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Abstract. The increase of complexity in virtual product design requires
high-quality optimization algorithms capable to find the global parame-
ter solution for a given problem. The representation, which defines the
encoding of the design and the mapping from parameter space to design
space, is a key aspect for the performance of the optimization process.
To initialize representations for a high performing optimization we utilize
the concept of evolvability. Our interpretation of this concept consists of
three performance criteria, namely variability, regularity, and improve-
ment potential, where regularity and improvement potential characterize
conflicting goals. In this article we address the generation of initial rep-
resentation setups trading off between these two conflicting criteria for
design optimization. We analyze Pareto-optimal compromises for defor-
mation representations with radial basis functions in two test scenar-
ios: fitting of 1D height fields and fitting of 3D face scans. We use the
Pareto front as a ground-truth to show the feasibility of a single-objective
optimization targeting one preference-based trade-off. Based on the re-
sults of both optimization approaches we propose two heuristic methods,
Lloyd sampling and orthogonal least squares sampling, targeting repre-
sentations with high regularity and high improvement potential at the
two ends of the Pareto front. Thereby, we overcome the time consum-
ing process of an evolutionary optimization to set up high-performing
representations for these two cases.

1 Introduction

The increasing complexity in modern industrial design processes requires ad-
vanced optimization methods to efficiently come up with novel and high-quality
solutions for successful business. In automotive product design, our target ap-
plication, concurrent development processes are applied to deal with different
requirements, e.g., from physical domains such as aerodynamic or structural
performance criteria, from manufacturing process layout, or from design fea-
tures specified by current customer demands. Moreover, since these requirements
change over time, an efficient development process needs to cope with dynamic
environments to allow a high degree of flexibility.

Biologically-inspired population-based evolutionary optimization algorithms
are designed to handle these demands [13]. The careful construction of the rep-
resentation, the encoding of a design, is one of the most important aspects for



the success of an optimization process because the representation defines the so-
lution space and determines how efficient the optimizer can explore it. Although
a human designer can manually set up representations for design optimization,
e.g. [19], the setup might not be optimal such that even minor changes of the
setup could highly improve the performance of the optimization process. There-
fore, we target to develop automatic procedures to optimize the initial represen-
tation along with the designer’s input or preference, which is typically given by
information on the expected importance of certain design regions for the current
optimization task.

Based on the concept of evolvability [17] we proposed a mathematical model
for evaluating the quality of deformation representation setups in [16]. The qual-
ity of each setup is numerically quantified by three criteria, namely variability,
regularity, and improvement potential. However, since regularity and improve-
ment potential are conflicting targets [16] a multi-objective analysis is required
to finally provide the designer the possibility to choose one trade-off setup from
the set of Pareto solutions according to her/his preference.

In this article our focus is on the initial generation of optimal representation
setups addressing these two conflicting targets, which we evaluate for the same
test scenarios as in [16]: 1D function approximation and 3D template fitting,
which both are based on RBF deformation representations. For these RBF de-
formations we are particularly interested in the optimal distribution of the RBF
centers and their efficient computation. To this end we first perform a multi-
objective optimization of center distributions to analyze the trade-off between
regularity and improvement potential. Although this time-consuming optimiza-
tion might be infeasible for real-word applications, it results in ground-truth
solutions that we use to evaluate a weighted single-objective optimization of the
center distribution. We show that such a single-objective optimization is feasi-
ble in our application and speeds up the optimization process for one particular
weight, which is set according to a designer’s preference. The insight gained from
the multi-objective optimization furthermore allows us to derive two heuristic ap-
proaches for rapidly generating center distributions on both ends of the Pareto
front, i.e., aiming solely for regularity or improvement potential, respectively.
Being based on Lloyd sampling [10] or orthogonal least squares [4], both meth-
ods generate high-quality center distributions within minutes in contrast to the
single-objective optimization, which runs for hours.

