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Abstract

We present a method for automatically generating reduced marker
layouts for marker-based optical motion capture of human hands.
The employed motion reconstruction method is based on subspace-
constrained inverse kinematics, which allows for the recovery of re-
alistic hand movements even from sparse input data. We addition-
ally present a user-specific hand model calibration procedure that
fits an articulated hand model to point cloud data of the user’s hand.
Our marker layout optimization is sensitive to the kinematic struc-
ture and the subspace representations of hand articulations utilized
in the reconstruction method, in order to generate sparse marker
configurations that are optimal for solving the constrained inverse
kinematics problem. We propose specific quality criteria for re-
duced marker sets that combine numerical stability with geometric
feasibility of the resulting layout. These criteria are combined in
an objective function that is minimized using a specialized surface-
constrained particle swarm optimization scheme, which generates
marker layouts bound to the surface of an animated hand model.
Our method provides a principled way for determining reduced
marker layouts based on subspace representations of hand articula-
tions. We demonstrate the effectiveness of our motion reconstruc-
tion and model calibration methods in a thorough evaluation.

Introduction

Marker-based optical motion capture, or mocap, is widely regarded
as the standard method for acquiring motions of human perform-
ers in both research and industrial or entertainment contexts. Nu-
merous commercial solutions [Vic 2015; Opt 2015; Pha 2015; Qua
2015] and considerable scientific literature exist on the topic. While
there is a multitude of alternative solutions for motion tracking,
such as markerless methods [Org 2015; Kin 2010] or systems us-
ing inertial sensors [Xse 2015; Bio 2015], they are not as widely
deployed due to the reliability of marker-based systems. Marker-
based optical mocap systems track the 3D positions of markers at-
tached to a performer, which can then be used to infer the artic-
ulation of a skeletal model of the tracked subject. Such systems
typically consist of 4 to 32 cameras that capture at 30 to 2000 Hz
and acquire the marker locations with very high accuracy [Kitagawa
and Windsor 2008].

However, despite the quality of marker-based mocap there are
drawbacks and limitations to these systems. The captured data usu-
ally needs to be post-processed extensively, occlusions can cause
gaps or mislabelings in the captured data, and any rotational infor-
mation needs to be computed retrospectively. Some of these issues
are amplified as the number of markers used for tracking increases.
A common guideline for capturing articulated objects is to cover all
major joints with markers [Guerra-filho 2005; Kitagawa and Wind-
sor 2008]. In addition to making the marker attachment process

Figure 1: Our method generates reduced marker layouts for optical
motion capture of hands based on analyzing hand movements. Left:
full marker set covering all joints of the hand. Center: qualitative
illustration of regions that are static (blue) and in motion (red) dur-
ing the analyzed precision grasp movement. Right: reduced marker
set that is sufficient to reconstruct the observed motions using our
method.

tedious and error-prone, a high number of markers causes prob-
lems when capturing multiple subjects or tracking body movements
and hand articulations simultaneously. Capturing hand articulations
in detail typically requires a dense marker set consisting of 18–23
markers in a small capture volume. In a large capture volume that
also allows for full body mocap the resolution of the optical track-
ing system and the required size of the markers prohibit the usage
of a full marker set. Instead, reduced marker sets have been em-
ployed in large capture volumes – however, this strongly limits the
expressiveness of the captured hand motions. Therefore, body and
hand movements are sometimes captured in isolated sessions and
combined in post-processing [Wheatland et al. 2015].

In this work, we present a method for automatically determining
reduced marker layouts for inverse kinematics (IK) based motion
reconstruction in optical mocap. The motion reconstruction method
is based on performing the IK optimization in a subspace learned
from prior hand movements, which allows for realistic recovery
of hand articulations even from sparse input data. Our method
for reduced marker set optimization is sensitive to this reconstruc-
tion method, particularly the employed subspace constraints, and
thus produces layouts that are optimal for solving the subspace-
constrained IK problem. We present an approach that minimizes
an objective function that jointly optimizes numerical stability of
the marker-IK problem and the geometric feasibility of the result-
ing layout. The optimization is done using a specialized surface-
constrained particle swarm optimization (PSO) [Kennedy and Eber-
hart 1995; Kennedy and Eberhart 2001], which generates marker



layouts bound to the surface of an animated 3D hand model (see
Figure 1).

We show that, rather than specifying one marker per joint of the
articulated object, it is sufficient to specify one marker per degree
of freedom (DoF) of the parameter space that represents particular
hand articulations. Reduced marker layouts can therefore be deter-
mined by reducing the parameter space of hand postures based on
prior knowledge. Furthermore, we show the principles by which
a reduced marker layout that best corresponds to the subspace
DoFs can be determined. We demonstrate marker layout results
for various hand motions, in particular manual interaction move-
ments based on the grasp taxonomy of [Cutkosky 1989], which dis-
tinguishes between different types of power grasps and precision
grasps.

This paper is an extended version of the previous conference pa-
per [Schröder et al. 2016]. In addition to the generic hand motion
reconstruction and the marker placement optimization proposed in
the conference version, this paper provides a detailed evaluation of
the reduced marker layouts on real-world hand motion data. To
enable these experiments, we extend the hand tracking method of
[Schröder et al. 2016] by two aspects: First, we incorporate the
automatic marker labeling technique of Maycock et al. [Maycock
et al. 2015], which allows us to use the mocap marker data without
manual preprocessing. Second, we generate user-calibrated hand
models from 3D point clouds of the user’s hand, which significantly
improves the accuracy of our motion reconstruction. Our experi-
ments clearly demonstrate that the reduced marker layouts can be
used to robustly and accurately reconstruct hand motions even from
sparse marker input.

Related work

There is a substantial amount of literature on optical motion cap-
ture, therefore we focus on the related work that is most relevant
to ours, which includes the topics of motion reconstruction based
on motion subspace priors, as well as optimized or reduced marker
configurations.

Employing subspace representations of human motions has been
shown to be effective for motion reconstruction from sparse input.
In [Chai and Hodgins 2005; Liu et al. 2006] local linear models
were used to represent full-body motions and recover skeletal ar-
ticulations from sparse marker sets. While these methods are com-
pletely data-driven and can therefore limit the space of recovered
articulations, our approach uses data-driven subspaces as a prior
but also allows for articulation refinements that lie outside of the
ground truth database using a layered inverse kinematics approach.
Liu et al. [Liu et al. 2006] also target the problem of determining
reduced marker configurations by finding a subset of an initial input
marker set that can produce accurate predictions of the remaining
markers. In contrast, we present a bottom-up approach for gener-
ating optimal reduced marker layouts for hands based on the kine-
matic DoFs of an articulated hand model. While previous methods
usually determine reduced marker sets by subsampling a specific
initial marker set, our method more generally prescribes properties
that candidate marker regions on the surface of a hand model should
exhibit, and automatically computes the optimal marker placement
within these regions.

