PriMo: Coupled Prisms for Intuitive Surface Modeling

Mario Botsch, Mark Pauly, Markus Gross ETH Zurich Leif Kobbelt RWTH Aachen

Surface Deformation

- Requirements
 - Easy and intuitive user interaction
 - Large-scale deformations
 - Robustness
 - Efficiency

Surface Deformation

- Recent methods focus more on efficiency
 - Real-time deformations of large models
- Requires linearization
 - Problems with large deformations
- Split large deformations
 - Specify more constraints
 - More user guidance required

Linear Techniques

Non-Linear Surface Deformation

- Use a non-linear deformation model
 Too slow, complicated, instable?
- Physically <u>plausible</u> vs. physically <u>correct</u>
- Trade physical correctness for
 - Computational efficiency
 - Numerical robustness

Comparison

Outline

- Motivation
- Prism Representation
- Geometric Optimization
- Results

- <u>Qualitatively</u> emulate thin-shell behavior
- Thin volumetric layer around center surface
- Extrude polygonal prism P_i per mesh face F_i

- How to deform prisms?
 - FEM has problems if elements degenerate...
- Prevent prisms from degenerating
 - ➡ Keep them <u>rigid</u>

- Connect prisms along their faces
 - Non-linear elastic energy
 - Measures bending, stretching, twisting, ...

• Pairwise prism energy

$$E_{ij} = \int_{[0,1]^2} \left\| \mathbf{f}^{i \to j}(\mathbf{u}) - \mathbf{f}^{j \to i}(\mathbf{u}) \right\|^2 d\mathbf{u} \qquad \mathbf{f}^{i \to j}(\mathbf{u})$$

Physical Interpretation

$$E_{ij} = \int_{[0,1]^2} \left\| \mathbf{f}^{i \to j}(\mathbf{u}) - \mathbf{f}^{j \to i}(\mathbf{u}) \right\|^2 d\mathbf{u}$$
Integral over infinitesimal spring fibres
$$\mathbf{Sum of spring energies}$$

$$E_{ij} \approx \sum_k \left\| \mathbf{f}_k^{i \to j} - \mathbf{f}_k^{j \to i} \right\|^2$$

$$P_i$$

$$P_j$$

• Pairwise prism energy

$$E_{ij} = \int_{[0,1]^2} \left\| \mathbf{f}^{i \to j}(\mathbf{u}) - \mathbf{f}^{j \to i}(\mathbf{u}) \right\|^2 d\mathbf{u} \qquad \mathbf{f}^{i \to j}(\mathbf{u})$$

• Global energy

$$E = \sum_{\{i,j\}} w_{ij} \cdot E_{ij} , \quad w_{ij} = \frac{\|\mathbf{e}_{ij}\|^2}{|F_i| + |F_j|}$$

 $\dot{\mathbf{f}}^{j \to i}(\mathbf{u})$

[i

 D_{i}

Prism-Based Surface Deformation

- 1. Prescribes position/orientation for prisms
- 2. Find optimal rigid motions per prism
- 3. Update vertices by average prism transformations

Outline

- Motivation
- Prism Representation
- Geometric Optimization
- Results

Non-Linear Minimization

• Find rigid motion ($\mathbf{R}_i, \mathbf{t}_i$) per prism P_i

$$\min_{\{\mathbf{R}_i, \mathbf{t}_i\}} \sum_{\{i,j\}} w_{ij} \int_{[0,1]^2} \left\| \mathbf{R}_i \mathbf{f}^{i \to j}(\mathbf{u}) + \mathbf{t}_i - \mathbf{R}_j \mathbf{f}^{j \to i}(\mathbf{u}) - \mathbf{t}_j \right\|^2 d\mathbf{u}$$

