
High-Quality Point-Based Rendering on Modern GPUs

Mario Botsch, Leif Kobbelt
Computer Graphics Group
RWTH Aachen, Germany

Abstract

In the last years point-based rendering has been shown
to offer the potential to outperform traditional triangle
based rendering both in speed and visual quality when it
comes to processing highly complex models. Existing sur-
face splatting techniques achieve superior visual quality
by proper filtering but they are still limited in rendering
speed. On the other hand the increasing availability and
programmability of graphics hardware lead to the devel-
opement of very efficient hardware-accelerated rendering
methods. However, since no filtered splats are used, these
approaches trade visual quality for rendering speed.

In this paper we propose a rendering framework for
point-based geometry providing high visual quality as well
as efficient rendering. Our approach is based on a two-
pass splatting technique with Gaussian filtering, resulting
in a visual quality comparable to existing software render-
ing systems. Using programmable graphics hardware we
delegate all expensive rendering tasks to the GPU, thereby
minimizing data transfer and saving CPU resources. The
proposed system renders up to 28M mid-quality or up to
10M high-quality surface splats per second on the latest
graphics hardware.

1 Introduction

Due to their simplicity and efficiency triangles meshes
are the de facto standard geometry representation in com-
puter graphics. As the hardware components for the com-
plete mesh processing pipeline, i.e. mesh generation (3D
scanners), mesh processing (CPU) and finally mesh render-
ing (graphics hardware), gets more and more powerful, the
typical surface or scene complexity is steadily increasing.
Meshes containing several millions of triangles are nowa-
days commonly used.

In contrast the resolution of displays is not increasing at
the same speed. Therefore rendering highly complex mod-
els results in triangles whose projected area is less than a
few pixels. Using standard scanline-conversion methods for

the rendering of these tiny triangles becomes inefficient be-
cause of the necessary overhead for the triangle setup.

Hence, above a certain complexity, points are the con-
ceptually more efficient rendering primitive. Holes in the
rendered image (e.g. when zooming in) can be avoided by
image-based filters, by adjusting the sampling density, or
by so-called surface splatting. In the latter case each point
is associated with a radius and a normal vector and therefore
represents a small disc in 3-space, that is projected onto the
image plane.

Another advantage of point-based rendering (PBR) be-
sides the higher efficiency is that it can also provide superior
rendering quality compared to standard polygon-based ren-
dering. For PBR the lighting computations are performed
on a per point basis, corresponding to high quality Phong
shading in the surface case. For anti-aliased rendering so-
phisticated splatting techniques assign a Gaussian filter ker-
nel to the splats, resulting in an elliptically weighted aver-
age (EWA) filtering of the image — similar to anisotropic
texture filtering [11].

An additional benefit of point-based geometry represen-
tations is their conceptual simplicity. Since no connectivity
information exists only a set of points has to be stored and
processed. Hierarchical encoding schemes for point-based
geometry provide compact storage and efficient progressive
transmission of these datasets. Recently, several mesh pro-
cessing algorithms have been reformulated for point-based
surface representations, like e.g. spectral processing [17],
geometry simplification [18], surface editing [25] and mul-
tiresolution shape modeling [19].

The focus in this paper is on the final stage of the point-
based geometry processing pipeline, i.e. the rendering of
point-sampled geometry. In this topic, existing approaches
offer only a trade-off between rendering speed and visual
quality. On this scale one extreme are the sophisticated
purely software-based implementations of filtered splatting
that provide the highest rendering quality. The major draw-
back of these approaches is that they put high load on the
main CPU, but still do not achieve higher rates than 4M
splats per second on current hardware [2].

On the other extreme people are trying to free the CPU
for other tasks by making use of graphics hardware for
point-based rendering, motivated by the steadily increasing
performance and programmability of modern graphic pro-
cessing units (GPUs). But since hardware-acceleration is
mainly targetting polygon-based rendering there is no ob-
vious way how to (mis-)use graphics hardware for high-
quality filtered surface splatting. Hence, rendering quality
had to be sacrificed for rendering speed, leading to a render-
ing performance of above 50M points per second — if the
points are rendered as small unfiltered squares [7].

