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Figure 1: Membrane mapping is an interactive tool that bridges the gap between cell visualization on the mesoscopic (left)
and the molecular scale (right). It provides the user with an interactive magnifier tool that maps the pre-computed molecular
structure and dynamic behavior of membrane patches to local surface regions of cell components.

Abstract

Three-dimensional cell visualization is an important topic in today’s cytology-affiliated community. Cell illustra-
tions and animations are used for scientific as well as for educational purposes. Unfortunately, there exist only
few tools to support the cell modeling process on a molecular level. A major problem is the immense intracellular
size variation between relatively large mesoscopic cell components and small molecular membrane patches. This
makes both modeling and visualization of whole cells a challenging task.
In this paper we propose Membrane Mapping as an interactive tool for combining the mesoscopic and molecular
level. Based on instantly computed local parameterizations we map patches of molecular membrane structures
onto user-selected regions of cell components. By designing an efficient and GPU-friendly mapping technique,
our approach allows to visualize and map pre-computed molecular dynamics simulations of membrane patches
to mesoscopic structures in real-time. This enables the visualization of whole cells on a mesoscopic level with an
interactive magnifier tool for inspecting their molecular structure and dynamic behavior.

1. Introduction

The visualization of biological cells is a common cytologi-
cal topic which is not only relevant for educational purposes,
but also for the analysis and verification of in silico experi-
ments. Recently, especially the three-dimensional visualiza-
tion started to open new perspectives in this field. More gen-
erally, two cytological levels can be differentiated: the meso-
scopic and the molecular level.

The mesoscopic level represents cellular structures rang-
ing from micrometer down to nanometer domains. Cell com-
ponents may be differentiated, but it is not possible to rec-
ognize molecular structures. The mesoscopic level is of-
ten visualized for educational purposes, e.g., in cell anima-
tions, school books, or games. For example, approaches like
“Meta!Blast” provide school students a playful access to cy-
tology [WBD∗10]. Famous cell animations like “The Inner
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Life of the Cell”, commissioned by Harvard University in
2007, transport cytological knowledge in a visually appeal-
ing way to a broad audience. Various efforts exist to ex-
tend the amount of educational as well as scientific visual-
ization in the cytological area [Lok11]. Scientific visualiza-
tions at the mesoscopic level are especially important to ex-
plore intracellular relationships, e.g., protein-protein interac-
tion networks [WPL∗09], metabolic pathways [SKS∗10], or
disease-related networks [SKD∗13]. Moreover, even simula-
tion environments based on differential equations like VCell
provide the integration of three-dimensional cell models for
visualization purposes [LS01].

Even more established in the scientific context is the vi-
sualization at the molecular level, usually operating at a
scale of a few Ångström. Molecular simulation environ-
ments like GROMACS [HKvdSL08], AMBER [CCD∗05],
or CHARMM [BBMJ∗09] are employed for simulations
of transport processes, membrane behavior, or formation
of larger molecular structures like vesicles. These simula-
tion packages usually do not provide visualization tools,
they are optimized for the simulation of molecular struc-
tures, which usually have to be supported by large CPU or
GPU clusters. The visualization of the results is done by
external tools, such as VMD [HDS96], PyMOL [DeL02],
or QuteMol [TCM06]. These toolchains, however, are not
able to simulate or visualize the atomistic behavior of a
complete cell at the mesoscopic scale. Established molec-
ular simulation packages like GROMACS cannot simulate
large structures containing billions of atoms, because the
computation of the physicochemical properties and interac-
tions is extremely complex. Some recent GPU-accelerated
approaches achieve whole-cell simulations, but they restrict
themselves to coarse-grained simulations [FOE∗11] and vi-
sualizations [FKE13], where larger molecular groups are
kept rigid. All-atom simulations are still restricted to smaller
areas of the cell, such as a ribosome, a small vesicle, or mem-
brane patches containing a protein surrounded by a bilayer
with a known lipid composition.

