

Interactive Shape Modeling and Deformation

T3: Half-Day Tutorial

Introduction, organization

Speakers

Olga Sorkine

Media Research Lab, VLG Courant Institute, New York University

Mario Botsch

Graphics & Geometry Group Bielefeld University

Shapes and Deformations

- Manually modeled and scanned shape data
- Continuous and discrete shape representations

Shapes and Deformations

- Why deformations?
 - Sculpting, customization
 - Character posing, animation
- Criteria?
 - Intuitive behavior and interface
 - Interactivity

Tutorial Goals

- Present recent research in shape editing
- Discuss practical considerations
 - Flexibility
 - Numerical issues
 - Admissible interfaces
- Comparison, tradeoffs

Schedule

09:00 - 09:10	Intro (O)
09:10 – 09:25	Shape representations, differential geometry primer (O)
09:25 – 10:05	Linear surface-based deformations (M)
10:05 – 10:30	Linear space deformations (O)
10:30 - 11:00	Break

Schedule (cont'd)

11:00 - 11:10 Summary of linear methods (M)
11:10 - 11:40 Nonlinear surface-based deformations (M)
11:40 - 12:20 Nonlinear space deformations (O)
12:20 - 12:30 Wrap-up (O+M)

Interactive Shape Modeling and Deformation

T3: Half-Day Tutorial

Shape Representations Differential Geometry Recap

Continuous/analytical surfaces

- Tensor product surfaces (e.g. NURBS)
- Subdivision surfaces

 "Editability" is inherent to the representation

Spline Surfaces

- Tensor product surfaces ("curves of curves")
 - Rectangular grid of control points

$$\mathbf{p}(u,v) = \sum_{i=0}^{k} \sum_{j=0}^{l} \mathbf{p}_{ij} N_i^n(u) N_j^n(v)$$

Spline Surfaces

- Tensor product surfaces ("curves of curves")
 - Rectangular grid of control points
 - Rectangular surface patch

Spline Surfaces

- Tensor product surfaces ("curves of curves")
 - Rectangular grid of control points
 - Rectangular surface patch

- Problems:
 - Many patches for complex models
 - Smoothness across patch boundaries
 - Trimming for non-rectangular patches

Subdivision Surfaces

- Generalization of spline curves / surfaces
 - Arbitrary control meshes
 - Successive refinement (subdivision)
 - Converges to smooth limit surface
 - Connection between splines and meshes

Subdivision Surfaces

- Generalization of spline curves / surfaces
 - Arbitrary control meshes
 - Successive refinement (subdivision)
 - Converges to smooth limit surface
 - Connection between splines and meshes

Spline & Subdivision Surfaces

- Basis functions are smooth bumps
 - Fixed support
 - Fixed control grid
- Bound to control points
 - Initial patch layout is crucial
 - Requires experts!
- Decouple deformation from surface representation!

Discrete Surfaces: Point Sets, Meshes

- Flexible
- Suitable for highly detailed scanned data
- No analytic surface
- No inherent "editability"

Differential Geometry

- Tool to analyze shape
- Key notions:
 - Tangents and normals
 - Curvatures
 - Laplace-Beltrami operator

Continuous Case – Parametric

- Tangent plane at point $\mathbf{p}(u,v) \text{ is spanned by}$ $\mathbf{p}_u = \frac{\partial \mathbf{p}(u,v)}{\partial u}, \quad \mathbf{p}_v = \frac{\partial \mathbf{p}(u,v)}{\partial v}$
- Normal: $\mathbf{n}(u,v) = \frac{\mathbf{p}_u \times \mathbf{p}_v}{\|\mathbf{p}_u \times \mathbf{p}_v\|}$

Discrete Case – Piecewise Linear

- No derivatives!
- Strategy 1: locally fit an analytic patch
 - Expensive
- Strategy 2: generalize definitions to discrete case
 - Fast
 - Start from intrinsic notions (non-parametric)

Curvature on a curve: the rate of change in normal

Curvature on a curve: the rate of change in normal

Curvature on a curve: the rate of change in normal

Curvature on a curve: the rate of change in normal

Surface Curvatures

- Principal curvatures
 - Maximal curvature $\kappa_1 = \kappa_{\max} = \max_{\alpha} \kappa_n(\varphi)$
 - Minimal curvature $\kappa_2 = \kappa_{\min} = \min_{\alpha} \kappa_n(\varphi)$
- Mean curvature $H = \frac{\kappa_1 + \kappa_2}{2} = \frac{1}{2\pi} \int_0^{2\pi} \kappa_n(\varphi) \, \mathrm{d}\varphi$
- Gaussian curvature

$$K = \kappa_1 \cdot \kappa_2$$

Classification

Local surface shape by curvatures

Discrete Gaussian Curvature

Angle deficit

Mean Curvature

$$H = \frac{1}{2\pi} \int_{0}^{2\pi} \kappa(\varphi) \,\mathrm{d}\varphi$$

Can define through the Laplace-Beltrami operator

$$\Delta_M \mathbf{p} = -H\mathbf{n}$$

Discrete Mean Curvature

Intuition:

Intuition for uniform discretization

$$\mathbf{v}_{j1} + \mathbf{v}_{j4} - 2\mathbf{v}_i + \mathbf{v}_{j2} + \mathbf{v}_{j5} - 2\mathbf{v}_i + \mathbf{v}_{j3} + \mathbf{v}_{j6} - 2\mathbf{v}_i = \mathbf{v}_{j3} + \mathbf{v}_{j6} - 2\mathbf{v}_i = \mathbf{b}_{i1} \mathbf{v}_{i2} - \mathbf{b}_{i1} \mathbf{v}_{i2} + \mathbf{b}_{i2} \mathbf{v}_{i3} + \mathbf{b}_{i2} \mathbf{v}_{i3} + \mathbf{b}_{i3} \mathbf{v}_{i4} - \mathbf{b}_{i1} \mathbf{v}_{i4} = \mathbf{b}_{i1} \mathbf{v}_{i2} \mathbf{v}_{i3} \mathbf{v}_{i4} - \mathbf{b}_{i1} \mathbf{v}_{i4} \mathbf{v}$$

Intuition for uniform discretization

$$\mathbf{v}_{j1} + \mathbf{v}_{j4} - 2\mathbf{v}_i + \mathbf{v}_{j2} + \mathbf{v}_{j5} - 2\mathbf{v}_i + \mathbf{v}_{j5} - 2\mathbf{v}_{j5} - 2\mathbf{v}_{j5} + \mathbf{v}_{j5} + \mathbf{$$

$$\frac{\mathbf{v}_{i3} + \mathbf{v}_{i6} - 2\mathbf{v}_i}{L(\mathbf{v}_i) = \frac{1}{6} \left(\sum_{k=1}^{6} \mathbf{v}_{jk} - 6\mathbf{v}_i \right) \approx -H\mathbf{n}}$$

