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Abstract

We present a hardware architecture and processing unit for point sampled data. Our design is focused on funda-
mental and computationally expensive operations on point sets including k-nearest neighbors search, moving least
squares approximation, and others. Our architecture includes a configurable processing module allowing users
to implement custom operators and to run them directly on the chip. A key component of our design is the spatial
search unit based on a kd-tree performing both kNN and εN searches. It utilizes stack recursions and features
a novel advanced caching mechanism allowing direct reuse of previously computed neighborhoods for spatially
coherent queries. In our FPGA prototype, both modules are multi-threaded, exploit full hardware parallelism, and
utilize a fixed-function data path and control logic for maximum throughput and minimum chip surface. A detailed
analysis demonstrates the performance and versatility of our design.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Hardware Architecture]: Graphics processors

1. Introduction

In recent years researchers have developed a variety of pow-
erful algorithms for the efficient representation, processing,
manipulation, and rendering of unstructured point-sampled
geometry [GP07]. A main characteristic of such point-based
representations is the lack of connectivity. It turns out that
many point processing methods can be decomposed into two
distinct computational steps. The first one includes the com-
putation of some neighborhood of a given spatial position,
while the second one is an operator or computational pro-
cedure that processes the selected neighbors. Such opera-
tors include fundamental, atomic ones like weighted aver-
ages or covariance analysis, as well as higher-level oper-
ators, such as normal estimation or moving least squares
(MLS) approximations [Lev01, ABCO∗01]. Very often, the
spatial queries to collect adjacent points constitute the com-
putationally most expensive part of the processing. In this
paper, we present a custom hardware architecture to acceler-
ate both spatial search and generic local operations on point
sets in a versatile and resource-efficient fashion.

Spatial search algorithms and data structures are very well
investigated [Sam06] and are utilized in many different ap-
plications. The most commonly used computations include
the well known k-nearest neighbors (kNN) and the Euclidean

neighbors (εN) defined as the set of neighbors within a given
radius. kNN search is of central importance for point pro-
cessing since it automatically adapts to the local point sam-
pling rates.

Among the variety of data structures to accelerate spa-
tial search, kd-trees [Ben75] are the most commonly em-
ployed ones in point processing, as they balance time and
space efficiency very well. Unfortunately, hardware accel-
eration for kd-trees is non-trivial. While the SIMD design
of current GPUs is very well suited to efficiently implement
most point processing operators, a variety of architectural
limitations leave GPUs less suited for efficient kd-tree im-
plementations. For instance, recursive calls are not supported
due to the lack of managed stacks. In addition, dynamic data
structures, like priority queues, cannot be handled efficiently.
They produce incoherent branching and either consume a lot
of local resources or suffer from the lack of flexible memory
caches. Conversely, current general-purpose CPUs feature
a relatively small number of floating point units combined
with a limited ability of their generic caches to support the
particular memory access patterns generated by the recur-
sive traversals in spatial search. The resulting inefficiency of
kNN implementations on GPUs and CPUs is a central moti-
vation for our work.
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In this paper, we present a novel hardware architec-
ture dedicated to the efficient processing of unstructured
point sets. Its core comprises a configurable, kd-tree based,
neighbor search module (implementing both kNN and εN
searches) as well as a programmable processing module.
Our spatial search module features a novel advanced caching
mechanism that specifically exploits the spatial coherence
inherent in our queries. The new caching system allows to
save up to 90% of the kd-tree traversals depending on the
application. The design includes a fixed function data path
and control logic for maximum throughput and lightweight
chip area. Our architecture takes maximum advantage of
hardware parallelism and involves various levels of multi-
threading and pipelining. The programmability of the pro-
cessing module is achieved through the configurability of
FPGA devices and a custom compiler.

Our lean, lightweight design can be seamlessly integrated
into existing massively multi-core architectures like GPUs.
Such an integration of the kNN search unit could be done
in a similar manner as the dedicated texturing units, where
neighborhood queries would be directly issued from running
kernels (e.g., from vertex/fragment shaders or CUDA pro-
grams). The programmable processing module together with
the arithmetic hardware compiler could be used for embed-
ded devices [Vah07, Tan06], or for co-processors to a CPU
using front side bus FPGA modules [Int07].

The prototype is implemented on FPGAs and provides a
driver to invoke the core operations conveniently and trans-
parently from high level programming languages. Operating
at a rather low frequency of 75 MHz, its performance com-
petes with CPU reference implementations. When scaling
the results to frequencies realistic for ASICs, we are able to
beat CPU and GPU implementations by an order of magni-
tude while consuming very modest hardware resources.