In this paper we propose an interactive tool for whole
cell visualization that efficiently combines rendering on the
mesoscopic and the molecular scale. Since atom-level simu-
lation and visualization of whole cells is out of reach, some
kind of compromise has to be done. Instead of assuming
static data sets or piecewise rigid simulations, we chose a
different trade-off: Our method enables the visualization of
detailed MD simulations on an atomistic level, however not
for the whole cell but only for a small region of interest.
Our membrane mapping technique allows the user to zoom
in onto certain cell components and to map pre-computed
(static and dynamic) molecular representations of membrane
patches onto the surface of existing three-dimensional mod-
els. In an educational context our method can be seen as
an “atom-scale magnifier glass” for locally inspecting the
molecular structure and its dynamic behavior of certain cell
component surfaces, as depicted in Figure 1.

To the best of our knowledge our approach is the first
to interactively combine these two highly specific cytolog-
ical visualization techniques. So for the first time, users are
able to combine (i) simulations of a well-established molec-
ular simulation program (GROMACS) with (ii) customized
three-dimensional models of mesoscopic cell structures.

2. Related Work

While both mesoscopic visualization and molecule render-
ing have been explored to a larger extent, bridging the gap
between mesoscopic and atomistic scale is the target of only
a few modeling and visualization approaches.

One possible approach is the simplification of molecular
structures with the objective to hide the complex atomistic
representation. A number of approaches is following this
simplification paradigm. For instance, cellPACK is a plug-
in compatible with different 3D modeling tools, which can
be applied to the packing of shapes derived from molecular
structures in a style known, e.g., from illustrations of David
S. Goodsell [JGA∗14]. Therefore, although cellPACK’s al-
gorithms are not exclusively restricted to shape-based com-
putations, its current visualization approaches usually show
simplifications of the original atomic structures.

The BioBlender project tries to simplify the correla-
tion between PDB-based structures and shape-based mod-
els [ACZ∗12]. It can be used to visualize, e.g., the electro-
static potential of a PDB file. However, the visualization of
larger atomic structures is very restricted with BioBlender.
The Graphite LifeExplorer project develops different stand-
alone tools with the objective to simplify the cell modeling
process [HLLF13]. The CELLmicrocosmos MembraneEd-
itor can be used to generate membrane models for down-
stream molecular dynamics simulations using GROMACS
[SDG∗11]. However, this tool also follows the simplifica-
tion paradigm by using rather abstract shapes to enable the
visualization of larger structures like vesicles.

The aforementioned approaches are not intended to vi-
sualize large numbers of atoms at a time. There are, how-
ever, already several approaches that are able to interactively
visualize several millions of atoms using GPU-accelerated
splatting of spheres and cylinders. These methods render
each atom or connection by generating an enclosing screen-
space rectangle and ray casting the respective glyph for
each pixel of the bounding rectangle [Gum03, TL04, RE05,
SWBG06,TCM06,GRE09]. These approaches mainly differ
in how they generate the bounding rectangles, where Grottel
et al. [GRE09] provide detailed performance benchmarks of
the different techniques.

The above methods, while being highly efficient, are still
not capable of visualizing the multi-billion atom representa-
tion of a whole cell. Exploiting instancing of larger groups of
molecules, pre-computed spatial data structures, and GPU-
based ray marching, the approach of Lindow et al. [LBH12]
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is capable of rendering up to several billion atoms at interac-
tive rates. This method was adapted by Falk et al. [FKE13]
for the atomistic visualization of mesoscopic whole-cell sim-
ulations. Both methods, however, achieve their impressive
rendering performance by restricting to either static data-
sets or by grouping larger molecules to rigid pieces. As
a consequence, they cannot visualize dynamic simulations
on the atomic level, as required by our proposed approach.
We therefore base our rendering on the splatting method
of Sigg et al. [SWBG06], which does not require any pre-
computation of spatial data structures and hence can render
dynamic animations on an atomic level.