 Cotangent formula – to compensate for triangle shape irregularity

$$L_{c}(\mathbf{v}_{i}) = \frac{1}{2A(\mathbf{v}_{i})} \sum_{\mathbf{v}_{j} \in N_{1}(\mathbf{v}_{i})} (\cot \alpha_{ij} + \cot \beta_{ij}) (\mathbf{v}_{j} - \mathbf{v}_{i})$$

 When the edge lengths are equal, the uniform and the cotangent Laplacians coincide

 When the edge lengths are equal, the uniform and the cotangent Laplacians coincide

Linear Surface-Based Deformation

Prof. Dr. Mario Botsch Computer Graphics & Geometry Processing Bielefeld University

Mesh Deformation

Global deformation with intuitive detail preservation

Mesh Deformation

Linear Surface-Based Deformation

Shell-Based Deformation

- Multiresolution Deformation
- Differential Coordinates

Modeling Metaphor

 $\mathbf{d}: \mathcal{S} \to \mathbb{R}^3$

 $\mathbf{p} \mapsto \mathbf{p} + \mathbf{d}(\mathbf{\dot{p}})$

- Mesh deformation by displacement function d
 - Interpolate prescribed constraints
 - Smooth, intuitive deformation
 - Physically-based principles

 $\mathbf{d}\left(\mathbf{p}_{i}\right)=\mathbf{d}_{i}$

Shell Deformation Energy

Stretching

- Change of local distances
- Captured by 1st fundamental form

Bending

- Change of local curvature
- Captured by 2nd fundamental form
- Stretching & bending is sufficient
 - Differential geometry: "1st and 2nd fundamental forms determine a surface up to rigid motion."

Physically-Based Deformation

Nonlinear stretching & bending energies

$$\int_{\Omega} k_s \left\| \mathbf{I} - \mathbf{I}' \right\|^2 + k_b \left\| \mathbf{I} - \mathbf{I}' \right\|^2 \, \mathrm{d}u \mathrm{d}v$$
stretching

• Linearize terms \rightarrow Quadratic energy

$$\int_{\Omega} k_s \underbrace{\left(\|\mathbf{d}_u\|^2 + \|\mathbf{d}_v\|^2 \right)}_{\text{stretching}} + k_b \underbrace{\left(\|\mathbf{d}_{uu}\|^2 + 2 \|\mathbf{d}_{uv}\|^2 + \|\mathbf{d}_{vv}\|^2 \right)}_{\text{bending}} \mathrm{d}u \mathrm{d}v$$

Physically-Based Deformation

Minimize linearized bending energy

$$E(\mathbf{d}) = \int_{\mathcal{S}} \|\mathbf{d}_{uu}\|^2 + 2 \|\mathbf{d}_{uv}\|^2 + \|\mathbf{d}_{vv}\|^2 \,\mathrm{d}u \,\mathrm{d}v \to \min$$
$$\begin{array}{c} f(x) \to \min \\ f(x) \to \min \end{array}$$

• Variational calculus \rightarrow Euler-Lagrange PDE

$$\Delta^2 \mathbf{d} := \mathbf{d}_{uuuu} + 2\mathbf{d}_{uuvv} + \mathbf{d}_{vvvv} = 0$$

$$f'(x) = 0$$

"Best" deformation that satisfies constraints

Deformation Energies

PDE Discretization

• Euler-Lagrange PDE

$$\Delta^2 \mathbf{d} = \mathbf{0}$$

$$\mathbf{d} = \mathbf{0}$$

$$\mathbf{d} = \delta \mathbf{h}$$

Laplace discretization

$$\Delta \mathbf{d}_{i} = \frac{1}{2A_{i}} \sum_{j \in \mathcal{N}_{i}} (\cot \alpha_{ij} + \cot \beta_{ij}) (\mathbf{d}_{j} - \mathbf{d}_{i})$$
$$\Delta^{2} \mathbf{d}_{i} = \Delta(\Delta \mathbf{d}_{i})$$
$$\mathbf{x}_{j} \quad \mathbf{x}_{i} \quad \mathbf{x}_{i}$$

Linear System

Sparse linear system (19 nz/row)

$$\begin{pmatrix} \Delta^2 \\ \mathbf{0} \ \mathbf{I} \ \mathbf{0} \\ \mathbf{0} \ \mathbf{0} \ \mathbf{I} \end{pmatrix} \begin{pmatrix} \vdots \\ \mathbf{d}_i \\ \vdots \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \\ \delta \mathbf{h}_i \end{pmatrix}$$

Turn into symmetric positive definite system

- Solve this system each frame
 - Use efficient linear solvers !!!
 - Sparse Cholesky factorization
 - See course notes for details

Derivation Steps

CAD-Like Deformation

[Botsch & Kobbelt, SIGGRAPH 04]

Face Animation

[Bickel et al, SCA 08]

Linear Surface-Based Deformation

- Shell-Based Deformation
- Multiresolution Deformation
- Differential Coordinates

Multiresolution Modeling

- Even pure translations induce local rotations!
 - Inherently non-linear coupling
- Alternative approach
 - Linear deformation + multi-scale decomposition...

Multiresolution Editing

Frequency decomposition

Add high frequency details, stored in local frames

Multiresolution Editing

Normal Displacements

- Neighboring displacements are not coupled
 - Surface bending changes their angle
 - Leads to volume changes or self-intersections

- Neighboring displacements are not coupled
 - Surface bending changes their angle
 - Leads to volume changes or self-intersections

- Neighboring displacements are not coupled
 - Surface bending changes their angle
 - Leads to volume changes or self-intersections
 - See course notes for some other techniques...
- Multiresolution hierarchy difficult to compute
 - Complex topology
 - Complex geometry
 - Might require more hierarchy levels

Linear Surface-Based Deformation

- Shell-Based Deformation
- Multiresolution Deformation
- Differential Coordinates

- Manipulate <u>differential coordinates</u> instead of spatial coordinates
 - Gradients, Laplacians, local frames
 - Intuition: Close connection to surface normal
- 2. Find mesh with desired differential coords
 - Cannot be solved exactly
 - Formulate as energy minimization

• Which differential coordinate δ_i ?

