
EUROGRAPHICS ’2000 / M. Gross and F.R.A. Hopgood
(Guest Editors)

Volume 19, (2000), Number 3

An Interactive Approach to Point Cloud Triangulation

Leif P. Kobbelt Mario Botsch

Max-Planck-Institute for Computer Sciences

Abstract
We present an interactive system for the generation of high quality triangle meshes that allows us to handle hybrid
geometry (point clouds, polygons, . . .) as input data. In order to be able to robustly process huge data sets, we
exploit graphics hardware features like the raster manager and the z-buffer for specific sub-tasks in the overall
procedure. By this we significantly accelerate the stitching of mesh patches and obtain an algorithm for sub-
sampling the data points in linear time. The target resolution and the triangle alignment in sub-regions of the
resulting mesh can be controlled by adjusting the screen resolution and viewing transformation. An intuitive user
interface provides a flexible tool for application dependent optimization of the mesh.

1. Introduction

3D scanners are becoming the standard source for geomet-
ric input data in many application areas like reverse engi-
neering, rapid prototyping, conceptual design, and simula-
tion. As a consequence, the problem of generating high qual-
ity polygonal meshes from scattered data points is receiving
more and more attention 4 � 5. As measured data from phys-
ical prototypes and computed data from virtual prototypes
has to be merged in all stages of the typical design process,
sophisticated mesh generation techniques should be able to
work on hybrid input data which consists of a mixture of
point clouds, polygons, and maybe even NURBS-patches.

The overall process of converting an unstructured soup of
input geometry into a consistent polygonal model requires
the solution of several sub-problems. First of all, the amount
of data we are typically facing is huge. Point clouds with
millions or even tens of millions of samples are no excep-
tion if the surface of a non-trivial geometric object is to be
represented. This makes some sort of pre-processing manda-
tory in order to reduce the input complexity for subsequent
steps while observing a prescribed approximation tolerance.

Second, the global topology of the object’s surface has to
be determined, i.e., the neighborhood relation between adja-
cent parts of the surface has to be derived. This typically re-
quires some kind of global sorting step whose computational
complexity strongly depends on the underlying definition of
spatial or geodesic proximity.

In a final step the actual surface representation has to be

extracted. In our case, the goal is to generate a triangle mesh
satisfying some quality requirements like a global bound on
the triangle’s aspect ratio. Another very important quality
criterion for meshes is the adaption of the mesh resolution to
the distribution of geometric detail information. In fact, the
final mesh extraction is another sampling process which may
lead to alias-errors if the sampling density does not adapt to
the highest geometric frequencies.

The extremal case are sharp corners in the geometry. Here,
the geometric frequency spectrum extends to infinity and
hence an extremly high sampling density is required. How-
ever, even with very small triangles approximating a sharp
feature, the visual geometric similarity in terms of normal
vectors (and hence shading) cannot be improved (cf. Fig. 1).
The only way to avoid such artifacts is to align the triangle
edges in the mesh to the feature lines of the original object.

2. Overview

In this paper we are presenting a new approach to solve the
mesh generation problem. The major motivation for devel-
oping the underlying techniques is the quest for a robust sys-
tem that is able to process highly complex and completely
unstructured hybrid input data through an intuitive user in-
terface. We achieve this by exploiting the standard function-
ality of any PC’s graphics sub-system. Although the graph-
ics hardware only provides a restricted class of operations
on 3D data, the computing performance for these operations
is usually much higher than that of the CPU. It turns out that
several crucial steps in the mesh generation procedure can

c
�

The Eurographics Association and Blackwell Publishers 2000.Published by Blackwell
Publishers, 108 Cowley Road, Oxford OX4 1JF, UK and 350 Main Street, Malden, MA
02148, USA.

Kobbelt,Botsch / Point Cloud Triangulation

Figure 1: At sharp feature lines, any sampling algorithm tends to generate alias artifacts (left) which cannot be completely
removed by refining the sampling density (center). However, aligning the sample grid to the feature improves the visual quality.

be mapped to that restricted class of operations and hence
can be solved efficiently.