Since we map the pre-computed 3D molecular structure
of a membrane patch onto a user-selected region of a cell
component, our approach is conceptually similar to shell
maps [PBFJ05], where a 3D geometry is mapped from a 3D
texture domain to the so-called shell space enveloping a sur-
face triangle mesh. This shell space can be thought of as a
“thick surface” that is bounded by two offset surfaces in pos-
itive and negative normal direction, respectively. The shell
space is first decomposed into prisms and then tessellated
into tetrahedra, which allows a piecewise linear barycentric
mapping from texture space to shell space. But this piece-
wise linear mapping has the drawback of (i) not fitting very
well to a GPU implementation and (ii) possibly distorting
molecules that cross tetrahedra boundaries.

Our membrane mapping approach, described in the next
section, avoids these limitations by using either a rigid trans-
formation for each molecule (e.g., a lipid or protein), or a
smooth polynomial mapping for a whole membrane patch.

3. Membrane Mapping

The interaction metaphor for the membrane mapping ap-
proach is as follows: The user zooms in onto a cell com-
ponent and selects a center point on the component’s sur-
face, around which the membrane should be mapped. Start-
ing from this center point, a local geodesic patch of suffi-
cient radius is grown, which is then mapped to a 2D texture
domain using a planar parameterization (Section 3.1). The
resulting piecewise linear mapping from 2D texture domain
to the surface patch is extended to the 3D shell space around
the surface using either our molecule instancing for static
structures (Section 3.2) or a smooth polynomial space warp
for mapping dynamic simulations (Section 3.3).

Our approach expects the following input data:

• The mesoscopic level is represented by cell compo-
nent models. These models are three-dimensional triangle
meshes directly or indirectly derived from microscopic
images or image stacks. To allow a local parameteriza-
tion, the meshes should be (locally) two-manifold and of
sufficient element quality.
• The molecular level is represented by membrane models.

These models are three-dimensional, rectangular mem-

u(x) x(u) SS0

T0 T

Figure 2: The surface patch S0 (blue) is mapped to the 2D
texture domain T0, which is extruded to the 3D domain T
into which the membrane patch is embedded. The texture do-
main T and thereby the membrane patch are mapped to the
shell space S surrounding the original surface S0.

brane patches, which are assemblies of molecules (lipids
and/or proteins).

• Dynamic molecular simulations of these membrane mod-
els are represented by different atom positions for each
frame of the simulation.

The membrane models represent a “thick layer”, where we
assume the x- and y-coordinates to correspond to the 2D tex-
ture coordinates, and the z-coordinate to represent the height
or offset from the center of the membrane bilayer, which
should be centered at the z = 0 plane. Consequently, the
lipids are approximately aligned with the z-axis.

In the following we will denote the surface patch (onto
which the membrane is to be mapped) by S0 and the corre-
sponding 2D texture domain by T0. The two-manifold / two-
dimensional surfaces S0 and T0 represent the membrane’s
center surface in 3D world coordinates and 2D texture co-
ordinates. When extended to thick surfaces in normal direc-
tion / height-direction they are denoted as shell space S and
texture space T . We will write shell-space coordinates by
x= (x,y,z)T and texture space coordinates by u= (u,v,w)T.
See Figure 2 for a depiction of these spaces and mappings.

3.1. Local Parameterization

The user input for the membrane mapping process is a center
point c ∈ S0 around which to center the membrane and the
desired patch size d×d, which we translate into a k×k tiling
of the pre-computed membrane.
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Using the method of Kimmel and Sethian [KS98] we start
a breadth-first Dijkstra-like traversal from c up to a geodesic
radius r. This radius is chosen large enough such that the
geodesic disk covers the surface region to be mapped onto,
which is r = 2d in our case. The resulting (triangulated)
geodesic disk is the surface patch S0.

We naturally choose a 2D disk with radius r as the tex-
ture domain T0. The mapping u : S0→T0 is computed by a
discrete harmonic parameterization, which amounts to map-
ping the boundary vertices/edges of S0 homeomorphically
to the 2D circle ∂T0 and then solving a linear system to min-
imize the Dirichlet energy [BKP∗10]. We employ the mean
value weights, which in combination with the convexity of
T0 guarantees a bijective mapping.

