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Abstract

Many mesh processing algorithms assume the actual geometry of a
triangle mesh to be characterized by the vertex positions only. From
the manifold point of view however, triangle meshes have to be
considered as continuous piecewise linear surfaces. In sufficiently
smooth and flat regions of the surface this observation does not re-
ally matter since any triangulation will yield a decent approxima-
tion to the underlying geometry. In the presence of sharply curved
features however, this is not true. Here, severe alias-artifacts can
affect the perceived surface quality and can lead to quite bad ap-
proximation behavior.

In this paper we will discuss several consequences of this obser-
vation and present recently developed algorithms for feature sensi-
tive mesh generation and re-meshing. We will report recent results
in feature sensitive surface extraction from volume data, surface
anti-aliasing by remeshing of blend regions in technical data sets,
and diffusion based remeshing of triangle meshes.
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1 Introduction

Because of their simplicity and efficiency, polygonal meshes are a
well accepted universal surface representation in the field of Com-
puter Graphics. For several years now a large number of mesh
processing algorithms has been developed, many of them provid-
ing discrete analogons to methods originally derived for continous
parametric surface representations.

In parallel to this developement polygonal meshes are also in-
creasingly used in more sophisticated engineering applications and
numerical simulations (e.g. CFD). In this context one has to guar-
antee that the meshes to be used for simulation are sufficiently good
approximations to their continous physical counterparts, otherwise
the simulation’s results will not be reliable. In the presence of
sharply curved features a high-quality approximation becomes even
more important since these geometric features are usually very rel-
evant for the simulation and will therefore have a strong influence
on the results.

Since the key to successfully using polygonal meshes in this kind
of applications is a sufficient high-quality representation of the ge-
ometric features we will review the approximation properties of
polygonal meshes and discuss the consequences in Section 2.

After that we will present three examples of feature sensitive
mesh processing algorithms. We will enhance the standard March-
ing Cubes algorithm to detect and reconstruct sharp features in the
surface extraction process in Section 3. In Section 4 we derive an
optimal sampling pattern for feature and blend regions in technical
data sets and use this pattern to resample given meshes thereby ef-
fectively reducing alias-artifacts. In order to improve the geometric
as well as topological regularity of given triangle meshes a diffusion
based remeshing method is finally presented in Section 5.

2 Approximation Properties and Normal

Noise

From approximation theory we know that approximating a smooth
(sufficiently differentiable) surface S using a piecewise linear and
continous interpolant M (polygonal mesh) converges with quadratic
approximation order. The approximation error locally is a function
of surface curvature. Doubling the sampling density of M by re-
fining the mesh will therefore decrease the approximation error by
a factor of 1

4 . However, in the vicinity of sharp features the sur-
face S is no longer differentiable since normal vectors are not con-
tinous across that feature. This loss of differentiability causes the
approximation order to drop down to linear, leading to much slower
convergence in these areas.

Since sharply curved features correspond to high frequencies of
the surface signal S [Taubin 1995b; Taubin 2000] and since the
polygonal mesh M is a finite discrete sampling of this surface, sig-
nal processing theory tells us that the sampling density has to suffi-
ciently adapt to the signal’s frequency spectrum, otherwise we will
not be able to capture all geometric features and end up with alias-
artifacts. Following these priniciples one has to adjust the sampling
density of M to the curvature of the underlying surface S, i.e. we can
use a coarser sampling in smooth and flat areas and have to increase
the vertex density only in highly curved regions of the surface.

Unfortunately, the degenerate case of sharp features of S corre-
sponds to an infinitely high curvature or frequency spectrum, re-
spectively, requiring us (in theory) to use infinitely many samples
in their vicinity. As Fig. 1 clearly depicts, increasing the sampling

Figure 1: Alias error at high-frequency geometric details. By re-
fining the mesh, the effect becomes less and less visible due to the
convergence of the mesh M to the continous surface S but the prob-
lem is not really solved since the normal vectors of M do not con-
verge to the normals of S. These alias-errors can only be removed
by placing samples exactly on the sharp features.



density will result in a sequence of meshes which converge point-
wise to S, but whose normal vectors will never converge to the nor-
mals of S. Hence, refining the mesh will in fact not remove the
alias-artifacts, it will just shift them up to a higher frequency band.
Algorithms requiring first order surface information like normal
vectors will then give anything but reliable results in these cases.
Such methods may be as simple as surface shading showing spec-
ular artifacts or more sophisticated simulations like CFD, where
these randomly tilted normals may cause erroneous turbulences.