The concept behind the user interface is to simulate a vir-
tual 3D scanning device which is much more flexible than
a real 3D scanner. We allow the user to rotate the given ge-
ometry on the screen in order to adjust the optimal viewing
direction. When taking a profile snapshot (a virtual 3D scan)
from that direction, we can mask out an arbitrary sub-region
to cut away undesired parts of the currently visible geometry.
After performing some post-processing (e.g. mesh smooth-
ing, hole-fixing, . . .) we merge the new patch with the al-
ready existing ones. After a few iterations of this procedure
we end up with a globally consistent model of the given ob-
ject (cf. Fig. 2).

Taking a 3D snapshot of the object on the screen means
reading out the z-buffer contents and un-projecting it back
into 3-space. By this we obtain a 3D sample point of the
given geometry for every pixel of the screen. Here, we ex-
ploit the fact that real 3D scanners usually yield a rather
dense cloud of data points which appears as a continuous
surface when rendered on the screen. The few remaining
holes that might appear occasionally can be removed by sim-
ple filter operations in image space. Larger holes in the sur-
face which are due to missing data can be handled by mask-
ing out the corresponding regions on the screen. Since the
graphics hardware of a standard computer performs the map-
ping of 3D data points onto the screen much faster than the
CPU, we are able to handle data sets with several million
samples interactively.

In the context of the introductory remarks, the rendering
of sample points into the z-buffer solves all three steps of the
mesh generation at once. Sub-sampling is achieved by ren-
dering several points into the same pixel. Actually, the sub-
sampling resolution can be controlled by the resolution of
the frame buffer. In addition, if sharp feature lines are present
in the underlying geometry, we can align them to the hori-
zontal or the vertical axis in order to reduce alias artifacts.
The topology of the reconstructed surface trivially emerges

from the obvious neighborhood relation between pixels and
the resulting surface is extracted by simply interpolating the
grid points by a regular triangle mesh. The actual portion
of the z-buffer that contributes to the resulting surface patch
is determined by some additional criteria such as (relative)
quality of individual triangles and user defined image space
masks.

The remaining task is to stitch the acquired mesh patches
together to build a globally consistent model. This requires
to associate the boundary vertices of one patch to the trian-
gles of the other. Again we can accelerate the computation
significantly by ’out-sourcing’ the necessary operations to
the graphics hardware.

The major advantages of our approach are the high flex-
ibility with respect to viewing directions and orientations
and the elegant way to sub-sample the given data without
building a space partition data structure. The virtual scan-
ning metaphor allows the user to adjust the mesh resolution
almost arbitrarily (with the point cloud density being the up-
per bound) and the possibility to align the sampling grid to
geometric features strongly improves the usability of the re-
sulting meshes.

3. Related work

In the literature, different approaches to solve the problem
of interpolating a point cloud by a triangle mesh have been
proposed. There are two major ’schools’ one of which uses
3D Voronoi partitioning as the basic technique and the other
one is based on deriving a 3D distance field.

The motivation for Voronoi based approaches is to find the
correct topology of the sampled surface even if the samples
are scattered very sparsely. The proposed schemes typically
come with some bound on the minimum sampling density
depending on the local surface curvature.

The classical technique in this field are alpha-shapes 7

which represent a subset of the 3D Delaunay triangulation

c
�

The Eurographics Association and Blackwell Publishers 2000.

Kobbelt,Botsch / Point Cloud Triangulation

Figure 2: In an interactive mesh generation session, the user scans parts of the object (the point cloud, left) from different views
and merges the pieces to construct a complete mesh model. By using the z-buffer for the virtual 3D scanning, we can handle
quite large data sets (here 1.4M points). Each scan prodives a fairly regular re-sampled patch representing a part of the object’s
surface. Left to right: one, two, and three scans combined. The point cloud on the far left appear as a continous block since the
sample density is higher than the pixel size.

of the sample points. The geometric intuition behind alpha-
shapes is to first compute a global Delaunay triangulation
and then delete tetrahedra and triangles by using a spherical
tool with radius alpha. Variations of alpha-shapes where the
value alpha adapts to the local sampling density have been
investigated in the sequel 3.

