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Abstract

We present a novel shape deformation method for its use in design optimization tasks. Our space deformation technique based on
moving least squares approximation improves upon existing approaches in crucial aspects: It offers the same level of modeling
flexibility as surface-based deformations, but it is independent of the underlying geometry representation and therefore highly robust
against defects in the input data. It overcomes the scalability limitations of existing space deformation techniques based on globally
supported triharmonic radial basis functions while providing the same high level of deformation quality. Finally, unlike existing
space deformation approaches, our technique directly incorporates geometric constraints—such as preservation of critical feature
lines, circular couplings, or planar construction parts—into the deformation, thereby fostering the exploration of more favorable and
producible shape variations during the design optimization process.
c© 2014 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of organizing committee of the 23rd International Meshing Roundtable (IMR23).
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1. Introduction

Design optimization is a key component of the product development process of automotive industry, aircraft
construction, and naval architecture. The overall goal is to discover alternative designs with improved physical or
aesthetic properties. The development process typically starts with the creation of an initial prototype using computer
aided design (CAD) tools. Subsequent steps generate a polygon surface mesh from the CAD model as well as a
volumetric simulation mesh in order to evaluate the physical performance of the design, e.g., based on aerodynamics or
structural mechanics simulations. Design variations are then created based on physical performance during simulation.

A challenging task within the optimization process is to develop effective means to create alternate designs. Changing
the CAD model directly is typically prohibitive, since repeated surface and volume meshing is highly time-consuming,
and for complex geometries might even require manual interaction by an expert. An alternative is to use shape
deformation techniques to adapt both the surface and the volume mesh of the initial design prototype directly. This way,
the design optimization can be performed in a fully automatic and parallel manner, which is of particular importance
when using stochastic optimization techniques—such as evolutionary algorithms—which typically require the creation
and evaluation of a large number of design variations in order to find a feasible solution.
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Even though shape deformation techniques drastically simplify the creation of design variations, their successful
application within practical design optimization tasks comes with a number of challenges:

1. Severe defects in the input data or varying element types in the simulation’s surface and volume meshes prohibit
surface-based or mesh-based deformation techniques and typically require space deformation methods.

2. The results obtained from the deformation might not be of sufficient quality, as illustrated in the comparisons of
Staten and colleagues [1] and our recent investigations [2,3], which suggest the use of triharmonic radial basis
functions (RBFs) for high quality shape deformations.

3. In terms of performance the method might not scale to complex optimization scenarios. For example, the RBFs
proposed in [2,3] offer high deformation quality due to their built-in minimization of fairness energies, but the
involved dense linear system restrict the method to moderately sized problems.

4. The method might not offer a sufficient level of modeling flexibility, e.g., to simulate inhomogeneous material
behavior during deformation. RBFs, which implicitly minimize bending-type energies, fail to simulate stretching-
dominant materials.

5. Critical features required for functionality and realization of design prototypes might not be properly preserved
during deformation. The typical solution to this wide-spread problem in design optimization is to incorporate
additional penalty terms into the optimization process. This strategy, however, results in costly creation and
evaluation of unfavorable design variations.

In this paper, we present a shape deformation technique based on moving least squares (MLS) discretization [4] that
improves upon existing approaches in virtually all of the above aspects: Since we follow a space deformation approach
our method is independent of the underlying geometry representation and highly robust towards defects in the input
data. In terms of deformation quality, our method is competitive to global triharmonic RBFs. We drastically improve
on the latter in terms of scalability, having to solve sparse linear systems only. By incorporating explicit stretching
and bending energies, we offer the same level of modeling flexibility as surface-based methods. Finally, our technique
directly incorporates geometric constraints into the deformation, thereby fostering the exploration of more meaningful
and producible shape variations during the design optimization process.