Since already small perturbations of nearby vertex positions can
cause large deviations of normal vectors, the approximation error
alone will not be a sufficient measure for reconstruction quality. We
have to consider the piecewise linear nature of triangle meshes and
— in addition to individual vertex positions only — we also have to
take the global sampling pattern into account. If we refer to vertex
positions as information of order zero then the sampling pattern
has influence on the derivative information like triangle normals
and can be regarded as a first order measure for reconstruction or
surface quality.

We define that a mesh M is a high-quality approximation of a
surface S if the mesh normals of M are a subset of the real sur-
face normals of S. If instead the normal vectors are randomly tilted
away from the correct direction, we refer to this effect as normal
noise, similar to surface noise being a high-frequency perturbation
of vertex positions (cf. Fig. 1,2). The process of reducing or even
removing these alias-artifacts is then called surface anti-aliasing.

The amount of normal noise is also a measure for mesh quality:
high quality surfaces in geometric modeling and CAD are usually
characterized by a low variation of curvature, also called fairness
[Moreton and Séquin 1992; Taubin 1995b; Desbrun et al. 1999].
In the discrete setting of polygonal meshes we can derive a discrete
analogon to the concept of surface curvature by considering the nor-
mal jump across an edge, i.e. the angle between the normals of two
incident faces. A triangle mesh is then said to be of high quality if
the variation of these normal jumps is low. For low quality meshes
with a strong variation of normal jumps we are back to the notion
of normal noise again (cf. Fig. 2).

We have seen that geometric features are on the one hand the
most significant mesh regions for many applications and that they
are on the other hand the most difficult regions from an approxima-
tion point of view. If we are given a fixed vertex budget and since
all samples have to be placed on the surface, the only remaining
degrees of freedom are to move the vertices within the surface, i.e.
to choose the sampling pattern.

The only way to generate meshes of superior quality and free of
normal noise is to have this sampling pattern aligned to the surface
features:

• We will show in Section 4 that for strongly curved features the
mesh has to be aligned to the principal curvature directions of
the underlying geometry.

• In the extreme case of infinitely sharp features, surface sam-
ples have to be placed exactly on the respective feature edges
or corners to get rid of the alias-artifacts.

3 Isosurface Extraction

Besides explicit surface representations like polygonal meshes the
other important representation are implicit surfaces [Bloomenthal
et al. 1997]. While the first one is defined to be the range of function
f : Ω ⊂ IR2

→ IR3, implicit surfaces are the kernel of a volumetric
scalar function F : IR3

→ IR. Although F can be any function map-
ping points outside/inside the object to positive/negative values, a
natural choice is the signed distance field function that assigns to
every point in IR3 its signed distance to the surface of the object.

Figure 2: Different sampling of a cylinder and their correspond-
ing variations of normal jumps, shown in form of histograms: the
normal jumps of the upper model have two different values, cor-
responding to its two different principal curvatures. The randomly
sampled mesh at the bottom has a higher sampling density but is
affected by normal noise.

Since both explicit and implicit representations have their own
advantages and drawbacks one usually chooses the best suitable
representation based on the application’s needs. In order to freely
switch between these surface representations we have to provide
conversion algorithms between them. The respective conversion
from implicit to explicit refers to extracting the zero-level isosur-
face from the volume. To get a decent approximation quality we
have to ensure that no important geometric detail is lost after the
conversion.

The standard algorithm for this contouring task is the Marching
Cubes [Lorensen and Cline 1987] or any of its variants [Nielson and
Hamann 1991; Montani et al. 1994b; Montani et al. 1994a]. The
function F is represented by sampling it on a uniform 3D grid gi, j,k
and interpolating the resulting values Fi, j,k using a tri-linear func-
tion in the interior of the grid cells. For each grid cell intersected
by the isosurface a small patch is generated. The union of all these
patches finally gives the desired isosurface. In order to generate a
patch for a specific cell, sample points are placed at the intersec-
tion of the cell edges with the isosurface and connected based on a
triangulation pattern from a pre-computed look-up table. Since the
tri-linear approximation of F is actually linear along the cell edges,
the geometric position of these samples is determined based on lin-
ear interpolation of the distance values at the edge’s endpoints.