Since the surface patch S0 is a geodesic disk (up to mesh
discretization), which is mapped to a planar disk, the map-
ping u(x) can be expected to contain only a small amount
of distortion. This distortion is typically concentrated at the
boundary of the domain, which is why the radius r is chosen
slightly larger than necessary, since this further reduces dis-
tortion for the region containing the membrane patch. Note
that Figure 2 does not include this additional scaling in order
to provide a clearer visualization.

3.2. Molecule Instancing

Similar to displacement maps the parameterization of the
center surface S0 can be extended in normal direction, al-
lowing to map each single atom position u ∈ T from texture
space to shell space S. To this end we project u = (u,v,w)T

to the membrane’s center surface T0 (i.e., the w = 0 plane),
which is the base point u0 = (u,v,0)T. This point can be
mapped to the center surface S0 by the inverse parameteriza-
tion u−1, i.e., by simple barycentric mapping: Let u1,u2,u3
be the vertices of the triangle in T0 containing the base point
u0, and let α1,α2,α3 be its barycentric coordinates, i.e.,
u0 = α1u1 +α2u2 +α3u3. Then the corresponding point
x0 on the surface S0 is

x0 = α1x1 +α2x2 +α3x3,

with xi = u−1(ui). Its normal vector n(x0) is obtained by
the (normalized) barycentric interpolation of the xi’s normal
vectors ni. The final mapped atom position x ∈ S is then

x = x0 +w ·n(x0),

where w is the offset/height of the atom center from the
membrane center surface in texture space.

While this straightforward method is easy to implement,
it has two important drawbacks. First, as soon as S0 is
moderately curved, the normal vectors on S spread apart,
which distorts the mapped molecules by changing their
intra-molecule atom distances. Second, when mapping k×k
membrane patches, this method has to store all k2 mapped
positions for each atom in the membrane model.

We address both problems by grouping together smaller
parts of the membrane, namely lipids and proteins, be-
cause they usually are the smallest connected entities of
a membrane. We refer to these small groups of atoms as
molecules. Note that, in contrast to [LBH12] and [FKE13],
these molecules are rather small, containing about 30–50
atoms only. We circumvent the distortion of intra-molecule
distances by mapping each molecule by an individual rigid
motion. To this end, we map the center of mass ū∈T of each
molecule using the technique described above, resulting in
the mapped center x̄∈S and thereby defining the translation
component t of the rigid motion. The rotation R is derived
such that it aligns the w-axis in texture space with the normal
vector n(x̄0) of the mapped base point x̄0 of the molecule
center. This results in a homogeneous transformation

M(x) = Rx+ t (1)

to be stored for each mapped instance of each molecule.

This mapping approach concentrates all distortion to the
empty space between individual molecules, i.e., it trades
zero intra-molecule distortion for higher inter-molecule dis-
tortion, which visually is more pleasing. It also requires
less memory compared to mapping individual atoms. How-
ever, when mapping dynamic molecular simulations, this ap-
proach requires to store a transformation matrix for each in-
stance of each molecule and each time step of the simulation,
because besides new atom positions each time step must
have its own set of instance matrices. As a consequence, the
molecule instancing technique is not suitable for mapping
complex simulations and large membrane patches. This is
addressed in the following section.

3.3. Polynomial Mapping

In our particular setting, where relatively small membrane
patches are mapped onto relatively large cell components,
the size of a membrane patch typically is small compared
to the local radius of curvature of the target surface patch
S0. Geometrically, this means that the surface patch S0 can
locally be represented at a sufficient accuracy using a local
second-order Taylor approximation, or a constant-curvature
osculating quadric. As a consequence, it can be expected that
the mapping x : T → S can be approximated sufficiently
well by a quadratic polynomial, which has the form

x(u,v,w) = c0 + c1u+ c2v+ c3w (2)

+ c4u2 + c5v2 + c6w2 + c7uv+ c8uw+ c9vw,

where the c j ∈ R3 are the degrees of freedom to be deter-
mined. To this end we generate a set of mapping constraints
ui 7→ xi, i = 1, . . . ,m, and fit the quadratic polynomial to sat-
isfy them in the least squares sense.