2. Related Work

In this paper, we are concerned with high-quality shape deformation techniques for their use in design optimization
tasks. Such techniques typically incorporate the minimization of physically-inspired energies in order to perform
smooth and physically plausible deformations, as exemplified by mesh-based variational methods computing smooth
harmonic or biharmonic deformations by solving Laplacian or bi-Laplacian systems [5,6]. The finite element-based
FEMWARP technique [5,7], which computes a harmonic deformation, was generalized from tetrahedra to hexahedra
in [1], and turned out to be highly successful in comparison to other methods. While the deformations produced by
mesh-based variational methods tend to preserve element quality well, they have to be custom-tailored to each mesh
type (e.g., tetrahedral or hexahedral), and they depend on the element quality of the underlying mesh.

In contrast, meshless deformation techniques avoid these limitation by computing a space warp d : R3 → R3 that
deforms the whole embedding space, thereby implicitly deforming the mesh. Spline-based free-form deformation
(FFD) techniques [8] have been widely used in both the graphics and engineering communities [9]. After its initial
conception numerous extensions have been proposed, and we refer the reader to the survey papers [10–12] for a more
comprehensive overview. However, spline-based FFD does not offer the same degree of smoothness as harmonic or
biharmonic deformations, and it requires a rather tedious control lattice setup, as we investigate in detail in [3].

In [2] we successfully combined the advantages of meshless approaches and mesh-based variational methods by
employing radial basis functions (RBFs) for mesh deformation. RBF space warps can handle arbitrary polyhedral
meshes and offer a degree of smoothness comparable to mesh-based variational techniques. However, an inherent
limitation of this approach is that the implicit energy minimization is built-in by construction and therefore offers no
choice in terms of energy minimization. Furthermore, due to the global support of their basis functions, the resulting
linear systems are dense and therefore limited in terms of scalability.
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Fig. 1. Handle-based surface deformation of a plane (4000 vertices). From left to right: Undeformed model, minimization of pure bending, pure
stretching, and a mixture thereof with parameters wb = 0.6 and ws = 1.0. We choose w f = 100 in order to ensure prescribed handle and fixed
constraints are satisfied.

In this paper, we propose to overcome these limitations by employing moving least squares (MLS) methods [4,13]
for mesh deformation. These techniques have been successfully used in meshless physics simulation and computer
animation, and offer the same high level of deformation quality as RBF warps, but they also come with increased
flexibility with regards to energy minimization. Furthermore, the linear systems resulting from MLS-based discretization
are generally sparse and therefore offer a drastically increased level of scalability compared to approaches based on
globally supported RBFs.

A rather recent innovation in the development of shape deformation techniques is the integration of additional
constraints into the deformation [14], as exemplified by the feature-preserving surface deformation technique of
Masuda [15], or by the iWires system [16] for deformation of man-made objects. More recently, the latter approach
was generalized to component-wise controllers [17], and the work of Habbecke [18] presents an efficient technique
for the linear analysis of non-linear constraint in geometric modeling systems. However, all of the above methods
are inherently surface-based. Therefore, their applicability to design optimization tasks is rather limited. A notable
exception in this regard is the projection-based Shape-Up technique of Bouaziz and colleagues [19], since it allows
for general constraints on arbitrary geometric data sets. We integrate this approach for constraint preservation into
our MLS-based space deformation technique, thereby fostering the creation of more feasible design variations during
design optimization.

In the following sections we describe our deformation technique in detail, going from the fundamentals to the
specifics. We begin with a description of a general deformation model suitable for design optimization (Section 3).
We describe our approach to space deformation based on subspace techniques in Section 4, where we also analyze
and compare different choices of subspaces. In order to make our technique fully independent from the underlying
geometry representation, we describe a spatial discretization of deformation energies in Section 5. Finally, we describe
how to integrate constraints into the deformation in Section 6.

3. Mesh-Based Surface Deformation

In this section, we describe a mesh-based deformation model that is suitable for a design optimization framework.
Since the most common targets for design optimization are sheet metal surfaces, such as car bodies, aircraft wings, or
ship hulls, we concentrate on surface deformation models first. The resulting model will then be extended to subspace
surface deformations and true volumetric space deformations in the following sections.

