Botsch, Christian Rössl, Leif Kobbelt: Feature sensitive sampling for inter-

active remeshing, pages 129–136.

ACM SIGGRAPH 2001

Leif Kobbelt, Mario Botsch, Ulrich Schwanecke, Hans-Peter Seidel: Feature sensi-

tive surface extraction from volume data, pages 57-66.

Eurographics 2001

Mario Botsch, Leif Kobbelt: Resampling feature and blend regions in polygonal

meshes for surface anti-aliasing, pages 402–410.

Vision, Modeling & Visualization 2001

Mario Botsch, Leif Kobbelt: A robust procedure to eliminate degenerate faces from

triangle meshes, pages 283–289.

Eurographics Workshop on Rendering 2002

Mario Botsch, Andreas Wiratanaya, Leif Kobbelt: Efficient high quality rendering

of point sampled geometry, pages 53–64.

OpenSG Symposium 2002

Mario Botsch, Stephan Steinberg, Stephan Bischoff, Leif Kobbelt: OpenMesh —

A generic and efficient polygon mesh data structure.

Eurographics 2003

Mario Botsch, Leif Kobbelt: Multiresolution surface representations based on dis-

placement volumes, pages 483–491.

Pacific Graphics 2003

Mario Botsch, Leif Kobbelt: High-quality point-based rendering on modern GPUs,

pages 335–343.

Spring Conference on Computer Graphics 2003

Leif Kobbelt, Mario Botsch: Feature sensitive mesh processing, pages 17–22.

172

Shape Modeling International 2003

Leif Kobbelt, Mario Botsch: Freeform shape representations for efficient geometry

processing, pages 111–118.

ACM SIGGRAPH 2004

Mario Botsch, Leif Kobbelt: An intuitive framework for real-time freeform model-

ing, pages 630–634.

Symposium Geometry Processing 2004

Mario Botsch, Leif Kobbelt: A remeshing approach to multiresolution modeling,

pages 189–196.

Graphics Interface 2004

Matthias Zwicker, Jussi Räsänen, Mario Botsch, Carsten Dachsbacher, Mark Pauly:

Perspective accurate splatting, pages 247–254.

Symposium on Point-Based Graphics 2004

Mario Botsch, Michael Spernat, Leif Kobbelt: Phong splatting, pages 25–32.

Computer & Graphics 2004, Vol. 28, No. 6

Leif Kobbelt, Mario Botsch: A survey of point-based techniques in computer graph-

ics, pages 801–814.

Pacific Graphics 2004

Mario Botsch, David Bommes, Christoph Vogel, Leif Kobbelt: GPU-based toler-

ance volumes for mesh processing, pages 237–243.

Symposium on Point-Based Graphics 2005

Mario Botsch, Alexander Hornung, Matthias Zwicker, Leif Kobbelt: High quality

surface splatting on today’s GPUs, pages 17–24.

IMA conference on Mathematics of Surfaces 2005

Mario Botsch, David Bommes, Leif Kobbelt: Efficient linear system solvers for

geometry processing.

Eurographics 2005

Mario Botsch, Leif Kobbelt: Real-time shape editing using radial basis functions.

173

Curriculum Vitae

Tutorials

Eurographics 2000

Leif Kobbelt, Stephan Bischoff, Mario Botsch, Kolja Kähler, Christian Rössl,

Robert Schneider, Jens Vorsatz: Geometric modeling based on polygonal meshes.

Shape Modeling International 2004

Stephan Bischoff, Mario Botsch, Leif Kobbelt: Freeform shape representations for

efficient geometry processing.

174

	Introduction
	Surface Representations
	Explicit Surface Representations
	Spline Surfaces
	Subdivision Surfaces
	Triangle Meshes

	Implicit Surface Representations
	Conversion Methods
	Explicit to Implicit
	Implicit to Explicit

	High-Quality Mesh Generation
	Mesh Generation
	Explicit Mesh Generation
	Volumetric Mesh Generation

	Mesh Optimization
	Smoothing
	Decimation
	Isotropic Remeshing

	Global Error Control
	Distance Texture Generation
	Triangle Distance Check
	Applications

	Feature-Sensitive Mesh Generation
	Approximation Properties and Normal Noise
	Feature-Sensitive Iso-Surface Extraction
	Directed Distance Fields
	Extended Marching Cubes
	Results

	Feature-Sensitive Resampling of Blend Regions
	Feature Regions
	Sampling pattern for blend regions
	Interactive Feature Resampling
	Feature Modeling
	Discussion

	Multiresolution Techniques
	Multiresolution Modeling Framework
	Base Surface Generation
	Displacement Vectors
	Displacement Volumes
	Volumetric Detail Representation
	Volumetric Detail Reconstruction

	Results

	Freeform Surface Editing
	Existing Freeform Modeling Approaches
	Boundary Constraint Modeling
	Constrained Surface Optimization
	Linear System Derivation
	Boundary Smoothness
	Anisotropic Bending
	Precomputed Basis Functions

	Results

	Numerical Aspects
	Robustness
	Laplacian Systems
	Linear System Solvers
	Dense Direct Solvers
	Iterative Solvers
	Multigrid Iterative Solvers
	Sparse Direct Solvers
	Non-Symmetric Indefinite Systems
	Comparison
	Applications

	Conclusion
	Bibliography
	Data Sources
	Curriculum Vitae