In this paper we propose a rendering framework for
point-based geometry providing high visual quality as well
as efficient rendering. Our approach is based on a two-pass
filtered splatting technique, resulting in the a visual quality
comparable to existing software rendering systems. Using
programmable graphics hardware we delegate all expensive
rendering tasks to the GPU, thereby minimizing data trans-
fer and saving CPU resources. The proposed system renders
up to 28M mid-quality or up to 10M high-quality filtered
surface splats per second on the latest graphics hardware.

2 Related Work

Using points as rendering primitives was first proposed
in the pioneering work of Levoy and Whitted [14], followed
by Grossman and Dally [10], presenting algorithms for the
generation as well as and for the rendering of point sets.
This work has been improved in the Surfels paper by Pfister
et al. [20]. They sample objects using 3 orthogonal LDIs
and use image-space filters to achieve a hole-free rendering.

Alexa et al. [1] use local Least Squares approximations
to adjust the point sampling for displaying. Their point set
surfaces have been extended to a progressive representation
in [9].

Zwicker et al. [26] introduce surface splatting by image-
based EWA filtering, resulting in high quality anti-aliased
rendering, comparable to anisotropic texture filtering [11].
Similar to the footprints of Westover [24] disc-shaped splats
in object-space project to elliptical splats with Gaussian in-
tensity distribution in image-space. While this software-
based approach is only able to process 250k splats per sec-
ond it provides the highest visual quality. Botsch et al. [2]
present an adaptive octree encoding scheme for point-based
geometry that provides very compact storage and a hierar-
chical rendering algorithm. Their method is able to process
up to 14M points or 4M high quality filtered splats per sec-
ond by using a quantization of splat shapes.

All the above software-based rendering methods have
proven that point-based rendering can be superior to
polygon-based rendering for highly complex scenes. While
they can provide very high visual quality, their rendering
speed is limited to about 4M splats per second on current

hardware. Even if this point rate may be sufficient for to-
day’s models these software implementations completely
block the CPU from other tasks besides rendering.

Therefore several authors propose to use graphics hard-
ware for point-based rendering. Sophisticated rendering
techniques used in software implementations, like e.g. A-
buffers [3], are not available on today’s graphics hardware.
Hence, the proposed approaches either lose some visual
quality or try to compensate for the missing functionality
by multiple rendering passes.

The first to use hardware acceleration for PBR were
Rusikiewicz and Levoy [22]. In order to be able to render
the large datasets of the Digital Michelangelo project [13]
they combine a hierarchy of bounding spheres with a splat-
ting technique. In order to blend overlapping fuzzy splats
in some ε-depth-slap they propose a two-pass rendering ap-
proach.

Stamminger and Drettakis [23] dynamically adjust the
point samping rate for rendering of complex procedural ge-
ometry. This approach is extended to a mixed point and
polygon rendering approach for complex plant ecosystems
in Deussen et al. [8]. Further approaches mixing the render-
ing of points and polygons have been proposed by Chen et
al. [4] and Cohen et al. [6]. Although we are targetting pure
point-based rendering, our methods could be integrated into
their algorithms since we are using standard OpenGL ren-
dering only.

Ren et al. [21] reformulate the image based EWA fil-
tering of [26] to object-space filtering in order to map the
surface splatting approach to graphics hardware, also using
a two-pass rendering method. They render each splat as a
textured rectangle in object-space. This concept causes the
number of processed points to be multiplied by four, slow-
ing down the rendering to about 2M–3M splats per second.

Coconu and Hege [5] propose to use an octree-based spa-
tial data structure containing points and triangles to do the
visibility calculations. By sorting and rendering the octree
cells from back to front in each frame they avoid using the
z-buffer at all. Although this avoids an expensive second
rendering pass, it leads to the problem that front and back
sides of objects are blended without depth control.

In a very recent paper Dachsbacher et al. [7] present
a hierarchical LOD structure for points that is adaptively
rendered by sequentially processing it by the GPU. They
report impressive point rates above 50M points per second,
but the points are rendered as unfiltered view-plane aligned
small squares.