Other works deal with the optimal placement of markers, al-
though not necessarily reduced marker layouts. Recently, Loper
et al. [Loper et al. 2014] demonstrated an approach that is able to
capture fine details of soft tissue deformations in addition to full-
body skeletal motions without having to rely on very dense marker
sets. To improve the accuracy of their motion and shape capture,
they extend their initial sparse marker set in a greedy approach that

iteratively adds the next best mesh vertex that minimizes an error
metric. We show that, for the problem of finding good reduced
hand marker layouts, such greedy approaches are outperformed by
our PSO-based global search, as it is less prone to suboptimal local
minima. Le et al. [Le et al. 2013] explore the problem of determin-
ing optimal marker layouts for facial performance capture using an
approach that minimizes the reconstruction error for ground truth
sequences of high-resolution facial meshes. While their approach
is based on surface deformations of facial meshes, we find reduced
marker layouts by purposefully exploiting the kinematic structure
and correlations within an articulated hand model.

While a common guideline for marker placement on hands is to use
one marker per joint [Guerra-filho 2005; Kitagawa and Windsor
2008], reduced marker layouts for hands have been frequently dis-
cussed. In [Kitagawa and Windsor 2008] an example for a reduced
“mitten” layout was given, where only one marker was placed at
the tip of a single finger. Given an estimation for the global lo-
cation and orientation of the hand, the relative movement of this
marker can be interpreted as the simultaneous bending of all fin-
gers. Our work examines this concept more closely by consider-
ing how correlations and redundancies in hand articulations affect
marker placement. Regarding the degree of realism of finger mo-
tions with reduced marker sets, Hoyet et al. [Hoyet et al. 2012]
found that humans are not particularly sensitive to the subtle de-
tails of finger animations and the perceived quality of motions is
not significantly affected by reduced marker sets. While they man-
ually selected reduced marker configurations, we present an auto-
matic approach based on subspace-constrained inverse kinematics.
In contrast, Chang et al. [Chang et al. 2007] determine the most
important markers in a reduced marker set for the purpose of grasp
motion recognition by using supervised feature selection based on
the prediction accuracy of grasp classifiers. In [Kang et al. 2012;
Wheatland et al. 2013] a data-driven approach for hand motion re-
construction from sparse marker sets was used, where motions are
synthesized by finding database postures that most resemble the
low-dimensional input. Wheatland et al. [Wheatland et al. 2013]
computed a subset of an initial full marker set by performing prin-
cipal component analysis (PCA) on the marker trajectories and se-
lecting the most influential ones. Our method differs from theirs
in two significant aspects: first, our IK-based approach allows for
the recovery of hand articulations that are not present in the prior
database, and second, we determine reduced marker layouts in a
bottom-up way based on the PCA of joint angles, which explic-
itly captures the correlations and redundancies present within hand
kinematics, unlike positional marker trajectories.

Using PCA or other dimension reduction techniques for hand kine-
matics has found widespread success in hand tracking, animation
and automation [Bernstein 1967; Wu et al. 2001; Kato et al. 2006;
Mulatto et al. 2013; Schröder et al. 2014]. To reconstruct the
kinematic parameters of an articulated hand model from positional
marker data, we follow our previous subspace-constrained inverse
kinematics approach [Schröder et al. 2014], where we showed that
using subspace constraints the hand posture estimations remain re-
alistic even when input data is missing. In this work, we reverse
the problem and seek to find the minimal amount of marker input
data necessary to reconstruct postures accurately using subspace
priors. As in previous works on reduced marker sets for hand mo-
cap [Chang et al. 2007; Kang et al. 2012; Wheatland et al. 2013;
Hoyet et al. 2012], our marker layouts describe only the articula-
tion of the hand, whereas the global position is given by markers
placed on the forearm near the wrist.

In order to achieve accurate hand motion reconstructions even for
strongly varying hand shapes, we employ a user-specific hand
model generated from 3D scanner data. The generation of cal-
ibrated hand models has been discussed in a range of previous



works. For instance, Albrecht et al. [Albrecht et al. 2003] and Rhee
et al. [Rhee et al. 2006] generate specific hand models by warping
a general template model according to features extracted from 2D
photographs of hands. For a more detailed geometric reconstruction
based on sensor data, depth sensing devices can be used, which pro-
vide 3D point cloud information. Reconstruction of 3D geometry
from point clouds has been addressed in registration techniques [Li
et al. 2008; Li et al. 2009], in which a template model is deformed
to fit to the input data by employing non-rigid deformation mod-
els in regularized energy optimization frameworks. However, these
particular methods do not specifically account for the articulated,
kinematic structures of hands. In contrast, Taylor et al. [Taylor et al.
2014] presented a method for generating user-specific hand models
by simultaneously adapting a hand triangle mesh and its embedded
skeleton to a sequence of depth images. Similarly, Zhu et al. [Zhu
et al. 2015] created user-specific anatomically based models of up-
per and lower limbs by adapting the bone, skin and kinematic struc-
ture of an initial template model to depth data. Recently, Tan et
al. [Tan et al. 2016] presented a fast method for hand personaliza-
tion using a small set of depth images that minimizes an energy
based on a sum of render-and-compare cost functions.

While recent advances in markerless free-hand tracking using com-
modity depth sensors [Tagliasacchi et al. 2015; Taylor et al. 2016]
have shown increased viability for gesture-based interfaces, such
methods can still struggle with capturing more than one subject or
human-object interactions. Both of these methods also involve reg-
ularization with a statistical hand posture prior, which in the case
of [Tagliasacchi et al. 2015] is derived from marker mocap data.
Marker-based systems are still favored in scientific or industrial
production contexts, where accuracy and reliability are paramount.

In the following we describe the employed motion reconstruction
method before discussing the specific quality criteria for reduced
marker layouts and presenting our layout optimization scheme. Af-
ter this, we describe our method of user-specific hand model gen-
eration, and finally show and discuss some results of our marker
layout optimization and motion reconstruction.

Motion reconstruction

Given a set of target marker positions from an optical mocap sys-
tem, our motion reconstruction method estimates the hand posture,
from which the observed positions originate, by fitting an articu-
lated hand model to the data. Our hand model consists of 16 joints,
which are driven by 26 kinematic parameters θ = (θ1, . . . , θ26)T.
Of those parameters, 6 describe the global pose of the hand: 3 for
translation and 3 for rotation. The remaining 20 parameters de-
scribe the posture of the fingers, where each finger defines 4 joint
angle parameters. The hand geometry is represented by a trian-
gle mesh, which is animated using linear blend skinning [Jacka
et al. 2007]. On the surface of this model, effector positions are
defined, which correspond to the marker target positions in the in-
put data. The associations between the target and effector positions
are computed automatically by solving the assignment problem be-
tween the unlabeled mocap data and the model points, and robustly
tracking these correspondences over time. Figure 2 shows the hand
model with its underlying skeleton and some exemplary markers.
The problem of finding the hand model parameters that move the
effector positions to their corresponding targets is solved using in-
verse kinematics. We apply the subspace-constrained IK method of
[Schröder et al. 2014] to the marker-based mocap problem.