Our architecture is geared toward efficient, generic
point processing, by supporting two fundamental operators:
Cached kd- tree-based neighborhood searches and generic
meshless operators, such as MLS projections. These con-
cepts are widely used in computer graphics, making our ar-
chitecture applicable to as diverse research fields as point-
based graphics, computational geometry, global illumination
and meshless simulations.

2. Related Work

A key feature of meshless approaches is the lack of ex-
plicit neighborhood information, which typically has to be
evaluated on the fly. The large variety of spatial data struc-
tures for point sets [Sam06] evidences the importance of ef-
ficient access to neighbors in point clouds. A popular and
simple approach is to use a fixed-size grid, which, however
does not prune the empty space. More advanced techniques,
such as the grid file [NHS84] or locality-preserving hash-
ing schemes [IMRV97] provide better use of space, but to

achieve high performance, their grid size has to be carefully
aligned to the query range.

The quadtree [FB74] imposes a hierarchical access struc-
ture onto a regular grid using a d-dimensional d-ary search
tree. The tree is constructed by splitting the space into 2d

regular subspaces. The kd-tree [Ben75], the most popular
spatial data structure, splits the space successively into two
half-spaces along one dimension. It thus combines efficient
space pruning with small memory footprint. Very often, the
kd-tree is used for k-nearest neighbors search on point data
of moderate dimensionality because of its optimal expected-
time complexity of O(log(n) + k) [FBF77, Fil79], where n
is the number of points. Extensions of the initial concept in-
clude the kd-B-tree [Rob81], a bucket variant of a kd-tree,
where the partition planes do not need to pass through the
data points. In the following, we will use the term kd-tree to
describe this class of spatial search structures.

Approximate kNN queries on the GPU have been pre-
sented by Ma et al. [MM02] for photon mapping, where a
locality-preserving hashing scheme similar to the grid file
was applied for sorting and indexing point buckets. In the
work of Purcell et al. [PDC∗03], a uniform grid constructed
on the GPU was used to find the nearest photons, however
this access structure performs only well on similarly sized
search radii.

In the context of ray tracing, various hardware implemen-
tations of kd-tree ray traversal have been proposed. These
include dedicated units [WSS05, WMS06] and GPU im-
plementations based either on a stack-less [FS05, PGSS07]
or, more recently, a stack-based approach [GPSS07]. Most
of these algorithms accelerate their kd-tree traversal by
exploiting spatial coherence using packets of multiple
rays [WBWS01]. However, this concept is not geared to-
ward the more generic pattern of kNN queries and does not
address the neighbor sort as a priority list.

In order to take advantage of spatial coherence in nearest
neighbor queries, we introduce a coherence neighbor cache
system, which allows us to directly reuse previously com-
puted neighborhoods. This caching system, as well as the
kNN search on kd-tree, are presented in detail in the next
section.

3. Spatial Search and Coherent Cache

In this section we will first briefly review the kd-tree based
neighbor search and then present how to take advantage of
the spatial coherence of the queries using our novel coherent
neighbor cache algorithm.

3.1. Neighbor Search Using kd-Trees

The kd-tree [Ben75] is a multidimensional search tree for
point data. It splits space along a splitting plane that is per-
pendicular to one of the coordinate axes, and hence can
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Figure 1: The kd-tree data structure: The left image shows
a point-sampled object and the spatial subdivision computed
by a kd-tree. The right image displays the kd-tree, points are
stored in the leaf nodes.

be considered a special case of binary space partitioning
trees [FKN80]. In its original version, every node of the
tree stores a point, and the splitting plane hence has to pass
through that point. A more commonly used approach is to
store points, or buckets of points, in the leaf nodes only. Fig-
ure 1 shows an example of a balanced 2-dimensional kd-tree.
Balanced kd-trees can always be constructed in O(n log2 n)
for n points [OvL80].

kNN Search
The k-nearest neighbors search in a kd-tree is performed as
follows (Listing 1): We traverse the tree recursively down the
half spaces in which the query point is contained until we hit
a leaf node. When a leaf node is reached, all points contained
in that cell are sorted into a priority queue of length k. In a
backtracking stage, we recursively ascend and descend into
the other half spaces if the distance from the query point
to the farthest point in the priority queue is greater than the
distance of the query point to the cutting plane. The priority
queue is initialized with elements of infinite distance.

Point query; // Query Point
PriorityQueue pqueue; // Priority Queue of length k

void find_nearest (Node node) {
if (node.is_leaf) {

// Loop over all points contained by the leaf’s bucket
// and sort into priority queue.
for (each point p in node)

if (distance(p,query) < pqueue.max())
pqueue.insert(p);

} else {
partition_dist = distance(query, node.partition_plane);
// decide whether going left or right first
if (partition_dist > 0) {

find_nearest(node.left);
// taking other branch only if it is close enough
if (pqueue.max() > abs(partition_dist))

find_nearest(node.right);
} else {

find_nearest(node.right);
if (pqueue.max() > abs(partition_dist))

find_nearest(node.left);
}

}

Listing 1: Recursive search of the kNN in a kd-tree.