3 GPU-Based Splatting

In our approach we also propose the use of splats as ren-
dering primitives, as they have major advantages compared
to pure one-pixel points. Since splats are not just a piece-

Figure 1. The typical thickening and aliasing
effects of square splats (left) is effectively
avoided by using the correct ellipitical splats
shapes (right).

wise constant but a piecewise linear geometry representa-
tion, they exhibit the same quadratic approximation order
as triangle meshes. Therefore a decent approximation can
be achieved with a relatively low number of splats, offering
a good compromise between polygonal meshes on the one
hand and one-pixel points on the other hand.

The concept of splat filtering by blending overlapping
splats also provides a much higher rendering quality com-
pared to unfiltered point rendering that often leads to high-
frequency noise in the image, especially in the case of tex-
tured models.

Since for splats the point sampling rate does not have
to be adjusted each frame the static geometry data can be
stored in the video or AGP memory where it can be directly
accessed in DMA mode, thereby minimizing data transfer
costs during rendering.

The rendering of point splats involves several sub-tasks:
first the size and shape of the splats have to be determined
from the current viewing parameters so that we get a hole-
free image (Sec. 3.1 and 3.2). Using these techniques alone
already results in mid-quality elliptical but still unfiltered
surface splats. Nevertheless it provides a much better repre-
sentation of the geometry than fixed splat shapes, especially
noticable near contours (cf. Fig. 1).

Further improvement in visual quality can be achieved
by blending overlapping splats using splat filtering
(Sec. 3.3), resulting in high quality anti-aliased rendering.
During rendering, splat contributions are accumulated by
additive blending, so that each pixels contains a weighted
sum of color values

∑

i wi(rgb)i. Therefore a final normal-
ization step dividing each pixel’s RGB color by the corre-
sponding sum of weights is required to get the correct filter-
ing (

∑

i wi(rgb)i) / (
∑

i wi). This final normalization step
will be described in Sec. 3.4.

For all these rendering tasks our goal is the consequent
delegation to the GPU. Therefore the algorithms have to be
formulated in a way they can directly be mapped to the pro-
grammable vertex and fragment shaders of the latest graph-
ics hardware.

Frustum Viewport
3D world 3D NDC 2D

−f

(−1,−1)

(1,1)

−n

b

t

0

h

−z

Figure 2. Transformation pipeline. The map-
ping from eye-space to image-space consists
of a projective warp of the viewing frustum to
the unit cube, a parallel projection and a 2D-
transform to match the window extent.

3.1 Splat Size

In order to obtain a watertight rendering, the projected
size of a splat has to be determined from the viewing pa-
rameters and the splat’s position and radius.

The OpenGL projection pipeline from eye/camera coor-
dinates to the final 2D image is depicted in Fig. 2: The view-
ing volume is given by the distances to the near (n) and far
(f) clipping planes and the parameters top (t) and bottom
(b) controlling the opening angle. After this frustum has
been projectively warped to the unit cube [−1, 1]3, a sim-
ple parallel projection is done by omitting the z coordinate,
resulting in 2D coordinates in [−1, 1]2. Finally these 2D co-
ordinates are scaled up by the viewport mapping to match
the (integer) window coordintes {0, . . . , w} × {0, . . . , h}.
This can also be considered as projecting the viewing vol-
ume onto the near plane z = −n and scaling the resulting
coordinates by h

t−b
.

The image-space size of a splat is the size of its projec-
tion onto the image plane. The exact result is quite expen-
sive to compute, since it depends on the splat position as
well as on the splat normal. Instead we approximate the
size by projecting the bounding sphere of the splat and ne-
glecting its x and y offsets from the optical axis, as also
proposed in [4].

The image-space splat size sizewin can then be com-
puted by a projection onto the near plane and a scaling to
transform from near-plane coordinates to image-plane co-
ordinates:

sizewin = r ·
n

zeye
·

h

t − b
, (1)

where zeye is the splat’s distance from the camera, r is its
radius, and n, t, b, h are the respective projection parameters
depicted in Fig. 2.

Figure 3. Splat size and shape. Adjusting
the splat size just results in screen-space
squares to be rendered at the splat center’s
position (top). Additionally using the correct
elliptical splat shape gives a much better ap-
proximation, especially near contours (splat
radii have been decreased to better show the
effect).

Adjusting the image-space size causes a sizewin ×
sizewin image-space square to be rendered centered at the
splat center’s projected position (cf. Fig. 3, top right).