- Gradients
- Laplacians

- How to get local transformations $T_i(\boldsymbol{\delta}_i)$?
 - Smooth propagation
 - Implicit optimization

• Manipulate gradient of a function (e.g. a surface)

$$\mathbf{g} = \nabla \mathbf{f} \qquad \mathbf{g} \mapsto \mathbf{T}(\mathbf{g})$$

• Find function \mathbf{f} ' whose gradient is (close to) \mathbf{g} '

$$\mathbf{f}' = \underset{\mathbf{f}}{\operatorname{argmin}} \int_{\Omega} \|\nabla \mathbf{f} - \mathbf{T}(\mathbf{g})\|^2 \, \mathrm{d}u \mathrm{d}v$$

• Variational calculus \rightarrow Euler-Lagrange PDE

$$\Delta \mathbf{f}' = \operatorname{div} \mathbf{T}(\mathbf{g})$$

Consider piecewise linear coordinate function

$$\mathbf{p}(u, v) = \sum_{v_i} \mathbf{p}_i \cdot \phi_i(u, v)$$

• Its gradient is

$$\nabla \mathbf{p}(u, v) = \sum_{v_i} \mathbf{p}_i \cdot \nabla \phi_i(u, v)$$

Consider piecewise linear coordinate function

$$\mathbf{p}(u, v) = \sum_{v_i} \mathbf{p}_i \cdot \phi_i(u, v)$$

• Its gradient is

$$\nabla \mathbf{p}(u, v) = \sum_{v_i} \mathbf{p}_i \cdot \nabla \phi_i(u, v)$$

• It is constant per triangle

$$\nabla \mathbf{p}|_{f_j} =: \mathbf{g}_j \in \mathbb{R}^{3 \times 3}$$

Gradient of coordinate function p

$$\begin{pmatrix} \mathbf{g}_1 \\ \vdots \\ \mathbf{g}_F \end{pmatrix} = \underbrace{\mathbf{G}}_{(3F \times V)} \begin{pmatrix} \mathbf{p}_1^T \\ \vdots \\ \mathbf{p}_V^T \end{pmatrix}$$

Manipulate per-face gradients

$$\mathbf{g}_j \;\mapsto\; \mathbf{T}_j(\mathbf{g}_j)$$

- Reconstruct mesh from new gradients
 - Overdetermined $(3F \times V)$ system
 - Weighted least squares system
 - Linear Poisson system $\Delta \mathbf{p}' = \operatorname{div} \mathbf{T}(\mathbf{g})$

$$\begin{array}{c} \mathbf{G}^{T}\mathbf{D}\mathbf{G} \\ \vdots \\ \operatorname{div}\nabla = \Delta \end{array} \begin{pmatrix} \mathbf{p}_{1}^{\prime T} \\ \vdots \\ \mathbf{p}_{V}^{\prime T} \end{pmatrix} = \begin{array}{c} \mathbf{G}^{T}\mathbf{D} \\ \operatorname{div} \\ \operatorname{div} \\ \end{array} \begin{pmatrix} \mathbf{T}_{1}(\mathbf{g}_{1}) \\ \vdots \\ \operatorname{T}_{F}(\mathbf{g}_{F}) \end{pmatrix}$$

Laplacian-Based Editing

Manipulate Laplacians field of a surface

$$\mathbf{l} = \Delta(\mathbf{p}) \ , \ \mathbf{l} \mapsto \mathbf{T}(\mathbf{l})$$

- Find surface whose Laplacian is (close to) δ '

$$\mathbf{p}' = \underset{\mathbf{p}}{\operatorname{argmin}} \int_{\Omega} \|\Delta \mathbf{p} - \mathbf{T}(\mathbf{l})\|^2 \, \mathrm{d}u \mathrm{d}v$$

Variational calculus yields Euler-Lagrange PDE

$$\Delta^2 \mathbf{p}' = \Delta \mathbf{T}(\mathbf{l})$$

- Which differential coordinate δ_i ?
 - Gradients
 - Laplacians

- How to get local transformations $T_i(\delta_i)$?
 - Smooth propagation
 - Implicit optimization

Smooth Propagation

- 1. Compute handle's deformation gradient
- 2. Extract rotation and scale/shear components
- 3. Propagate damped rotations over ROI

Deformation Gradient

Handle has been transformed <u>affinely</u>

 $\mathbf{T}(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{t}$

Deformation gradient is

 $\nabla \mathbf{T}(\mathbf{x}) = \mathbf{A}$

- Extract rotation ${\boldsymbol{R}}$ and scale/shear ${\boldsymbol{S}}$

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T \quad \Rightarrow \quad \mathbf{R} = \mathbf{U} \mathbf{V}^T, \ \mathbf{S} = \mathbf{V} \mathbf{\Sigma} \mathbf{V}^T$$

Smooth Propagation

- Construct smooth scalar field [0,1]
 - *s*(**x**)=1: Full deformation (handle)
 - *s*(**x**)=0: No deformation (fixed part)
 - $s(\mathbf{x}) \in (0,1)$: Damp handle transformation (in between)

- Differential coordinates work well for rotations
 - Represented by deformation gradient
- Translations don't change deformation gradient
 - Translations don't change differetial coordinates
 - "Translation insensitivity"

Implicit Optimization

• Optimize for positions \mathbf{p}_i ' & transformations \mathbf{T}_i

$$\Delta^{2} \begin{pmatrix} \vdots \\ \mathbf{p}'_{i} \\ \vdots \end{pmatrix} = \begin{pmatrix} \vdots \\ \Delta \mathbf{T}_{i}(\mathbf{l}_{i}) \\ \vdots \end{pmatrix} \iff \mathbf{T}_{i}(\mathbf{p}_{i} - \mathbf{p}_{j}) = \mathbf{p}'_{i} - \mathbf{p}'_{j}$$

- Linearize rotation/scale \rightarrow one linear system

$$\mathbf{T}_{i} = \begin{pmatrix} s & -r_{3} & r_{2} \\ r_{3} & s & -r_{1} \\ -r_{2} & r_{1} & s \end{pmatrix}$$

Laplacian Surface Editing

Connection to Shells?

Neglect local transformations T_i for a moment...

$$\int \left\| \Delta \mathbf{p}' - \mathbf{l} \right\|^2 \to \min \longrightarrow \Delta^2 \mathbf{p}' = \Delta \mathbf{l}$$

- Basic formulations equivalent!
- Differ in detail preservation
 - Rotation of Laplacians
 - Multi-scale decomposition

$$\mathbf{\Delta}^2(\mathbf{p} + \mathbf{d}) = \Delta^2 \mathbf{p}$$

 $\begin{vmatrix} \mathbf{p}' = \mathbf{p} + \mathbf{d} \\ \mathbf{l} = \Delta \mathbf{p} \end{vmatrix}$

$$\int \left\| \mathbf{d}_{uu} \right\|^2 + 2 \left\| \mathbf{d}_{uv} \right\|^2 + \left\| \mathbf{d}_{vv} \right\|^2 \to \min \quad \boldsymbol{\longleftarrow} \quad \Delta^2 \mathbf{d} = 0$$

Linear Surface-Based Deformation

- Shell-Based Deformation
- Multiresolution Deformation
- Differential Coordinates

Interactive Shape Modeling and Deformation

T3: Half-Day Tutorial

Linear Space Deformations

Olga Sorkine, Courant Institute

Space Deformation

- Displacement function defined on the ambient space
 d: R³→ R³
- Evaluate the function on the points of the shape embedded in the space

$$\mathbf{x}' = \mathbf{x} + \mathbf{d}(\mathbf{x})$$

Twist warp Global and local deformation of solids [A. Barr, SIGGRAPH 84]