(k+1)NN

kNN
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Figure 2: The principle of our coherent neighbor cache al-
gorithm. (a) In the case of kNN search the neighborhood of
qi is valid for any query point q j within the tolerance dis-
tance ei. (b) In the case of εN search, the extended neighbor-
hood of qi can be reused for any ball query (q j,r j) which is
inside the extended ball (qi,αri).

εN Search
An εN search, also called ball or range query, aims to find all
the neighbors around a query point qi within a given radius
ri. However, in most applications it is desirable to bound the
maximum number of found neighbors. Then, the ball query
is equivalent to a kNN search where the maximum distance
of the selected neighbors is bound by ri. In the above algo-
rithm, this behavior is trivially achieved by initializing the
priority queue with placeholder elements at a distance ri.

Note that in high-level programming languages, the stack
stores all important context information upon a recursive
function call and reconstructs the context when the function
terminates. As we will discuss subsequently, this stack has to
be implemented and managed explicitly in a dedicated hard-
ware architecture.

3.2. Coherent Neighbor Cache

Several applications, such as up-sampling or surface recon-
struction, issue densely sampled queries. In these cases, it
is likely that the neighborhoods of multiple query points are
the same. The coherent neighbor cache (CNC) exploits this
spatial coherence to avoid multiple computations of similar
neighborhoods. The basic idea is to compute slightly more
neighbors than necessary, and use this extended neighbor-
hood for subsequent, spatially close queries.

Assume we query the kNN of the point qi (Figure 2a).
Instead of looking for the k nearest neighbors, we compute
the k + 1 nearest neighbors Ni = {p1, ...,pk+1}. Let ei be
half the difference of the distances between the query point
and the two farthest neighbors: ei = (‖pk+1− qi‖−‖pk −
qi‖)/2. Then, ei defines a tolerance radius around qi such
that the kNN of any point inside this ball are guaranteed to
be equal to Ni \{pk+1}.

In practice, the cache stores a list of the m most recently
used neighborhoods Ni together with their respective query
point qi and tolerance radius ei. Given a new query point
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q j, if the cache contains a Ni such that ‖q j−qi‖ < ei, then
N j = Ni is reused, otherwise a full kNN search is performed.

In order to further reduce the number of cache misses, it is
possible to compute even more neighbors, i.e., the k+c near-
est ones. However, for c 6= 1 the extraction of the true kNN
would then require to sort the set Ni at each cache hit, which
consequently would prevent the sharing of such a neighbor-
hood by multiple processing threads.

Moreover, we believe that in many applications it is
preferable to tolerate some approximation in the neighbor-
hood computation. Given any positive real ε, a data point
p is a (1 + ε)-approximate k-nearest neighbor (AkNN) of
q if its distance from q is within a factor of (1 + ε) of the
distance to the true k-nearest neighbor. As we show in our
results, computing AkNN is sufficient in most applications.
This tolerance mechanism is accomplished by computing the
value of ei as follows,

ei =
‖pk+1−qi‖ · (1+ ε)−‖pk−qi‖

2+ ε
. (1)

The extension of the caching mechanism to ball queries
is depicted in Figure 2b. Let ri be the query radius associ-
ated with the query point qi. First, an extended neighbor-
hood of radius αri with α > 1 is computed. The resulting
neighborhood Ni can be reused for any ball query (q j,r j)
with ‖q j−qi‖ < αri− r j. Finally, the subsequent process-
ing operators have to check for each neighbor its distance
to the query point in order to remove the wrongly selected
neighbors. The value of α is a tradeoff between the cache
hit rate and the overhead to compute the extended neigh-
borhood. Again, if an approximate result is sufficient, then
a (1 + ε)-AkNN like mechanism can be accomplished by
reusing Ni if the following coherence test holds: ‖q j−qi‖<
(αri− r j) · (1+ ε).

4. A Hardware Architecture for Generic Point
Processing

In this section we will describe our hardware architecture
implementing the algorithms introduced in the previous sec-
tion. In particular, we will focus on the design decisions and
features underlying our processing architecture, while the
implementations details will be described in Section 5.

4.1. Overview

Our architecture is designed to provide an optimal compro-
mise between flexibility and performance. Figure 3 shows a
high-level overview of the architecture. The two main mod-
ules, the neighbor search module and the processing mod-
ule, can both be operated separately or in tandem. A global
thread control unit manages user input and output requests
as well as the module’s interface to high level programming
languages, such as C++.