In Section 2 we discuss state-of-the-art approaches for setting up deformation
representations and motivate our approach. In Section 3 we give the technical
details for RBF deformations as the representation of our choice. In Section 4
we describe our model of evolvability that we use to evaluate these representa-
tions. This yields the basis to perform and analyze a multi-objective optimiza-
tion in two test scenarios in Section 5. The Pareto front is the ground-truth
for a preference-based single-objective optimization in Section 6. Moreover, the
Pareto-optimal solutions motivate heuristics, Lloyd and OLS, which we discuss
in Section 7.



2 Related Work

In shape optimization based on deformation methods designer-driven approaches
are typically applied to set up initial deformation representations. The designer
defines target regions where the design has to be varied/optimized and places
control points adapted to these regions. For example, in [19] a control grid for
free-form deformation (FFD) is manually constructed and handle regions for
deformations with radial basis functions (RBF) are manually set up. For basic
automated representation setups commercial tools provide a uniform distribution
of control points, e.g., a glider optimization [5].

Originally, deformation representations are employed in scattered data ap-
proximation, e.g., for approximating a target shape. In [3] the control points
of non-uniform rational B-splines are optimized by a gradient-based method to
improve the approximation quality of a wing. In [22, 27] a uniform setup of a
control grid is refined in sensitive regions, i.e parameters are added, resulting in
an improved approximation. Amoignon [1, 2] tackles the problem that uniform
control grids for FFD might have empty grid cells. Instead of adjusting the grid
to the design he deforms the design (e.g., wings) to completely fill out the grid.
To obtain RBF setups that are adapted to a target, different basis functions are
iteratively evaluated and selected at fixed locations [24] or their location is being
optimized [7, 14]. All these approaches are specialized to set up control points
for approximating one fixed target. Thereby, they neglect numerical properties
of the deformation setup which are important for, e.g., the convergence speed of
an evolutionary optimization.

The representation setup of adaptive B-splines for an evolutionary design
process is targeted in [15, 26]. The optimization alternates between approxima-
tion of a shape and adaptation of the representation. To test whether an adjusted
representation is beneficial for the optimization this process is performed for a
few iterations. Thereby the performance of a representation is measured by the
objective function of the actual optimization task. In [20] the representation is
optimized implicitly by adding its parameters to the approximation problem.
The criterion for a high-quality representation purely depends on the target of
the optimization omitting further aspects of this process like convergence speed.

In contrast, we utilize quality criteria based on the concept of evolvability to
evaluate representations. We include an objective-independent criterion to ad-
dress the convergence speed as well as target information or human knowledge.
Based on this model we set up high-quality deformation representations for evo-
lutionary design optimization. In the next section we give the technical details
for these deformations.

3 RBF Representations

In a shape optimization scenario, for instance in automotive product design,
the design model to be optimized (the phenotype) is typically represented by
a surface polygon mesh, where the n mesh vertices x1, . . . ,xn ∈ R3 represent



points on the surface, which are connected by polygonal faces (usually triangles
or quads). The vertex positions xi could in theory be used as optimization pa-
rameters in an evolutionary optimization. However, for non-trivial models the
complexity of the model easily exceeds one million vertices, thus making the
direct optimization of vertex positions intractable.

Even for highly complex shapes the actual deformations applied during op-
timization are typically rather simple, low-frequency functions, which can there-
fore be controlled by a small number of parameters. Hence we choose as rep-
resentation a deformation function u(x), which maps deformation parameters
(genotypes) to shape variations (phenotypes), which are then evaluated by a
fitness function. Both free-form deformation (FFD) and radial basis functions
(RBFs) have been successfully employed in design optimization [19]. In this pa-
per we focus on RBF deformations, since their kernel-based setup is more flexible
than lattice-based FFD representations.

The initial design (x1, . . . ,xn) is deformed into a shape variant (x′1, . . . ,x
′
n)

by adding the displacement u(xi) to each vertex xi (Figure 1), which for RBF
deformation has the form

u(x) =

m∑
j=1

wj ϕ(‖cj − x‖) =:

m∑
j=1

wj ϕj(x) . (1)

Here, ϕj(x) = ϕ(‖cj − x‖) denotes the j-th scalar-valued radial basis function,
which is centered at cj ∈ R3 and weighted by the coefficient wj ∈ R3.