3.2 Splat Shape

Since a splat represents a small disc in object-space, its
projection onto the image plane is an ellipse. The radii and
orientation of this ellipse depend on the splat’s normal vec-
tor transformed to eye-coordinates. Adjusting the splat’s
shape based on its eye-space normal vector results in the
desired behaviour (cf. Fig. 3).

Initially the adjustment of splat size causes small image-
plane aligned squares to be rendered. For each of its pixels
we have to determine whether it is the projection of a point
inside or outside the splat, i.e. whether the point correspond-
ing to the pixel has a distance to the 3D splat center that is
less than the splat radius or not.

Similar to [5] we use the NV point sprite extension
to get a parameterization of the image-space square over
[−1, 1]2. For a pixel having coordinates (x, y) ∈ [−1, 1]2

we compute its depth offset δz from the splat center as a
linear function determined by the eye-space normal vector
(nx, ny, nz)

T , cf. Fig. 4:

δz = −
nx

nz

x −
ny

nz

y (2)

The depth offset δz can then be used to compute the 3D-
distance from the splat center: the pixel corresponds to a
point inside the splat iff the length

∥

∥(x, y, δz)T
∥

∥

2
is less

than one. Note that the depth offset δz is just an approxi-
mation, since we assume a parallel projection in Eq. 2, ne-
glecting the angle between the viewing ray and the splat’s

δz

n p=0T

n

(x,y)

−z

Figure 4. Depth correction. Adjusting the
image-space splat size yields a square par-
allel to the image plane. The required
depth correction δz can be computed from
the image-plane square coordinates (x, y) ∈
[−1, 1]2 and the splat’s eye-space normal vec-
tor n.

normal. Since this may cause ellipses to become too flat
(resulting in holes), we bound the maximum foreshortening
of the ellipses, as also proposed in [22, 5].

Using the correct splat size and splat shape results in a
hole-free rendering with a much better visual quality of con-
tours, since the typical thickening effect of square splats is
effectively avoided by elliptical splats (cf. Fig. 1 and Fig. 3).
Nevertheless for high quality anti-aliasing we should use the
splat filtering described in the next section.

3.3 Splat Filtering

For splat filtering each splat in object-space is associated
a radially decreasing Gaussian weight function. The pro-
jection of this Gaussian results in an image-space elliptical
Gaussian, whose values are used to blend the respective pix-
els. Therefore the image-space weight of a pixel is a func-
tion of the 3D distance of its corresponding object-space
point to the splat’s center, i.e. the norm

∥

∥(x, y, δz)T
∥

∥

2
that

has already been computed to determine the splat shape.
Hence, the final weight can be looked up in a 1D Gaussian
texture:

α(x, y) = GaussTexture1D
[∥

∥(x, y, δz)T
∥

∥

]

(3)

For the concept of splat filtering overlapping splats
should be blended if and only if their z-distance is suffi-
ciently small, otherwise the splat in front should overwrite
the splat behind. While software-based algorithms can eas-
ily implement this behaviour using, e.g., modified A-buffers
[3], there is no way to map this ε-depth-test to current graph-
ics hardware. Although some splats can be culled based on
their backfacing orientation, this is not sufficient in the gen-
eral case.

Figure 5. Splat filtering including per-pixel normalization results in high quality image reconstruction.
This effect becomes especially visible in the case of high frequency textures. While in the left
unfiltered image alias-problems appear, the splat filtering on the right provides a smooth result.

Therefore we use a two-pass rendering approach, like
proposed in [22, 21]: In a first pass the scene is rendered just
to the z-buffer, with all z-values having an ε-offset added to
them. If for the second pass the z-buffer update is turned
off, i.e. the z-values from the first pass are used read-only,
this results in the desired blending of splats whose depth
distance is less than ε.

For this ε-depth test to work reliably we have to make
sure that each pixel’s depth value is correct. Since the splats
we render are up to now just image-plane aligned ellipti-
cally trimmed rectangles, all of their pixels’ depth values
equal the depth value of the splat’s center vertex (cf. Fig. 6).
Especially when viewing a splat from a flat angle this will
lead to large errors in the depth component, resulting in
blending artifacts near contours.