Neighbor Search ModuleNeighbor Search Module

Processing Module

Coherent Neighbor
Cache

Kd-tree
Traversal

Global
Thread
Control

Init
Loop

Kernel
Finalize

kd-tree
cache
data

cache

External DRAM

Figure 3: High-level overview of our architecture. The two
modules can be operated separately or in tandem.

The core of our architecture is the configurable neighbor
search module, which is composed of a kd-tree traversal unit
and a coherent neighbor cache unit. We designed this module
to support both kNN and εN queries with maximal sharing of
resources. In particular, all differences are managed locally
by the coherent neighbor cache unit, while the kd-tree traver-
sal unit works regardless of the kind of query. This module
is designed with fixed function data paths and control logic
for maximum throughput and for moderate chip area con-
sumption. We furthermore designed every functional unit to
take maximum advantage of hardware parallelism. Multi-
threading and pipelining were applied to hide memory and
arithmetic latencies. The fixed function data path also allows
for minimal thread-storage overhead. All external memory
accesses are handled by a central memory manager and sup-
ported by data and kd-tree caches.

In order to provide optimal performance on a limited hard-
ware, our processing module is also implemented using a
fixed function data path design. Programmability is achieved
through the configurability feature of FPGA devices and by
using a custom hardware compiler. The integration of our ar-
chitecture with existing or future general purpose computing
units, like GPUs, is discussed in section 6.2.

A further fundamental design decision is that the kd-tree
construction is currently performed by the host CPU and
transferred to the subsystem. This decision is justified given
that the tree construction can be accomplished in a prepro-
cess for static point sets, whereas neighbor queries have to be
carried out at runtime for most point processing algorithms.
Our experiments have also shown that for moderately sized
dynamic data sets, the kd-tree construction times are negli-
gible compared to the query times.

Before going more into detail, it is instructive to describe
the procedural and data flows of a generic operator applied
to some query points. After the requests are issued for a
given query point, the coherent neighbor cache is checked.
If a cached neighborhood can be reused, a new processing
request is generated immediately. Otherwise, a new neigh-
bor search thread is issued. Once a neighbor search is ter-
minated, the least recently used neighbor cache entry is re-
placed with the attributes of the found neighbors and a pro-
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Figure 4: Top level view of the kd-tree traversal unit.

cessing thread is generated. The processing thread loops
over the neighbors and writes the results into the delivery
buffer, from where they are eventually read back by the host.

In all subsequent figures, blue indicates memory while
green stands for arithmetic and control logic.

4.2. kd-Tree Traversal Unit

The kd-tree traversal unit is designed to receive a query (q,r)
and to return at most the k-nearest neighbors of q within a
radius r. The value of k is assumed to be constant for a batch
of queries.

This unit starts a query by initializing the priority queue
with empty elements at distance r, and then performs the
search following the algorithm of Listing 1. While this algo-
rithm is a highly sequential operation, we can identify three
main blocks to be executed in parallel, due to their indepen-
dence in terms of memory access. As depicted in Figure 4,
these blocks include node traversal, stack recursion, and leaf
processing.

The node traversal unit traverses the path from the current
node down to the leaf cell containing the query point. Mem-
ory access patterns include reading of the kd-tree data struc-
ture and writing to a dedicated stack. This stack is explicitly
managed by our architecture and contains all traversal infor-
mation for backtracking. Once a leaf is reached, all points
contained in that leaf node need to be inserted and sorted into
a priority queue of length k. Memory access patterns include
reading point data from external memory and read-write ac-
cess to the priority queue. After a leaf node has been left,
backtracking is performed by recurring up the stack until a
new downward path is identified. The only memory access
is reading the stack.

Search mode kNN εN
ci = ei (equation 1) distance of top element

Skip top element: always if it is the empty element
Coherence test: ‖q j−qi‖ < ci ‖q j−qi‖ < ci− r j

Generated query: (q j,∞) (q j,αr j)

Table 1: Differences between kNN and εN modes.
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Figure 5: Top level view of coherent neighbor cache unit.
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Figure 6: Top level view of our programmable processing
module.

4.3. Coherent Neighbor Cache Unit

The coherent neighbor cache unit (CNC), depicted in Fig-
ure 5, maintains a list of the m most recently used neighbor-
hoods in a least recently used order (LRU). For each cache
entry the list of neighbors Ni, its respective query position
qi, and a generic scalar comparison value ci, as defined in
Table 1, are stored. The coherence check unit uses the latter
two values to determine possible cache hits and issues a full
kd-tree search otherwise.