Olga Sorkine, Courant Institute

Freeform Deformations

- Control object
- User defines displacements d_i for each element of the control object
- Displacements are interpolated to the entire space using basis functions $B_i(\mathbf{x}) : \mathbb{R}^3 \to \mathbb{R}$

$$\mathbf{d}(\mathbf{x}) = \sum_{i=1}^{k} \mathbf{d}_{i} B_{i}(\mathbf{x})$$

 Basis functions should be smooth for aesthetic results

Trivariate Tensor Product Bases

[Sederberg and Parry 86]

- Control object = lattice
- Basis functions B_i(x) are trivariate tensor-product splines:

$$\mathbf{d}(x, y, z) = \sum_{i=0}^{l} \sum_{j=0}^{m} \sum_{k=0}^{n} \mathbf{d}_{ijk} N_i(x) N_j(y) N_i(z)$$

Olga Sorkine, Courant Institute

Trivariate Tensor Product Bases

- Similar to the surface case
 - Aliasing artifacts
- Interpolate deformation constraints?
 - Only in least squares sense

Olga Sorkine, Courant Institute

Lattice as Control Object

- Difficult to manipulate
- The control object is not related to the shape of the edited object
- Part of the shape in close Euclidean distance always deform similarly, even if geodesically far

Wires

[Singh and Fiume 98]

- Control objects are arbitrary space curves
- Can place curves along meaningful features of the edited object
- Smooth deformations around the curve with decreasing influence

Handle Metaphor

[RBF, Botsch and Kobbelt 05]

- Wish list for the displacement function $\mathbf{d}(\mathbf{x})$:
 - Interpolate prescribed constraints
 - Smooth, intuitive deformation

Volumetric Energy Minimization [RBF, Botsch and Kobbelt 05]

Minimize similar energies to surface case

$$\int_{\Re^3} \left\| \mathbf{d}_{xx} \right\|^2 + \left\| \mathbf{d}_{xy} \right\|^2 + \dots + \left\| \mathbf{d}_{zz} \right\|^2 dx dy dz \rightarrow \min$$

- But displacements function lives in 3D...
 - Need a volumetric space tessellation?
 - No, same functionality provided by RBFs!

Radial Basis Functions

[RBF, Botsch and Kobbelt 05]

Represent deformation by RBFs

$$\mathbf{d}(\mathbf{x}) = \sum_{j} \mathbf{w}_{j} \cdot \boldsymbol{\varphi}(\|\mathbf{c}_{j} - \mathbf{x}\|) + \mathbf{p}(\mathbf{x})$$

- Triharmonic basis function $\varphi(r) = r^3$
 - C² boundary constraints
 - Highly smooth / fair interpolation

$$\int_{\Re^3} \left\| \mathbf{d}_{xxx} \right\|^2 + \left\| \mathbf{d}_{xyy} \right\|^2 + \ldots + \left\| \mathbf{d}_{zzz} \right\|^2 dx dy dz \rightarrow \min$$

RBF Fitting

[RBF, Botsch and Kobbelt 05]

Represent deformation by RBFs

$$\mathbf{d}(\mathbf{x}) = \sum_{j} \mathbf{w}_{j} \cdot \boldsymbol{\varphi}(\|\mathbf{c}_{j} - \mathbf{x}\|) + \mathbf{p}(\mathbf{x})$$

- RBF fitting
 - Interpolate displacement constraints
 - Solve linear system for w_i and p

RBF Fitting

[RBF, Botsch and Kobbelt 05]

Represent deformation by RBFs

$$\mathbf{d}(\mathbf{x}) = \sum_{j} \mathbf{w}_{j} \cdot \boldsymbol{\varphi}(\|\mathbf{c}_{j} - \mathbf{x}\|) + \mathbf{p}(\mathbf{x})$$

- RBF evaluation
 - Function d transforms points
 - Jacobian ∇d transforms normals
 - Precompute basis functions
 - Evaluate on the GPU!

Local & Global Deformations

[RBF, Botsch and Kobbelt 05]

Local & Global Deformations

[RBF, Botsch and Kobbelt 05]

1M vertices movie

Space Deformations

Summary so far

Handle arbitrary input

- Meshes (also non-manifold)
- Point sets
- Polygonal soups

 Complexity mainly depends on the control object, not the surface

- 3M triangles
- 10k components
- Not oriented
- Not manifold

Space Deformations

Summary so far

Handle arbitrary input

- Meshes (also non-manifold)
- Point sets
- Polygonal soups

- F(x,y,z) = (F(x,y,z), G(x,y,z), H(x,y,z))YZE: functionsthen the Jacobian is the determinant $\left| \frac{\partial F}{\partial F}, \frac{\partial F}{\partial F} \right|$
 - $J_{ac}(\mathbf{F}) = \begin{vmatrix} \frac{\partial F}{\partial z} & \frac{\partial F}{\partial y} & \frac{\partial F}{\partial z} \\ \frac{\partial G}{\partial z} & \frac{\partial G}{\partial y} & \frac{\partial G}{\partial z} \\ \frac{\partial H}{\partial z} & \frac{\partial H}{\partial y} & \frac{\partial H}{\partial z} \end{vmatrix}$

- Easier to analyze: functions on Euclidean domain
 - Volume preservation: |Jacobian| = 1

Space Deformations

Summary so far

- The deformation is only loosely aware of the shape that is being edited
- Small Euclidean distance \rightarrow similar deformation
- Local surface detail may be distorted

- Cage = crude version of the input shape
- Polytope (not a lattice)

Olga Sorkine, Courant Institute

- Cage = crude version of the input shape
- Polytope (not a lattice)
- Each point x in space is represented w.r.t. to the cage elements using coordinate functions

$$\mathbf{x} = \sum_{i=1}^{k} w_i(\mathbf{x}) \mathbf{p}_i$$

- Cage = crude version of the input shape
- Polytope (not a lattice)
- Each point x in space is represented w.r.t. to the cage elements using coordinate functions

$$\mathbf{x} = \sum_{i=1}^{k} w_i(\mathbf{x}) \mathbf{p}_i$$

Olga Sorkine, Courant Institute

- Cage = crude version of the input shape
- Polytope (not a lattice)

Olga Sorkine, Courant Institute

- Cage = crude version of the input shape
- Polytope (not a lattice)

$$\mathbf{x'} = \sum_{i=1}^k w_i(\mathbf{x}) \mathbf{p}'_i$$

- Cage = crude version of the input shape
- Polytope (not a lattice)

$$\mathbf{x}' = \sum_{i=1}^k w_i(\mathbf{x}) \mathbf{p}'_i$$

Olga Sorkine, Courant Institute

- Mean-value coordinates (Floater, Ju et al. 2005)
 - Generalization of barycentric coordinates
 - Closed-form solution for $w_i(\mathbf{x})$