To address this issue we use a per-pixel depth correction,
i.e. for each pixel we compute its correct depth value in win-
dow coordinates based on the splat’s eye-space normal vec-
tor. The corresponding object-space depth offset δz w.r.t. to
the splat center has already been computed to determine the
splat shape, see Eq. 2.

The required window z-coordinate zwin has to be com-
puted from the adjusted eye-space z-coordinate zeye+δz by
applying the frustum and viewport mapping to it (cf. Fig. 2).
This transformation can be written as

zwin =
a

(

zeye + δz
)

+ b

zeye + δz
, (4)

where a = f/(f − n) and b = −2fn/(f − n) are derived
from the composition of projection and viewport mapping.
The frustum parameters f and n are again the distances to
the near and far plane, respectively.

In the second rendering pass we accumulate all splats
passing the ε-depth test by weighted additive blending, such
that each pixel stores (

∑

i αi(rgb)i,
∑

i αi). Hence, in a
final normalization step the RGB part each pixel has to be
divided by its α component.

Figure 6. In order to show the effect of depth
correction the z-buffer of the left scene has
been re-projected using the techniques of
[12]. While splats rendered without depth
correction (center) have constant depth, like
being parallel to the image plane, per-pixel
depth correction solves this problem and
avoids blending artifacts (right).

3.4 Per-Pixel Normalization

In [5] all splats are blended in back-to-front order with-
out taking the depth buffer into account. The resulting arti-
facts are accepted for the advantage of a one-pass rendering
algorithm. In contrast the issue of correct EWA splatting
including the required normalization has been addressed in
[21]. Instead of doing a per-pixel normalization they switch
to a lower quality per-surfel normalization, where the sum
of α-weights is approximated to be constant for each splat.

On todays graphics hardware, however, a per-pixel nor-
malization can be performed very efficiently. Reading the
buffer, doing the normalization on the CPU and writing the
resulting buffer back may be a first idea, but is in fact pro-
hibitively expensive because of the required data transfer.

Instead we propose to accumulate the weighted splats in
an offscreen buffer. This buffer can then be used as a texture
for one single rectangle of the window’s size. Rendering

this rectangle will cause each pixel to go through the frag-
ment pipeline again, so that a pixel shader can do the nec-
essary division by α.

Since this technique effectively avoids sending the pixel
data over the AGP bus, the per-pixel normalization can be
performed at the cost of rendering one textured rectangle
using a small pixel shader program. Compared to the time
the two rendering passes take, this is basically negligible.

The resulting images provide a high visual quality com-
parable to existing software- or hardware-based implemen-
tations of EWA filtered surface splatting (c.f. Fig. 5 and
Fig. 8). But, as we will describe in the next sections, our
approach is siginicantly faster than existing methods.

4 Implementation

Our implementation is based on OpenGL, the results
we present are measured on a 2.8GHz Pentium4 with a
GeForceFX 5800 Ultra graphics card, running Linux. We
delegate the different rendering tasks described in the pre-
vious sections to the programmable vertex shaders [15] and
pixels shaders, respectively. Although we used NVIDIA
specific OpenGL extensions, the same would have been
possible using the recently released vendor independent
ARB vertex program and ARB fragment program
extensions or even using the more comfortable and platform
independent language Cg [16].

Data layout: When processing complex point datasets in-
cluding additional data like, e.g. normals and colors, the
data transfer can become the limiting factor. Therefore
the static scene geometry is stored in video or AGP mem-
ory so that it can be accessed by the GPU in DMA mode.
Although we use the NV vertex array range exten-
sions for this, it should also be possible using the new
ARB vertex buffer object extension. In order to
prevent cache misses the data should be arranged in inter-
leaved vertex arrays.

Vertex stage: A vertex program is used to transform the
vertex position and to compute the eye-space normal vector.
Using Eq. 1 it computes the image-space splat size, where
rounding the resulting size to an integer value turned out to
increase efficiency. Finally the vertex program sets up the
data required for computing the per-pixel depth offset and
depth correction. This data is passed to the fragment stage
in the texture coordinate registers, thereby keeping 32 bit of
accuracy.

Fragment stage: The fragments generated from the
image-space squares are processed by a fragment shader.

