Mario Botsch, Mark Pauly, Martin Wicke, Markus Gross ETH Zurich

Linear Surface Deformation

[Botsch & Kobbelt, SIG 04]

- Minimize quadratic <u>surface</u> energy
- Variational calculus
- Solve sparse linear system

[Kobbelt et al, SIG 98]

Problematic Cases

Linear Space Deformation

- Deform embedding space
- Again solve linear system, but...
- Deformation complexity << surface complexity

[Sederberg & Parry, SIG 86]

[Hsu et al, SIG 92]

[Botsch & Kobbelt, EG 05]

	Surface-Based	Space Deformation
Linear		
Nonlinear		

Linear vs. Nonlinear

Problems with large deformations

Linear

Nonlinear

Nonlinear Surface Deformation

- Minimize nonlinear energies
 - Intuitive large-scale deformation
 - Robustness issues
 - Performance issues

[Au et al, SIG 07]

[Botsch et al, SGP 06]

[Huang et al, SIG 06]

PriMo [Botsch et al, SGP 2006]

- 1. Extrude triangles to prisms / cells
- 2. Prescribes position/orientation for cells
- 3. Find optimal *rigid motions* per cell
- 4. Update vertices by averaged cell transformations

PriMo [Botsch et al, SGP 2006]

Rigidity \rightarrow Robust optimization

Design decisions:

Design decisions:

- Realistic behavior \Rightarrow Physically plausible

Design decisions:

- Realistic behavior \Rightarrow Physically plausible
- Large deformations \Rightarrow Nonlinear energy

linear

nonlinear

Design decisions:

- Realistic behavior \Rightarrow Physically plausible
- Large deformations \Rightarrow Nonlinear energy
- Robustness \Rightarrow Rigid cells

Design decisions:

- Realistic behavior \Rightarrow Physically plausible
- Large deformations \Rightarrow Nonlinear energy
- Robustness \Rightarrow Rigid cells
- Applicability

 \Rightarrow Space deformation

Design decisions:

- Realistic behavior \Rightarrow Physically plausible
- Large deformations \Rightarrow Nonlinear energy
- Robustness \Rightarrow Rigid cells
- Applicability
- Performance

- \Rightarrow Space deformation
- ⇒ Adaptive discretization

Deformation Pipeline

Deformation Energy

- Continuum mechanics
 - Strain energy defined by displacement's gradient
 - Local variation of displacement causes stretching
- Discrete rigid cells
 - Each cell stores rigid motion $T_i(x) = R_i(x) + t_i$
 - Local differences of rigid transformations

Difference of Transformations

- Frobenius norm of matrices
 - Geometric meaning of matrix elements?

$$\|\mathbf{T}_{i} - \mathbf{T}_{j}\|^{2} := \sum_{k=1}^{4} \sum_{l=1}^{4} \left((\mathbf{T}_{i})_{k,l} - (\mathbf{T}_{j})_{k,l} \right)^{2}$$

• [Pottmann et al, 04]

- Difference of images of sample points (which?)

$$\|\mathbf{T}_{i} - \mathbf{T}_{j}\|^{2} := \frac{1}{k} \sum_{l=1}^{k} \|\mathbf{T}_{i}(\mathbf{x}_{l}) - \mathbf{T}_{j}(\mathbf{x}_{l})\|^{2}$$

Nonlinear Energy

Integrate over neighboring cells' interiors

$$E_{ij}(\mathbf{T}_i, \mathbf{T}_j) := \int_{C_i \cup C_j} \|\mathbf{T}_i(\mathbf{x}) - \mathbf{T}_j(\mathbf{x})\|^2 \, \mathrm{d}\mathbf{x}$$

Nonlinear Energy

Integrate over neighboring cells' interiors

$$E_{ij}(\mathbf{T}_i, \mathbf{T}_j) := \int_{C_i \cup C_j} \|\mathbf{T}_i(\mathbf{x}) - \mathbf{T}_j(\mathbf{x})\|^2 \, \mathrm{d}\mathbf{x}$$

Accumulated global energy

$$E(\mathbf{T}_1, \dots, \mathbf{T}_n) = \sum_{\{i,j\}} w_{ij} \cdot E_{ij}(\mathbf{T}_i, \mathbf{T}_j)$$
$$w_{ij} = w_{ji} = \frac{A_{ij}}{h_i + h_j}$$

Nonlinear Minimization

• Find <u>rigid</u> motion \mathbf{T}_i per cell C_i

$$\min_{\{\mathbf{T}_i\}} \sum_{\{i,j\}} w_{ij} \int_{C_i \cup C_j} \|\mathbf{T}_i(\mathbf{x}) - \mathbf{T}_j(\mathbf{x})\|^2 \, \mathrm{d}\mathbf{x}$$

- Generalized shape matching [Botsch et al, SGP 06]
 - Robust geometric optimization
 - Nonlinear Newton-type minimization
 - See paper for details...

Robust Optimization

Deformation Pipeline

Volumetric Discretization

- Octree-like adaptive voxelization
 - Easy to implement, efficient to compute
 - Analytic integration
- T-junctions are <u>no problem</u> !

Boundary Refinement

Energy-Driven Refinement

3D Adaptive Refinement

3D Adaptive Refinement

3D Adaptive Refinement

Deformation Pipeline

Deformation Interpolation

Preview: Averaging / Skinning

Final: RBF Interpolation

Deformation Interpolation

Preview: Averaging / Skinning **Final:** RBF Interpolation

Deformation Pipeline

3D Deformation

Complex Models

Complex Models

Shell vs. Solid

Triangle Soup

Aliasing

Conclusion

- Physically plausible deformation energy
 - Shells & solids, 2D & 3D
 - Arbitrary convex cell arrangements
 - Robust geometric shape matching
- Adaptive discretization
 - Static and dynamic refinement
- Smooth space deformation
 - Meshes, triangle soups, point sets, ...