The neighbor copy unit updates the neighborhood caches
with the results from the kd-tree search and computes the
comparison value ci according to the current search mode.
For correct kNN results, the top element corresponding to
the (k +1)NN needs to be skipped. In the case of εN queries
all empty elements are discarded. The subtle differences be-
tween kNN and εN are summarized in Table 1.

4.4. Processing Module
The processing module, depicted in Figure 6, is composed
of three customizable blocks: an initialization step, a loop
kernel executed sequentially for each neighbor, and a final-
ization step. The three steps can be globally iterated multiple
times, where the finalization step controls the termination of
the loop. This outer loop is convenient to implement, e.g.,
an iterative MLS projection procedure. Listing 2 shows an
instructive control flow of the processing module.

All modules have access to the query data (position, ra-
dius, and custom attributes) and exchange data through a
shared register bank. The initialization step furthermore has
access to the farthest neighbor, which can be especially use-
ful to, e.g., estimate the sampling density. All modules oper-
ate concurrently, but on different threads.

The three customizable blocks are specified using a
pseudo assembly language supporting various kinds of arith-
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Vertex neighbors[k]; // custom type
OutputType result; // custom type
int count = 0;
do {

init(query_data, neighbors[k], count);
for (i=1..k)

kernel(query_data, neighbors[i]);
} while (finalization(query_data, count++, &result));

Listing 2: Top-level algorithm implemented by the process-
ing module.

metic operations, comparison operators, reads and condi-
tional writes to the shared register bank, and fixed size loops
achieved using loop unrolling. Our arithmetic compiler then
generates hardware descriptions for optimized fixed function
data paths and control logic.

5. Prototype Implementation

This section describes the prototype implementation of the
presented architecture using Field Programmable Gate Ar-
rays (FPGAs). We will focus on the key issues and non-
trivial implementation aspects of our system. At the end of
the section, we will also briefly sketch some possible opti-
mizations of our current prototype, and describe our GPU
based reference implementation that will be used for com-
parisons in the result section.

5.1. System Setup

The two modules, neighbor search and processing, are
mapped onto two different FPGAs. Each FPGA is equipped
with a 64 bit DDR DRAM interface and both are integrated
into a PCI carrier board, with a designated PCI bridge for
host communication. The two FPGAs communicate via ded-
icated LVDS DDR communication units. The nearest neigh-
bors information is transmitted through a 64 bit channel, the
results of the processing operators are sent back using a 16
bit channel. The architecture would actually fit onto a single
Virtex2 Pro chip, but we strived to cut down the computa-
tion times for the mapping, placing, and routing steps in the
FPGA synthesis. The communication does not degrade per-
formance and adds only a negligible latency to the overall
computation.

5.2. kd-Tree Traversal Unit

We will now revisit the kd-tree traversal unit of the neighbor
search module in Figure 4 and discuss its five major units
from an implementational perspective.

There are up to 16 parallel threads operating in the kd-tree
traversal unit. A detailed view of the stack, stack recursion,
and node traversal units is presented in Figure 7. The node
traversal unit pushes the paths not taken during traversal
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Figure 7: Detailed view of the sub-units and storage of the
node traversal, stack recursion and stack units.
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Figure 8: Detailed view of the leaf processing and parallel
priority queue units. The sub-units load external data, com-
pute distance and resort the parallel priority queues.

onto a shared stack for subsequent backtracking. The maxi-
mum size of the stack is bound by the maximum depth of the
tree. Compared to general purpose architectures, however,
our stacks are lightweight and stored on-chip to maximize
performance. They only store pointers to the tree paths not
taken as well as the distance of the query point to the bound-
ing plane (2+4 Bytes). Our current implementation includes
16 parallel stacks, one for each thread and each being of size
16, which allows us to write to any stack and read from any
other one in parallel.

The leaf processing and priority queue units are presented
in greater detail in Figure 8. Leaf points are sorted into one
of the 16 parallel priority queues, according to their distance
to the query point. The queues store the distances as well as
pointers to the point data cache. Our implementation uses a
fully sorted parallel register bank of length 32 and allows the
insertion of one element in a single cycle. Note that this fully
sorted bank works well for small queue sizes because of the
associated small propagation paths. For larger k, a constant
time priority queue [WHA∗07] could be used.