Other Voronoi based techniques use the shape of individ-
ual Voronoi cells to determine the surface normal direction at
every surface point 1 � 2. This information together with other
criteria to rate their plausibility is then used to delete trian-
gles from the Delaunay triangulation. A common feature to
these techniques is that they are theoretically sound by guar-
anteeing correct reconstruction if the bounds on the sam-
pling density are met. However, the requirements in terms
of computation time and memory are quite high such that
massive data sets with millions of data points cannot be pro-
cessed with reasonable effort. Also, these techniques tend
to be very sensitive to noise which is critical when the data
points are measured from a real object.

The distance field approaches usually start by estimating a
normal direction for every sample point (e.g. by least squares
fitting a plane to some points in the vicinity) 9. The corre-
sponding tangent plane then is a good local approximation
to the original surface and the distance from that plane yields
a good local estimate for the true distance. A global distance
field can be derived from the local estimates by weighted
superposition.

To determine the surface topology one has to find a con-
sistent orientation of the normal vectors, i.e. normal vectors
of neighboring sample points should point approximately
into the same direction. The topology emerges from the fact
that a consistent orientation enables the definition of a signed
distance function with negative values below (’inside’) and
positive values above (’outside’) the surface (the object) 6.

The surface extraction is eventually done by sampling the
signed distance function on a regular spatial grid and com-
puting the iso-surface for the distance value zero by the
Marching Cubes algorithm. The step width in that spatial
grid determines the target resolution of the resulting mesh.
Since the complexity of the grid increases like O

�
h � 3 � with

decreasing step width h, the highest resolution is bounded by
the available memory. As it is well known that the Marching
Cubes algorithm can generate triangles with bad aspect ratio,
a post-processing of the resulting mesh is usually necessary.

Compared to the Voronoi based approaches, the compu-
tation and evaluation of the distance field can be performed
quite efficiently for rather complex data sets. However, the
mesh resolution cannot be adapted to the local curvature and
small detail features tend to be destroyed due to unwanted
interference between nearby local distance estimators.

While the existing techniques are off-line algorithms, our
approach incorporates user interaction during the surface
generation. Resolution and orientation of the triangles can

c
�

The Eurographics Association and Blackwell Publishers 2000.

Kobbelt,Botsch / Point Cloud Triangulation

be adapted manually to varying detail levels and quality re-
quirements in different regions of the object (cf. Fig. 3). The
CPU and storage requirements are much lower than for the
other approaches since no additional data structure has to be
generated (like the Voronoi partitioning or the spatial grid of
distance samples).

4. Mesh generation

In this section we describe in detail how the various steps
in the meshing procedure are solved. The goal is always to
identify operations that can be performed by the graphics
hardware to exploit its superior computing performance.

During an interactive meshing session the user adds one
patch after the other to the previously generated model. One
iteration consists of placing, scaling (� resolution) and ori-
enting (� alignment) the object on the screen, determining
the valid region of interest, extracting the patch and automat-
ically stitching it to the already existing mesh.

4.1. Virtual range scanning

When rendering geometry with enabled z-buffer option we
always have direct access to the depth of the element that
is currently visible at a specific pixel location. While the
graphics system uses this information to determine mutual
occlusion, our virtual scanner reads the data and un-projects
it back into 3-space. The result is a range image containing
a 3D sample point for every pixel.

According to the OpenGL convention a 3D point is trans-
formed by the Modelview and the Projection matrix and
eventually mapped onto the screen by the Viewport transfor-
mation. The inversion of these transformations is straight-
forward. The only difficulty arises from the rounding step
which is implicitly introduced by assigning real coordi-
nate values to integer indexed pixel locations. This causes
a global offset for the un-projected geometry. We minimize
this effect by un-projecting the pixel centers instead of their
lower left corners. So with the Viewport transformation be-
ing ���

�
i
j
z �
1

����
� 	

�����
�

w
2 0 0 w

2

0 h
2 0 h

2

0 0 1
2

1
2

0 0 0 1

������
�

���
�

x
y
z
1

����
�

we use the modified inverse���
�

x
y
z
1

� ��
� 	

�����
�

2
w 0 0 1

w
 1

0 2
h 0 1

h
 1

0 0 2
 1

0 0 0 1

� ����
�

���
�

i
j
z �
1

� ��
�

which corresponds to un-projecting � i � 1
2
 j � 1

2
 z ��� instead
of � i
 j
 z � � when finding the sample point for pixel � i
 j � .