The choice of the kernel function ϕ : R → R has a significant influence on
the resulting deformation and its computation complexity [18]. In this paper
we employ and analyze globally-supported triharmonic thin-plate splines, ϕtri,
as well as compactly-supported Wendland functions, ϕW , with support radii s
varying from rather local to more global [25]:

ϕtri(r) =

{
r2 log(r) for 2D domains,

r3 for 3D domains.

ϕW (r) =

{(
1− r

s

)4 ( 4r
s + 1

)
for r < s,

0 otherwise.

The RBF deformation (and thus the deformed shape) is linear in the RBF
weights wj . If we write the initial and deformed shapes as (n × 3)-matrices
X = (xT

1 , . . . ,x
T
n)

T
and X′ = (x′T1 , . . . ,x

′T
n )

T
, respectively, we can write the

shape deformation in matrix notation

X′ = X + ΦW (2)

using an (n × m) RBF matrix (Φ)i,j = ϕj(xi) and the RBF weights W =
(wT

1 , . . . ,w
T
m)

T ∈ Rm×3.
In the above setting, the deformation u is controlled by manipulating the

RBF weights wj , which we call indirect manipulation. However, it has been



x′
i = xi + u(xi)

X′ = X + UP

X X′ T

Center distribution Target

Fig. 1. The RBF deformation u transforms the initial mesh X to X′ by translating
each vertex xi of X by the displacement u(xi). The distribution of the RBF centers
(red dots) is crucial for a high-performing fit of the mesh X to the target T.

shown in the context of free-form deformation that so-called direct manipulation
is more intuitive for the human designer [8] as well as more efficient in an evo-
lutionary optimization [12], due to the more direct and stronger causal relation
between optimization parameters and the resulting shape deformation. In the
RBF setting, a direct manipulation is controlled by specifying the displacement
dj for each center position cj , and then solving a linear system for the weights
wj that meet these interpolation constraints:

W = Ψ−1 D , (3)

with D = (dT

1 , . . . ,d
T

m)T ∈ Rm×3 and (Ψ)i,j = ϕj(ci) ∈ Rm×m. Combining
equations (2) and (3) leads to the matrix representation of direct RBF deforma-
tion:

X′ = X + ΦΨ−1 D . (4)

Note that both indirect manipulation (2) and direct manipulation (4) can be
written as a linear deformation operator

X′ = X + UP , (5)

using a deformation matrix U, being either Φ or ΦΨ−1, and deformation pa-
rameters P, being either W or D. The deformation matrix U (which is the
deformation setup) depends on the employed kernel and the center distribution.
These two aspects define the realizable deformations and thereby the perfor-
mance of a design optimization process. Evaluating and optimizing different de-
formation setups, different kernels, and different center distributions, allows us
to initialize a high performing design optimization. The concept of evolvability
reveals quality criteria that we discuss in the next section.

4 Evolvability for Linear Deformations

The biological concept of evolvability is a very promising approach to measure
the expected performance of evolutionary processes [23]. In [17] we gathered,
categorized, and extensively discussed this concept not only in the biological



context, but also in the context of technical engineering. In agreement with
Sterelny [21], we understand evolvability as a combination of three major at-
tributes: variability, regularity, and improvement potential. Based on this clas-
sification we proposed a mathematical model to quantify the quality of linear
deformation representations U in design optimization. In this section, we give a
short summary of our model of evolvability and refer to [16] for details.

Variability V (U) measures the potential of a deformation setup to explore
the design space and we define it as

V (U) =
rank (U)

n
, (6)

where n is the number of vertices of a design and rank (U) denotes the rank of
the matrix U [6]. We showed that variability is independent of the manipulation
type, being either indirect or direct (equation (2) or (4)). Furthermore, for a
fixed number of RBF centers it is independent of the center distribution as long
as the deformation matrix has maximal rank, which is the case if centers do not
coincide. In our test scenarios we assume a fixed number of centers, which results
in constant variability, which thereby does not represent a conflicting interest to
regularity and improvement potential.