The shape deformation will be controlled by an interface that specifies displacements for certain surface regions. In
a design optimization context, we propose the use of a direct manipulation interface, where the user—being either a
human designer or an optimization algorithm—directly manipulates certain regions of the surface mesh. In contrast to,
e.g., the control point metaphor of lattice-based freeform deformation (FFD) [8], direct manipulation interfaces are
preferable for design optimization, since the direct coupling between optimization parameters and the effect on the
design variation leads to improved convergence rates [20,21].

Furthermore, we employ the so-called handle metaphor [22], where we distinguish three types of surface regions on
the mesh: The handle regionH is directly displaced by the user. The fixed region F stays in place. The deformable
region D is updated according to the physical deformation method while satisfying the Dirichlet constraints given by
H and F . An example of this modeling metaphor is given in Figure 1, with the handle region in gold, the fixed region
in gray, and the deformable region in blue.
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The deformable region D should behave in a physically-plausible manner, i.e., it should deform like a thin shell
based on stretching and bending energies. The deformations occurring in design optimization tasks typically are rather
small. Therefore, a linear deformation model will be sufficient, where stretching and bending are measured by first and
second order partial derivatives of the displacement function d, respectively.

In the continuous setting, the deformation d : S → R3 of a surface S can be computed by minimizing the energy
functional

Eshell[d] = ws Estretch[d] + wb Ebend[d] + w f Efix[d], (1)

consisting of weighted energy contributions for bending, stretching, and constraint deviation [23]:

Estretch[d] =

∫
D

‖∇d(x)‖2 dx, (2)

Ebend[d] =

∫
D

‖∆d(x)‖2 dx, (3)

Efix[d] =

∫
H∪F

d(x) − d̄(x)
2

dx, (4)

where ∇d denotes the Jacobian of d, ∆d = ∇ · ∇d its Laplacian, ‖·‖ the Frobenius matrix norm or the Euclidean vector
norm, and d̄ the prescribed Dirichlet constraints for the fixed and handle regions.

If we assume that the surface S is discretized by a proper triangle meshM (non-degenerate triangles, one single
two-manifold component), then the most flexible discretization of the above thin shell deformation is one whose
degrees of freedom are the individual vertex positions x1, . . . ,xn , or the vertex displacements d1, . . . ,dn :

dh (x) =

n∑
i=1

diψi (x), (5)

where ψi are the piecewise linear shape functions on the triangulation M. Based on this discretization we can
approximate the above energies [23,24] as

Estretch[dh] =
∑

xi ∈D
Ai ‖∇di ‖

2 , (6)

Ebend[dh] =
∑

xi ∈D
Ai ‖∆di ‖

2 , (7)

Efix[dh] =
∑

xi ∈H∪F

Ai
di − d̄i


2
, (8)

where Ai denotes the Voronoi area of vertex i, and where we use the well-established discrete differential operators
proposed in Meyer et al. [25]. These allow to write the discrete gradient ∇di and discrete Laplacian ∆di as a linear
combination of neighboring vertices.

For implementation convenience and easier extensibility in the following sections, we write the discrete shell
energy (6)–(8) as

Eshell[dh] = ws ‖Gd‖2 + wb ‖Ld‖2 + w f
F(d − d̄)

2
, (9)

where d = (dT
1 , . . . ,d

T
n )T is the (n × 3) matrix of per-vertex displacements, and G and L are gradient and Laplace

matrices containing the required cotangent weights in each row and having their rows weighted by
√

Ai , respectively
(see [23,24] for details). F is a diagonal matrix with Fi, i =

√
Ai if xi ∈ F ∪ H and Fi, i = 0 otherwise. The

minimization of the shell energy (9) then requires to solve the normal equations of the linear least squares system(
wsGTG + wbLTL + w f FTF