- Mean-value coordinates (Floater, Ju et al. 2005)
 - Not necessarily positive on non-convex domains

 PMVC (Lipman et al. 2007) – ensures positivity, but no longer closed-form and only C⁰

- Harmonic coordinates (Joshi et al. 2007)
 - Harmonic functions $h_i(\mathbf{x})$ for each cage vertex \mathbf{p}_i
 - Solve

$$\Delta h = 0$$

subject to: h_i linear on the boundary s.t. $h_i(\mathbf{p}_i) = \delta_{ii}$

Olga Sorkine, Courant Institute

- Harmonic coordinates (Joshi et al. 2007)
 - Harmonic functions $h_i(\mathbf{x})$ for each cage vertex \mathbf{p}_i
 - Solve

$$\Delta h = 0$$

subject to: h_i linear on the boundary s.t. $h_i(\mathbf{p}_i) = \delta_{ij}$

- Volumetric Laplace equation
- Discretization, no closed-form

Harmonic coordinates (Joshi et al. 2007)

Olga Sorkine, Courant Institute

MVC

29

- Green coordinates (Lipman et al. 2008)
- Observation: previous vertex-based basis functions always lead to affine-invariance!

Olga Sorkine, Courant Institute

- Green coordinates (Lipman et al. 2008)
- Correction: Make the coordinates depend on the cage faces as well

Olga Sorkine, Courant Institute

- Green coordinates (Lipman et al. 2008)
- Closed-form solution
- Conformal in 2D, quasi-conformal in 3D

Coordinate Functions

- Green coordinates (Lipman et al. 2008)
- Closed-form solution
- Conformal in 2D, quasi-conformal in 3D

Alternative interpretation in 2D via holomorphic functions and extension to point handles : Weber et al. Eurographics 2009

Coffee/Tea Break

Resume at 11:00

Summary of Linear Methods

Prof. Dr. Mario Botsch Computer Graphics & Geometry Processing Bielefeld University

Linear Approaches

Linear Approaches

- Resulting linear systems
 - Shell-based $\Delta^2 \mathbf{d} = \mathbf{0}$
 - Gradient-based $\Delta \mathbf{p} = \nabla \cdot \mathbf{T}(\mathbf{g})$
 - Laplacian-based

$$\Delta^2 \mathbf{p} = \Delta \mathbf{T}(\mathbf{l})$$

- Properties
 - Highly sparse
 - Symmetric, positive definite (SPD)
 - Solve for new RHS each frame!

Linear SPD Solvers

Dense Cholesky factorization

- Cubic complexity
- High memory consumption (doesn't exploit sparsity)
- Iterative conjugate gradients
 - Quadratic complexity
 - Need sophisticated preconditioning

Multigrid solvers

- Linear complexity
- But rather complicated to develop (and to use)

Sparse Cholesky factorization

- Linear complexity
- Easy to use

Dense Cholesky Factorization

Solve
$$Ax = b$$

- 1. Cholesky factorization $\mathbf{A} = \mathbf{L}\mathbf{L}^T$
- 2. Solve system $\mathbf{y} = \mathbf{L}^{-1}\mathbf{b}, \quad \mathbf{x} = \mathbf{L}^{-T}\mathbf{y}$

Dense Cholesky Factorization

Sparse Cholesky Factorization

Sparse Cholesky Factorization

Sparse Cholesky Solver

Solve
$$Ax = b$$

Pre-computation

- 1. Matrix re-ordering $\tilde{\mathbf{A}} = \mathbf{P}^T \mathbf{A} \mathbf{P}$
- 2. Cholesky factorization $\tilde{\mathbf{A}} = \mathbf{L}\mathbf{L}^T$
- 3. Solve system $\mathbf{y} = \mathbf{L}^{-1} \mathbf{P}^T \mathbf{b}$, $\mathbf{x} = \mathbf{P} \mathbf{L}^{-T} \mathbf{y}$

Per-frame computation

Bi-Laplace Systems

3 Solutions (per frame costs)

Linear Approaches

Linear vs. Nonlinear

Shell

Gradient

Nonlinear

Linear Approaches

Linearizations / Simplifications

Shell-based deformation

$$\int_{\Omega} k_s \left\| \mathbf{I} - \mathbf{I}' \right\|^2 + k_b \left\| \mathbf{I} - \mathbf{I}' \right\|^2 \, \mathrm{d}u \mathrm{d}v$$

$$\int_{\Omega} k_s \left(\left\| \mathbf{d}_u \right\|^2 + \left\| \mathbf{d}_v \right\|^2 \right) + k_b \left(\left\| \mathbf{d}_{uu} \right\|^2 + 2 \left\| \mathbf{d}_{uv} \right\|^2 + \left\| \mathbf{d}_{vv} \right\|^2 \right) \, \mathrm{d}u \mathrm{d}v$$

Linearizations / Simplifications

Gradient-based editing

$\nabla \mathbf{T}(\mathbf{x}) = \mathbf{A}$

Linearizations / Simplifications

Laplacian surface editing

$$\mathbf{R}\mathbf{x} \approx \mathbf{x} + (\mathbf{r} \times \mathbf{x}) = \begin{pmatrix} 1 & -r_3 & r_2 \\ r_3 & 1 & -r_1 \\ -r_2 & r_1 & 1 \end{pmatrix} \mathbf{x}$$

$$\mathbf{T}_{i} = \begin{pmatrix} s & -r_{3} & r_{2} \\ r_{3} & s & -r_{1} \\ -r_{2} & r_{1} & s \end{pmatrix}$$

Linear vs. Nonlinear

- Analyze existing methods
 - Some work for translations
 - Some work for rotations
 - No method works for both

Linear vs. Nonlinear

- Linear approaches
 - Solve linear system each frame
 - Small deformations
 - Dense constraints
- Nonlinear approaches
 - Solve nonlinear problem each frame
 - Large deformations
 - Sparse constraints

Nonlinear Surface-Based Deformation

Prof. Dr. Mario Botsch Computer Graphics & Geometry Processing Bielefeld University

Nonlinear Surface Deformation

- Nonlinear Optimization
- Shell-Based Deformation
- (Differential Coordinates)

Nonlinear Minimization

• Given a nonlinear deformation energy

$$E(\mathbf{d}) = E(\mathbf{d}_1, \dots, \mathbf{d}_n)$$

find the displacement $\mathbf{d}(\mathbf{x})$ that minimizes $E(\mathbf{d})$, while satisfying the modeling constraints.

• Typically $E(\mathbf{d})$ stays the same, but the modeling constraints change each frame.