With this simple range scanning emulation, we avoid any
complicated handling of geometric or topological special
cases, all we have to do is to pass the geometry to the graph-
ics system and let the rendering pipeline do the work. An
immediate advantage of this method is that we are not re-
stricted to point clouds. Since we are using the OpenGL API,
triangles and more general polygons can be treated the same
way. This is important when it comes to merging geometry
data from different sources.

Figure 3: The interactive approach provides an intuitive in-
terface to locally adapt the mesh resolution to specific re-
quirements for the resulting model by simply zooming the
point cloud. Here the ear and the eye have been z-buffer
scanned with a higher density.

A typical application scenario is the conceptual design
phase where variations of an object are often manufactured
as physical prototypes. Usually we still have a CAD-model
of the original geometry which we want to synchronize with
the physical model, i.e., we want to add the modified part
to the original model. With the z-buffer technique we only
have to re-scan the modified portion of the physical model
and render it together with the old CAD geometry into the
same frame buffer.

Before the actual z-buffer range scanning is carried out,
the user has several degrees of freedom to adjust the (pixel)
sampling grid. By zooming in on the object, the resolution
can be changed (cf. Fig. 3). If the screen resolution exceeds
the sampling density such that the number of holes increases,
samples can be drawn as large points (glPointSize())
covering several pixels at once. For the range geometry rep-
resented by the z-buffer contents this corresponds to nearest

c
�

The Eurographics Association and Blackwell Publishers 2000.

Kobbelt,Botsch / Point Cloud Triangulation

neighbor interpolation if antialiasing is switched off. Alter-
natively, we can try to eliminate holes in the range matrix in
a post processing step (cf. Sect. 4.2).

Another degree of freedom is the orientation of the sam-
pling grid. By rotating the object on the screen we can align
feature lines of the given geometry to the horizontal or to the
vertical axis and thus avoid alias errors that otherwise cause
oscillating normal vectors in the vicinity of sharp corners (cf.
Fig. 1).

4.2. Post-processing

There are several types of artifacts in the range images ob-
tained by un-projecting the z-buffer contents. Besides the
noise in the original point cloud data (caused by the phys-
ical range scanner) we can observe additional jitter which is
due to discretization errors in the z-buffer. We minimize this
effect by automatically placing the front and back planes of
the viewing frustum as close as possible to the actual geom-
etry.

Additional enhancement of the range geometry is
achieved by applying low-pass filter operations to the z-
buffer mask. This can be done very efficiently due to the
regular matrix structure. In our implementation we used a
locally supported median filter which preserves edges. Edge
preservation is important since edges in the z-buffer indicate
object boundaries which must not be affected by the filtering
(cf. Fig. 4).

Figure 4: Noise in the input point data is visible as pimples
in the z-buffer mesh (left). Median-filtering removes most of
the noise (right) while preserving features — especially the
mesh boundaries.

Besides noise artifacts, the range matrix can have holes
if some pixels are not hit by any valid (front facing) ge-
ometry during the rendering. If the point cloud is not dense
enough (relative to the current screen resolution) some pixels
may contain no z-value at all, or they may contain z-values

which correspond to the back side of the object. In both cases
the holes have to be detected and the missing (or wrong) z-
values have to be replaced by averages of neighboring (valid)
z-values. This can be done by an arbitrary z-buffer filter oper-
ation as long as it does not modify the valid z-buffer entries.

Detecting empty pixels is trivial since the z-buffer is ini-
tialized with the back plane’s z-value. For the detection of
z-values which correspond to the back side of the object,
we use the following heuristics. We collect all z-values and
quick-sort them in increasing order. Then we look for the
maximum difference between two successive elements in the
sorted sequence. If samples from the back side are present in
the z-buffer then this maximum difference very likely sepa-
rates front and back points. Hence, deleting all z-buffer en-
tries with larger z-value removes the wrong samples. If no
samples from the back side are present, the maximum dif-
ference will indicate some z-value near the contour of the
visible surface and thus deleting some z-buffer entries will
only affect some very badly sampled triangles.