The mapping constraints are generated by sampling m
points ui that are distributed uniformly in the bounding box
of the membrane patch in texture space T as illustrated in
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Figure 3: Top: Sampled constraint points inside a membrane
patch with and without showing the membrane structure.
Bottom: Constraints mapped to shell space, with and with-
out showing the surface of a cell component. Green/blue/red
depict sample points at w =+ε/0/− ε.

Figure 3, top. We use three layers of 6× 6 sample points:
One at the center of the bilayer (w = 0) and two offset layers
in positive (w =+ε) and negative (w =−ε) w-direction. The
target positions xi in shell space S are computed using the
atom displacement mapping described in the previous sub-
section (Figure 3, bottom).

Finding the coefficients c j such that the polynomial best
fits the constraints ui 7→ xi amounts to setting up an overde-
termined m×10 linear system AC = X with

A =

1 u1 v1 w1 u2
1 v2

1 w2
1 u1v1 u1w1 v1w1

...
...

...
...

1 um vm wm u2
m v2

m w2
m umvm umwm vmwm

 ,
C = (c1, . . . ,c10)

T ∈R10×3 and X = (x1, . . . ,xm)
T ∈Rm×3.

This system is then solved for the polynomial’s coefficients
C in the least squares sense based on Cholesky factorization
of its normal equations [GL89]

ATAC = AT X. (3)

Computing the local parameterization, generating the
constraint samples, and fitting the polynomial can be com-
puted instantly (see the accompanying video). The atom
mapping from texture space T to shell space S can eas-
ily be computed in a vertex shader by evaluating Equa-
tion (2). Note that the polynomial is constant for a whole
membrane patch (in contrast to the per-molecule mapping in
the previous section). Furthermore, since this mapping does
not depend on individual atom positions, it can be used to
map all frames of a dynamic simulation. As a consequence,
this method has a very small memory footprint, allows for
whole-membrane render batches, and works seamlessly for
static or dynamic membranes.

When mapping larger tilings of k× k patches we sim-
ply use one quadratic polynomial for each membrane patch.
When computing these local polynomial maps we apply the
above fitting procedure to each patch individually. While

this does not guarantee the patches to match smoothly at
their boundaries, in practice this is usually not a problem,
since even for larger tilings the respective surface regions are
rather smooth and moderately curved. An alternative would
be to employ higher order trivariante spline mappings, which
we leave for future work.

4. Rendering Techniques

Our rendering framework visualizes the mesoscopic level
using cell components represented as triangle meshes, where
we use standard OpenGL Core Profile functionality for ren-
dering. The individual triangle meshes are stored in static
vertex buffer objects, lighting is performed using standard
Phong shading.

On the atomistic scale we cannot use a voxelized ray
marching technique as in [LBH12] or [FKE13], since these
have to pre-compute local grids for their static/rigid groups
of atoms. Our atomistic visualization of dynamic molecu-
lar simulations requires to animate individual atom position
for each frame. We therefore employ a splatting-based tech-
nique [SWBG06] for local ray casting of spheres and cylin-
ders, which allows to visualize space filling as well as ball-
and-stick models.

When molecule instancing is used as mapping technique,
the vertex shader transforms the atom position from texture
space to shell space using a per-molecule transformation ma-
trix M (see (1)). For polynomial mapping, the vertex shader
simply evaluates the quadratic polynomial x(u) (see (2)) to
transform atom positions or cylinder endpoints.

Our MD simulation data typically consists of updated
atom-coordinates for every frame. Since color and radius are
constant values over all frames, only the atom coordinates
have to be updated each frame. Our splatting-based render-
ing requires only one vertex per atom and two vertices per
atom-connection. This leads to a relatively small amount of
data that has to be transferred from main memory to GPU
memory for each frame.

The results of a molecular dynamics simulation often have
a low temporal resolution, such that the movements of sin-
gle atoms are hard to track. To reduce this effect, we refine
the temporal sampling by applying univariate subdivision
to each atom’s trajectory. Linear subdivision/interpolation
yields easier-to-track atom movements, but the missing
smoothness of the resulting piecewise linear trajectories is
rather disturbing. We instead smoothly interpolate the indi-
vidual atom positions by applying a few steps of 4-point sub-
division [DLG87]: The position of atom i at time t+ 1

2 , to be
inserted between frames t and t +1, is computed as

xi,t+ 1
2
=

1
16
(
−xi,t−1 +9xi,t +9xi,t+1−xi,t+2

)
.