We define regularity R(U) as

R(U) = κ−1(U) =
σmin

σmax
, (7)

where κ is the condition number of a matrix and σmin and σmax are its minimal
and maximal singular value [6]. The regularity of a deformation setup charac-
terizes the expected convergence speed of an evolutionary optimization. This
criterion is an interpretation of the concept of robustness. Robust representa-
tions aim to prevent infeasible designs and thereby speed up the optimization
process. Our regularity measure addresses the convergence directly. Furthermore,
it corresponds to the concept of causality, because the condition number κ char-
acterizes the causal relation between genotype (parameter space) and phenotype
(design space). In [16] we show that RBF deformation setups with a local kernel
(a kernel with a small support radius) have higher regularity than setups with
a global kernel and that direct manipulation has higher regularity than indirect
manipulation.

We define improvement potential P (U) as the potential of a representation
to improve the fitness of a design. From a local point of view the most beneficial
variation of a design is according to the (estimated) fitness gradient g. Thus,
we measure the improvement potential P (U) as the approximation error to this
gradient, which leads to:

P (U) = 1−
∥∥(I−UU+)g

∥∥2
2
, (8)

with U+ being the Pseudo-inverse of U [6]. Because for complex design opti-
mization applications the calculation of the fitness gradient is infeasible, designer



Fig. 2. Example of a (uniform) RBF center setup for function approximation. The
center distribution on the initial plane is to be optimized to allow a high quality fit of
the right test function (compare [16]).

knowledge and experience offer valuable insight to derive an estimated gradient.
Improvement potential is independent of the manipulation type (indirect or di-
rect), as is variability. Furthermore, we showed that global kernels have better
improvement potential than local ones thus lead to solutions with higher fitness.

Our experiments in [16] revealed that regularity and improvement poten-
tial are conflicting targets, because local kernels show high regularity but low
improvement potential, whereas global kernels show low regularity but high im-
provement potential. These two conflicting criteria motivate the multi-objective
optimization in the next section to gain insight into possible trade-off setups.
Such a multi-objective optimization is very time-consuming and hence infeasible
for most applications. However, it results in ground truth solutions to evaluate
a more efficient weighted single-objective optimization, which we propose and
discuss in Section 6. To further increase efficiency we analyze heuristics for gen-
erating setups in Section 7, which are more robust against local optima where a
single-objective optimization might easily get stuck.

5 Pareto Analysis

In this section we show the results of the multi-objective optimization of defor-
mation setups towards the two conflicting targets regularity and improvement
potential. Due to the enormous computational costs of automotive design op-
timization we analyze two simpler test scenarios instead, namely 1D function
approximation and 3D template fitting, according to our test framework in [16].

5.1 Test Scenario: Height Field Approximation

In this scenario we fit an initial plane (Figure 2, left) to a target height field
(Figure 2, right) by minimizing the approximation error (see [16] for the de-
tails). Instead of performing the actual fit (as in [16]), our goal in this paper
is to find a well-performing deformation setup. We employ RBF deformation
and construct the matrix U according to either indirect or direct manipulation,
equation (2) or (4). To cover a variety of kernel types, from rather local to global,
we employ compact Wendland kernels with support radii s of 0.25 and 0.5, and
global triharmonic kernels. Given the type of manipulation, the kernel, and the
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Fig. 3. The Pareto front (blue dots) and the initial random population (green dots)
for the function approximation scenario. The magenta triangles are the results of the
weighted single-objective optimization described in Section 6. Heuristic setups gener-
ated with Lloyd (orange circle) or OLS (orange diamond), discussed in Section 7, result
in very regular setups or setups with a very good improvement potential.

support radius, the optimal center distribution with respect to the conflicting
targets regularity and improvement potential, equations (7) and (8), is the goal
of a multi-objective optimization. Because we analyze distributions with a fixed
number of centers, m = 25, variability is constant thus not included in the
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Fig. 4. Optimized center distributions towards regularity are uniform for indirect ma-
nipulation (top) but tends to be unintuitive for direct manipulation (bottom).

optimization. Each center has two coordinates, thus we solve a 50-dimensional
optimization problem.