Inverse kinematics

The positions of the k effectors on the surface of the hand model are
represented as a stacked vector x ∈ R3k and move relative to the

Figure 2: Hand model and its underlying skeleton. Also shown
are three exemplary markers on the hand model (red) that are con-
strained to move towards their target positions (blue) using inverse
kinematics.

model articulation, and can therefore be expressed as a function of
the kinematic parameters, x = x(θ). These effector positions are
subject to move to their corresponding target positions t ∈ R3k.
The IK problem t = x(θ) is solved by finding an update to the
kinematic parameter vector θ that minimizes the objective function

EIK(∆θ) =
1

2
‖x(θ + ∆θ)− t‖2 +

1

2
‖D∆θ‖2 . (1)

In this objective function, the first term models the least squares er-
ror between the positions of the effector points xi and the positions
of their corresponding target points ti. The second term is a se-
lective damping term for the parameter update ∆θ with a diagonal
matrix D. This damping stabilizes the solution and is used for joint
limit avoidance [Schröder et al. 2014].

To find the parameter update ∆θ, the objective function (1) is min-
imized with a Gauss-Newton approach, in which a linear system is
solved in each iterations. The objective function leads to the linear
system (

JTJ + D
)

∆θ = JT (t− x(θ)) , (2)

where J = ∂x
∂θ

is the (3k × 26) Jacobian matrix of the effector po-
sitions [Buss 2004]. After solving the linear system, the resulting
update ∆θ is scaled using a line search in order to guarantee con-
vergence. The process of solving the linear system (2) and updating
the effector positions is iterated 5–10 times.

The result of this process is an update to the kinematic parame-
ter vector θ that moves the effector positions on the model to the
marker target positions in the input data. Given a full marker set
that specifies the articulation of every joint this produces accurate
reconstructions of the input motion. However, when using reduced
marker sets the input data is sparse and the motions of joints that
are not constrained by marker positions cannot be recovered. For
this reason, a subspace prior that captures the correlations of joint
movements is employed in the inverse kinematics scheme.

Subspace prior

We use the subspace IK method proposeed in [Schröder et al. 2014],
where we obtain a subspace representation of hand articulations
from the publically available database of [Schröder et al. 2014],
which contains a high variety of human hand motions. Performing
PCA on this database of 20-dimensional hand posture data yields
a set of eigenvectors and eigenvalues, which can be used to con-
struct a 26 × (6 + l) matrix of principal components M, which
maps between the full 20-dimensional posture space and a reduced
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Figure 3: Full and reduced marker sets and reconstructed hand
postures with standard inverse kinematics optimizing for all joint
angles and subspace inverse kinematics optimizing for reduced sub-
space parameters. While the standard approach cannot articulate
the markerless fingers, the subspace approach captures the cor-
relations between fingers and articulates them using the reduced
marker set.

l-dimensional subspace. The additional 6 dimensions encode the
global pose of the hand, which is not captured in the PCA model.
The number of subspace dimensions l determines the amount of
variance in the input data covered by the subspace and can be seen
as a control variable for the eventual number of markers k employed
in a reduced marker layout. It was shown in [Schröder et al. 2014]
that in order to represent 90% of given hand movements, 3–6 sub-
space dimensions are sufficient.

Given the PCA matrix M, the full parameter vector θ ∈ R26 can
then be computed from the reduced subspace parameters α ∈ R6+l

as

θ = Mα + µ, (3)

where µ ∈ R26 is the mean of the database postures. This makes it
possible to represent the forward kinematics of the effector points x
subject to the subspace parameters: x = x(α) = x(θ(α)). Based
on this representation, the IK problem can be expressed in terms
of the subspace parameters as well. Optimizing for the subspace
parameters in (1) and (2) is possible using the subspace Jacobian

JPC :=
∂x

∂α
=

∂x

∂θ
· ∂θ
∂α

= J ·M. (4)

Substituting JPC for J in the linear system (2) and analogously
changing the damping matrix D yields the IK solution for the
subspace parameters. This solution naturally constrains the recon-
structed hand postures to linear combinations of the principal com-
ponents of the posture database and allows joints to move in corre-
lation to others even when they are not constrained by markers.

However, as there can be variations between the movements con-
tained in the database and the ones observed in the mocap data, we
only use this subspace estimate as an initialization for a subsequent
refinement of the full posture parameters. By removing the sub-
space constraints after the initialization of the subspace parameters
α and refining the estimate by solving the IK problem again for
the full parameter vector θ, the joints with markers are allowed to
move more closely to the observed marker positions. This layered
IK scheme makes it possible to obtain hand motion reconstructions
that are both realistic, due to the subspace initialization, and accu-
rate, due to the full kinematic refinement. Figure 3 shows a com-
parison of standard IK with the subspace approach we employ.

Fully automatic tracking

Our system tracks the user’s hands as well as any objects with mark-
ers by fitting models to the captured data. The models are geomet-
ric representations of the tracked objects and include preset marker
layouts (generated automatically for hands). The input to our track-
ing system is a sequence of unlabeled mocap data. We determine
correspondences between the unlabeled marker point cloud and the
tracking models using a fully automatic approach that requires no
user intervention [Maycock et al. 2015], which we briefly review in
the following.

In the initial frame, the input point cloud is partitioned using Eu-
clidean clustering [Rusu 2009] in order to distinguish between hand
and object markers. The tracking models are initialized to these
clusters by matching each possible model (cylinder, sphere, hand,
etc.) to each cluster in a brute force manner and choosing the con-
figuration with the lowest mean Euclidean distance between the
model positions x and the cluster positions t. The model positions
x are the model’s preset marker positions after fitting to the cluster.
The point-to-point correspondences within each model-cluster pair
are optimized using the Hungarian method [Kuhn 1955; Edmonds
and Karp 1972], which solves the assignment problem

min
{mi,j}

k∑
i=1

k∑
j=1

mi,j ‖xi − tj‖ , (5)

where {mi,j}, 1 ≤ i, j ≤ k, denotes a complete assignment of
effector positions xi to target positions tj , with mi,j = 1 if xi is
matched to tj , and 0 otherwise. Equation (5) measures the cost of a
bijective assignment mi,j based on Euclidean distances. The Hun-
garian method optimizes the problem using a square k×k distance
matrix, which is padded with∞ values if the number of points in
x and t differ. Based on these assignments (xi ↔ tj), the inverse
kinematics solution is computed as described above.

The marker assignment optimization is computed not only for the
initialization, but also in each frame of the input sequence. This
makes our system highly robust against data artifacts such as ghost
markers, which are spurious data points that can temporarily pop
up due to sensor noise or reflections (see the accompanying video).
Another data artifact that our system explicitly handles is mark-
ers temporarily disappearing, e.g., due to occlusions. Disappearing
markers are detected during the assignment optimization. Reap-
pearing markers are distinguished from ghost markers based on an
adaptive distance threshold [Maycock et al. 2015]. As there is no
information to animate the respective segments of the hand model
between disappearance and reappearance of a marker, our system
smoothly interpolates the affected joint angles during the frames
in this animation gap. Without interpolation, the sudden reappear-
ance of a missing marker can cause a jump in the movement of the
joints affected by this marker. This includes joints that are affected
by the marker directly as part of the marker’s kinematic chain, or
ones that are affected indirectly via the subspace prior and are not
constrained by any other markers. Interpolation of all affected joint
angles produces a smooth movement for the whole hand.