The resulting trajectory is a smooth high-resolution curve
that interpolates the initial key-frames of the MD simulation,
as shown in the accompanying video.
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Figure 4: Membrane Mapping examples using the Molecule Instancing method (top row) and the Polynomial Mapping tech-
nique (bottom). From left to right: Membrane models 1, 4, 2, and 3.

In terms of lighting and shading, it is well known that sim-
ple Phong lighting of mesoscopic cell components and atom-
istic membranes does not properly reveal the 3D structure,
leading to a rather confusing visualization, where different
parts of a molecule are often hard to distinguish. Shadows
naturally enhance the depth perception of a rendered scene.
Hence, we add two shadowing techniques to our rendering
framework: Shadow Mapping for direct shadows and Screen
Space Ambient Occlusion (SSAO) [Kaj09] as an approxima-
tion to global illumination. Especially SSAO enhances the
depth perception very well, while not requiring object space
pre-computation. As a consequence it is very well suited for
our real-time visualizations of molecular simulations.

5. Data

This section describes the data used for the visualization ex-
periments shown in the paper and the accompanying video.

Cell Model: The cell component models were constructed
based on light microscopic and electron microscopic im-
ages of mammalian liver hepatocyte cells. For the model-
ing process, 3ds max R©and Blender were used. The coloring
scheme follows the Haematoxylin and Eosin staining. Gen-
erated cell components are amongst others: nucleus, rough
and smooth endoplasmic reticulum, golgi apparatus, mito-
chondrion, vesicles, and cell membrane. The models are
represented as surface triangle meshes and have been op-
timized using adaptive isotropic remeshing [DVBB13] and
Loop subdivision [Loo87].

Membrane Model 1, 2 and 3: Rat Liver Bilayer Models.
Several rat hepatocyte-related membranes were constructed

using the above methods, representing the normalized lipid
composition of different cell components based on [Jai88].
Here, membrane compositions for the nucleus (1), mito-
chondrion (2) and the endoplasmic reticulum (3) were used.

Membrane Model 4: Rat Liver Bilayer with Protein. A
bilayer containing different phospholipids and cholesterol
was modeled with the MembraneEditor [SDG∗11]. The
model has a size of 20nm× 20nm and contains the semi-
automatically aligned protein 1O5W.

Membrane Model 5: Lipid Membrane Simulation. A
DPPC bilayer membrane with a size of 18 nm × 18 nm
containing 1024 lipids was constructed. Then, a molecu-
lar dynamics simulation was performed with GROMACS
[HKvdSL08]. A standard protocol was applied; the system
was solvated in about 3400 water molecules and the Gro-
mos96 force field (ffG45a3) was used. The simulation was
run for 1 ns, resulting in 102 frames. During importing the
membrane simulation into the software discussed here, water
molecules are completely removed. Please see the accompa-
nying video for results.

6. Results

In this section we compare the two different map-
ping techniques—Molecule Instancing and Polynomial
Mapping—both in terms of visual quality (Figure 4), mem-
ory consumption, and rendering performance (Table 1). The
accompanying video demonstrates the complete user inter-
action and shows the time refinement of simulation data
through subdivision of atom trajectories.
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Input Model Molecule Instancing (fps) Polynomial Mapping (fps)
type patch size #atoms #connections SF SF+AO BS BS+AO SF SF+AO BS BS+AO

1×1 46k 46k 122 60 139 64 133 63 149 66
2×2 184k 183k 111 58 116 59 111 57 118 59
3×3 414k 413k 91 51 90 51 99 54 95 53