This program first combines lighting and texture/color in-
formation, where the lighting can be precomputed in a cube
map for higher efficiency. In order to compute the depth
offset a parameterization of the splat square is required.
Using the NV point sprite extension these parameter
values can be derived from the point sprite texture coordi-
nates. They are used to compute the depth offset according
to Eq. 2. Either the (squared) norm

∥

∥(x, y, δz)T
∥

∥

2

(no fil-
tering) or the correct Gaussian weight (filtering) are stored
in the α component, so that the α test can discard pixels
outside the elliptical image-space splat. For splat filtering
and blending additionally the per-pixel depth correction has
to be done (Eq. 4).

Blending: In order to accumulate the weighted contri-
butions of splats in the form (

∑

i αi(rgb)i,
∑

i αi) dif-
ferent blending modes have to be used for the RGB
and α components, which can be achieved using the
EXT blend func separate extension.

Normalization: For the final per-pixel normalization the
two rendering passes are rendered to an offscreen buffer that
is then used as texture image for a window-sized rectangle.
In order to allow for non-power-of-two viewport width and
height the NV texture rectangle extension is used.

Performance The bottleneck of our rendering algorithm
is the fragment processing, mainly because of the per-pixel
depth correction. In order to avoid generating unnecessary
fragments we added a backface-culling method to the ver-
tex shader that drops a splat depending on its eye-space
normal vector. This simple technique effectively removes
about 40% of the splats and speeds up the rendering signifi-
cantly. However, since fragment programs are a very recent
feature they are supposed to have room for improvements,
so that future drivers or cards will yield better performance.

5 Discussion

Our point-rendering method can be used on two differ-
ent quality levels: for the faster but the lower quality solu-
tion we only adjust splat size and splat shape as described
in Sec. 3.1 and 3.2. As shown in Fig. 1, this already gives
much better results than using fixed splat shapes and effec-
tively avoids the typical thickening effect near contours. On
this quality level our method is able to render about 28M el-
liptical un-filtered splats per second on a 2.8GHz Pentium4
with a GeForceFX 5800 Ultra graphics card.

For high quality filtered surface splatting we have to use
two rendering passes, because on current graphics hard-
ware there is no other way to implement the ε-depth test
described in Sec. 3.3. As proposed by Dachsbacher et al.

512 × 512 1024 × 1024

points unfiltered filtered unfiltered filtered

Charlemagne 1.63M 17.2 (28.1) 6.3 (10.4) 16.9 (27.6) 6.2 (10.1)

St. Matthew 1.57M 17.2 (27.1) 6.4 (10.1) 16.9 (26.6) 6.3 (9.9)

David Head 1.08M 25.6 (27.9) 9.4 (10.3) 24.1 (26.2) 9.0 (9.8)

David 1.06M 26.4 (28.0) 9.5 (10.0) 25.7 (27.3) 9.3 (9.9)

Max 655k 42.7 (27.9) 15.3 (10.0) 40.4 (26.4) 14.2 (9.3)

Male 148k 124.2 (18.4) 56.5 (8.4) 112.4 (16.7) 46.6 (7.0)

Balljoint 137k 172.6 (23.7) 73.2 (10.0) 124.3 (17.0) 45.3 (6.2)

Chameleon 101k 178.7 (18.2) 74.9 (7.6) 150.3 (15.3) 55.3 (5.6)

Table 1. The resulting timings for several models, given for window resolutions of 512 × 512 and
1024× 1024, and unfiltered or filtered rendering. The first values are frames per second, the values in
brackets are million splats per second.

[7] adding this additional feature to future GPUs would in-
crease the rendering performance for high quality filtered
primitives by a factor of two. However, our current imple-
mentation is based on a two-pass rendering and the nec-
essary per-pixel normalization. It achieves a splat rate of
about 10M high quality filtered splats per second.

We tested the performance of our implementation using
models of strongly varying complexities from 100k points
up to 1.6M points. Table 1 lists the respective rendering
times in frames per seconds and in million splats per sec-
ond. Since our rendering approach is limited by the frag-
ment processing speed, models containing more points re-
sults in higher splat rates as the projected size of splats will
be smaller. Comparing the timings for a window resolution
of 512 × 512 or 1024 × 1024, respecively, confirms this
result. Since for the more complex models projected splat
sizes are still just a few pixels, their rendering speed stays
almost the same. Low complexity models generate larger
image-space splats, putting more load on the fragment pro-
cessing.