)
d = w f FTFd̄, (10)

which can be done efficiently using a sparse Cholesky solver [26]. In order to ensure proper satisfaction of the Dirichlet
boundary constraints, we typically choose w f to be one or two orders of magnitude larger than the smoothness weights
ws and wb . This mesh-based surface deformation approach, depicted in Figure 1, is our ground truth technique, which
we try to reproduce using (more robust and more general) space deformation methods.
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Fig. 2. Surface sampling: Incremental random sampling of each mesh face (left, samples in gray). This step finishes when the complete surface is
densely covered with random samples (center left). From the dense samples we select a farthest point subset (center right, subset in gold). Then we
perform Lloyd relaxation on this subset and use these points as RBF centers/MLS samples (right).

4. Subspace Surface Deformation

The deformation model described in the previous section offers high flexibility, since it uses the degrees of freedom of
the mesh as degrees of freedom for the surface deformation. As motivated above, we are aiming at a space deformation
approach, which deforms not only the given surface S, but the whole space Ω embedding the object.

One advantage of space deformations is that they are independent from the underlying geometry representation, i.e.,
the same technique is applicable to point-sets, polygonal surface meshes, and polyhedral volume discretizations. This
also allows to deform an existing volume mesh simultaneously with the surface, a feature of particularly importance
for design optimization. Furthermore, complex designs often consist of multiple disconnected components that space
deformations can naturally deform at once. Finally, the robustness against defects in the input data (e.g., degenerate
triangles) is another compelling argument for space deformations, which are neither affected by the complexity nor by
the quality of the input meshes.

In contrast to the previous section, we are looking for a deformation function d : Ω ⊂ R3 → R3 that deforms the
embedding space Ω around the model, while at the same time offering a comparable flexibility and deformation quality:

dh (x) =

k∑
j=1

w jϕ j (x),

where ϕ1, . . . , ϕk are coarser shape functions (k � n) and w j ∈ R
3 their coefficients.

In the following, we will analyze the modeling flexibility of different subspaces corresponding to different shape
functions ϕ j . In order to make the experiments more comparable to the mesh-based deformation, and to avoid
any dependence on potentially insufficient numerical quadrature, we minimize the same vertex-based discrete shell
energy (9), but replace the per-vertex displacements di by dh (xi ). We can then express the n × 3 matrix d of vertex
displacements in terms of the coefficients w = (wT

1 , . . . ,w
T
k

)T ∈ Rk×3 using a n × k subspace matrix Φ:

d = Φw with Φi, j = ϕ j (xi ).

Inserting this into the discrete shell energy (9) leads to the k × k least squares system

ΦT
(
wsGTG + wbLTL + w f FTF

)
Φw = ΦT

(
w f FTFd̄

)
. (11)

In the following, we compare different choices for the shape functions ϕ j . Motivated by our previous investigations [2,3],
we focus on meshless, kernel-based discretization, and start with globally supported triharmonic RBFs, which however
disqualify due to their high computational cost and limited scalability. We then analyze compactly supported Wendland
RBFs [27] as well as moving least squares discretization [4].

For these kernel-based discretizations, we first need an efficient method to place the basis functions ϕ j on the surface
S. To this end we employ a sampling strategy based on iterative Lloyd-relaxation [28], which we illustrate in Figure 2.
Starting from the initial mesh, we create a dense sampling of the surface by computing random points within each
polygonal face of the mesh. We then select a subset of k samples from the dense sampling by means of farthest point
selection, i.e., we start with a random sample and iteratively add new samples based on maximizing the minimum
distance between the new and the previously chosen samples. Finally, in order to maximize uniformity of the sampling
we perform Lloyd-relaxation, i.e., we iteratively move each sample to the barycenter of the dense sample points being
closest to the sample.
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Fig. 3. Deformation of a plane (4000 vertices) minimizing bending (top row) and stretching (bottom row) energies. From left to right: Surface
deformation, global RBFs, compact RBFs with medium (s = 50) and large (s = 200) support, MLS with small (s = 5) support. RBFs and MLS use
1000 shape functions.