While this approach works well in flat regions, the results can
strongly deviate from the exact intersection point near sharp fea-
tures (cf. Fig. 4). Since distance values are decoupled from the
directions they are measured in, we interpolate between distances
corresponding to different directions near sharp features, lacking
any geometric meaning.

Using a different discretization of the distance field F resolves
this problem: instead of using just scalar distances di, j,k = Fi, j,k
we store directed distances at the grid nodes. Since Marching
Cubes computes sample points on the grid edges only we also have
to consider distance computations along these edges only. For
the directed distance field we therefore store at each grid point



Figure 3: The result of a milling simulation: the milling tool’s envelope (constructed from unions of spheres and cylinders) is subtracted
from the work piece. The upper image shows the surface extracted by the standard MC algorithm, the lower image shows the extended MC
surface. The sharp ridges are better visible due to the clearly reduced alias.

Figure 4: Consider two neighboring grid points in the vicinity of a
sharp feature (corner) of the contour S. Sampling the scalar valued
distance function F at both grid points and estimating the sample
point by linear interpolation leads to a bad estimation of the true
intersection point between the contour and the cell edge.

gi, j,k three directed distances in x, y and z direction, i.e. we store
di, j,k = (dx,dy,dz)i, j,k. Basing the sample point computation on
these distance values will eventually result in the correct intersec-
tion points.

Although memory consumption increases by a factor of three,
directed distances have the advantage that they are usually much
cheaper to compute than the true minimal Euclidean distance. Gen-
erating directed distances is basically performed by ray casting
along the coordinate axes and many highly efficient algorithms are
available for this task [Arvo and Kirk 1989; Kalra and Barr 1989].

Even if we can compute exact intersection points the major prob-
lem with any discretization of F remains. The standard Marching
Cubes algorithm computes all samples on a globally uniform grid
that cannot be aligned to features of the underlying geometry, caus-
ing alias-artifacts at features as we pointed out in Section 2. Unless
we are able to place sample points on the feature we will not get rid
of these errors, even if we increase the grid resolution (cf. Fig. 1).
The problems to be solved are therefore the detection, sampling and
reconstruction of features on a per cell basis.

The key idea is to use additional local information from the dis-
tance field F and to extrapolate the behaviour of the surface near
the feature. Instead of using the sample point’s position only we
also make use of its tangent plane or normal vector, respectively,
i.e. the gradient of F at this point. Instead of directly connecting
sample points on the edges we approximate the surface using local
tangent elements and estimate the feature’s position by intersect-
ing them (cf. Fig. 5). Even if the surface is not differentiable near
the feature it can be assumed to be at least piecewise differentiable
on both sides of it. Hence, additionally using gradient information
brings us back to quadratic approximation order on each side of the
feature.

Figure 5: By using point and normal information on both sides of
the sharp feature one can find a good estimate for the feature point
at the intersection of the tangent elements.

In 3D the situation behaves similarly but is slightly more com-
plicated, since we have to distinguish between feature edges and
feature corners. Feature detection and classification is performed
based on the normal vectors of the sample points. In absence of a
feature we generate the standard Marching Cubes patch. Otherwise
we place a sample point on the feature and adjust the triangulation
table accordingly.

In order to place a sample point on the feature we have to com-
pute the intersection of all tangent elements defined by sample
points and their respective normal vectors. This leads to a linear
system that can be (numerically) both underdetermined as well as
overdetermined. Using the pseudo-inverse based on singular value
decomposition enables us to robustly handle both cases and will re-
sult in a Least Norm or Least Squares solution [Golub and van Loan
1996].

Combining the proposed directed distance with this Extended
Marching Cubes algorithm allows for feature-sensitive isosurface
extraction [Kobbelt et al. 2001]. Since the simple algorithmic struc-
ture of the standard Marching Cubes is preserved, this improved
version can serve as a replacement in all cases where the additional
tangent plane information can be provided, like, e.g, the CSG ap-
plication in Fig. 3.

More recently Ju et al. [Ju et al. 2002] combined this approach
with the surface-nets from [Frisken et al. 2000] to extract adap-
tive isosurfaces from volume data that also preserve sharp features.
While the provided adaptivity solves the problem of uniform over-
tesselation of Marching Cubes like algorithms, it has the severe
drawback, that the resulting meshes may not be manifold.