Another possibility to remove back side samples is to let
the user place a clipping plane within the point cloud. How-
ever, we prefer the heuristics since it does not require any
user input and it turned out to be rather reliable. The clip-
ping plane functionality can nevertheless be provided as an
additional feature.

Finally, by looking at the differences
�

z between adja-
cent pixels we can detect badly shaped cells which are seen
almost tangentially from the viewing direction. In some ap-
plications we might want to mark those regions of the range
matrix as invalid. However, we observed that in general it is
more intuitive to keep the whole range image as a closed sur-
face and cut out the relevant pieces in the following masking
phase.

4.3. Masking

When composing complicated models from several range
scans it is often not desirable to use everything that has been
visible during the last exposure. The masking phase selects
the relevant part of the sampled points and discards the rest.
There are two different mechanisms for the masking. One is
the user defined region of interest and the other is an auto-
matic method which compares the quality of samples.

The region of interest is a portion of the screen defined
by the user. By blocking all the pixels outside this area with
the stencil buffer option we can check what part of the range
image to keep. This interaction tool is particularly important
if we want to include a bounded patch with higher resolution
into an existing mesh. We simply mark the corresponding
area on the screen and re-scan a zoomed version of the same
point cloud (cf. Fig. 3).

Since we are not deleting any bad triangles in the pre-
processing phase we have to guarantee in the masking phase

c
�

The Eurographics Association and Blackwell Publishers 2000.

Kobbelt,Botsch / Point Cloud Triangulation

that bad samples are replaced by better ones in subsequent
scanning steps, i.e., a region of the surface that was close
to the contour or even occluded in the first scanning steps
should be replaced if newer scans provide more reliable
shape information.

By convention we always replace the old geometry by the
new one unless the sampling quality of the old triangles is
ranked superior to the quality of the new geometry. To check
this, every new vertex from within the region of interest is
mapped to the existing geometry. If there is a correspon-
dence (i.e., the new vertex hits an old triangle) we compare
the quality of the new vertex with the quality of the old tri-
angle and keep the better one. If there is no correspondence
(i.e., the new vertex does not hit the old mesh) the new vertex
actually extends the old geometry and is kept in any case.

The most time consuming step in the automatic masking
is the search for triangles of the old mesh which lie closest
to a specific vertex of the new mesh. The use of efficient hi-
erarchical space partition data structures is not appropriate
in this case since relatively few inquiries are made in each
masking step and in the next masking step the old space par-
tition will be obsolete. Instead we use, again, the graphics
hardware to accelerate the search.

Every triangle of the old mesh is uniquely indexed by its
ID. If we encode this ID as an RGB-color by using the red
channel for the most-, the green channel for the mid-, and the
blue-channel for the least-significant byte, we can render up
to 224 distinguishable triangles into the frame buffer. If we
now project and transform the vertices of the new mesh into
the same frame buffer, we can determine the corresponding
old triangle by simply reading out the RGB pixel color. Oc-
casionally, especially near the contour of the scanned object,
the triangle which is found in the corresponding pixel hap-
pens not to be the closest one. However in these cases, the
found triangle is still a good starting point for a local search.

We still have to define the sampling quality of a triangle or
vertex. Intuitively the reliability of a sample point increases
as the distance between neigboring samples decreases. In
fact for a fixed resolution the distance between samples be-
comes smaller as the viewing direction approaches the sur-
face normal. For a fixed viewing direction the distance be-
tween samples becomes smaller if the resolution is refined.
Hence, we define the sampling quality of a triangle to be the
length of its longest side and the quality of a vertex to be the
length of the longest adjacent edge.

Only those pixels from the z-buffer which lie within the
region of interest and which pass the sampling quality test
(active pixels), may eventually be added to the already ex-
isting mesh in the stitching phase. However, to avoid degen-
erate triangles and gaps after the stitching, we conclude the
masking phase by applying morphologic erosion and dila-
tion operators to the set of active pixels 8.

The erosion operator inactivates pixels that have inactive

neighbors. This is done in order to remove isolated pixels.
The first dilation then reactivates each pixel that still has an
active neighbor. A second dilation further extends the active
region. Our experiments show that applying the dilation op-
erator two times is sufficient in most cases.