Triharmonic RBFs. In our previous work [2,29], we successfully employed global triharmonic RBFs for high quality
mesh morphing. Following this approach, we can construct a subspace by using shape functions

ϕ j (x) =
x − c j


3

located at centers c j . In Figure 3 we provide a comparison between the purely surface-based deformation and a
subspace deformation using global triharmonic RBFs. While triharmonic RBFs work well for minimizing bending
(which they do by construction), they fail to model stretching-dominant materials. Furthermore, due to their global
support the matrix Φ is dense, posing a serious limitation in terms of performance and scalability.

Wendland RBFs. An alternative to globally supported RBFs are compactly supported RBFs, such as the C2-continuous
Wendland functions

ϕ j (x) = ϕ
(x − c j


)

= ϕ(r) =



(1 − r)4(4r + 1) , r < σ ,

0 , otherwise .

The choice of the support radius σ is critical for the quality of the resulting subspace. In our implementation, we set
support radii so that at least s shape functions ϕ j cover each geometry point xi . As illustrated in Figure 3, the results
with compact RBFs heavily depends on the chosen support radius. A moderately small radius of s = 50 leads to severe
artifacts in the deformation. Only with an overly large radius of s = 200 the subspace produces results comparable to
the surface deformation. In this case, however, the resulting linear system is not sufficiently sparse anymore, so that the
compact RBFs are not an alternative in terms of scalability.

Moving Least Squares. An alternative to RBFs is the meshless moving least squares (MLS) approximation method.
This allows for the construction of high quality and scalable subspaces, as we illustrate in Figure 3. In contrast to
compact RBFs, MLS yield high quality results with a cover of s = 5. Since a reasonably comprehensive introduction
to MLS is beyond the scope of this paper we refer the reader to the detailed introduction of [4] and only provide the
required basic facts. The MLS shape functions ϕ j (x) are defined as

ϕ j (x) = p(x)TM−1(x)p(c j )w(x − c j ) ,

where p(x) is the vector of monomials p(x, y, z) = (1, x, y, z)T and the spatially varying matrix M(x) ∈ R4×4 is the
so-called moment matrix

M(x) =

k∑
j=1

w(x − c j )p(c j )p(c j )T .

The weighting function w(·) is compactly supported and of sufficient smoothness. In our implementation, we use
w(r) = 1

2 cos(r/σ · π) + 1
2 , with w(r) = 0 for r > σ. Unlike RBFs, the MLS basis functions do not have a simple
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analytic form, but require the inversion of the moment matrix for function evaluation. Note that the moment matrix
becomes singular if the MLS samples c j lie in the kernel of a linear polynomial (coplanar samples). We robustly handle
this case by replacing the inverse M−1 by the pseudo-inverse M+ [30].

Even though MLS basis functions are significantly more expensive to evaluate than RBFs, this is not a problem in
design optimization, since the MLS matrixΦ can be pre-computed and re-used throughout the design optimization loop.
More importantly, the MLS discretization scales well to complex models due to the sparsity ofΦ, and the evaluation of
ϕ j is trivial to parallelize.

In summary, an MLS subspace yields a deformation that combines the strengths of the three approaches: the flexible
energy minimization of mesh-based surface deformations, the high quality of global RBFs, and the scalability of
compactly supported basis functions.

5. Volumetric Space Deformation

The previous section motivated the use of MLS shape functions as a flexible subspace for high quality deformation.
However, the above comparisons—while using a space deformation function d : R3 → R3—still employed the
stretching and bending energies based on a surface mesh (6)–(8). In this section we generalize the MLS deformation
to true volumetric space deformations, which can then robustly process defect-laden, highly complex, and multi-
component input meshes. To this end, we have to (i) place MLS kernels not only on the surface, but also in the
embedding space Ω, and (ii) replace the vertex-based quadrature for integrating gradients and Laplacians over the
surface S by a numerical cubature for integration over the embedding space Ω.