Figure 6: Geometric alias effects such as normal noise become
clearly visible under specular shading. The top image shows an
original 3D-scan of a feature region. Although the point positions
have been sampled at high precision and high resolution, the nor-
mals of the resulting mesh deviate strongly from the normals of the
original surface. Applying mesh decimation (center) even increases
normal noise. In the bottom image we applied our alias-reducing
feature resampling. Although the mesh resolution has not changed,
the quality has improved due to effective normal noise elimination.
The respective normal vectors now are a subset of the correct sur-
face normals.

4 Resampling Blend Regions

The input meshes to be used in numerical simulations are often
the result of a reverse engineering process, like e.g. 3D scanning a
physical prototype. In order to be sure not to lose relevant geometric
detail at early stages of the reconstruction pipeline, these meshes
may initially contain several millions of sample points [Bernardini
et al. 1999; Levoy et al. 2000]. As a consequence these datasets
have to be decimated down to a complexity the target application is
able to handle [Garland and Heckbert 1997; Kobbelt et al. 1998].

Since the applied mesh decimation schemes usually are greedy
algorithms that only consider the local shape to decide about which
vertex to remove in the next step, one has no direct influence on the
global distribution of the mesh vertices on the surface. Although
the sampling density may locally adapt to the surface curvature
there is no possibility to achieve global effects like an alignment
of the triangulation to sharply curved features in the geometry. As
we pointed out in Section 2 this will unavoidably result in normal
noise since the local surface shape at a surface point is not only
characterized by curvature radii but also by the corresponding prin-
cipal directions (cf. Fig. 6).

Figure 7: Feature regions on a complex surface usually emerge
from blending two separate patches (left) along their correspond-
ing boundary, e.g. by rolling a ball of prescribed radius along the
boundary (center). A degenerate ball of radius zero results in a
sharp feature edge (right).

These alias-artifacts become particularly evident in the vicinity
of feature lines of the original shape. In the case of technical models
the features are usually blend regions between separate parts of the
surface, e.g. by rolling a ball of prescribed radius along the common
boundary (cf. Fig. 7). Since the radius of this ball is much smaller
than the curvature of the trajectory it is moving on, these feature
regions are characterized by strongly differing principal curvatures
κ1 � κ2. In order to reduce or even remove normal noise, we have
to derive a suitable sampling pattern for these blend regions [Botsch
and Kobbelt 2001a].

If we first consider an orthogonal cylinder, it is easy to see that
random sampling causes normal noise (cf. Fig. 2). If we want the
normals of the approximating mesh to be correct — in the sense
that they are a subset of the real cylinder’s normals — each triangle
must have one of its edges parallel to the cylinder’s axis. Conse-
quently all vertices should lie on a set of lines which are parallel to
the cylinder axis and distributed equally around the cylinder. Each
strip between two of these lines can be tesselated by a planar tri-
angulation. The normal jump between two triangles is either zero
(within the same strip) or a constant angle (between two strips) that
only depends on the number of strips. Hence the normal noise is
minimal, the two different values correspond to the two different
principal curvatures of the cylinder.

Next we have to generalize this sampling pattern to rolling ball
blends, i.e. to surfaces that are the envelope of a ball or a circular
profile swept along a space curve. In this case we have to discretize
the surface in two directions, one being around the feature and one
along the center curve. The moving profile itself is again discretized
by a regular n-gon. When sweeping this closed polygon instead of
the circle, we obtain n ruled surfaces and the normal jump between
neighboring ruled patches is 2π/n.

Discretizing the moving profile along the center curve is less crit-
ical since the corresponding trajectories are lines of minimal curva-
ture and therefore will lead to small normal jumps only. However,
to preserve the constant normal jump property as good as possible,
we have to discretize all trajectories in a synchronized manner, i.e.
we discretize different time instances of the sweeping n-gon. Since
the resulting quadrilaterals are almost planar, splitting them into
two triangles by inserting a diagonal will not introduce a signifi-
cant normal jump. This intuitive and natural sampling pattern can
be shown to minimize normal noise and therefore to reduce surface
alias-artifacts to a minimum [Botsch and Kobbelt 2001a].