For ease of implementation, the kd-tree structure is cur-
rently stored linearly on-chip in the spirit of a heap, which
can also be considered as a cache. The maximum tree depth
is 14. The internal nodes and the leaves are stored separately,
points are associated only with leaf nodes. The 214−1 inter-
nal nodes store the splitting planes (32 bit), the dimension (2
bit) and a flag indicating leaf nodes (1 bit). This additional
bit allows us to support unbalanced kd-trees as well. The 214

leaf nodes store begin and end pointers to the point buck-
ets in the off-chip DRAM (25 bits each). The total storage
requirement of the kd-tree is 170 kBytes.
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5.3. Coherent Neighbor Cache Unit

The CNC unit (Figure 5) includes 8 cached neighborhoods
and one single coherence check sub-unit, testing for cache
hits in an iterative manner. The cache manager unit main-
tains the list of caches in LRU order, and synchronizes be-
tween the processing module and the kd-tree search unit us-
ing a multi-reader write lock primitive. For a higher number
of caches, the processing time increases linearly. Note, how-
ever, additional coherence test units could be used to reduce
the number of iterations.

As the neighbor search unit processes multiple queries in
parallel, it is important to carefully align the processing or-
der. Usually, subsequent queries are likely to be spatially co-
herent and would eventually be issued concurrently to the
neighbor search unit. To prevent this problem, we interleave
the queries. In the current system this task is left to the user,
which allows to optimally align the interleaving to the nature
of the queries.

5.4. Processing Module

The processing module (Figure 6) is composed of three cus-
tom units managed by a processing controller. These units
communicate through a multi-threaded quad-port bank of 16
registers. The repartition of the four ports to the three custom
units is automatically determined by our compiler.

Depending on the processing operator, our compiler
might produce a high number of floating point operations
thus leading to significant latency, which is, however, hid-
den by pipelining and multi-threading. Our implementation
allows for a maximum of 128 threads operating in parallel
and is able to process one neighbor per clock cycle. In ad-
dition, a more fine-grained multi-threading scheme iterating
over 8 sub-threads is used to hide the latency of the accumu-
lation in the loop kernel.

5.5. Resource Requirements and Extensions

Our architecture was designed using minimal on-chip re-
sources. As a result, the neighbor search module is very lean
and uses a very small number of arithmetic units only, as
summarized in Table 2. The number of arithmetic units of
the processing module depends entirely on the processing

Arithmetic
Unit

kd-tree
Traversal CNC

Covariance
Analysis

SPSS
Projection

Add/Sub 6 6 38 29
Mul 4 6 49 32
Div 0 0 2 3
Sqrt 0 2 2 2

Table 2: Usage of arithmetic resources for the two units of
our neighbor search module, and two processing examples.

Data Current
Prototype

Off-chip kd-tree
& shared data

cache
Thread data 1.36 kB (87 B/thd) 1.36 kB
Traversal stack 2 kB (8×16 B/thd) 2 kB
kd-tree 170 kB (depth: 14) 16 kB (cache)
Priority queue 3 kB (6×32 B/thd) 4 kB
DRAM manager 5.78 kB 5.78 kB
Point data cache 16 kB (p-queue unit) 16 kB (shared cache)
Neighbor caches 8.15 kB (1044B/cache) 1.15 kB (148 B/cache)
Total 206.3 kB 46.3 kB

Table 3: On-chip storage requirements for our current and
planned, optimized version of the neighbor search module.

operator. Their complexity is therefore limited by the re-
sources of the targeted FPGA device. Table 2 shows two
such examples.

The prototype has been partitioned into the neighbor
search module integrated on a Virtex2 Pro 100 FPGA, and
the processing module was integrated on a Virtex2 Pro 70
FPGA. The utilization of the neighbor search FPGA was
23’397 slice flip flops and 33’799 LUTs. The utilization of
the processing module in the example of a MLS projection
procedure based on plane fits [AA04] required 31’389 slice
flip flops and 35’016 LUTs.

The amount of on-chip RAM required by the current pro-
totype is summarized in Table 3, leaving out the buffers
for PCI transfer and inter-chip communication which are
not relevant for the architecture. This table also includes a
planned variant using one bigger FPGA only. Using only one
chip, the architecture then could be equipped with generic
shared caches to access the external memory, the tree struc-
ture would also be stored off-chip and hence alleviate the
current limitation on the maximum tree depth. Furthermore,
such caches would make our current point data cache obso-
lete and reduce the neighbor cache foot-print by storing ref-
erences to the point attributes. Finally, this would not only
optimize on-chip RAM usage, but also reduce the memory
bandwidth to access the point data for the leaf processing
unit, and hence speed up the overall process.

5.6. GPU Implementation

For comparison, we implemented a kd-tree based kNN
search algorithm using NVIDIA’s CUDA. Similar to the
FPGA implementation, the lightweight stacks and priority
queues are stored in local memory. Storing the stacks and
priority queues in fast shared memory would limit the num-
ber of threads drastically and degrade performance com-
pared to using local memory. The neighbor lists are writ-
ten and read in a large buffer stored in global memory. We
implemented the subsequent processing algorithms as a sec-
ond, distinct kernel. Owing to the GPU’s SIMD design, im-
plementing a CNC mechanism is not feasible and would
only decrease the performance.
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Figure 9: A series of successive smoothing operations on the Igea model. The model size is 134k points. A neighborhood of size
16 has been used for the MLS projections. Only MLS software code has been replaced by FPGA driver calls.