If a marker is visible in frame t, disappears for T frames, and reap-
pears in frame t+ T + 1, we determine the missing joint angle
values θt+1, . . . ,θt+T for all involved joints by smoothly inter-
polating the states between time t and t + T + 1. A simple linear
interpolation of the boundary values θt and θt+T+1 would lead to
discontinuities in the angular velocity θ̇(t). We avoid this and addi-
tionally minimize unnecessary oscillations by finding a joint angle



Figure 4: A virtual finger is shown as it moves through space and
is bent. In the second rendering the motion capture marker is no
longer visible. Once the marker reappears, inverse kinematics are
computed in order to verify that the posture is possible and then the
intervening frames in which the marker was missing can be updated
using interpolation of the affected joints.

function θ(t) that interpolates the C1 boundary constraints θ and
θ̇ at times t and t+ T + 1 while minimizing angular acceleration:

min
θ(t)

∫ t+T+1

t

∥∥∥θ̈(t)
∥∥∥2

dt. (6)

Because of the uniform time steps of the tracking system we can
safely discretize temporal derivatives by recursive finite differences,
such that finding the missing joint angle values for the T time steps
leads to a simple T × T linear system to be solved (for each miss-
ing marker individually). Figure 4 shows an example in which a
marker disappears while the affected finger is changing its position
and posture simultaneously. Our interpolation method automati-
cally produces smooth animations in spite of intermittent noise and
missing data, but if markers remain missing for long periods (e.g.
due to significant occlusions), any complex motions taking place
during that time will be simplified to an interpolation between the
states before and after the gap. However, in practice such extreme
cases rarely occur using our acquisition setup. For a detailed eval-
uation and discussion of the fully automatic tracking and gap inter-
polation we refer the reader to [Maycock et al. 2015].

Reduced marker layouts

Subspace-constrained inverse kinematics makes it possible to fully
articulate a hand model based on a sparse set of marker points.
However, the choice of marker placement is not arbitrary, and to
find the optimal marker layout necessitates a method that can assess
the quality of a given layout in relation to others. In the following,
we discuss the general considerations taken into account and the
specific quality metrics employed in our marker layout optimiza-
tion.

Given a ground truth trajectory of hand motions from a database,
the most straightforward way to evaluate the quality of a given
marker set is to compare the ground truth trajectory with one re-
constructed using a reduced marker set. The specific metric we
consider here is the positional reconstruction error, which measures
the deviation of the reconstructed trajectories of the model vertices
V from the ground truth trajectories. While this is an intuitive mea-
surement for the deviations in the results of the motion reconstruc-
tion (see, e.g., Figure 12), it is not convenient as a metric for choos-
ing an optimal marker layout. Its computation is prohibitively in-
efficient and it does not generalize beyond the specific input tra-
jectory. Instead, we use metrics that effectively incorporate the IK
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Figure 5: Marker layouts of different sizes for a precision grasp
movement involving the index finger and thumb. The rightmost lay-
out with 13 markers was computed using the full Jacobian J for the
condition number metric, whereas the others were computed using
the reduced Jacobian JPC.

problem setup, the subspace DoFs and generic geometric consider-
ations.

A reduced marker set must be configured in such a way that the
subspace IK can produce the most accurate results. Additionally
the layout must be designed such that it is well suited for practi-
cal use, which means that it should be unobtrusive, easy to apply,
and should obviate occlusions and self-contact. In the following,
we break these requirements down into two categories: numerical
stability and geometric feasibility.

Numerical stability

Our IK hand motion reconstruction is based on solving the linear
system (2). The numerical stability of the IK problem is measured
by the invertibility of the left-hand-side matrix

(
JTJ + D

)
, the

key component of which is the Jacobian J (or JPC), which is the
derivative of the marker positions with respect to the kinematic (or
subspace) parameters. Different marker layouts define different Ja-
cobians, each marker defines three rows in the Jacobian matrix.
Therefore we denote the Jacobian matrix produced by a specific
marker layoutM as JM. Each kinematic (or subspace) DoF cor-
responds to a column in the Jacobian. As we are only interested in
the minimal layout necessary for accurate posture estimation (joint
angles), we omit the three columns in the Jacobian that correspond
to translational DoFs, which means that JM

TJM is a 23× 23 ma-
trix for the full parameter space and a (3 + l)× (3 + l) matrix for
the reduced parameter space.

A criterion for the invertibility of a matrix is its condition number,
which is low when the problem is well-conditioned and high when
it is ill-conditioned. As we are interested in the most numerically
stable marker layout, we omit the damping matrix D, which is not
impacted by the markers, and only regard the condition number
of the matrix JM

TJM. We compute the condition number of the
matrix JM

TJM using its singular values as

κ
(
JM

TJM
)

=

∣∣∣∣∣σmax
(
JM

TJM
)

σmin
(
JM

TJM
) ∣∣∣∣∣ , (7)

where σmax(A) and σmin(A) denote the maximum and minumum
singular values of matrix A, respectively.

Optimizing the marker layout M for the condition number
κ
(
JM

TJM
)

produces marker layouts whose IK solutions are nu-
merically stable by covering the kinematic DoFs of the hand. Tak-
ing into account the subspace prior in the IK system by using the
subspace Jacobian (4), the marker positions tend to positions that
optimally cover the subspace DoFs. Figure 5 illustrates this con-
cept. Note that the number of markers needed to specify the IK



problem is determined by the number of DoFs representing the
posture. The full posture space therefore cannot be used to pro-
duce sparse marker sets (less than 8 markers), since the IK problem
would be underspecified. Employing a subspace representation fa-
cilitates reduced marker sets.

Geometric feasibility

Optimizing only for the condition number of the system matrix pro-
duces numerically stable and kinematically meaningful marker lay-
outs, however they can be unsuitable for practical use by placing
markers at positions that are obstructive for the mocap performer
or are sensitive to occlusions and self-contact. Therefore, we con-
sider geometric feasibility in addition to numerical stability in or-
der to produce well-conditioned marker layouts that are also good
in practice. We do this in part by limiting the areas where markers
can be placed. While this could be done by manually predefining
allowed regions, this would cause the need for user intervention.
Instead, we define some generic properties that the model vertices
should exhibit to select feasible ones automatically. Additionally,
we need to model geometric properties that cannot be accounted for
by preselecting vertices, as they change during hand motions (e.g.
self-contact).

The first set of geometric feasibility properties is the potential areas
for positioning the markers on the surface of the hand model. As the
hand naturally bends inwards and can come in contact with objects
in the front, markers should generally not be placed on the front
side, but rather on the back. Similarly, the markers should be pre-
vented from touching the other fingers during motion and therefore
markers should not be placed towards the sides of the fingers. We
therefore define feasible regions on the surface of the hand model
based on the vertex normals. Only vertex positions pi ∈ V whose
normals ni satisfy the condition ni · h > 0.9, where h is the hand
model’s back-facing vector, are eligible as marker positions.