We realize the multi-objective optimization with the NSGA2 algorithm of
the shark 2.3 library [9] with the following settings: 100 individuals, tournament
selection, polynomial mutation rate with a probability of 1/50, crossover with a
probability of 0.9, and 25000 iterations. We initialize the algorithm with random-
ized center distributions and restrict the centers to the initial plane ([0, 1]×[0, 2])
during the optimization. With these settings one optimization run took approx-
imately 2 days.

In Figure 3 we plot the resulting Pareto front as blue dots for the three
tested kernels with indirect and direct manipulation, respectively. The green
dots are the values of the initial population. The tests indicate a smooth well-
shaped Pareto front. For the local Wendland kernel the front almost reaches
the optimal value of 1 for regularity and improvement potential, respectively.
Note that the very low regularity values of the triharmonic kernel for indirect
manipulation goes along with our results in [16] and theoretical results in [25].

Especially the center distributions maximizing either regularity or improve-
ment potential, respectively, are interesting because they can be computed through
a single-objective optimization. For indirect manipulation we obtain uniformly
distributed centers (Figure 4, top) resulting in maximal regularity, in agreement
with theoretical results [25]. In contrast, the center distributions leading to op-
timal regularity for direct manipulation are unpredictable (Figure 4, bottom),
which shows the advantages of an automatic procedure for distributing centers
in contrast to a purely designer-driven approach.

Center distributions with maximal improvement potential are adapted to the
target height field for the compact Wendland kernels (Figure 5). The distribution
is denser in regions which have to be deformed more. In contrast, centers for the
global triharmonic kernel are not placed in these regions (Figure 5, right), which
is unintuitive for a designer. This again emphasizes the demand for an automatic
construction of setups instead of a purely designer driven approach.



Wendland, s = 0.5 TriharmonicWendland, s = 0.25

Fig. 5. Target-adapted center distributions with optimal improvement potential. The
compact kernels are mainly placed in regions with locally high fitting error (yellow),
whereas triharmonic kernels are placed less intuitive (blue).

5.2 Test Scenario: 3D Template Fitting

In the second test scenario we deform an initial sphere to closely fit the point
cloud of a given face scan (see Figure 1 and [16]). Like in the height field ap-
proximation scenario we intend to set up an optimal center distribution rather
than performing the fitting. However, distributing centers for template fitting is
more complex because the sphere and the scan are embedded in 3D such that
each of the 25 centers consists of 3 coordinates, resulting in 75 parameters to
be optimized. We choose the initial distributions randomly on the initial sphere,
restrict the search domain to its bounding box [−1, 1]3, and choose support radii
of 0.5 and 1 for the Wendland kernels (since the initial domain is larger than
in the function approximation scenario). Apart from the mutation rate, which
we set to 1/75 according to the 75 parameters, we perform the multi-objective
optimization with identical settings as in the function approximation scenario.
In Figure 6 we plot the Pareto front for the three kernel types with direct and
indirect manipulation, respectively. These plots are qualitatively equivalent to
the plots of the function approximation scenario, compare to Figure 3.

The multi-objective optimization in both test scenarios, height field approx-
imation and template fitting, runs up to 2 days, hence it is infeasible for most
real-world applications. Instead of computing the whole Pareto front we are
rather interested in one particular setup trading off regularity and improvement
potential according to our preference. Therefore, we employ a weighted single-
objective optimization in the next section and utilize the Pareto front as a ground
truth to test if this optimization is able to converge towards the front.

6 Weighted Single-objective Optimization

The runtime of 2 days of a multi-objective optimization in our tests motivates al-
ternative optimization approaches. Instead of computing the whole Pareto front
the designer guides the construction of trade-off setups between regularity and
improvement potential by setting a preference λ ∈ [0, 1] based on his expertise.