Figure 10: A series of successive simulation steps of the 2D breaking dam scenario using SPH. The simulation is using adaptive
particle resolutions between 1900 and 4600 particles, and performs kNN queries up to 30 nearest neighbors. Only kNN software
code has been replaced by FPGA driver calls.
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Figure 11: Performances of kNN and MLS projection as a
function of the number of neighbors k. The input points have
been used as query points.

6. Results and Discussions

To demonstrate the versatility of our architecture, we imple-
mented and analyzed several meshless processing operators.
These include a few core operators which are entirely per-
formed on-chip: covariance analysis, iterative MLS projec-
tion based on either plane fit [AA04] or spherical fit [GG07],
and a meshless adaptation of a nonlinear smoothing opera-
tor for surfaces [JDD03]. We integrated these core operators
into more complex procedures, such as a MLS based resam-
pling procedure, as well as a normal estimation procedure
based on covariance analysis [HDD∗92].

We also integrated our prototype into existing publicly
available software packages. For instance, in PointShop 3D
[ZPKG02] the numerous MLS calls for smoothing, hole

filling, and resampling [WPK∗04] have been replaced by
calls to our drivers. See Figure 9 for the smoothing opera-
tion. Furthermore, an analysis of a fluid simulation research
code [APKG07] based on smoothed particle hydrodynamics
(SPH) showed that all the computations involving neighbor
search and processing can easily be accelerated, while the
host would still be responsible for collision detection and
kd-tree updates (Figure 10).

6.1. Performance Analysis

Both FPGAs, a Virtex2 Pro 100 and a Virtex2 Pro 70, op-
erate at a clock frequency of 75 MHz. We compare the per-
formance of our architecture to similar CPU and GPU im-
plementations, optimized for each platform, on a 2.2 GHz
Intel Core Duo 2 equipped with a NVIDIA GeForce 8800
GTS GPU. Our results were obtained for a surface data-set
of 100k points in randomized order and with a dummy oper-
ator that simply reads the neighbor attributes. Note that our
measurements do not include transfer costs since our hard-
ware device lacks an efficient transfer interface between the
host and the device.

General Performance Analysis
Figure 11 demonstrates the high performance of our de-
sign for generic, incoherent kNN queries. The achieved on-
chip FPGA query performance is about 68% and 30% of
the throughput of the CPU and GPU implementations, re-
spectively, although our FPGA clock rate is 30 times lower
than that of the CPU, and it consumes considerably fewer
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Figure 12: Number of ball queries per second for an in-
creasing level of coherence.
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Figure 13: Number of kNN queries per second for an in-
creasing level of coherence (k = 30). Approximate kNN
(AkNN) results were obtained with ε = 0.1.

resources. Moreover, with the MLS projection enabled, our
prototype exhibits the same performance as with the kNN
queries only, and outperforms the CPU implementation.

Finally, note that when the CNC is disabled our archi-
tecture produces fully sorted neighborhoods for free, which
is beneficial for a couple of applications. As shown in Fig-
ure 11 adding such a sort to our CPU and GPU implementa-
tions has a non-negligible impact, in particular for the GPU.

Our FPGA prototype, integrated into the fluid simula-
tion [APKG07], achieved half of the performance of the
CPU implementation, because up to 30 neighbors per query
have to be read back over the slow PCI transfer inter-
face. In the case of the smoothing operation of PointShop
3D [WPK∗04], our prototype achieved speed ups of a fac-
tor of 3, including PCI communication. The reasons for this
speed up are two-fold: first, for MLS projections, only the
projected positions need to be read back. Second, the kd-tree
of PointShop 3D is not as highly optimized as the reference
CPU implementation used for our other comparisons. Note
that using a respective ASIC implementation and a more ad-
vanced PCI Express interface, the performance of our sys-
tem would be considerably higher.

The major bottleneck of our prototype is the kd-tree
traversal, and it did not outperform the processing module
for all tested operators. In particular, the off-chip memory
accesses in the leaf processing unit represent the limiting
bottleneck in the kd-tree traversal. Consequently, the nearest
neighbor search does not scale well above 4 threads, while
supporting up to 16 threads.

Coherent Neighbor Cache Analysis

In order to evaluate the efficiency of our coherent neigh-
bor cache with respect to the level of coherence, we imple-
mented a resampling algorithm that generates b× b query
points for each input point, uniformly spread over its local
tangent plane [GGG08]. All results for the CNC were ob-
tained with 8 caches.