Comparing our approach to the one of [21], we follow
more closely the idea of point-based rendering, since we
represent and render each splat using just one vertex. Since
our resulting splat rendering is mainly pixel-based, several
computations can be formulated easier and solved more ef-
ficiently. E.g. in order to compute the ε depth offset for
the first rendering pass, Ren et al. have to shift each vertex
along the viewing rays in object-space. Since we update the
fragment’s depth value anyway we just have to change one
constant parameter of the pixel shader. Another limitation
of [21] is the symmetric matrix decomposition that has to
be done for each vertex in order to compute the correspond-
ing object-space rectangle’s corner positions. Again, we
determine the splat shape and Gaussian α-mask by simple

image-space computations as described in Sec. 3.2. While
the approach of [21] renders up to 3M surface splats per
second using the heuristic per-surfel normalization, our im-
plementation achieves significantly higher splat rates using
the per-pixel normalization.

It is harder to compare our approach to the work of Co-
conu and Hege [5] since both methods are targeting differ-
ent goals. By using only one rendering pass and blending
all splats regardless of their depth distance, [5] trade visual
quality for rendering speed. In constrast we aim at a depth-
correct implementation of filtered surface splatting, requir-
ing the expensive two-pass approach. Nevertheless we man-
age to achieve higher frame rates. The major bottleneck of
[5] seems to be the CPU intensive sorting of the octree cells
from back to front, whereas our method puts no load at all
on the main CPU.

While our approach is significantly slower than [7], we
achieve improved visual quality even when using less sur-
face splats, since the piecewise linear splats have better ap-
proximation properties. Nevertheless our rendering method
should seamlessly integrate into the sequential point trees.
This promising combination would result in a GPU-based
hierarchical level-of-detail rendering of high-quality splats.

6 Conclusion

In this paper we presented an algorithm for the render-
ing of point-based geometry that closes the gap between
high quality software implementations and lower quality
hardware-accelerated approaches.

We propose the consequent delegation of the involved
rendering tasks to the GPU, since this keeps the CPU free
for other tasks. As more and more point-based geometry
processing methods are used, it is even more important that

these algorithms do not have to share CPU resources with
the rendering process. Since the efficiency as well as the
programmability of current GPUs is increasing at a much
higher rate than CPU performance, using the GPU for most
efficient rendering seems to be the straightforward conse-
quence.

Future work includes an implementation based on ven-
dor independent ARB extensions only or even using the
high-level language Cg. This would provide high quality
splat rendering for on a wider range of graphic cards. A
very promising direction of future research is the integration
of this work into the sequential point trees of Dachsbacher
et al. [7], since this would result in a high quality hierar-
chical level-of-detail rendering algorithm that is completely
processed by the GPU.

Acknowledgements

The St. Matthew and David models have been taken from
the Stanford 3D Scanning Repository. The models Male,
Balljoint and Chameleon are from the Pointshop3D home-
page.

References

[1] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, and C. Silva.
Point set surfaces. In Proc. IEEE Visualization 2001, pages
21–28, 2001.

[2] M. Botsch, A. Wiratanaya, and L. Kobbelt. Efficient high
quality rendering of point sampled geometry. In Proc. Eu-
rographics Workshop on Rendering 2002, 2002.

[3] L. Carpenter. The a-buffer, an antialiased hidden surface
method. In Siggraph 1984 Conference Proceedings, pages
103–108, 1984.

[4] B. Chen and M. X. Nguyen. Pop: a hybrid point and polygon
rendering system for large data. In Proc. IEEE Visulization
2001, pages 45–52, 2001.

[5] L. Coconu and H.-C. Hege. Hardware-accelerated point-
based rendering of complex scenes. In Proc. Eurographics
Workshop on Rendering 2002, pages 41–51, 2002.

[6] J. D. Cohen, D. G. Aliaga, and W. Zhang. Hybrid simplifica-
tion: combining multi-resolution polygon and point render-
ing. In Proc. IEEE Visualization 2001, pages 37–44, 2001.

[7] C. Dachsbacher, C. Vogelgsang, and M. Stamminger. Se-
quential point trees. In Siggraph 2003 Conference Proceed-
ings, 2003.

