# Real-Time Shape Editing using Radial Basis Functions

Mario Botsch, Leif Kobbelt RWTH Aachen





# **Boundary Constraint Modeling**

- Prescribe irregular constraints
  - Vertex positions
- Constrained energy minimization
   Optimal fairness



Solve (bi- or tri-) Laplacian system per frame

#### RVTHAACHEN



## **Differential Constraint Modeling**

Prescribe differential constraints
Laplace coordinates
Poisson gradient editing
Laplacian editing
Deformation gradients

Solve (least squares) Laplacian systems





### Surface-Based Deformation

#### Problems with

- Highly complex models
- Topological inconsistencies
- Geometric degeneracies







#### **Space Deformation**

1. Control. Prescribe (irregular) constraints:  $\mathbf{c}_i \mapsto \mathbf{c}'_i$ 

2. Fitting. Smoothly interpolate constraints by a displacement function <u>in space</u>:  $\mathbf{d} : \mathbb{R}^3 \to \mathbb{R}^3$  with  $\mathbf{d}(\mathbf{c}_i) = \mathbf{c}'_i$ 

3. Evaluation. Displace all points:  $\mathbf{p}_i \mapsto \mathbf{d}(\mathbf{p}_i) \quad \forall \mathbf{p}_i \in S$ 





### How to interpolate?

Represent deformation by RBFs

$$\mathbf{d}(\mathbf{x}) = \sum_{j} \mathbf{w}_{j} \cdot \varphi \left( \|\mathbf{c}_{j} - \mathbf{x}\| \right) + \mathbf{p}(\mathbf{x})$$

- Well suited for scattered data interpolation
  Smooth interpolation
  - Irregular constraints





## Which basis function?

Triharmonic RBF φ(r) = r<sup>3</sup>
 → C<sup>2</sup> boundary constraints
 → High fairness (energy minimization)

- Globally supported RBF
  - Works well for <u>irregular</u> constraints
  - ➡ But linear systems are <u>dense</u>





## Which basis function?

- Compactly supported functions...
  are more efficient *(sparse systems)*but yield inferior fairness
- Don't trade quality for efficiency!
   Use triharmonic functions
   Accelerate involved computations







- Introduction
- RBF Modeling Setup
- Incremental Least Squares Solver
- Precomputed Basis Functions
- GPU Implementation
- Results





## Handle Metaphor

Affinely transformed control handle
 Fixed vertices f<sub>i</sub> → f<sub>i</sub>
 Handle vertices h<sub>i</sub> → h'<sub>i</sub>







### **Curve Metaphor**







## C<sup>2</sup> Boundary Constraints

- Three rings of constrained points
- Finite difference approximation to exact C<sup>2</sup> constraints









## **RBF** Fitting

#### • Place *m* centers at *m* constraints $\{\mathbf{c}_i\} = \{\mathbf{f}_i\} \cup \{\mathbf{h}_i\}$

# • Solve *mxm* system for weights $\{\mathbf{w}_j\}$ $\Phi \cdot W = \begin{pmatrix} F \\ H' \end{pmatrix}$

Rows *i* ⇔ constraints
 Columns *j* ⇔ basis functions







- Introduction
- RBF Modeling Setup
- Incremental Least Squares Solver
- Precomputed Basis Functions
- GPU Implementation
- Results





# **RBF Fitting**

Computation time should depend on...
 *deformation* complexity
 <u>not surface</u> complexity

Simple deformation, complex surface?
Not all *m* basis functions needed
Solve up to error tolerance





## Incremental RBF Fitting

- 1. Start with a few basis functions only
- 2. Iteratively refine approximation
  - i. Add one basis function
  - ii. Recompute fitting
  - iii. Break if error < tolerance





#### Carr et al. SG 2001

Exactly interpolate *n* chosen constraints

- Solve upper *nxn* block
- for n = 1 to m do







#### Incremental Least Squares

Compute optimal L<sup>2</sup> approximation

- Solve left mxn block (least squares)
- for n = 1 to m do







## Least Squares QR Method

• Overdetermined system Ax = b



• Least Squares solution  $Rx = Q_1^T b$ 



• L<sup>2</sup> error $\|b - Ax\| = \|Q_2^T b\|$ 

#### RNHAACHEN



## Incremental QR Solver

- In each iteration...
  - add one more basis function
  - add one more column
  - do one QR iteration (Householder)
- Slight adjustment of standard QR
  - Iterate until error < tolerance
  - Then solve  $Rx = Q_1^T b$
  - Comes at <u>no</u> performance penalty!