The second set of geometric feasibility properties taken into ac-
count is marker movement. In practice, markers placed near the
joint pivot can move non-rigidly along with the joint rotation due
to stretching and sliding of the skin. To prevent this, we identify
regions on the skinned mesh that move rigidly relative to joints by
considering the hand model vertices’ convex skinning weights and
only using vertices with weight 1 for one joint. Another movement-
related issue is when markers can come in contact with each other
during motions, which is especially important even with reduced
marker layouts when using large markers. To prevent marker con-
tact from occurring, we maximize the minimum distance between
markers across multiple keyframes in the input trajectory. For a sin-
gle frame, the minimum distance between two markers in a marker
setM is

δ(M) = min
a∈M

{
min

b∈M\{a}

{
‖a− b‖2

}}
. (8)

Maximizing this metric over all frames causes markers to spatially
disperse as far from each other as possible, particularly when finger
movements cause otherwise spatially distant markers to approach
each other more closely.

The combination of these criteria serves as a geometric regulariza-
tion to the kinematic constraints imposed on the marker set. As a
result, the markers are placed in geometrically feasible hand regions
during the optimization. The layouts shown in Figure 5 combine
the numerical and geometric criteria. In the following, the combi-
nation of the discussed metrics and their respective influences are
discussed.

Econd Edist +w1Econd w2Edist

Figure 6: Example layouts with 10 markers for the objective func-
tion terms. The input data is a precision grasp, where mostly the in-
dex finger and thumb are in motion. Left: when optimizing only for
the numerical stability term Econd markers can be placed in close
proximity, which is geometrically impractical. Center: optimiz-
ing for the geometric distance term Edist results in spatially distant
markers, but the layout does not capture the analyzed hand articu-
lations. Right: a weighted combination of the two terms results in
a layout that is both numerically stable and geometrically feasible.

Layout optimization

We now combine the quality measures for reduced marker layouts
in an energy minimization scheme, in which the marker setM that
minimizes an objective function E(M) is found using stochas-
tic optimization. To this end, we employ a specialized surface-
constrained particle swarm optimization (PSO) scheme, which con-
fines the solution domain to the vertices V of an animated hand
model. In addition to the vertices, the input to this optimization in-
cludes the vertex normals and skinning weights, as well as a train-
ing set of example hand motions. The marker set quality properties
are evaluated on the model’s vertex positions. A distinction can
be made between static properties, which are invariant to hand mo-
tion and relative marker placements, and dynamic properties, which
vary with different motions and marker layouts.

Static aspects of marker layout quality are those that prevent neg-
ative effects of skin sliding, by penalizing the vertices’ skinning
weights, and obstructiveness, by penalizing the vertices’ normal
angles. These properties can be incorporated by preselecting only
vertices that satisfy them. This yields a set of preselected vertices
V ′ ⊂ V on the hand model surface that are eligible as potential
marker positions. Ultimately, the optimized marker layout will be a
subsetM⊂ V ′ of this preselection.

In contrast, dynamic aspects of marker layout quality cannot be
evaluated as isolated vertex properties, as they vary with changes
in hand articulation and placement of the remaining markers within
the layout. These include the numerical stability measured by the
condition number of the IK system matrix JM

TJM and the min-
imum marker distance. To account for these changes with respect
to different hand articulations, we evaluate and accumulate these
metrics over a set F = {f1, . . . , fF } of representative keyframes
of a given input hand motion trajectory, which can be automatically
computed using farthest point optimization [Schlömer et al. 2011]
in the hand posture domain. These dynamic properties of marker
setM are modeled in the objective function E(M), whose defini-
tion and optimization are discussed in the following.



Objective function

The objective function that is minimized in the marker layout opti-
mization is a weighted combination of energy terms with respect to
marker setM

E(M) = w1 · Econd(M) + w2 · Edist(M) , (9)

where Econd(M) penalizes the condition number of the IK system
matrix induced by the marker layout Jacobian, andEdist(M) penal-
izes the minimum distance between any two marker positions in the
layout. Both of these terms are evaluated over a setF of key-frames
in a hand motion trajectory that are representative of the movements
that should be captured in the reduced marker set. We denote the
marker configuration of layoutM in frame f ∈ F asM(f) and its
Jacobian as J(f).

Based on (7), the energy term penalizing the condition numbers of
the induced system matrices is defined as

Econd(M) =
1

|F|
∑
f∈F

κ
(
J(f)

TJ(f)

)
. (10)

This term minimizes the average condition number across all
frames F . Since the considered marker layout is a subset of the
preselected vertices M ⊂ V ′, we can precompute the vertex Ja-
cobian JV′ for all frames F and construct the respective marker
Jacobians by selecting the corresponding rows in this matrix.

Based on (8), the energy term penalizing the minimum distance
between two marker positions across all keyframes is defined as

Edist(M) = − 1

L
min
f∈F

{
δ
(
M(f)

)}
, (11)

where L is the length of the hand model, making the term scale
invariant. As we want to maximize the minimum distance between
two markers, this term aims to minimize the negative of the overall
minimum distance over all frames F .

Combining these two energy terms integrates the desired numerical
stability and geometric feasibility properties of the marker layout in
a single objective function. The results of minimizing the two en-
ergy terms and their weighted sum is illustrated in Figure 6. In this
particular example, the condition energy places two markers close
to each other, because the linear system for the subspace parame-
ters is overspecified by the number of markers, which means that
close-by markers do not corrupt the matrix conditioning. Combin-
ing the two energies improves the resulting layout. We use weights
w1 = 0.1 and w2 = 100 in all our experiments. In the following,
the optimization of the objective function (9) is detailed.

Marker PSO

We find reduced marker layouts by minimizing the objective func-
tion (9) using particle swarm optimization (PSO). PSO is a stochas-
tic meta-heuristic for finding global optima of arbitrary objective
functions without the need for prior knowledge or assumptions
about the optimized problem. The method has recently found
widespread application and success in the context of visual hand
tracking [Oikonomidis et al. 2011; Qian et al. 2014; Sharp et al.
2015]. Our use of PSO for marker placement optimization aims to
overcome the issues of suboptimal local minima often associated
with non-global or greedy approaches.

In the PSO method, an optimal solution to a given problem is found
by iteratively updating and evaluating candidate solutions, or solu-
tion hypotheses. A large set of such hypotheses is managed as a
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Figure 7: Illustration of a PSO update for one marker posi-
tion. First, the new velocity ṽt+1 of the marker is computed as
a weighted linear combination of the vectors towards the particle’s
local optimum x̄par−xt, the population’s global optimum x̄pop−xt

and the particle’s current velocity vector vt. This update can send
the marker off the surface of the hand model due to the curvature
of the model surface. Therefore, in a second step, the new position
xt+1 is computed by projecting back onto the surface. The velocity
vt+1 is then recomputed accordingly.

swarm or population of particles, each of which has an associated
position xt and velocity vt in the solution domain of the objective
function at iteration t. Each particle keeps track of its local previous
best position x̄par in the solution domain and the population keeps
track of the global optimum x̄pop across all particles. In each iter-
ation of the PSO process, the velocity of every particle is updated
such that the particle is attracted to the local and global optima in
addition to moving along its own inertia. The local and global op-
tima are updated after each particle movement by evaluating the
objective function at the new particle position. Finally, the solution
of the PSO process is the global optimum achieved after a given
number of iterations or after convergence of the optimum value.