Static 4×4 736k 734k 82 48 72 45 94 52 86 50
5×5 1M 1M 78 47 47 42 85 49 73 45

10×10 4.6M 4.6M 23 23 12 12 46 35 33 25
15×15 10.4M 10.3M 10 10 5 5 28 23 18 15

1×1 51k 50k 124 61 142 64 111 58 132 62
2×2 205k 200k 104 56 111 57 103 56 112 57
3×3 461k 452k 92 52 90 51 97 53 96 53

Animated 4×4 819k 803k 86 50 64 46 87 50 81 48
5×5 1.3M 1.3M 74 46 41 40 78 47 69 43

10×10 5.1M 5M 22 22 11 11 41 32 29 23
15×15 11.5M 11.3M 10 10 5 5 22 20 14 13

Table 1: Performance comparison for different models and rendering techniques and static/dynamic membranes. BS: ball-and-
stick model; SF: space-filling model; AO: ambient occlusion

The visual quality of our membrane mapping approach is
shown in Figures 1 and 4, where the latter compares the two
mappings on several examples. Molecule Instancing allows
for a more precise mapping and offers a better alignment
of individual molecules to the membrane’s center surface.
Moreover, since each molecule is rigidly mapped as an in-
dividual entity, there is no intra-molecular distortion. How-
ever, this method suffers from a large memory consumption
for storing the per-molecule instance matrices. This is par-
ticularly problematic for simulated membranes with many
frames and the mapping of larger tilings, as each frame and
each patch requires a separate set of instance matrices.

As can be observed in Figure 4, Polynomial Mapping pro-
vides visually similar results to Molecule Instancing in most
cases. Only in surface regions with extreme local curva-
ture the local per-patch polynomial mapping yields slightly
inaccurate mappings and discontinuities at patch bound-
aries (Figure 4, right). These situations, however, are rather
rare, such that in practice the piecewise polynomial map-
ping works sufficiently well. Since this method requires only
one quadratic polynomial per membrane patch (both for
static and dynamic membranes), it has a significantly smaller
memory footprint. On the downside, the smooth polynomial
mapping inevitably leads to a slight intra-molecular distor-
tion, which was not disturbing in our experiments though.

Table 1 lists performance benchmarks for different patch
sizes, different visualization techniques, as well as for static
and animated membranes. All experiments were performed
on a system with a NVIDIA GeForce GTX 770 GPU, an
Intel Core i5 Quad-Core CPU, and 8 GB of RAM. The cell
model used in the benchmarks consists of about 2M trian-
gles. The performance numbers for Molecule Instancing and
Polynomial Mapping are similar for patch tilings up to 4×4.
After that the frame rate for Molecule Instancing is signifi-
cantly lower (especially for ball-and-stick rendering), which

is mainly due to the large number of OpenGL draw calls (one
per molecule) and the costly memory transfer (one instance
matrix per molecule). The Polynomial Mapping can make
use of Uniformbuffers and requires just one draw call for all
patches, therefore it does not show this performance drop. It
consequently is the more efficient method, even though the
computational cost of the vertex shader is slightly higher.
Moreover, rendering animated membranes comes at almost
no performance penalty compared to the static case.

The comparisons show that Molecule Instancing is the
better option if intra-molecular distortion has to be avoided,
whereas Polynomial Mapping is the preferred method for vi-
sualizing animated membranes or huge patch tilings.

7. Conclusion

This work introduced a new methodology for interactively
combining the modeling and visualization of the mesoscopic
and molecular level of a biological whole-cell model. Our
Membrane Mapping combines a membrane patch based
on molecular structures with the three-dimensional shape
of a cell component. The main difference to previous
approaches—in particular to Falk et al. [FKE13]—is that the
Membrane Mapping technique is not restricted to the visu-
alization of coarse-grained mesoscopic simulations. Instead,
all-atom or united-atom membrane models are used, provid-
ing high resolution in both time and space.

In the future, our visualization could be improved by us-
ing smoothed normal fields for deferred shading [LBH12]
and semi-transparent rendering of cell component surfaces.
A spline-based mapping could avoid discontinuities across
patch boundaries even in high curvature regions. In addition,
a user study evaluating our visualization metaphor would be
highly interesting. We also plan to integrate the Membrane
Mapping method into the CELLmicrocosmos software.
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