Gradient Descent

- Start with initial guess \mathbf{d}_0
- Iterate until convergence
 - Find descent direction $\mathbf{h} = -\nabla E(\mathbf{d})$
 - Find step size λ
 - Update $\mathbf{d} = \mathbf{d} + \lambda \mathbf{h}$
- Properties
 - + Easy to implement, guaranteed convergence
 - Slow convergence

Newton's Method

- Start with initial guess \mathbf{d}_0
- Iterate until convergence
 - Find descent direction as $H(d) h = -\nabla E(d)$
 - Find step size λ
 - Update $\mathbf{d} = \mathbf{d} + \lambda \mathbf{h}$
- Properties
 - + Fast convergence if close to minimum
 - Needs pos. def. H, needs 2^{nd} derivatives for H

Given a nonlinear vector-valued error function

$$\mathbf{e}(\mathbf{d}_1,\ldots,\mathbf{d}_n) = \begin{pmatrix} e_1(\mathbf{d}_1,\ldots,\mathbf{d}_n) \\ \vdots \\ e_m(\mathbf{d}_1,\ldots,\mathbf{d}_n) \end{pmatrix}$$

find the displacement $\mathbf{d}(\mathbf{x})$ that minimizes the nonlinear least squares error

$$E(\mathbf{d}_1,\ldots,\mathbf{d}_n) = \frac{1}{2} \|\mathbf{e}(\mathbf{d}_1,\ldots,\mathbf{d}_n)\|^2$$

Gauss-Newton Method

- Start with initial guess \mathbf{d}_0
- Iterate until convergence
 - Find descent direction as $(J(d)^T J(d)) h = -J(d)^T e$
 - Find step size λ
 - Update $\mathbf{d} = \mathbf{d} + \lambda \mathbf{h}$
- Properties
 - + Fast convergence if close to minimum
 - + Needs full-rank J(d), needs 1st derivatives for J(d)

Nonlinear Optimization

- Has to solve a linear system each frame
 - Matrix changes in each iteration!
 - Factorize matrix each time
- Numerically more complex
 - No guaranteed convergence
 - Might need several iterations
 - Converges to closest local minimum
- ➡ Spend more time on fancy solvers...

Nonlinear Surface Deformation

- Nonlinear Optimization
- Shell-Based Deformation
- (Differential Coordinates)

Shell-Based Deformation

Discrete Shells

[Grinspun et al, SCA 2003]

Rigid Cells

[Botsch et al, SGP 2006]

 As-Rigid-As-Possible Modeling [Sorkine & Alexa, SGP 2007]

Discrete Shells

- Main idea
 - Don't discretize continuous energy
 - Define **discrete** energy instead
 - Leads to simpler (still nonlinear) formulation
- Discrete energy
 - How to measure stretching on meshes?
 - How to measure bending on meshes?

Discrete Shell Energy

• Stretching: Change of edge lengths

$$\sum_{e_{ij}\in E}\lambda_{ij}\left(\left|e_{ij}\right|-\left|\bar{e}_{ij}\right|\right)^{2}$$

Stretching: Change of triangle areas

$$\sum_{f_{ijk}\in F}\lambda_{ijk}\left(\left|f_{ijk}\right|-\left|\bar{f}_{ijk}\right|\right)^{2}$$

• Bending: Change of dihedral angles

$$\sum_{e_{ij}\in E}\mu_{ij}\left(\theta_{ij}-\bar{\theta}_{ij}\right)^2$$

Discrete Shells

[Grinspun 2003]

Realistic Face Animations

Linear model

Nonlinear model

Discrete Energy Gradients

Gradients of edge length

$$\begin{aligned} |e_{ij}| &= \|\mathbf{x}_j - \mathbf{x}_i \\ \frac{\partial |e_{ij}|}{\partial \mathbf{x}_i} &= \frac{-\mathbf{e}}{\|\mathbf{e}\|} \\ \frac{\partial |e_{ij}|}{\partial \mathbf{x}_j} &= \frac{\mathbf{e}}{\|\mathbf{e}\|} \end{aligned}$$

Discrete Energy Gradients

Gradients of triangle area

$$|f_{ijk}| = \frac{1}{2} \|\mathbf{n}_1\|$$
$$\frac{\partial |f_{ijk}|}{\partial \mathbf{x}_i} = \frac{\mathbf{n}_1 \times (\mathbf{x}_k - \mathbf{x}_j)}{2 \|\mathbf{n}_1\|}$$
$$\frac{\partial |f_{ijk}|}{\partial \mathbf{x}_j} = \frac{\mathbf{n}_1 \times (\mathbf{x}_i - \mathbf{x}_k)}{2 \|\mathbf{n}_1\|}$$
$$\frac{\partial |f_{ijk}|}{\partial \mathbf{x}_k} = \frac{\mathbf{n}_1 \times (\mathbf{x}_j - \mathbf{x}_i)}{2 \|\mathbf{n}_1\|}$$

Discrete Energy Gradients

Gradients of dihedral angle

$$\theta = \operatorname{atan}\left(\frac{\sin\theta}{\cos\theta}\right) = \operatorname{atan}\left(\frac{\left(\mathbf{n}_1 \times \mathbf{n}_2\right)^T \mathbf{e}}{\mathbf{n}_1^T \mathbf{n}_2 \cdot \|\mathbf{e}\|}\right)$$

$$\frac{\partial \theta}{\partial \mathbf{x}_{i}} = \frac{\left(\mathbf{x}_{k} - \mathbf{x}_{j}\right)^{T} \mathbf{e}}{\left\|\mathbf{e}\right\|} \cdot \frac{-\mathbf{n}_{1}}{\left\|\mathbf{n}_{1}\right\|^{2}} + \frac{\left(\mathbf{x}_{l} - \mathbf{x}_{j}\right)^{T} \mathbf{e}}{\left\|\mathbf{e}\right\|} \cdot \frac{-\mathbf{n}_{2}}{\left\|\mathbf{n}_{2}\right\|^{2}}$$

$$\frac{\partial \theta}{\partial \mathbf{x}_{j}} = \frac{\left(\mathbf{x}_{i} - \mathbf{x}_{k}\right)^{T} \mathbf{e}}{\left\|\mathbf{e}\right\|} \cdot \frac{-\mathbf{n}_{1}}{\left\|\mathbf{n}_{1}\right\|^{2}} + \frac{\left(\mathbf{x}_{i} - \mathbf{x}_{l}\right)^{T} \mathbf{e}}{\left\|\mathbf{e}\right\|} \cdot \frac{-\mathbf{n}_{2}}{\left\|\mathbf{n}_{2}\right\|^{2}}$$

$$\frac{\partial \theta}{\partial \mathbf{x}_k} = \|\mathbf{e}\| \cdot \frac{-\mathbf{n}_1}{\|\mathbf{n}_1\|^2}$$

$$\frac{\partial \theta}{\partial \mathbf{x}_l} = \|\mathbf{e}\| \cdot \frac{-\mathbf{n}_2}{\|\mathbf{n}_2\|^2}$$

Discrete Shell Editing

- Problems with large deformation
 - Bad initial state causes numerical problems

Shell-Based Deformation

• Discrete Shells [Grinspun et al, SCA 2003]

Rigid Cells

[Botsch et al, SGP 2006]

 As-Rigid-As-Possible Modeling [Sorkine & Alexa, SGP 2007]

Nonlinear Shape Deformation

- Nonlinear editing too instable?
- Physically plausible vs. physically correct
- Trade physical correctness for
 - Computational efficiency
 - Numerical robustness

- Qualitatively emulate thin-shell behavior
- Thin volumetric layer around center surface
- Extrude polygonal cell *C_i* per mesh face

- Aim for robustness
 - Prevent cells from degenerating
 - ➡ Keep cells <u>rigid</u>

- Connect cells along their faces
 - Nonlinear elastic energy
 - Measures bending, stretching, twisting, ...