In our application, the solution domain of the objective function is
the domain of marker layoutsM. To map this to the PSO scheme,
we define a particle at iteration t as the stacked vector of k marker
positions xt ∈ R3k of the candidate solution. We further modify
the generic PSO scheme such that the 3D positions within each par-
ticle are constrained to the surface of the hand model. Specifically,
after every particle update we project each marker position in xt

onto its spatially closest vertex in the set V ′ of preselected feasible
positions on the hand model. The new position xt+1 of a particle
is determined by computing its new velocity vt+1 and translating
along this vector. To this end, we first compute the standard PSO
velocity update as

ṽt+1 = w · (vt + c1 · r1 · (x̄par−xt) + c2 · r2 · (x̄pop−xt)), (12)

where w is a weight determining the overall step length of the up-
date, c1 and c2 are importance weights for the local and global at-
tractors respectively, and r1 and r2 are uniformly distributed ran-
dom numbers in [0, 1]. Due to the curvature of the hand model
surface, applying this linear update to the current particle position
can cause the markers to stray from the surface. To counteract this,
we project the updated marker positions back onto the permissible
regions defined by vertices V ′, which we denote by a projection
operator ΠV′ . The final particle position update is therefore

xt+1 = ΠV′(xt + ṽt+1) . (13)

After this, the new particle velocity is computed as vt+1 = xt+1−
xt. Figure 7 illustrates the surface-constrained PSO update.

Similar to [Oikonomidis et al. 2011], we perturb one randomly cho-
sen marker position in 50% of the particles once in every third
iteration, and use the weights c1 = 2.8, c2 = 1.3, and w =

2/|2 − ψ −
√
ψ2 − 4ψ| with ψ = c1 + c2. We use a total of

1000 particles, perform 100 PSO iterations and use between 3 and
10 keyframes depending on the input hand motion trajectory. Us-
ing this method, we can find reduced marker layouts that optimize
the objective function (9) and as a result are numerically stable and
geometrically feasible.



(a) (b) (c)

(d) (e) (f)

Figure 8: We fit a template model (a) to the point cloud (b) by using
landmarks (red and blue dots). For initial alignment and adaption
of the posture we perform rigid ICP (c) alternating with inverse
kinematic (d). Afterwards we fit the shape of the template model
based on landmarks (e) and closest point correspondences (f).

Hand model generation

Our hand tracking approach fits an articulated virtual hand model
to the marker positions obtained from an optical motion tracking
system in order to determine pose and posture of the user’s hand.
While the marker layout optimization, as described in the previ-
ous section, is independent of the particular hand geometry and
can therefore be performed on a generic hand template, the hand
tracking itself requires the virtual hand model to closely match the
user’s hand proportions to obtain accurate results. We therefore de-
veloped a framework for generating user-specific hand models from
3D scanner data of the user’s hand, which we describe below. In or-
der to stress-test our model generation and hand tracking approach,
we performed experiments with the two participants that featured
the largest and smallest hands we could find in our lab environment.

Our 3D Scanner consists of eight simultaneously triggered DSLR
cameras. From the resulting images we compute a dense point
cloud using the commercial multi-view stereo reconstruction soft-
ware Agisoft Photoscan. We denote these n points by P =
(p1, . . . ,pn). Due to the scanner setup, each point is equipped
with a normal ni and a color ci as well. As shown in Figure 16, the
resulting point clouds suffer from noise, missing data, and outliers.
To create a clean and complete user-specific hand model from these
point clouds, we employ nonrigid registration to fit a generic hand
template to the user’s point cloud [Allen et al. 2003; Hasler et al.
2009; Achenbach et al. 2015]. Our template model is a triangle
mesh consisting of m ≈ 12k vertices, whose positions we denote
by X = (x1, . . . ,xm). It is fully rigged and can be animated by its
skeleton (see Figure 8(a)).

As a preprocessing step we remove most of the outliers from the
point cloud by discarding points that (because of the non-skin color)
do not belong to the hand [Kovac et al. 2003]. To bootstrap the

template fitting procedure we then manually select a set L of 20
landmarks on the template model {xl}l∈L and on the point cloud
{pl}l∈L. Based on these landmarks and closest point correspon-
dences we alternatingly optimize the model’s pose (translation, ro-
tation, scaling) and posture (joint angles) by rigid iterative closest
point (ICP) [Besl and McKay 1992; Horn 1987] and inverse kine-
matics (IK), respectively (see Figure 8(c) and Figure 8(d)).

Now that we have a good initial alignment of the template model
and the scanned point cloud, we start adjusting the geometric shape
of the template model to the point cloud data. To this end, we adapt
the nonrigid face registration of Achenbach et al. [Achenbach et al.
2015] to our problem by minimizing the composed energy

E(X ) = λlmElm(X ) + λfitEfit(X ) + λregEreg

(
X , X̄

)
, (14)

where the three energy terms are explained below.

The landmark term Elm penalizes the (squared) distance between
the 20 landmark points xl, l ∈ L, on the template model and their
landmark points pl in the point cloud:

Elm(X ) =
1

|L|
∑
l∈L

‖xl − pl‖2 . (15)

The fitting term Efit similarly measures the (squared) distance be-
tween corresponding point pairs (xc,pc), c ∈ C, where C denotes
the set of closest-point correspondences:

Efit(X ) =
1

|C|
∑
c∈C

‖xc − pc‖2 . (16)

The regularization term Ereg penalizes the geometric distortion
from the undeformed template model X̄ to the deformed state X ,
measured by the norm of the per-vertex deformation Laplacian

Ereg

(
X , X̄

)
=

1

|X |
∑
v∈V

‖∆xv −Rv ·∆x̄v‖2 , (17)

where Rv are per-vertex rotations to best-fit deformed and unde-
formed Laplacians (see, e.g., [Achenbach et al. 2015] for details).

The three coefficients λlm, λfit, and λreg are used to guide the iter-
ative fitting procedure, where the surface stiffness is controlled by
λreg. In the begining, only the manually specified (hence quite re-
liable) landmarks are taken into account, using λreg = 1, λlm = 1
and λfit = 0. We then decrease λreg gradually after each iteration
until λreg = 10−6. Figure 8(e) depicts the result of this step. After
these iterations, the models are sufficiently well aligned to rely on
closest-point constraints. We therefore continue with λreg = 10−6

and λlm = 1, but additionally set λfit = 1 to also consider Efit.
λreg is again gradually decreased until λreg = 10−8. Figure 8(f)
depicts the result of this step.

Due to this shape deformation the template’s joints are not at the
correct position anymore. We correct this by calculating the new
joint positions with respect to the new vertex positions by exploit-
ing mean value coordinates [Floater et al. 2005], which are pre-
computed in the initial undeformed state.

The final result is is a clean, complete, and ready-to-animate hand
model that closely matches the shape and proportions of the user’s
hand. This hand model calibration will be shown in the following
section to yield noticably more accurate tracking results.