#### Which centers to choose?

"Farthest point sampling" of RBF centers
Linearly independent columns
Good matrix condition





Computer Graphics Group Mario Botsch



### **Surface Deformation**

#### 270k blue vertices, 4136 constraints









- Introduction
- RBF Modeling Setup
- Incremental Least Squares Solver
- Precomputed Basis Functions
- GPU Implementation
- Results





#### **Precomputed Basis Functions**

• Affine coordinate system for handle

$$H = M (\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d})^T =: M C$$







#### **Precomputed Basis Functions**

Affine coord. system for handle
 H depends linearly on C

Fitting: pseudo inverse
 W depends linearly on H

Evaluation: matrix multiplication
 P depends linearly on W

P depends linearly on C

#### RNTHAACHEN



#### **Precomputed Basis Functions**

• In terms of displacements:  $P' = P + B \, \delta C$ 

 Simplifies fitting & evaluation to weighted sum of 4 displacements

 Works for curve metaphor as well
 Curve points are affine combination of control points





### **Surface Deformation**

#### 270k blue vertices, 4136 constraints









- Introduction
- RBF Modeling Setup
- Incremental Least Squares Solver
- Precomputed Basis Functions
- GPU Implementation
- Results





## **GPU Implementation**

- Analytic space deformation
  - Transform points  $\mathbf{p}'_i = \mathbf{d}(\mathbf{p}_i)$
  - Transform tangents  $\mathbf{t}'_{i} = J_{\mathbf{d}}(\mathbf{p}_{i})\mathbf{t}_{i}$
  - Transform normals
- $\mathbf{t}'_{i} = J_{\mathbf{d}}(\mathbf{p}_{i})\mathbf{t}_{i}$  $\mathbf{n}'_{i} = J_{\mathbf{d}}(\mathbf{p}_{i})^{-T}\mathbf{n}_{i}$
- Precompute basis functions for
  - Deformation  $\mathbf{d}(\cdot) \implies B$
  - Jacobian  $J_{\mathbf{d}}(\cdot) \implies B_x, B_y, B_z$
  - Requires 16 floats per vertex





## **GPU Implementation**

- Each point is handled individually
   Easily computed in vertex shader
- Now all geometry data is static
   Store in video memory
- Only affine frame changes
   Global shader variable (12 floats)





### **Surface Deformation**

#### 270k blue vertices, 4136 constraints





Computer Graphics Group Mario Botsch





- Introduction
- RBF Modeling Setup
- Incremental Least Squares Solver
- Precomputed Basis Functions
- GPU Implementation
- Results





#### 1M vertices, 355k active vertices







#### 984k vertices, 880k active vertices







#### Local & Global Deformations





Computer Graphics Group Mario Botsch



#### "Bad Meshes"







#### "Bad Meshes"







#### **Point-Based Models**

- Transform splat axes by Jacobian
- Integrates seamlessly into GPU rendering methods











#### **Point-Based Models**









## Comparison

Surface-based methods offer more control

- Segment-wise boundary continuity
- Geodesic anisotropy







## Comparison



Surface Freeform

#### Surface Multires

#### Space Freeform

Space Multires





Computer Graphics Group Mario Botsch



### Conclusion

- Triharmonic RBF space deformation
  - Robust & efficient
  - High fairness
- Acceleration techniques
  - Incremental QR solver
  - Precomputed basis functions
  - GPU implementation

Real-time editing at 30M vertices/sec

**Computer Graphics Group** 

Mario Botsch

#### RNTHAACHEN