Cell-Based Surface Deformation

- 1. Prescribes position/orientation for cells
- 2. Find optimal rigid motions per cell
- 3. Update vertices by average cell transformations

• Pairwise energy

$$E_{ij} = \int_{[0,1]^2} \left\| \mathbf{f}^{i \to j}(\mathbf{u}) - \mathbf{f}^{j \to i}(\mathbf{u}) \right\|^2 d\mathbf{u} \qquad \mathbf{f}^{i \to j}(\mathbf{u})$$

• Global energy

$$E = \sum_{\{i,j\}} w_{ij} \cdot E_{ij} , \quad w_{ij} = \frac{\|\mathbf{e}_{ij}\|^2}{|F_i| + |F_j|}$$

Nonlinear Minimization

• Find <u>rigid</u> motion \mathbf{T}_i per cell C_i

$$\min_{\{\mathbf{T}_i\}} \sum_{\{i,j\}} w_{ij} \int_{[0,1]^2} \left\| \mathbf{T}_i \left(\mathbf{f}^{i \to j}(\mathbf{u}) \right) - \mathbf{T}_j \left(\mathbf{f}^{j \to i}(\mathbf{u}) \right) \right\|^2 \mathrm{d}\mathbf{u}$$

- Generalized global shape matching problem
 - Robust geometric optimization
 - Nonlinear Newton-type minimization
 - Hierarchical multi-grid solver

Newton-Type Iteration

1. Linearization of rigid motions

$$\mathbf{R}_i \mathbf{x} + \mathbf{t}_i \approx \mathbf{x} + (\omega_i \times \mathbf{x}) + \mathbf{v}_i =: \mathbf{A}_i \mathbf{x}$$

2. Quadratic optimization of velocities $\min_{\{\mathbf{v}_i, \omega_i\}} \sum_{\{i,j\}} w_{ij} \int_{[0,1]^2} \left\| \mathbf{A}_i \left(\mathbf{f}^{i \to j}(\mathbf{u}) \right) - \mathbf{A}_j \left(\mathbf{f}^{j \to i}(\mathbf{u}) \right) \right\|^2 d\mathbf{u}$

- 3. Project A_i onto rigid motion manifold
 - ➡ Local shape matching

Robustness

Character Posing

Goblin Posing

- Intuitive large scale deformations
- Whole session < 5 min

Shell-Based Deformation

- Discrete Shells [Grinspun et al, SCA 2003]
- Rigid Cells
 [Botsch et al, SGP 2006]
- As-Rigid-As-Possible Modeling [Sorkine & Alexa, SGP 2007]

Surface Deformation

- Smooth large scale deformation
- Local as-rigid-as-possible behavior
 - Preserves small-scale details

Cell Deformation Energy

Vertex neighborhoods should deform rigidly

$$\sum_{j \in N(i)} \left\| \left(\mathbf{p}'_j - \mathbf{p}'_i \right) - \mathbf{R}_i \left(\mathbf{p}_j - \mathbf{p}_i \right) \right\|^2 \to \min$$

Cell Deformation Energy

If p, p' are known then R_i is uniquely defined

- Shape matching problem
 - Build covariance matrix $\mathbf{S} = \mathbf{P}\mathbf{P'^{T}}$
 - SVD: $S = U\Sigma W^T$
 - Extract rotation $\mathbf{R}_i = \mathbf{U}\mathbf{W}^{\mathrm{T}}$

Total Deformation Energy

• Sum over all vertex

$$\min_{\mathbf{p}'} \sum_{i=1}^{n} \sum_{j \in N(i)} \left\| \left(\mathbf{p}'_{j} - \mathbf{p}'_{i} \right) - \mathbf{R}_{i} \left(\mathbf{p}_{j} - \mathbf{p}_{i} \right) \right\|^{2}$$

- Treat p' and R_i as separate variables
- Allows for alternating optimization
 - Fix \mathbf{p}' , find \mathbf{R}_i : Local shape matching per cell
 - Fix \mathbf{R}_i , find \mathbf{p}' : Solve Laplacian system

As-Rigid-As-Possible Modeling

Start from naïve Laplacian editing as initial guess

As-Rigid-As-Possible Modeling

 \mathbb{Q}

Shell-Based Deformation

- Discrete Shells [Grinspun et al, SCA 2003]
- Rigid Cells
 [Botsch et al, SGP 2006]
- As-Rigid-As-Possible Modeling [Sorkine & Alexa, SGP 2007]

Nonlinear Surface Deformation

- Limitations of Linear Methods
- Shell-Based Deformation
- (Differential Coordinates)

Subspace Gradient Deformation

- Nonlinear Laplacian coordinates
- Least squares solution on coarse cage subspace

Mesh Puppetry

- Skeletons and Laplacian coordinates
- Cascading optimization

Nonlinear Surface Deformation

- Limitations of Linear Methods
- Shell-Based Deformation
- (Differential Coordinates)

Interactive Shape Modeling and Deformation

T3: Half-Day Tutorial

Nonlinear Space Deformations

Nonlinear Space Deformations

- Involve nonlinear optimization
- Enjoy the advantages of space warps
- Additionally, have shape-preserving properties

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

- Points or segments as control objects
- First developed in 2D and later extended to 3D by Zhu and Gortler (2007)

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

• Attach an affine transformation to each point $\mathbf{x} \in \mathbf{R}^3$:

$$A_{\mathbf{x}}(\mathbf{p}) = M_{\mathbf{x}}\mathbf{p} + \mathbf{t}_{\mathbf{x}}$$

The space warp:

 $\mathbf{x} \rightarrow \mathbf{A}_{\mathbf{x}}(\mathbf{x})$

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

- Handles p_i are displaced to q_i
- The local transformation at x:

$$A_x(\mathbf{p}) = M_x \mathbf{p} + \mathbf{t}_x$$
 s.t.

$$\sum_{i=1}^{k} w_i(\mathbf{x}) \| \mathbf{A}_{\mathbf{x}}(\mathbf{p}_i) - \mathbf{q}_i \|^2 \rightarrow \min$$

• The weights depend on **x**: $w_i(\mathbf{x}) = ||\mathbf{p}_i - \mathbf{x}||^{-2\alpha}$