The effect of the dilation is twofold. First, if boundary
vertices of the new mesh are ranked worse than the bound-
ary triangles of the old mesh, their deletion may cause a gap
as the meshes are locally no longer overlapping. The dila-
tion prevents this effect. Second, the quality-ranking mask
may generate a new patch with a quite jaggy boundary poly-
gon and scattered holes in the interior which causes unpleas-
ant seams after the stitching. The dilation operator tends to
smooth out the boundary polygon and close small holes (cf.
Fig. 5). Notice that the dilation is not allowed to grow be-
yond the region of interest.

Figure 5: The new surface patch after masking with respect
to the sample quality only (left) has several holes and a jaggy
boundary. Applying erosion and dilation fills in the holes and
smoothes the boundary (right).

4.4. Stitching

The final step in the interactive loop is to join the newly ac-
quired geometry with the already existing mesh. Since the
new patch has been pre-processed, the task can be solved
by a slight modification of the mesh zippering algorithm 14.
We insert the boundary vertices of the new patch into the
corresponding (nearest) triangles of the old mesh. We then
insert the boundary edges of the new mesh by splitting all
edges which cross the geodesic line from one boundary ver-
tex to the next. Finally we remove that portion of the old
mesh that is now replaced by the new patch. In order to im-
prove the mesh quality we can post-optimize the seam area
by collapsing small edges (cf. Fig. 6) 10.

The only computationally expensive step in this procedure
is to find the triangles where the new vertices have to be in-
serted. This information, however, is already available from
the masking phase, where the correspondences between new
vertices and old triangles have been established in order to
compare the local sampling quality of both meshes.

c
�

The Eurographics Association and Blackwell Publishers 2000.

Kobbelt,Botsch / Point Cloud Triangulation

Figure 6: The stitching algorithm first inserts the new vertices into the old mesh then splits or flips edges of the old mesh to
interpolate the new mesh’s boundary edges and finally removes the redundant part of the old mesh. Collapsing short edges in
the resulting mesh removes badly shaped triangles (from left to right).

5. Results

We implemented the technique described in the last section
as part of an interactive tool for the generation of high qual-
ity mesh models from hybrid input data. The user interface
merely consists of a viewing window where the input geom-
etry can be examined. Once the desired viewing direction
for a virtual range scan in found, the z-buffer is read and the
un-projection is performed.

In a second window, the resulting mesh is shown and can
be examined as well (cf. Fig. 7). For the viewing transforma-
tion of both windows a synchronization is enforced at any
time which simplifies the decision where to place the next
scan. A simple image space drawing tool (”green lasso”) is
provided by which the user defines the region of interest for
the next scan. A similar tool (”red lasso”) is available in a
different mode to manually delete unwanted regions of older
scans. Figure 8 shows the typical sequence of steps that are
taken to interactively generate the mesh.

6. Conclusions and future work

We presented a new technique for the triangulation of point
clouds. The method sub-samples the given data by render-
ing the data points into an OpenGL frame buffer and un-
projecting the contents of the z-buffer back into 3-space. The
regular grid structure of the range matrix leads to fairly regu-
lar meshes. Additional post-processing removes outliers and
noise artifacts. A masking step extracts that portion of the

Figure 7: Minimalistic user interface for the interactive
mesh generation tool. In the left window, the original point
cloud is rendered (and appears as a solid block). The z-
buffer content is extracted, triangulated and displayed on the
right. By rotating the right object, the user can easily choose
the viewing direction and the region of interest for the next
scan.

data which lies within a user defined region of interest and
has a better sampling quality than the already existing scans
of the same geometry.

We are planning future work in two directions. First, since
our tool is able to process arbitrary (OpenGL compatible) in-

c
�

The Eurographics Association and Blackwell Publishers 2000.

Kobbelt,Botsch / Point Cloud Triangulation

Figure 8: To generate a mesh model from the club data set (16586 points) we z-buffer scan it from different views. Each new
scan is added to the existing model (with the sampling quality mask enabled). When closing the remaining gaps and holes in
the last steps, we use the green lasso to define the region of interest where new geometry should be included. The interactive
generation of this mesh model took less than a minute. Since the club data set with 16586 point is rather sparse, we used
enlarged pixels during rendering to avoid gaps.

put geometry, we want to apply it to the repairing of CAD
models. Often a CAD model goes through many conversion
steps causing badly shaped triangles or even topological in-
consistencies. Our tool can provide a means to easily resam-
ple the given surface geometry such that better shaped trian-
gles emerge. This could be interesting for the preparation of
mesh models for numerical simulation.