Continuous Shape Matching

Non-Linear Minimization

• Find rigid motion ($\mathbf{R}_i, \mathbf{t}_i$) per prism P_i

$$\min_{\{\mathbf{R}_i, \mathbf{t}_i\}} \sum_{\{i,j\}} w_{ij} \int_{[0,1]^2} \left\| \mathbf{R}_i \mathbf{f}^{i \to j}(\mathbf{u}) + \mathbf{t}_i - \mathbf{R}_j \mathbf{f}^{j \to i}(\mathbf{u}) - \mathbf{t}_j \right\|^2 d\mathbf{u}$$

- Generalized shape matching problem
 - <u>Discrete</u> point correspondences vs.
 <u>continuous</u> face correspondences
- Adapt techniques for point-set registration

Iterated Local Shape Matching

- Iterate this:
 - Randomly pick one prism
 - Optimize its position/orientation [Horn87]

$$\min_{\mathbf{R}_{i},\mathbf{t}_{i}} \sum_{j \in \mathcal{N}_{i}} w_{ij} \int_{[0,1]^{2}} \left\| \mathbf{R}_{i} \mathbf{f}^{i \to j}(\mathbf{u}) + \mathbf{t}_{i} - \mathbf{f}^{j \to i}(\mathbf{u}) \right\|^{2} d\mathbf{u}$$

- Corresponds to error diffusion
 - Rapidly removes high error frequencies
 - Impractically slow convergence

Global Shape Matching [Pottmann 04]

• First order approx. of rigid motions

 $\mathbf{R}_{i}(\cdot) + \mathbf{t}_{i} \approx (\cdot) + \omega_{i} \times (\cdot) + \mathbf{v}_{i} =: \mathbf{A}_{i}(\cdot)$

- Quadratic minimization wrt. velocities $\min_{\{\mathbf{v}_i, \omega_i\}} \sum_{\{i, j\}} w_{ij} \int_{[0, 1]^2} \left\| \mathbf{A}_i \left(\mathbf{f}^{i \to j}(\mathbf{u}) \right) - \mathbf{A}_j \left(\mathbf{f}^{j \to i}(\mathbf{u}) \right) \right\|^2 d\mathbf{u}$
- Yields affine motion A_i per prism
 Project to manifold of rigid motions

Global Shape Matching

- Find "closest" rigid motion
 - Measure distance of transformations' images
 - Another local shape matching

Larger steps, fewer iterations
 – Factor 50 faster than [Pottmann02]

Global Shape Matching

```
while not converged
{
  find optimal velocities [v<sub>i</sub>,w<sub>i</sub>]
  ∀i: (R<sub>i</sub>,t<sub>i</sub>) = project(v<sub>i</sub>,w<sub>i</sub>)
  ∀i: P<sub>i</sub> = R<sub>i</sub>*P<sub>i</sub> + t<sub>i</sub>
}
```

Performance: ~7k prism updates per second

Hierarchical Shape Matching

- Local and global matching alone don't work
 - Slow convergence of local matching
 - High complexity of global matching
- Hierarchical multi-grid matching
 - Solve global matching on coarse level
 - Apply local matching on finer levels

Robustness

Robustness

Outline

- Motivation
- Prism Representation
- Geometric Optimization
- Results

Dragon Deformation

Prism Parameters

Stiffness Control

Control Surface Area

Non-Shrinking Smoothing

Detail Enhancement

Width

Angle--

Force-Based Deformation

- Separately prescribe
 - positions and/or
 - orientations
- Forces can be more intuitive
 - Physically intuitive
 - Constraints = high forces
- Incorporate forces
 - Just another spring energy

Force-Based Deformation

ETTH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Goblin Posing

Goblin Posing

- Decreased stiffness at joints
- Forces & hard constraints
- 180k triangles at about 1 fps
- Whole session < 5 min

Conclusion

- Non-linear surface deformation model
 - Physically plausible
 - Intuitive parameters for surface behavior
 - Constraint-based and force-based
- Hierarchical shape matching
 - Extremely robust

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

- Reasonably efficient
- Easy implementation