Results

In the following we present some results produced by our system
as well as quantitative evaluations of the accuracy of our motion



Sheet2

Page 1

0 10 20 30 40 50 60 70 80 90 100
180

200

220

240

260

280

300

320

340

360

Optimization convergence

PSO Greedy
Iterations

E
n

e
rg

y 
va

lu
e

Figure 9: Example for the energy minimization convergence of our
PSO method compared to a greedy approach with identical initial-
ization. While the greedy approach converges to a suboptimal local
minimum after about 50 iterations, our stochastic optimization min-
imizes the energy faster and achieves a better result.

reconstruction method with respect to the employed subspace IK
approach, the auto-generated reduced marker layouts, as well as
the user-specific hand model calibrations.

Layout optimization

We evaluated the convergence properties of our marker optimiza-
tion in a varied set of evaluation trials. The hand movements in-
volved in these trials included a variety of grasping and other man-
ual interaction movements, as well as generic finger movements and
gestures.

We analyze the convergence properties of our PSO-based marker
layout optimization by comparing it to a more straightforward
greedy approach. For this, we adapted the farthest point optimiza-
tion scheme of Schlomer et al. [Schlömer et al. 2011] to find the
marker subset of the initial vertex set V ′ that minimizes the objec-
tive function (9). Briefly stated, this method first iteratively selects
the next best vertex as a marker position that reduces the objective
value until the desired number of markers has been placed. Then,
this greedy process is repeated such that each selected marker po-
sition is replaced by the next better remaining vertex position, until
no more substitutions can be done to improve the objective value.
This is already a more sophisticated approach than the greedy meth-
ods for constraint selection used in [Loper et al. 2014; Thiery et al.
2012] and can therefore serve as an upper bound for the effective-
ness of such methods. Figure 9 compares this greedy approach with
our PSO-based one with identical initialization and shows that our
method converges faster and achieves better objective values. The
runtime for our PSO method varies between 5 and 10 seconds for
100 iterations, depending on the number of keyframes (up to 10).
For the same problem setup, the greedy approach takes between 45
seconds and 3 minutes to converge.

A comparison of our marker layout optimization method with the
marker subset selection approach of Wheatland et al. [Wheatland
et al. 2013] is shown in Figure 10. A crucial aspect to note regard-
ing this comparison is that the two methods are based on different
marker layout generation paradigms. While Wheatland and col-
leagues select the most influential markers in an initial base marker
set, our method generates marker layouts more freely within the

[Wheatland et al. 2013] [ours]

(a) (b) (c) (d)

Figure 10: Six marker layout generation for precision grasp move-
ments using the method of Wheatland et al. [Wheatland et al. 2013]
and our approach. In (a) the complete set of preselected vertices V ′
is used as the base marker set, which causes the selected markers
to cluster at the index fingertip, as it exhibits the most movement.
In (b) a random subset with 5% of V ′ is used as the base marker
set, which leaves 3 candidate positions per joint. In this case the
markers cluster around the index and thumb tips. In (c) 1% of V ′ is
used, which leaves one candidate position per joint. The resulting
marker set is distributed among the most active joints in the input
motion. In (d) our approach generates a marker layout from the
complete set V ′ based on the DoFs of our subspace model.

dense set of preselected vertices V ′. Figure 10 shows that the results
of the subset selection method are strongly influenced by the choice
of the base marker layout. As the method of Wheatland [Wheat-
land et al. 2013] is based on computing an importance ranking for
the base markers based on their positional trajectories, the selected
marker layouts are clustered around the areas of the hand that move
the most in the considered hand motion. In contrast, our method is
sensitive to the hand kinematics and the subspace model employed
in our approach, which produces layouts that are well-suited for
subspace-constrained IK, as opposed to the data-driven regression
approach of Wheatland [Wheatland et al. 2013].

Motion reconstruction

We evaluated the motion reconstruction accuracy of the reduced
marker layouts based on several trials including a large variety of
hand movements. In the performed trials, we measured runtime
statistics and average per-vertex errors of the reconstructed hand
motions compared to the ground truth input. For proper evaluation
of the accuracy of our approach, the input motions being recon-
structed were not contained in the database used to generate the
subspace model. As our reduced marker sets are optimized to rep-
resent only rotational DoFs of the hand articulation, an initial esti-
mate for the global position of the hand is given by a fixed anchor
marker on the forearm.

To assess the suitability of the marker layouts generated by our
method for motion reconstruction, we compare the reconstruction
error of differently obtained marker layouts in Figure 11. The
testbed of this evaluation is a set of grasping motions based on the
grasp taxonomy of [Cutkosky 1989]. We generated two different
types of marker sets with varying sizes – a specific type based on
grasping input motions, and a generic type based on general ges-
tures and hand articulations. Additionally, we compare with the
manually selected marker layouts of [Hoyet et al. 2012, Figures 4
and 8], who also performed motion reconstruction based on con-
strained IK. These manually selected layouts produce similar re-
sults to our automatically generated generic layouts. The recon-
struction error is lower when using the grasp-specific marker lay-
outs than generic ones. In particular, to achieve a reconstruction
error below 2 mm, a specific layout generated by our method only
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Figure 11: Average reconstruction error using marker sets of vary-
ing sizes for grasping motions. Using marker layouts specifically
generated based on grasping input motions the reconstruction error
is lower than when using a layout based on generic motions. The
manually selected marker layouts of Hoyet et al. [Hoyet et al. 2012]
produce similar results to our automatically generated generic lay-
outs.

Method Average error Maximum error

Subspace IK 0.89 cm 2.1 cm
Standard IK 1.79 cm 7.9 cm

Table 1: Average and maximum reconstruction error using
subspace-constrained IK and standard IK with a 4-marker layout
generated for a variety of manual interaction motions. While the
standard method can deviate by almost 8 cm, the subspace method
achieves adequate results consistently.

requires 6 markers, whereas generic layouts require 9 markers or
more. Examples for our generated layouts are given in Figure 12.

We verify the general accuracy and generalization capability of the
subspace-constrained IK motion reconstruction based on marker
layouts produced by our method by comparing its average recon-
struction error to the error when using standard IK. Table 1 shows
the average and maximum errors for a variety of manual interac-
tion motions using standard IK and subspace IK and a reduced lay-
out with four markers. The improvement of the subspace method
over the standard method ranges between 9 mm to almost 6 cm.
The overall error produced by our layered IK scheme using the
subspace prior for initialization produces more accurate results for
sparse marker layouts than the standard IK approach.

Figure 12 shows some examples for reduced marker layouts com-
puted by our approach for various different movements. The results
show that markers are preferentially placed in areas that have the
most involvement in the considered hand motion. If the motions
contain more varied articulations for specific fingers over others,
these fingers will receive more markers, as the low-frequency de-
tails of the remaining markers are not influenced by as many sub-
space DoFs. In the third row of Figure 12, the input motion involves
all fingers and the reduced marker layout accordingly distributes
markers across all of them.
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Input motion sequence 6 marker layout 8 marker layout

Figure 12: Reduced marker layouts for some example motions.
First row: precision grasp motion involving multiple fingers. Sec-
ond row: power grasp motion of a small object. Third row: se-
quence in which the thumb touches all the other fingers. The marker
layouts are optimized to allow for accurate reconstruction of the
input motion. Markerless fingers tend to have slightly larger re-
construction errors, however they still move in correlation to the
marker-constrained fingers due to the subspace approach.