The best results were obtained for ball queries (Figure 12),
where even an up-sampling pattern of 2× 2 is enough to
save up to 75% of the kd-tree traversals, thereby showing the
CNC’s ability to significantly speed up the overall computa-
tion. Figure 13 depicts the behavior of the CNC with both
exact and (1 + ε)-approximate kNN. Whereas the cache hit
rate remains relatively low for exact kNN (especially with
such a large neighborhood), already a tolerance (ε = 0.1) al-
lows to save more than 50% of the kd-tree traversals. For
incoherent queries, the CNC results in a slight overhead due
to the search of larger neighborhoods. The GPU implemen-
tation does not include a CNC, but owing to its SIMD design
and texture caches, its performance significantly drops down
as the level of coherence decreases.

While these results clearly demonstrate the general use-
fulness of our CNC algorithm, they also show the CNC
hardware implementation to be slightly less effective than
the CPU-based CNC. The reasons for this behavior are two-
fold. First, from a theoretical point of view, increasing the
number of threads while keeping the same number of caches
decreases the cache hit rate. This behavior could be com-
pensated by increasing the number of caches. Second, our
current prototype consistently checks all caches while our
CPU implementation stops at the first cache hit. With a high
cache hit rate such as in Figure 12, we observed speed-ups
of a factor 2 using this optimization on the CPU.

An analysis of the (1 + ε)-approximate kNN in terms of
cache hit rate and relative error can be found in Figures 14
and 15. These results show that already small values of ε are
sufficient to significantly increase the percentage of cache
hits, while maintaining a very low error for the MLS projec-
tion. In fact, the error is of the same order as the numerical
order of the MLS projection. Even larger tolerance values
like ε = 0.5 lead to visually acceptable results, which is due
to the weight function of the MLS projection that results in
low influence of the farthest neighbors.
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6.2. GPU Integration

Our results show that the GPU implementation of kNN
search is only slightly faster than our current FPGA pro-
totype and CPU implementation. Moreover, with a MLS
projection operator on top of a kNN search, we observe
a projection rate between 0.4M and 3.4M projections per
second, while the same hardware is able to perform up to
100M of projections per second using precomputed neigh-
borhoods [GGG08]. Actually, the kNN search consumes
more than 97% of the computation time.

This poor performance is partly due to the divergence in
the tree traversal, but even more important, due to the prior-
ity queue insertion in O(log k), which infers many incoher-
ent execution paths. On the other hand, our design optimally
parallelizes the different steps of the tree traversal and al-
lows the insertion of one neighbor into the priority queue in
a single cycle.

These results motivate the integration of our lightweight
neighbor search module into such a massively multi-core ar-
chitecture. Indeed, a dedicated ASIC implementation of our
module could be further optimized and run at a much higher
frequency and could improve the performance by more than
an order of magnitude. Such an integration could be done in
a similar manner as the dedicated texturing units of current
GPUs.

In such a context, our processing module would then be
replaced by more generic computing units. Nevertheless, we
emphasize that the processing module still exhibits several
advantages. First, it allows to optimally use FPGA devices
as co-processors to CPUs or GPUs, which can be expected
to become more and more common in the upcoming years.
Second, unlike the SIMD design of GPU’s microprocessors,
our custom design with three sub-kernels allows for optimal
throughput, even in the case of varying neighbor loops.

7. Conclusion

We presented a novel hardware architecture for efficient
nearest-neighbor searches and generic meshless processing
operators. In particular, our kd-tree based neighbor search
module features a novel and dedicated caching mechanism
exploiting the spatial coherence of the queries. Our results
show that neighbor searches can be accelerated efficiently
by identifying independent parts in terms of memory ac-
cess. Our architecture is implemented in a fully pipelined
and multi-threaded manner and suggests that its lightweight
design could be easily integrated into existing computing or
graphics architectures, and hence be used to speed up ap-
plications depending heavily on data structure operations.
When scaled to realistic clock rates, our implementation
achieves speedups of an order of magnitude compared to ref-
erence implementations. Our experimental results prove the
high benefit of a dedicated neighbor search hardware.
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Figure 15: MLS reconstructions with, from left to right, ex-
act kNN (34 s), and AkNN with ε = 0.2 (12 s) and ε = 0.5
(10 s). Without our CNC the reconstruction takes 54 s.

A current limitation of the design is its off-chip tree con-
struction. An extended architecture could construct or up-
date the tree on-chip to avoid expensive host communica-
tion. We also would like to investigate configurable spatial
data structure processors in order to support a wider range
of data structures and applications.
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