Resampling a given triangle mesh in order to better represent
feature regions is a more difficult task, since we are neither given
the moving profile nor the center curve. Therefore we have to con-
struct the sampling pattern based on principal curvature directions.
Although this could be done by a robust feature detection algorithm,
we aimed at a semi-automatic approach to give the designer max-
imum flexibility. In an interactive remeshing session the user con-
structs a tensor-product-like fishbone structure (spine and orthogo-



Figure 8: In addition to anti-aliased resampling the tensor-product
structure of the fishbone metaphor also provides quite sophisticated
higher-level modeling operations like exchanging the swept blend
profile.

nal ribs) which will finally be tesselated to an anti-aliased surface
patch and stitched into the surface mesh. The fishbone structure not
only allows for anti-aliased resampling, it also provides higher-level
modifications like changing curvature radii or completely replacing
the swept profile (cf. Fig. 8). In addition the tensor-product struc-
ture of the fishbones reduces several complicated bivariate prob-
lems to much simpler and numerically more robust univariate prob-
lems.

We applied the surface anti-aliasing technique in the context of
CFD simulation for conceptual car design and shape quality con-
trol. The normal noise contained in the models after the triangula-
tion and decimation phase could effectively be removed, see Fig. 10
and also Fig. 6.

5 Remeshing

If the input meshes for the target application do not result from
a reverse engineering process, but instead have to be constructed
from scratch, the typical approach is to use sophisticated CAD sys-
tems. Since numerical computations are typically applied to trian-
gle meshes, most CAD systems provide surface tesselation algo-
rithms that convert their internal NURBS based surface represen-
tations to polygonal meshes. Although these algorithms can take a
given approximation error into account and also can exploit knowl-
edge about all (continous) curvature properties of the surface, they
usually generate meshes of rather poor quality regarding the aspect
ratio of triangles.

The resulting degenerate faces are prohibitive for numerically
stable computations since, e.g., no robust face areas or normals vec-
tors can be derived from them [Botsch and Kobbelt 2001b]. As a
consequence, these surfaces have to be remeshed to give an approx-
imation satisfying a specified error tolerance but in addition pro-
viding superior mesh quality. Feature sensitivity in this case aims
at the preservation of features in this resampling process. The goal
of the remeshing is therefore to create an as regular as possible tri-
angulation that also exactly samples the relevant geometric features
of the underlying geometry.

Obtaining a regular triangulation can be split into a geometric
and a topological optimization process. Geometric regularity refers
to an even distribution of vertices on the surface, leading to edges of
all about the same lengths. Similar to [Turk 1992] a particle-system
on the surface based on global tangential relaxation and repulsion
leads to evenly distributed samples. Edge collapsing and edge split-
ting operators ensure that all edge lengths stay between two user

specified tresholds εmin and εmax [Kobbelt et al. 2000]. Following
Euler’s formula topological regularity requires the vertex valences
to be close to six. An edge flip based optimization helps to de-
crese the valence excess to accomplish this constraint [Hoppe et al.
1993].

While this remeshing strategy results in very regular meshes it is
still useless without feature preservation (cf. Fig. 9, top). In order
to snap vertices to feature edges and feature corners we enhance the
particle system approach by feature attraction forces [Vorsatz et al.
2001]. Computing a hierarchical curvature field [Taubin 1995a;
Meyer et al. 2002] on the surface and attracting mesh vertices to
features following the gradient of this field finally results in a fully
automatic procedure to exactly sample features of the surface ge-
ometry (cf. Fig. 9, bottom).

Figure 9: Regular remeshing of given meshes leads to severe alias-
error without any feature-preservation mechanism (left). Using a
hierarchical curvature gradient field to attract and snap vertices onto
features effectively removes sampling artifacts (right).

6 Conclusion

We have shown that using triangle meshes in sophisticated down-
stream applications such as numerical simulations requires a high-
quality approximation and alias-free representation of surfaces and
feature regions. Highly curved features typically are the most sig-
nificant surface parts for many numerical simulations. Unfortu-
nately they are also the surface regions most difficult to approxi-
mate without normal noise.

As a consequence there is a growing demand for feature-
sensitive algorithms in the field of mesh processing. We have pre-
sented recently developed feature-aware algorithms for isosurface
extraction, blend-region resampling and diffusion based remeshing.



Figure 10: We applied the surface anti-aliasing technique to a detailed BMW Z8 model which is supposed to be used for CFD simulation. The
normal noise in the vicinity of the feature regions of the decimated model can cause severe numerical instabilities. In the remeshed feature
regions around the driver’s window the normal noise has effectively been removed.
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