[8] O. Deussen, C. Colditz, M. Stamminger, and G. Drettakis.
Interactive visualization of complex plant ecosystems. In
Proc. IEEE Visualization 2002, 2002.

[9] S. Fleishman, D. Cohen-Or, M. Alexa, and C. T. Silva. Pro-
gressive point set surfaces. to appear in ACM Transactions
on Graphics.

[10] J. P. Grossman and W. J. Dally. Point sample rendering.
In Eurographics Workshop on Rendering 1998, pages 181–
192, 1998.

[11] P. S. Heckbert. Fundamentals of Texture Mapping and Im-
age Warping. Master’s thesis, University of California at
Berkley, 1989.

[12] L. Kobbelt and M. Botsch. An interactive approach to point
cloud triangulation. In Eurographics 2000 Conference Pro-
ceedings, 2000.

[13] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller,
L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg,
J. Shade, and D. Fulk. The digital michelangelo project:
3d scanning of large statues. In Siggraph 00 Conference
Proceedings, pages 131–144, 2000.

[14] M. Levoy and T. Whitted. The use of points as display
primitives. Technical report, CS Departement, University
of North Carolina at Chapel Hill, January 1985.

[15] E. Lindholm, M. Kilgard, and H. Moreton. A user-
programmable vertex engine. In Siggraph 2001 Conference
Proceedings, pages 149–158, 2001.

[16] W. R. Mark, R. S. Glanville, K. Akeley, and M. J. Kilgard.
Cg: A System for Programming Graphics Hardware in a C-
like Language. In Siggraph 2003 Conference Proceedings,
2003.

[17] M. Pauly and M. Gross. Spectral Processing of Point-
Sampled Geometry. In Siggraph 2001 Conference Proceed-
ings, 2001.

[18] M. Pauly, M. Gross, and L. Kobbelt. Efficient simplifica-
tion of point-sampled surfaces. In Proc. IEEE Visualization
2002, 2002.

[19] M. Pauly, R. Keiser, L. Kobbelt, and M. Gross. Shape Mod-
eling with Point-Sampled Geometry. In Siggraph 2003 Con-
ference Proceedings, 2003.

[20] H. Pfister, M. Zwicker, J. van Baar, and M. Gross. Surfels:
Surface elements as rendering primitives. In Siggraph 2000
Conference Proceedings, pages 335–342, 2000.

[21] L. Ren, H. Pfister, and M. Zwicker. Object space ewa surface
splatting: A hardware accelerated approach to high quality
point rendering. In Eurographics 2002 Conference Proceed-
ings, pages 461–470, 2002.

[22] S. Rusinkiewicz and M. Levoy. QSplat: a multiresolution
point rendering system for large meshes. In Siggraph 2000
Conference Proceedings, pages 343–352, 2000.

[23] M. Stamminger and G. Drettakis. Interactive sampling and
rendering for complex and procedural geometry. In Eu-
rographics Workshop on Rendering 2001, pages 151–162,
2001.

[24] L. Westover. Footprint evaluation for volume rendering.
In Siggraph 1990 Conference Proceedings, pages 367–376,
1990.

[25] M. Zwicker, M. Pauly, O. Knoll, and M. Gross. PointShop
3D: An Interactive System for Point-Based Surface Editing.
In Siggraph 2002 Conference Proceedings, 2002.

[26] M. Zwicker, H. Pfister, J. van Baar, and M. Gross. Surface
splatting. In Siggraph 2001 Conference Proceedings, pages
371–378, 2001.

Figure 7. Some models we tested our implementation on and whose rendering timings and complex-
ities are shown in Table 1. From left to right: St. Matthew, Max Planck, Male, Balljoint, Chameleon.

Figure 8. Splat filtering results in high quality
image reconstruction similar to anisotropic
texture filtering. In the upper left image and
the upper close-up no filtering has beed used,
leading to strong alias-artifacts. Splat fil-
tering instead effectively removes these ar-
tifacts (upper right and lower close-up).

Figure 9. The models of Michelangelo’s David
and Charlemagne are both 3D range scanned
statues. For the David a consistent deci-
mated triangle mesh has been sampled. The
input data for the Charlemagne model are just
the set of registered but unconnected range
scans.