By weighting equation (7) and (8) we define an objective function f for a
preference-based single-objective optimization:

fλ(U) = λR(U) + (1− λ)P (U) . (9)
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Fig. 6. The Pareto front (blue dots) and the initial random population (green dots)
for the template fitting scenario. The magenta triangles are the results of the weighted
single-objective optimization described in Section 6. Heuristic setups, described in Sec-
tion 7, generated with Lloyd (orange circle) or OLS (orange diamond) result in very
regular setups or setups with a very good improvement potential.

Because such a single-objective optimization might not converge to the Pareto
front, we analyze this in the following. As an optimization algorithm we choose a
(25,100)-CMA-ES of the shark 2.3 library [9], we choose the preferences λ to be
0, 0.1, 0.2, . . . , 1 for equation (9) and run the optimization for 1000 generations.
The optimization of a setup for one preference took approximately 2 hours.



The results of the single-objective optimization in Figure 3 and Figure 6 are
depicted with the magenta triangles. The clustering of solutions, e.g., Figure 3
and Figure 6 middle, shows that uniformly distributed preferences λ do not result
in uniformly distributed solutions along the Pareto front. Therefore, a designer
has to set the preference carefully. The single-objective optimization converges
towards the Pareto front and even performs slightly better because of its focus in
one preferred direction, except for the triharmonic kernel in the template fitting
scenario, where the optimizer gets stuck in local optima (Figure 6, bottom right).
This shows the feasibility of such an optimization for scenarios where a designer
is interested in a setup for one particular preference. The runtime of 2 hours and
these local optima motivate efficient heuristics to distribute centers.

7 Heuristic Setup Strategies

Heuristic methods aim to generate good center distributions in a robust and ef-
ficient manner. They are analytically and geometrically motivated but lack the
guarantee to be Pareto-optimal. In our test scenarios a single-objective optimiza-
tion still runs for hours and might get stuck in local optima. Because we expect
these drawbacks become worse for more complex scenarios, e.g., with a more
complex initial design or a larger amount of parameters, we propose and ana-
lyze a geometry-motivated approach for very regular setups and an analytically
motivated approach for setups with high improvement potential.

Pareto-optimal center distributions targeting regularity for indirect manipu-
lation are uniform distributions in all our tests (Figure 4, top). Hence, we apply
Lloyd sampling which is also known as k-means clustering (see [10] and [11], re-
spectively, for algorithmic details), which result in uniform center distributions
similar to the Pareto-optimal solutions (compare Figure 2, left, and Figure 4,
top). Comparing the regularity score of the resulting setup to the Pareto front
(see Figure 3, Figure 6, orange circles) reveals that the Lloyd sampling is close
to the front for local Wendland kernels (s = 0.25 for the plane or s = 0.5 for the
sphere). Even for direct manipulation uniform Lloyd sampling results in good
regularity. For the triharmonic kernel in the template fitting scenario the heuris-
tic even out-performs the multi- and single-objective optimization (Figure 6,
bottom right). According to equation (7) regularity is the ratio of the small-
est to the largest singular value of the deformation matrix. For indirect RBF
manipulation this singular value is bounded by the separation distance, which
measures the minimal distance between any pairs of centers [25]. The uniform
Lloyd sampling by construction has a good separation distance and thus results
in good regularity. This sampling performs better than any tested random dis-
tributions, performs better than the evolutionary optimization in one test, is
robust to local optima (Figure 6, bottom right), and fast to set up (one minute).

In [16] we motivated improvement potential (equation (8)) by solving the
approximation problem g = Up for an estimated fitness gradient g, the de-
formation matrix U, and the deformation parameters p = (p1, . . . , pm). Each
parameter pj is the coefficient for ϕj(x), which corresponds to a column Uj of



Wendland, s = 0.5 TriharmonicWendland, s = 0.25

Fig. 7. Heuristic OLS setups with high improvement potential are adapted to the
target. Wendland kernels are placed in regions with locally high fitting error (yellow)
rather than in already optimal ones (blue).