The volumetric sampling is a simple extension of the surface sampling shown in Figure 2. We first perform a dense
sampling of the volume elements and then choose a subset by means for farthest point selection. We add this subset to
the initial farthest point sampling of the surface S and then perform a combined Lloyd clustering of both the surface
and volume samples, where we give a higher weight or density to the surface, leading to a slightly higher sampling
density of the surface compared to the volume. As before, we denote the resulting MLS samples by c j , j = 1, . . . , k.

We perform exactly the same sampling strategy to determine integration points qi , i = 1, . . . ,N , but make sure that
the sampling density of the integration points qi is sufficiently larger than the density of the MLS samples c j (we use
N ≈ 4k).

Discretizing the stretching energy (2) in space amounts to evaluating the basis function derivatives at integration
points:

Estretch[dh] =

N∑
i=1

Vi
∇d(qi )2

=

N∑
i=1

Vi



k∑
j=1

w j∇ϕ j (qi )


2

= ‖Gw‖2 , (12)

where Vi is the (approximate) Voronoi volume of integration point qi , and G is a 3N × k gradient matrix with

G3i, j =
√

Vi ·
∂ ϕ j (qi )
∂ x

, G3i+1, j =
√

Vi ·
∂ ϕ j (qi )
∂ y

, G3i+2, j =
√

Vi ·
∂ ϕ j (qi )
∂ z

.

Similarly, discretizing the bending energy (3) in space leads to

Ebend[dh] =

N∑
i=1

Vi
∆d(qi )2

=

N∑
i=1

Vi



k∑
j=1

w j∆ϕ j (qi )


2

= ‖Lw‖2 , (13)

with a N × k Laplacian matrix Li, j =
√

Vi∆ϕ j (qi ). For the computation of basis function derivatives we refer the
reader to [4].

For the prescribed Dirichlet constraints we keep the subspace formulation FΦw − Fd̄
2

of (11). Combining this
with the above spatial energies, i.e., with the MLS version of the gradient matrix G and the Laplace matrix L, leads to
the final k × k linear least squares system(

wsGTG + wbLTL + w fΦ
TFTFΦ

)
w = w fΦ

TFTFd̄. (14)
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Fig. 4. Handle-based deformation of a plane (4000 vertices) minimizing deformation energies using a spatial discretization based on MLS (1000
kernels). Pure bending (left), pure stretching (center), and a mixture thereof (right) wb = 0.1, ws = 3.0.

Solving this system yields the desired MLS space deformation, which no longer depends on the complexity and quality
of the input meshes. As demonstrated in Figure 4, the MLS deformation based on spatial energies provides the same
deformation quality and flexibility as the surface-based energy discretization of Figure 3.

6. Constrained Space Deformation

A design prototype typically contains regions with important geometric properties such as planar components,
characteristic feature lines, or circular couplings. Such geometric features are often essential for the design in order to
fulfill its function or to meet production limitations. The classical approach to maintain such constraints during an
optimization process is to penalize constraint violation by integrating additional penalty terms into the fitness or cost
function. However, this approach has the severe drawback that infeasible designs are still created and evaluated, which
is particularly unfavorable when the performance evaluation involves time-consuming CFD or FEM simulations.

In contrast, we propose to maintain constraints right from the start by incorporating them directly into the deformation
method, thereby preventing the evaluation of infeasible designs. Within our method the user marks a particular region—
probably guided by some mechanism for automatic detection of geometric primitives—as being of a particular
constraint type such as, e.g., planarity. Then, when deforming the shape by manipulating the handle region, our method
automatically makes sure that the corresponding constraint is satisfied while still minimizing the deformation energy
of (1).