Figure 13: Synchronous tracking of two hands manipulating a
number of rigid objects. Our system automatically clusters the raw
marker point cloud and fits generic model templates to the data.
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Figure 14: Marker layouts used in our experiments. The reduced
layouts (middle, right) have been computed as subsets of the full
marker layout (left).
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Figure 15: Comparison between the reconstruction error for re-
duced marker layouts using standard IK and subspace IK. Reduced
marker sets perform within 5 millimeters accuracy using our sub-
space IK approach. The slightly larger errors for Subject B are due
to larger hands.

Our method is also able to accurately track scenes containing multi-
ple objects in concert. Figure 13 and the accompanying video show
an example of tracking two hands interacting with multiple objects.

Calibrated hand models

We evaluated our system in general, and the model calibration in
particular, by capturing a series of hand motions from two differ-
ent performers. In the following the performers will be referred
to as Subject A and Subject B. Subject A is a female performer
with small hands, whereas Subject B is a male performer with large
hands. Both subjects were asked to perform a variety of hand move-
ments, including grasping and handling objects of different sizes as
well as touching the finger tips with the thumb. This provided a var-
ied real-world data set for evaluating the quality of our calibration
and motion reconstruction system.

For the purpose of evaluating reconstruction accuracy, a configu-
ration of 17 markers was attached to the subjects, which inherently
covers most of the hand’s kinematic DoFs. This fairly dense marker
set is well-suited for evaluating the quality of our calibration, as
mismatches between the model and the data are more easily high-
lighted than when using sparse marker sets. In order to still evaluate
the reconstruction accuracy of reduced marker layouts, we gener-
ated reduced 6- and 8-marker layouts as subsets of the 17-marker
ground truth layout. Figure 14 shows the marker layouts used in
our experiments.

The reconstruction accuracy was evaluated by comparing the so-
lution using the reduced marker layouts with that using the full

Subject A Subject B

Template

Figure 16: Hand models used in our experiments with their cor-
responding point clouds. Left: uncalibrated template model. Mid-
dle: calibrated model and point cloud for Subject A (female, small
hands). Right: calibrated model and point cloud for Subject B
(male, large hands). Sheet1
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Figure 17: Average marker alignment error using calibrated and
uncalibrated models for two subjects across all captured data. The
error is significantly improved by our user-specific model calibra-
tion. The slightly larger error for Subject B is due to larger hands.

marker layout. When using the reduced layouts, the additional
markers contained in the captured data are ignored. It is worth not-
ing that our automatic tracking procedure performs very robustly
in the presence of spurious data. Figure 15 shows that the mean re-
construction error of the reduced 6- and 8-marker layouts lies below
5 mm across all our experiments for both subjects.

The hand models used in our experiments are shown in Figure 16.
The subjects’ hands were scanned and subject-specific hand models
were generated using our approach. To ascertain the accuracy im-
provements of our calibrated models over the uncalibrated model,
we measured the alignment between the real marker positions in the
mocap data and the respective model’s proposed marker positions
after convergence. Figure 17 compares this marker alignment error
for the uncalibrated and the calibrated models and shows improve-
ments of almost half a centimeter.

Figure 18 shows the trajectory of the marker alignment error along
a single grasping movement sequence by Subject B. The error of
the calibrated model is initially close to zero as the subject’s hand
is in the same neutral position that was used for calibration. The



0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Frames

M
ar

ke
r 

al
ig

n
m

en
t 

er
ro

r 
[c

m
]

Calibrated model Uncalibrated model

Figure 18: Marker alignment error using calibrated and uncali-
brated models for one movement sequence by Subject B. The graph
shows both the mean marker error and the variance across all
markers for each frame. Our calibration improves upon both the
mean and the variance of the marker alignment error.

Figure 19: The alignment between the model’s virtual markers
(blue) and the captured marker data (red) is more accurate with our
user-calibrated model (left) than the uncalibrated template model
(right). Small discrepancies with the calibrated model are due to
differences between real hand deformations and our simple LBS
deformation model.

subsequent error increase is due to the fact that our straightforward
deformation model (linear blend skinning) cannot reconstruct some
details of the real hand’s deformation with high accuracy. Nonethe-
less, the calibration provides significant accuracy improvements.

A qualitative impression of the difference in marker alignment be-
tween the calibrated and the uncalibrated model is given in Fig-
ure 19. In Figure 20 a qualitative comparison between the real
hand of Subject B and the generated hand posture reconstruction
is shown.

Discussion

We have presented a method that automatically computes re-
duced marker layouts for optical motion capture using subspace-
constrained inverse kinematics motion reconstruction. Our marker
layout optimization method minimizes an objective function that
jointly measures the numerical stability and geometric feasibility

Figure 20: Comparison of the real human subject performing a
grasping motion (left) and the animation of the virtual hand model
reconstructed by our system (right). The animation is best appreci-
ated in the accompanying video.

of the reduced marker configuration. The objective function is min-
imized using a specialized surface-constrained particle swarm opti-
mization scheme, which stochastically explores the solution space
of feasible marker configurations on the surface of an animated
hand model. We showed that the resulting marker layouts are suit-
able for solving the subspace-constrained inverse kinematics prob-
lem for motion reconstruction from sparse input. Additionally, the
optimized marker layouts are specific to the type of hand motions
that should be expressed with and recovered from the sparse marker
data. The marker sets are well-suited for practical use as they are in-
tuitive and scale well with reduced resolution of the mocap system.
We presented a hand model calibration procedure that fits a geo-
metric model to point cloud data of the user’s hand and we showed
that this provided significant improvements for the overall motion
reconstruction accuracy.

Our method makes it possible to generate marker layouts that are
fine-tuned to the parameters of a given mocap setup. If there is a
limitation to the number of markers that can be used in the mocap
setup, our method computes the optimal placements for the given
number of markers that allows for realistic motion reconstruction
that is also rich in expressiveness. An insight provided by our work
is that it is sufficient for high quality motion reconstruction to place
individual markers on the hand that correspond to low-dimensional
control parameters of hand articulations. For instance, to track
grasping motions with high quality using our method, it is suffi-
cient to only place one marker on the thumb, index finger, pinky
finger and wrist. The subspace based reconstruction will plausibly
interpolate the movements of joints that are not immediately con-
strained by markers.

Limitations of our approach include the stochastic nature of the par-
ticle swarm optimization and the need for parameter tweaking. An-
other drawback of our subspace-oriented method is that while it
produces good results for specific hand movements, it does not nec-
essarily provide a general-purpose marker layout result that can be
used for all types of motions and produce high-quality results. The
marker placement as well as the motion reconstruction are limited
by the subspace priors employed. However, given prior knowledge
of the motions intended to be tracked, our method produces accu-
rate and robust results. Beyond marker placement, our approach
could be used generally to identify salient regions in articulated
bodies, which could be of interest for different avenues of motion
detection and reconstruction.
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