the deformation matrix and to a center cj for indirect manipulation. The or-
thogonal least squares method (OLS, detailed description and algorithm in [4,
7]) determines the influence of each parameter to minimize the approximation
error to the estimated gradient in a greedy manner. According to their influ-
ence OLS ranks the parameters, thereby ranks the centers, and we select the
most important ones. We initialize OLS with a large set of centers as candidates
(30 × 30 in 2D or 30 × 30 × 30 in 3D) on a uniform grid and greedily select
the best 25 ones. We cannot apply this procedure for direct manipulation be-
cause the interpolation matrix Ψ−1 in equation (4) disbands the correspondence
between parameters and centers. Since direct manipulation and indirect manip-
ulation result in equal improvement potential for identical center distributions,
we simply apply this algorithm for indirect manipulation and switch to direct
manipulation afterwards. For the function approximation scenario we show that
target-adapted setups for the Wendland kernels in Figure 7 (left) are similar to
the Pareto-optimal solutions in Figure 5. But for the global triharmonic kernels
OLS results in an unintuitive center placement (Figure 7 right). Nonetheless,
the OLS setups are close to the Pareto front or even hit it in both test scenarios
(see Figure 3, Figure 6, orange diamonds) for the compact Wendland kernels. In
conjunction with the small computation time of 1 minute, OLS is very efficient.

8 Summary and Future Work

The initial representation setup is crucial for the performance of an evolutionary
optimization process. We analyzed the generation of RBF deformation setups for
evolutionary design optimization for two test scenarios. The concept of evolv-
ability reveals powerful criteria for setups, namely variability, regularity, and
improvement potential, to measure the expected performance of a setup. Reg-
ularity and improvement potential are conflicting targets, which we therefore
analyze with a multi-objective optimization. As downside this optimization pro-
cess has a runtime of 2 days for our comparatively simple test scenarios.

In real-world applications we rather aim for one optimal deformation setup
with respect to a user-specified preference between regularity and improvement
potential. We demonstrated the feasibility of such a weighted single-objective



optimization. For some tests the quality of the deformation setup is even better
than the Pareto-optimal ones. This process is much faster, but it still runs for
2 hours for our simple problems. Furthermore, the single-objective optimization
gets stuck in local optima in some of our tests.

In order to further improve computational performance and robustness we
proposed and analyzed heuristics to generate setups. The regular setups con-
structed by Lloyd sampling are close to the Pareto front for local Wendland
kernels. Even for direct manipulation where we lack the geometrical motivation
the regularity of the setup is significantly better than a random initialization.
The Lloyd sampling even out-performs the evolutionary solutions in one exam-
ple. Center distributions constructed with orthogonal least squares have high
improvement potential and are on or very close to the Pareto front in all tests.
Both methods reduce the computational effort from 2 hours to 1 minute.

For future work we blend between the heuristics, Lloyd and OLS, according
to our preference. Moreover, we analyze the generalization of our methods to
alternative deformations like free-from deformation.
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22. Vuong, A.V., Giannelli, C., Jüttler, B., Simeon, B.: A hierarchical approach to
adaptive local refinement in isogeometric analysis. Computer Methods in Applied
Mechanics and Engineering 200(49), 3554–3567 (2011)

23. Wagner, G.P., Altenberg, L.: Perspectives: Complex adaptations and the evolution
of evolvability. Evolution 50(3), 967–976 (1996)

24. Webb, A.R., Shannon, S.: Shape-adaptive radial basis functions. IEEE Transac-
tions on Neural Networks 9(6), 1155–1166 (1998)

25. Wendland, H.: Scattered data approximation. Cambridge University Press (2004)
26. Yang, Z., Sendhoff, B., Tang, K., Yao, X.: Target shape design optimization by

evolving B-splines with cooperative coevolution. Applied Soft Computing 48, 672–
682 (2016)

27. Zheng, J., Wang, Y., Seah, H.S.: Adaptive T-spline surface fitting to z-map models.
In: Proceedings of the 3rd international conference on Computer graphics and
interactive techniques in Australasia and South East Asia. pp. 405–411 (2005)