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

No additional restriction on A_x(·) – affine local transformations

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

• Restrict $A_x(\cdot)$ to similarity

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

• Restrict $A_x(\cdot)$ to similarity

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

• Restrict $A_x(\cdot)$ to rigid

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

• Restrict $A_{\mathbf{x}}(\cdot)$ to rigid

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

Examples

MLS approach – extension to 3D [Zhu & Gortler 2007]

- No linear expression for similarity in 3D
- Instead, can solve for the minimizing rotation

$$\underset{\mathbf{R}\in\mathrm{SO(3)}}{\operatorname{arg\,min}} \sum_{i=1}^{k} w_i(\mathbf{x}) \| \mathbf{R}\mathbf{p}_i - \mathbf{q}_i \|^2$$

by polar decomposition of the 3×3 covariance matrix

MLS approach – extension to 3D [Zhu & Gortler 2007]

 Zhu and Gortler also replace the Euclidean distance in the weights by "distance within the shape"

MLS approach – extension to 3D [Zhu & Gortler 2007]

More results

3/30/2009

Deformation Graph approach [Sumner et al. 2007]

- Surface handles as interface
- Underlying graph to represent the deformation; nodes store rigid transformations
- Decoupling of handles from def. representation

Deformation Graph

Optimization Procedure

[Sumner et al. 2007]

[Sumner et al. 2007]

Begin with an embedded object.

[Sumner et al. 2007]

Begin with an embedded object.

Nodes selected via uniform sampling; located at $\begin{smallmatrix} {f g}_j \end{smallmatrix}$ One rigid transformation for each node: R_j , t_j

Each node deforms nearby space.

Edges connect nodes of overlapping influence.

[Sumner et al. 2007]

Begin with an embedded object.

Nodes selected via uniform sampling; located at $\begin{smallmatrix} {f g}_j \end{smallmatrix}$ One rigid transformation for each node: R_j , t_j

Each node deforms nearby space.

Edges connect nodes of overlapping influence.

[Sumner et al. 2007]

Influence of nearby transformations is blended.

$$\mathbf{x}' = \sum_{j=1}^{m} w_j(\mathbf{x}) \begin{bmatrix} \mathbf{R}_j(\mathbf{x} - \mathbf{g}_j) + \mathbf{g}_j + \mathbf{t}_j \\ \text{blending weights} \end{bmatrix}$$
$$w_j(\mathbf{x}) = (1 - \|\mathbf{x} - \mathbf{g}_j\| / d_{\max})^2$$

Optimization

[Sumner et al. 2007]

Select & drag vertices of embedded object.

Optimization [Sumner et al. 2007]

Select & drag vertices of embedded object.

Optimization finds deformation parameters \mathbf{R}_{j} , \mathbf{t}_{j} .

$$\begin{array}{c} \min_{\mathbf{R}_{1},\mathbf{t}_{1},\ldots,\mathbf{R}_{m},\mathbf{t}_{m}} & w_{\mathrm{rot}}\mathbf{E}_{\mathrm{rot}} & + & w_{\mathrm{reg}}\mathbf{E}_{\mathrm{reg}} & + & w_{\mathrm{con}}\mathbf{E}_{\mathrm{con}} \\ \end{array}$$
Graph parameters
Rotation term
Rotation term
Regularization term
Constraint term

Select & drag vertices of embedded object.

Optimization finds deformation parameters $R_{j}\mbox{, } {\boldsymbol{t}}_{j}.$

 $W_{\rm rot}E_{\rm rot} + W_{\rm reg}E_{\rm reg} + W_{\rm con}E_{\rm con}$ m1n $R_1, t_1, ..., R_m, t_m$ $Rot(\mathbf{R}) = (\mathbf{c}_1 \cdot \mathbf{c}_2)^2 + (\mathbf{c}_1 \cdot \mathbf{c}_3)^2 + (\mathbf{c}_2 \cdot \mathbf{c}_3)^2 + (\mathbf{c}_2 \cdot \mathbf{c}_3)^2 + (\mathbf{c}_2 \cdot \mathbf{c}_3)^2 + (\mathbf{c}_3 \cdot \mathbf{c}_3)^2 + (\mathbf{c}_3$ $(\mathbf{c}_1 \cdot \mathbf{c}_1 - 1)^2 + (\mathbf{c}_2 \cdot \mathbf{c}_2 - 1)^2 + (\mathbf{c}_3 \cdot \mathbf{c}_3 - 1)^2$ $E_{rot} = \sum_{i=1}^{m} Rot(\mathbf{R}_{i})$ *i*=1 For detail preservation, features should rotate and not scale or skew.

 $\min_{\mathbf{R}_1,\mathbf{t}_1,\ldots,\mathbf{R}_m,\mathbf{t}_m} w_{\rm rot} E_{\rm rot} + w_{\rm reg} E_{\rm reg} + w_{\rm con} E_{\rm con}$ $\mathbf{E}_{\text{reg}} = \sum \left\| \sum \alpha_{jk} \left\| \mathbf{R}_{j} (\mathbf{g}_{k} - \mathbf{g}_{j}) + \mathbf{g}_{j} + \mathbf{t}_{j} - (\mathbf{g}_{k} + \mathbf{t}_{k}) \right\|_{2}^{2}$ $i=1 \ k \in \mathbb{N}(j)$ where node *j* thinks where node knode k should go actually goes Neighboring nodes should agree on where they transform each other. 3/30/2009

 $\min_{\mathbf{R}_1,\mathbf{t}_1,\ldots,\mathbf{R}_m,\mathbf{t}_m} w_{\rm rot} E_{\rm rot} + w_{\rm reg} E_{\rm reg} + w_{\rm con} E_{\rm con}$

Handle vertices should go where the user puts them.

26

Results: Polygon Soup [Sumner et al. 2007]

Results: Giant Mesh

[Sumner et al. 2007]

Results: Detail Preservation

[Sumner et al. 2007]

Discussion

- Decoupling of deformation complexity and model complexity
- Nonlinear energy optimization results comparable to surface-based approaches

Interactive Shape Modeling and Deformation

T3: Half-Day Tutorial

Wrap-up

Research trends

 From linear to nonlinear techniques

 Surface-based methods and space warps developed simultaneously

Future work?

- Higher-level editing
 - ... with semantic understanding of the shape
 - ... with "pseudo-physics" automatically set up from that understanding
- Hybrids between surface- and space-based methods

Acknowledgments

- The authors of the numerous papers presented in our tutorial, for their inspiring research
- Pierre Alliez, Eitan Grinspun, Tao Ju, Andrew Nealen, Mark Pauly, Scott Schaefer, Bob Sumner, Jens Vorsatz for kindly providing their slides
- Olga Sorkine's presentation was supported by an ADVANCE Women-in-Science Travel Grant funded by the NSF ADVANCE PAID award #HRD-0820202