As already noted in Section 2, several approaches to constrained deformation have been proposed during recent
years [14]. Most of them, however, are purely surface-based in nature and therefore too limited for general design
optimization tasks. In contrast, the Shape-Up technique of Bouaziz and colleagues [19] maintains constraints on
arbitrary geometric data sets, making it the method of choice for our application area. In the following, we will briefly
describe the technique and show how we adopt it within our system. For a full treatment of the method, however, we
refer the reader to the original paper [19].

The key ingredients of Shape-Up are projection operators for different types of constraints. Modeling a constraint
(e.g., planarity) for a vertex set x requires the projection P(x) of x onto the constraint set, i.e., the smallest change of x
such that it satisfies the constraint. For a planarity constraint, for instance, P(x) computes the projection onto a least
squares fitting plane. For the most common constraints this projection can be computed quite easily [19].

The Shape-Up method then minimizes deviation from the constraints as squared distance from constraint projections:

Econst(x) =

s∑
r=1

‖x − Pr (x)‖2 . (15)

Since the projections Pr (x) typically are nonlinear functions of x, Econst is minimized by an alternating optimization
procedure: First x is kept fixed and the projections or = Pr (x) are computed. Then the projected target positions or are
held fixed and x is updated by a least squares fit to the or , leading to a linear system of the form

CTCx = CT ō, (16)

where C denotes the relative position of vertices in constraint sets and ō is the vector of the stacked projections or .
This alternating procedure is iterated until convergence.
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Fig. 5. Synthetic constraint examples. For each constraint type (planarity, circularity, feature line) we show the original mesh, the deformation
without constraint, and the deformation minimizing bending and constraint energies using wb = 1.0 and wc = 10 as weights.

In order to integrate this approach into our framework, we add a constraint energy similar to (15) to our discrete
shell energy (9) (weighted by wc) and also perform the above alternating optimization. We first find the constraint
projections P(x) and combine them into the target vector ō, which we rewrite in terms of deformation d instead of
position x. The minimization of constraint deviation is then integrated into the previous least squares system:(

wsGTG + wbLTL + w fΦ
TFTFΦ + wcΦ

TCTCΦ
)

w = ΦT
(
w f FTFd̄ + wcCT ō

)
. (17)

In our current system, we implement three basic geometric constraint types of fundamental nature and general use:
Planarity, circularity, and feature lines. However, additional constraints such as rigidly deforming regions or constraints
on the shape of individual mesh elements can be easily added by employing suitable projection operators. For planarity
and circularity constraints we employ projection operators described in [19]. Our feature line constraint is modeled as a
conformal matching of the initial feature line, which therefore might translate, rotate, and uniformly scale. In Figure 5
we show synthetic examples for each constraint type.

7. Results

In this section, we present different deformation results using our constrained space deformation technique. We use
the Eigen [31] library for efficient matrix operations and the sparse Cholesky decomposition of CHOLMOD [26] for
solving linear systems. We parallelize the evaluation of MLS basis functions and their derivatives using OpenMP [32].
Furthermore, we use the Surface_mesh data structure [33] for efficient surface mesh deformation. In a typical
modeling scenario satisfying the prescribed fixed and handle constraints is of highest importance and geometric
constraints satisfaction is typically more important than smoothness minimization. Therefore, we select the weights
balancing the individual constraint contributions such that w f > wc > ws/b , where w f ≈ 1000, wc ≈ 10, ws/b ≈ 1.
We also note that we normalize the different weights by the number of constraints prescribed for a given type.
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7.1. Surface Deformation

In this section, we present examples for constrained deformations on surface models of typical mechanical parts
such as they can occur within design optimization scenarios. We begin with example deformations of the fandisk model
in Figure 6. In this setup, we keep the bottom part of the model fixed and translate the handle region to the left. We
select a subset of the sharp edges of the model as feature lines, and an additional planar constraint area in the upper left
area. As becomes clear from the illustration, deforming the model without constraints distorts both feature lines and
the planar region, whereas with constraints both of them are nicely preserved.