Second, we want to apply some mesh decimation scheme
to the (masked) mesh patches before they are merged with
the already existing geometry. Of course, the decimation has
to keep sufficient detail in curved areas but it can reduce the
mesh complexity in flat regions. This would lead to polygo-
nal models with the mesh resolution changing gradually and
not only from patch to patch. The decimation scheme can be
implemented very efficiently due to the regular grid structure
of the z-buffer matrix (e.g. with adaptive quad-trees).

7. Acknowledgements

We would like to thank Hughes Hoppe for allowing us to
use the club and the mannequin head data set and Christian
Rössl for generating the Tweety and the statue point clouds.

References

1. N. Amenta. The Crust Algorithm for 3D Surface Re-
construction. In Proc. 13th ACM Symp. Computational
Geometry, 1997.

2. N. Amenta, M. Bern, M. Kamvysselis. A new Voronoi-
based surface reconstruction algoritm. Proc. SIG-
GRAPH ’98, 1998.

3. F. Bernardini, C. Bajaj. Sampling and reconstructing
manifolds using α-shapes. 9th Canadian Conference
on Computational Geometry, 1997, 193–198.

4. F. Bernardini, C. Bajaj, J. Chen and D. Schikore. Auto-

c
�

The Eurographics Association and Blackwell Publishers 2000.

Kobbelt,Botsch / Point Cloud Triangulation

Figure 9: The Tweety model has been generated from a point cloud with about 400K sample points. The center image shows
how the different scans are stitched together. Noise reducing post-processing by a Laplacian filter 12 � 11 yields the final result
with 33K triangles.

matic Reconstruction of 3D CAD Models from Digital
Scans. Int. J. on Comp. Geom. and Appl. vol. 9, 1999.

5. F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, G.
Taubin. The Ball-Pivoting Algorithm for Surface Re-
construction. to appear in IEEE Trans. on Vis. and
Comp. Graph.

6. B. Curless, M. Levoy. A volumetric method for building
complex models from range images. Proc. SIGGRAPH
’96, 1996, 303–312.

7. H. Edelsbrunner, E. P. Mücke. Three-dimensional al-
pha shapes. ACM Trans. Graphics 13, 1994, 43–72

8. R. M. Haralick, S. R. Sternberg, X. Zhuang. Image
Analysis Using Mathematical Morphology. In IEEE
Trans. on Pattern Analysis and Machine Intelligence,
Vol PAMI-9, No. 4, 1987.

9. H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, W.
Stuetzle. Surface Reconstruction from Unorganized
Points. Proc. SIGGRAPH ’92, 1992, 71–78.

10. H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, W.
Stuetzle. Mesh Optimization. Proc. SIGGRAPH ’94,
1994, 19–26.

11. L. Kobbelt, S. Campagna, J. Vorsatz, H-P. Seidel. Inter-
active Multi-Resolution Modeling on Arbitrary Meshes.
Proc. SIGGRAPH ’98, 1998, pp. 105 – 114.

12. G. Taubin, A Signal Processing Approach to Fair Sur-
face Design. Proc. SIGGRAPH ’95, 1995, pp. 351–
358.

13. M. Teichmann, M. Capps. Surface reconstruction with
anisotropic density-scaled alpha shapes. Proceedings
of IEEE Visualization ’98, 1998, pp. 67 – 72

14. G. Turk, M. Levoy. Zippered Polygon Meshes from
Range Images. Proc. SIGGRAPH ’94, 1994.

Figure 10: By introducing additonal clipping planes, sur-
faces with holes, open surfaces, and surfaces with large con-
cavities can be reconstructed based on the same interactive
procedure.

c
�

The Eurographics Association and Blackwell Publishers 2000.

Kobbelt,Botsch / Point Cloud Triangulation

Figure 11: Example meshes generated by our new point cloud triangulation algorithm.

c
�

The Eurographics Association and Blackwell Publishers 2000.