Example deformations of the joint model are illustrated in Figure 7. We keep the bottom fixed again, lift the top
handle region, and impose a circularity constraint on the pipe-like opening. Without the constraint the opening would
no longer fit with connecting parts, with the constraint, it does. The rightmost image in Figure 7 shows the use of an
additional planarity constraint. In this case, the initially already planar region deforms in such a way that the resulting
mesh minimizes both the smoothness and planarity energies.

Finally, as a more complex example, we show a deformation of the DrivAer [34] reference shape for car body
aerodynamics in Figure 8. The mesh contains 465k vertices, and we use 4k MLS samples to discretize our deformation
energies. As can be seen from the illustration, the circular shape of the wheelhouse is nicely preserved.

7.2. Volume Deformation

In this section, we compare the volume mesh morphing quality of our new method to that of our previously proposed
RBF technique. We show an example deformation of a tetrahedral volume mesh containing 13k vertices in Figure 9.
In this setup, we keep the outer boundary fixed and use the interior sphere-shaped boundary as handle. We can see
that both techniques allow for rather large deformations without resulting in inverted mesh elements. For the sake of
comparison with our previous results [29] we analyze mesh quality in terms of minimum scaled Jacobian. Our new
method results in even slightly increased mesh quality (0.05) compared to our previous RBF morphs (0.03).

As an additional comparison with the results from [29], we include a morphing example of the pipe model as shown
in Figure 10. The original mesh has a min. scaled Jacobian of 0.98. After performing one step of absolute morphing to
the full parameter change the RBF morph results in a mesh quality of 0.951, and our new method yields 0.954.

8. Conclusion & Outlook

In this paper, we presented a novel space deformation technique based on MLS methods for its use in design
optimization scenarios. Our method offers similarly high quality deformations as our previous RBF morphing
technique, but with significantly increased scalability. Our space-based energy discretization allows for flexible
modeling operations typically only provided by mesh-based techniques. Finally, by incorporating geometric constraints
into the deformation, we not only increase modeling capabilities but also its usefulness for design optimization tasks.

Even though our technique provides increased flexibility and scalability compared to RBF morphing, the implemen-
tation complexity increases as well. While RBF deformations simply require the solution of a dense linear system,
our new technique involves Lloyd-relaxation in 3-space, numerical integration, more complex basis functions and
derivatives, as well as the selection of several parameters such as the constraint weights, the number of sample points,
or the basis functions support radii.

There are multiple directions for future work: So far, we only included basic constraints into our system. Therefore,
a natural direction for future work would be the integration of additional constraint types such as the maintenance of
mutual distances between parts or the adherence to maximal or minimal widths and heights. Additional constraints
on the volume mesh are conceivable as well, such as explicit constraints on the size and shape of boundary layer
elements. More advanced constraints could include relations between multiple parts, such as symmetry, orthogonality,
or co-planarity. Another direction is the automatic detection of geometric constraints using an approach similar to [35].

Finally, we look forward to evaluating our technique within an actual design optimization setup including physics
simulations, e.g., the aerodynamic performance optimization of a passenger car.
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Fig. 6. Deformation of the fandisk model. From left to right: Original model, deformation without constraints, with feature line constraint, and with
additional planarity constraint.

Fig. 7. Deformation of the joint model. From left to right: Original model, deformation without constraints, with a circularity constraint, and with an
additional planarity constraint. Note that in the first three images the planar region only stays planar since it is part of the rigidly transformed handle
region.

Fig. 8. Deformation of the DrivAer model. Left: Original setup. Right: Stretching the front while keeping the wheelhouse circular.

Fig. 9. Comparison of volume mesh morphing quality in terms of min. scaled Jacobian. From left to right: The original mesh (0.12), a triharmonic
RBF morph (0.03), and our technique (0.05).
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M

d : R3 → R3

M′

Fig. 10. Example deformation of the pipe model. Left: Original model. Right: Deformed model.
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